Files
MastersThesis/src/paddle_ocr/docker-compose.gpu-registry.yml

40 lines
1.1 KiB
YAML
Raw Normal View History

2026-01-17 16:15:53 +01:00
# docker-compose.gpu-registry.yml - Pull GPU image from registry
# Usage: docker compose -f docker-compose.gpu-registry.yml up
#
# Requires: NVIDIA GPU + nvidia-container-toolkit installed
services:
ocr-gpu:
2026-01-17 17:25:05 +01:00
image: seryus.ddns.net/unir/paddle-ocr-gpu:latest
2026-01-17 16:15:53 +01:00
container_name: paddle-ocr-gpu-registry
ports:
- "8002:8000"
volumes:
- ../dataset:/app/dataset:ro
2026-01-18 18:03:23 +01:00
- ../debugset:/app/debugset:rw
2026-01-17 16:15:53 +01:00
- paddlex-cache:/root/.paddlex
2026-01-18 07:13:51 +01:00
- ./scripts:/app/scripts:ro
2026-01-17 16:15:53 +01:00
environment:
- PYTHONUNBUFFERED=1
- CUDA_VISIBLE_DEVICES=0
2026-01-19 13:00:08 +01:00
- PADDLE_DET_MODEL=PP-OCRv5_mobile_det
- PADDLE_REC_MODEL=PP-OCRv5_mobile_rec
2026-01-17 16:15:53 +01:00
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: [gpu]
restart: unless-stopped
healthcheck:
test: ["CMD", "python", "-c", "import urllib.request; urllib.request.urlopen('http://localhost:8000/health')"]
interval: 30s
timeout: 10s
retries: 3
start_period: 60s
volumes:
paddlex-cache:
name: paddlex-model-cache