2026-01-17 10:24:00 +01:00
# PaddleOCR Tuning REST API
REST API service for PaddleOCR hyperparameter evaluation. Keeps the model loaded in memory for fast repeated evaluations during hyperparameter search.
## Quick Start with Docker Compose
Docker Compose manages building and running containers. The `docker-compose.yml` defines two services:
- `ocr-cpu` - CPU-only version (works everywhere)
- `ocr-gpu` - GPU version (requires NVIDIA GPU + Container Toolkit)
### Run CPU Version
```bash
cd src/paddle_ocr
# Build and start (first time takes ~2-3 min to build, ~30s to load model)
docker compose up ocr-cpu
# Or run in background (detached)
docker compose up -d ocr-cpu
# View logs
docker compose logs -f ocr-cpu
# Stop
docker compose down
```
### Run GPU Version
```bash
# Requires: NVIDIA GPU + nvidia-container-toolkit installed
docker compose up ocr-gpu
```
### Test the API
Once running, test with:
```bash
# Check health
curl http://localhost:8000/health
# Or use the test script
pip install requests
python test.py --url http://localhost:8000
```
### What Docker Compose Does
```
docker compose up ocr-cpu
│
├─► Builds image from Dockerfile.cpu (if not exists)
├─► Creates container "paddle-ocr-cpu"
├─► Mounts ../dataset → /app/dataset (your PDF images)
├─► Mounts paddlex-cache volume (persists downloaded models)
├─► Exposes port 8000
└─► Runs: uvicorn paddle_ocr_tuning_rest:app --host 0.0.0.0 --port 8000
```
## Files
| File | Description |
|------|-------------|
| `paddle_ocr_tuning_rest.py` | FastAPI REST service |
| `dataset_manager.py` | Dataset loader |
| `test.py` | API test client |
2026-01-17 16:15:53 +01:00
| `Dockerfile.cpu` | CPU-only image (x86_64 + ARM64 with local wheel) |
2026-01-17 10:46:36 +01:00
| `Dockerfile.gpu` | GPU/CUDA image (x86_64 + ARM64 with local wheel) |
| `Dockerfile.build-paddle` | PaddlePaddle GPU wheel builder for ARM64 |
2026-01-17 16:15:53 +01:00
| `Dockerfile.build-paddle-cpu` | PaddlePaddle CPU wheel builder for ARM64 |
2026-01-17 10:24:00 +01:00
| `docker-compose.yml` | Service orchestration |
2026-01-17 16:15:53 +01:00
| `docker-compose.cpu-registry.yml` | Pull CPU image from registry |
| `docker-compose.gpu-registry.yml` | Pull GPU image from registry |
2026-01-17 10:46:36 +01:00
| `wheels/` | Local PaddlePaddle wheels (created by build-paddle) |
2026-01-17 10:24:00 +01:00
## API Endpoints
### `GET /health`
Check if service is ready.
```json
{"status": "ok", "model_loaded": true, "dataset_loaded": true, "dataset_size": 24}
```
### `POST /evaluate`
Run OCR evaluation with given hyperparameters.
**Request:**
```json
{
"pdf_folder": "/app/dataset",
"textline_orientation": true,
"use_doc_orientation_classify": false,
"use_doc_unwarping": false,
"text_det_thresh": 0.469,
"text_det_box_thresh": 0.5412,
"text_det_unclip_ratio": 0.0,
"text_rec_score_thresh": 0.635,
"start_page": 5,
"end_page": 10
}
```
**Response:**
```json
{"CER": 0.0115, "WER": 0.0989, "TIME": 330.5, "PAGES": 5, "TIME_PER_PAGE": 66.1}
```
### `POST /evaluate_full`
Same as `/evaluate` but runs on ALL pages (ignores start_page/end_page).
## Building Images
### CPU Image (Multi-Architecture)
```bash
# Local build (current architecture)
docker build -f Dockerfile.cpu -t paddle-ocr-api:cpu .
# Multi-arch build with buildx (amd64 + arm64)
docker buildx create --name multiarch --use
docker buildx build -f Dockerfile.cpu \
--platform linux/amd64,linux/arm64 \
-t paddle-ocr-api:cpu \
--push .
```
2026-01-17 17:25:05 +01:00
### GPU Image (x86_64 + ARM64 with local wheel)
2026-01-17 10:24:00 +01:00
```bash
docker build -f Dockerfile.gpu -t paddle-ocr-api:gpu .
