208 lines
6.0 KiB
Python
208 lines
6.0 KiB
Python
|
|
#!/usr/bin/env python3
|
||
|
|
"""
|
||
|
|
Test PaddleOCR in dynamic graph mode (not inference mode).
|
||
|
|
|
||
|
|
Dynamic mode compiles kernels at runtime, which may work on Blackwell.
|
||
|
|
Inference mode uses pre-compiled kernels which fail on sm_121.
|
||
|
|
|
||
|
|
Usage:
|
||
|
|
python test_dynamic_mode.py [image_path]
|
||
|
|
"""
|
||
|
|
|
||
|
|
import os
|
||
|
|
import sys
|
||
|
|
|
||
|
|
os.environ['DISABLE_MODEL_SOURCE_CHECK'] = 'True'
|
||
|
|
# Force dynamic graph mode
|
||
|
|
os.environ['FLAGS_enable_pir_api'] = '0'
|
||
|
|
|
||
|
|
import numpy as np
|
||
|
|
import paddle
|
||
|
|
from PIL import Image
|
||
|
|
|
||
|
|
|
||
|
|
def check_gpu():
|
||
|
|
"""Check GPU status."""
|
||
|
|
print("=" * 60)
|
||
|
|
print("GPU STATUS")
|
||
|
|
print("=" * 60)
|
||
|
|
print(f"Device: {paddle.device.get_device()}")
|
||
|
|
print(f"CUDA compiled: {paddle.device.is_compiled_with_cuda()}")
|
||
|
|
|
||
|
|
if paddle.device.is_compiled_with_cuda() and paddle.device.cuda.device_count() > 0:
|
||
|
|
props = paddle.device.cuda.get_device_properties(0)
|
||
|
|
print(f"GPU: {props.name} (sm_{props.major}{props.minor})")
|
||
|
|
print(f"Memory: {props.total_memory / (1024**3):.1f} GB")
|
||
|
|
print()
|
||
|
|
|
||
|
|
|
||
|
|
def test_paddleocr_dynamic(image_path: str):
|
||
|
|
"""Test PaddleOCR with dynamic execution."""
|
||
|
|
print("=" * 60)
|
||
|
|
print("PADDLEOCR DYNAMIC MODE TEST")
|
||
|
|
print("=" * 60)
|
||
|
|
|
||
|
|
# Import PaddleOCR
|
||
|
|
from paddleocr import PaddleOCR
|
||
|
|
|
||
|
|
# Try to force dynamic mode by setting use_static=False if available
|
||
|
|
# or by using the model in eval mode directly
|
||
|
|
|
||
|
|
print("Creating PaddleOCR instance...")
|
||
|
|
print("(This may download models on first run)")
|
||
|
|
|
||
|
|
try:
|
||
|
|
# Create OCR instance - this might still use inference internally
|
||
|
|
ocr = PaddleOCR(
|
||
|
|
text_detection_model_name='PP-OCRv4_mobile_det',
|
||
|
|
text_recognition_model_name='PP-OCRv4_mobile_rec',
|
||
|
|
use_angle_cls=False, # Simplify
|
||
|
|
lang='es',
|
||
|
|
)
|
||
|
|
|
||
|
|
# Load image
|
||
|
|
img = Image.open(image_path)
|
||
|
|
arr = np.array(img)
|
||
|
|
print(f"Image shape: {arr.shape}")
|
||
|
|
|
||
|
|
# Run prediction
|
||
|
|
print("Running OCR prediction...")
|
||
|
|
result = ocr.predict(arr)
|
||
|
|
|
||
|
|
# Parse results
|
||
|
|
res = result[0].json['res']
|
||
|
|
dt_polys = res.get('dt_polys', [])
|
||
|
|
rec_texts = res.get('rec_texts', [])
|
||
|
|
|
||
|
|
print()
|
||
|
|
print("RESULTS:")
|
||
|
|
print(f" Detected boxes: {len(dt_polys)}")
|
||
|
|
print(f" Recognized texts: {len(rec_texts)}")
|
||
|
|
|
||
|
|
if rec_texts:
|
||
|
|
print(f" First 5 texts: {rec_texts[:5]}")
|
||
|
|
return True
|
||
|
|
else:
|
||
|
|
print(" WARNING: No text recognized!")
|
||
|
|
return False
|
||
|
|
|
||
|
|
except Exception as e:
|
||
|
|
print(f"ERROR: {e}")
|
||
|
|
return False
|
||
|
|
|
||
|
|
|
||
|
|
def test_paddle_dynamic_model():
|
||
|
|
"""Test loading a paddle model in dynamic graph mode."""
|
||
|
|
print()
|
||
|
|
print("=" * 60)
|
||
|
|
print("PADDLE DYNAMIC GRAPH TEST")
|
||
|
|
print("=" * 60)
|
||
|
|
|
||
|
|
# Ensure we're in dynamic mode
|
||
|
|
paddle.disable_static()
|
||
|
|
|
||
|
|
# Test a simple model forward pass
|
||
|
|
print("Testing dynamic graph execution...")
