Este capítulo establece los objetivos del trabajo siguiendo la metodología SMART (Específico, Medible, Alcanzable, Relevante, Temporal) y describe la metodología experimental empleada para alcanzarlos.
## 3.2 Objetivo General
> **Optimizar el rendimiento de PaddleOCR para documentos académicos en español mediante ajuste de hiperparámetros, alcanzando un CER inferior al 2% sin requerir fine-tuning del modelo ni recursos GPU dedicados.**
### Justificación SMART del Objetivo General
| Criterio | Cumplimiento |
|----------|--------------|
| **Específico (S)** | Se define claramente qué se quiere lograr: optimizar PaddleOCR mediante ajuste de hiperparámetros para documentos en español |
| **Medible (M)** | Se establece una métrica cuantificable: CER < 2% |
| **Alcanzable (A)** | Es viable dado que: (1) PaddleOCR permite configuración de hiperparámetros, (2) Ray Tune posibilita búsqueda automatizada, (3) No se requiere GPU |
| **Relevante (R)** | El impacto es demostrable: mejora la extracción de texto en documentos académicos sin costes adicionales de infraestructura |
| **Temporal (T)** | El plazo es un cuatrimestre, correspondiente al TFM |
## 3.3 Objetivos Específicos
### OE1: Comparar soluciones OCR de código abierto
> **Evaluar el rendimiento base de EasyOCR, PaddleOCR y DocTR en documentos académicos en español, utilizando CER y WER como métricas, para seleccionar el modelo más prometedor.**
### OE2: Preparar un dataset de evaluación
> **Construir un dataset estructurado de imágenes de documentos académicos en español con su texto de referencia (ground truth) extraído del PDF original.**
### OE3: Identificar hiperparámetros críticos
> **Analizar la correlación entre los hiperparámetros de PaddleOCR y las métricas de error para identificar los parámetros con mayor impacto en el rendimiento.**
### OE4: Optimizar hiperparámetros con Ray Tune
> **Ejecutar una búsqueda automatizada de hiperparámetros utilizando Ray Tune con Optuna, evaluando al menos 50 configuraciones diferentes.**
### OE5: Validar la configuración optimizada
> **Comparar el rendimiento de la configuración baseline versus la configuración optimizada sobre el dataset completo, documentando la mejora obtenida.**
## 3.4 Metodología de Trabajo
### 3.4.1 Visión General
La metodología sigue un enfoque experimental estructurado en cinco fases:
Se utilizaron documentos PDF académicos de UNIR (Universidad Internacional de La Rioja), específicamente las instrucciones para la elaboración del TFE del Máster en Inteligencia Artificial.
#### Proceso de Conversión
El script `prepare_dataset.ipynb` implementa:
1.**Conversión PDF a imágenes**:
- Biblioteca: PyMuPDF (fitz)
- Resolución: 300 DPI
- Formato de salida: PNG
2.**Extracción de texto de referencia**:
- Método: `page.get_text("dict")` de PyMuPDF
- Preservación de estructura de líneas
- Tratamiento de texto vertical/marginal
- Normalización de espacios y saltos de línea
#### Estructura del Dataset
```
dataset/
├── 0/
│ ├── instrucciones.pdf
│ ├── img/
│ │ ├── page_0001.png
│ │ ├── page_0002.png
│ │ └── ...
│ └── txt/
│ ├── page_0001.txt
│ ├── page_0002.txt
│ └── ...
└── ...
```
#### Clase ImageTextDataset
Se implementó una clase Python para cargar pares imagen-texto:
```python
class ImageTextDataset:
def __init__(self, root):
# Carga pares (imagen, texto) de carpetas pareadas
El siguiente capítulo presenta el desarrollo específico de la contribución, incluyendo el benchmark comparativo de soluciones OCR, la optimización de hiperparámetros y el análisis de resultados.