```
2026-01-17 11:10:13 +01:00
> **Note:** PaddlePaddle GPU 3.x packages are **not on PyPI**. The Dockerfile installs from PaddlePaddle's official CUDA index (`paddlepaddle.org.cn/packages/stable/cu126/`). This is handled automatically during build.
2026-01-17 10:24:00 +01:00
## Running
### CPU (Any machine)
```bash
docker run -d -p 8000:8000 \
-v $(pwd)/../dataset:/app/dataset:ro \
-v paddlex-cache:/root/.paddlex \
paddle-ocr-api:cpu
```
### GPU (NVIDIA)
```bash
docker run -d -p 8000:8000 --gpus all \
-v $(pwd)/../dataset:/app/dataset:ro \
-v paddlex-cache:/root/.paddlex \
paddle-ocr-api:gpu
```
2026-01-17 10:46:36 +01:00
## GPU Support Analysis
2026-01-17 10:24:00 +01:00
2026-01-17 10:46:36 +01:00
### Host System Reference (DGX Spark)
2026-01-17 10:24:00 +01:00
2026-01-17 10:46:36 +01:00
This section documents GPU support findings based on testing on an NVIDIA DGX Spark:
2026-01-17 10:24:00 +01:00
2026-01-17 10:46:36 +01:00
| Component | Value |
|-----------|-------|
| Architecture | ARM64 (aarch64) |
| CPU | NVIDIA Grace (ARM) |
| GPU | NVIDIA GB10 |
| CUDA Version | 13.0 |
| Driver | 580.95.05 |
| OS | Ubuntu 24.04 LTS |
| Container Toolkit | nvidia-container-toolkit 1.18.1 |
| Docker | 28.5.1 |
| Docker Compose | v2.40.0 |
### PaddlePaddle GPU Platform Support
2026-01-17 17:25:05 +01:00
**Note:** PaddlePaddle-GPU does NOT have prebuilt ARM64 wheels on PyPI, but ARM64 support is available via custom-built wheels.
2026-01-17 10:46:36 +01:00
| Platform | CPU | GPU |
|----------|-----|-----|
| Linux x86_64 | ✅ | ✅ CUDA 10.2/11.x/12.x |
| Windows x64 | ✅ | ✅ CUDA 10.2/11.x/12.x |
| macOS x64 | ✅ | ❌ |
| macOS ARM64 (M1/M2) | ✅ | ❌ |
2026-01-18 07:05:27 +01:00
| Linux ARM64 (Jetson/DGX) | ✅ | ⚠️ Limited - see Blackwell note |
2026-01-17 10:46:36 +01:00
2026-01-17 17:25:05 +01:00
**Source:** [PaddlePaddle-GPU PyPI ](https://pypi.org/project/paddlepaddle-gpu/ ) - only `manylinux_x86_64` and `win_amd64` wheels available on PyPI. ARM64 wheels must be built from source or downloaded from Gitea packages.
2026-01-17 10:46:36 +01:00
2026-01-17 17:25:05 +01:00
### ARM64 GPU Support
2026-01-17 10:46:36 +01:00
2026-01-17 17:25:05 +01:00
ARM64 GPU support is available but requires custom-built wheels:
2026-01-17 10:46:36 +01:00
2026-01-17 17:25:05 +01:00
1. **No prebuilt PyPI wheels ** : `pip install paddlepaddle-gpu` fails on ARM64 - no compatible wheels exist on PyPI
2. **Custom wheels work ** : This project provides Dockerfiles to build ARM64 GPU wheels from source
3. **CI/CD builds ARM64 GPU images ** : Pre-built wheels are available from Gitea packages
**To use GPU on ARM64:**
- Use the pre-built images from the container registry, or
- Build the wheel locally using `Dockerfile.build-paddle` (see Option 2 below), or
- Download the wheel from Gitea packages: `wheels/paddlepaddle_gpu-3.0.0-cp311-cp311-linux_aarch64.whl`
2026-01-17 10:46:36 +01:00
2026-01-18 07:05:27 +01:00
### ⚠️ Known Limitation: Blackwell GPU (sm_121 / GB10)
**Status: GPU inference does NOT work on NVIDIA Blackwell GPUs (DGX Spark, GB200, etc.)**
#### Symptoms
When running PaddleOCR on Blackwell GPUs:
- CUDA loads successfully ✅
- Basic tensor operations work ✅
- **Detection model outputs constant values** ❌
- 0 text regions detected
- CER/WER = 100% (nothing recognized)
#### Root Cause
PaddleOCR uses **pre-compiled inference models ** (PP-OCRv4_mobile_det, PP-OCRv5_server_det, etc.) that contain embedded CUDA kernels. These kernels were compiled for older GPU architectures (sm_80 Ampere, sm_90 Hopper) and **do not support Blackwell (sm_121) ** .