|
||
|
|
|
||
|
|
# Create a simple ResNet-like block
|
||
|
|
x = paddle.randn([1, 3, 224, 224])
|
||
|
|
|
||
|
|
# Conv -> BN -> ReLU
|
||
|
|
conv = paddle.nn.Conv2D(3, 64, 7, stride=2, padding=3)
|
||
|
|
bn = paddle.nn.BatchNorm2D(64)
|
||
|
|
|
||
|
|
# Forward pass (dynamic mode - compiles at runtime)
|
||
|
|
y = conv(x)
|
||
|
|
y = bn(y)
|
||
|
|
y = paddle.nn.functional.relu(y)
|
||
|
|
|
||
|
|
print(f"Input shape: {x.shape}")
|
||
|
|
print(f"Output shape: {y.shape}")
|
||
|
|
print(f"Output min: {y.min().item():.4f}")
|
||
|
|
print(f"Output max: {y.max().item():.4f}")
|
||
|
|
print(f"Output mean: {y.mean().item():.4f}")
|
||
|
|
|
||
|
|
if y.min() != y.max():
|
||
|
|
print("Dynamic graph mode: WORKING")
|
||
|
|
return True
|
||
|
|
else:
|
||
|
|
print("Dynamic graph mode: BROKEN (constant output)")
|
||
|
|
return False
|
||
|
|
|
||
|
|
|
||
|
|
def test_ppocr_model_direct():
|
||
|
|
"""Try loading PPOCRv4 model directly in dynamic mode."""
|
||
|
|
print()
|
||
|
|
print("=" * 60)
|
||
|
|
print("PPOCR MODEL DIRECT LOAD TEST")
|
||
|
|
print("=" * 60)
|
||
|
|
|
||
|
|
try:
|
||
|
|
# Try to import ppocr modules directly
|
||
|
|
# This bypasses the inference predictor
|
||
|
|
from paddleocr.ppocr.modeling.architectures import build_model
|
||
|
|
from paddleocr.ppocr.postprocess import build_post_process
|
||
|
|
from paddleocr.ppocr.utils.save_load import load_model
|
||
|
|
|
||
|
|
print("Direct model import available")
|
||
|
|
|
||
|
|
# Note: This approach requires model config files
|
||
|
|
# which may or may not be bundled with paddleocr
|
||
|
|
|
||
|
|
except ImportError as e:
|
||
|
|
print(f"Direct model import not available: {e}")
|
||
|
|
print("PaddleOCR may only support inference mode")
|
||
|
|
|
||
|
|
return False
|
||
|
|
|
||
|
|
|
||
|
|
def main():
|
||
|
|
# Default test image
|
||
|
|
image_path = '/app/dataset/0/img/page_0001.png'
|
||
|
|
if len(sys.argv) > 1:
|
||
|
|
image_path = sys.argv[1]
|
||
|
|
|
||
|
|
if not os.path.exists(image_path):
|
||
|
|
print(f"Image not found: {image_path}")
|
||
|
|
sys.exit(1)
|
||
|
|
|
||
|
|
print(f"Testing with image: {image_path}")
|
||
|
|
print()
|
||
|
|
|
||
|
|
check_gpu()
|
||
|
|
|
||
|
|
# Test 1: Basic dynamic graph
|
||
|
|
dynamic_works = test_paddle_dynamic_model()
|
||
|
|
|
||
|
|
if not dynamic_works:
|
||
|
|
print("\nDynamic graph mode is broken - GPU likely unsupported")
|
||
|
|
sys.exit(1)
|
||
|
|
|
||
|
|
# Test 2: Direct model load
|
||
|
|
test_ppocr_model_direct()
|
||
|
|
|
||
|
|
# Test 3: PaddleOCR pipeline
|
||
|
|
ocr_works = test_paddleocr_dynamic(image_path)
|
||
|
|
|
||
|
|
print()
|
||
|
|
print("=" * 60)
|
||
|
|
print("SUMMARY")
|
||
|
|
print("=" * 60)
|
||
|
|
print(f"Dynamic graph mode: {'WORKS' if dynamic_works else 'BROKEN'}")
|
||
|
|
print(f"PaddleOCR pipeline: {'WORKS' if ocr_works else 'BROKEN'}")
|
||
|
|
|
||
|
|
if dynamic_works and not ocr_works:
|
||
|
|
print()
|
||
|
|
print("DIAGNOSIS: Dynamic mode works but PaddleOCR fails.")
|
||
|
|
print("This means PaddleOCR internally uses inference predictor")
|
||
|
|
print("which has pre-compiled kernels without Blackwell support.")
|
||
|
|
print()
|
||
|
|
print("Potential solutions:")
|
||
|
|
print("1. Modify PaddleOCR to use dynamic mode")
|
||
|
|
print("2. Use ONNX export + ONNXRuntime")
|
||
|
|
print("3. Wait for PaddlePaddle Blackwell support")
|
||
|
|
|
||
|
|
|
||
|
|
if __name__ == '__main__':
|
||
|
|
main()
|