**Why building PaddlePaddle from source doesn't fix it:**
1. ✅ You can build `paddlepaddle-gpu` with `CUDA_ARCH=121` - this creates a Blackwell-compatible framework
2. ❌ But the **PaddleOCR inference models ** (`.pdiparams` , `.pdmodel` files) contain pre-compiled CUDA ops
3. ❌ These model files were exported/compiled targeting sm_80/sm_90 architectures
4. ❌ The model kernels execute on GPU but produce garbage output on sm_121
**To truly fix this**, the PaddlePaddle team would need to:
1. Add sm_121 to their model export pipeline
2. Re-export all PaddleOCR models (PP-OCRv4, PP-OCRv5, etc.) with Blackwell support
3. Release new model versions
This is tracked in [GitHub Issue #17327 ](https://github.com/PaddlePaddle/PaddleOCR/issues/17327 ).
#### Debug Script
Use the included debug script to verify this issue:
```bash
docker exec paddle-ocr-gpu python /app/scripts/debug_gpu_detection.py /app/dataset/0/img/page_0001.png
```
Expected output showing the problem:
```
OUTPUT ANALYSIS:
Shape: (1, 1, 640, 640)
Min: 0.000010
Max: 0.000010 # <-- Same as min = constant output
Mean: 0.000010
DIAGNOSIS:
PROBLEM: Output is constant - model inference is broken!
This typically indicates GPU compute capability mismatch.
```
#### Workarounds
1. **Use CPU mode ** (recommended):
```bash
docker compose up ocr-cpu
```
The ARM Grace CPU is fast (~2-5 sec/page). This is the reliable option.
2. **Use EasyOCR or DocTR with GPU ** :
These use PyTorch which has official ARM64 CUDA wheels (cu128 index):
```bash
# EasyOCR with GPU on DGX Spark
docker build -f ../easyocr_service/Dockerfile.gpu -t easyocr-gpu ../easyocr_service
docker run --gpus all -p 8002:8000 easyocr-gpu
```
3. **Wait for PaddlePaddle Blackwell support ** :
Track [GitHub Issue #17327 ](https://github.com/PaddlePaddle/PaddleOCR/issues/17327 ) for updates.
#### GPU Support Matrix (Updated)
| GPU Architecture | Compute | CPU | GPU |
|------------------|---------|-----|-----|
| Ampere (A100, A10) | sm_80 | ✅ | ✅ |
| Hopper (H100, H200) | sm_90 | ✅ | ✅ |
| **Blackwell (GB10, GB200) ** | sm_121 | ✅ | ❌ Not supported |
#### FAQ: Why Doesn't CUDA Backward Compatibility Work?
**Q: CUDA normally runs older kernels on newer GPUs. Why doesn't this work for Blackwell?**
Per [NVIDIA Blackwell Compatibility Guide ](https://docs.nvidia.com/cuda/blackwell-compatibility-guide/ ):
CUDA **can ** run older code on newer GPUs via **PTX JIT compilation ** :
1. PTX (Parallel Thread Execution) is NVIDIA's intermediate representation
2. If an app includes PTX code, the driver JIT-compiles it for the target GPU
3. This allows sm_80 code to run on sm_121
**The problem**: PaddleOCR inference models contain only pre-compiled **cubins ** (SASS binary), not PTX. Without PTX, there's nothing to JIT-compile.
You can test if PTX exists:
```bash
# Force PTX JIT compilation
docker run --gpus all -e CUDA_FORCE_PTX_JIT=1 paddle-ocr-gpu \
python /app/scripts/debug_gpu_detection.py /app/dataset/0/img/page_0001.png
```
- If output is still constant → No PTX in models (confirmed)
- If output varies → PTX worked
**Note on sm_121**: Per NVIDIA docs, "sm_121 is the same as sm_120 since the only difference is physically integrated CPU+GPU memory of Spark." The issue is general Blackwell (sm_12x) support, not Spark-specific.
#### FAQ: Can I Run AMD64 Containers on ARM64 DGX Spark?
**Q: Can I just run the working x86_64 GPU image via emulation?**
**Short answer: Yes for CPU, No for GPU.**
You can run amd64 containers via QEMU emulation:
```bash
# Install QEMU
sudo apt-get install qemu binfmt-support qemu-user-static
docker run --rm --privileged multiarch/qemu-user-static --reset -p yes
# Run amd64 container
docker run --platform linux/amd64 paddle-ocr-gpu:amd64 ...
```
**But GPU doesn't work:**
- QEMU emulates CPU instructions (x86 → ARM)
- **QEMU user-mode does NOT support GPU passthrough**
- GPU calls from emulated x86 code cannot reach the ARM64 GPU
So even if the amd64 image works on x86_64:
- ❌ No GPU access through QEMU
- ❌ CPU emulation is 10-100x slower than native ARM64
- ❌ Defeats the purpose entirely
| Approach | CPU | GPU | Speed |
|----------|-----|-----|-------|
| ARM64 native (CPU) | ✅ | N/A | Fast (~2-5s/page) |
| ARM64 native (GPU) | ✅ | ❌ Blackwell issue | - |
| AMD64 via QEMU | ⚠️ Works | ❌ No passthrough | 10-100x slower |
2026-01-17 10:46:36 +01:00
### Options for ARM64 Systems
#### Option 1: CPU-Only (Recommended)
Use `Dockerfile.cpu` which works on ARM64:
2026-01-17 10:24:00 +01:00
```bash
2026-01-17 10:46:36 +01:00
# On DGX Spark
docker compose up ocr-cpu
# Or build directly
docker build -f Dockerfile.cpu -t paddle-ocr-api:cpu .
2026-01-17 10:24:00 +01:00
```
2026-01-17 10:46:36 +01:00
**Performance:** CPU inference on ARM64 Grace is surprisingly fast due to high core count. Expect ~2-5 seconds per page.
#### Option 2: Build PaddlePaddle from Source (Docker-based)
Use the included Docker builder to compile PaddlePaddle GPU for ARM64:
```bash
cd src/paddle_ocr
2026-01-17 10:24:00 +01:00
2026-01-17 10:46:36 +01:00
# Step 1: Build the PaddlePaddle GPU wheel (one-time, 2-4 hours)
docker compose --profile build run --rm build-paddle
2026-01-17 10:24:00 +01:00
2026-01-17 10:46:36 +01:00
# Verify wheel was created
ls -la wheels/paddlepaddle*.whl
# Step 2: Build the GPU image (uses local wheel)
docker compose build ocr-gpu
# Step 3: Run with GPU
docker compose up ocr-gpu
# Verify GPU is working
docker compose exec ocr-gpu python -c "import paddle; print(paddle.device.is_compiled_with_cuda())"
2026-01-17 10:24:00 +01:00
```
2026-01-17 10:46:36 +01:00
**What this does:**
1. `build-paddle` compiles PaddlePaddle from source inside a CUDA container
2. The wheel is saved to `./wheels/` directory
3. `Dockerfile.gpu` detects the local wheel and uses it instead of PyPI
**Caveats:**
- Build takes 2-4 hours on first run
- Requires ~20GB disk space during build
- Not officially supported by PaddlePaddle team
- May need adjustments for future PaddlePaddle versions
See: [GitHub Issue #17327 ](https://github.com/PaddlePaddle/PaddleOCR/issues/17327 )
#### Option 3: Alternative OCR Engines
For ARM64 GPU acceleration, consider alternatives:
| Engine | ARM64 GPU | Notes |
|--------|-----------|-------|
| **Tesseract ** | ❌ CPU-only | Good fallback, widely available |
| **EasyOCR ** | ⚠️ Via PyTorch | PyTorch has ARM64 GPU support |
| **TrOCR ** | ⚠️ Via Transformers | Hugging Face Transformers + PyTorch |
| **docTR ** | ⚠️ Via TensorFlow/PyTorch | Both backends have ARM64 support |
EasyOCR with PyTorch is a viable alternative:
2026-01-17 10:24:00 +01:00
```bash
2026-01-17 10:46:36 +01:00
pip install torch torchvision --index-url https://download.pytorch.org/whl/cu121
pip install easyocr
2026-01-17 10:24:00 +01:00
```
2026-01-17 10:46:36 +01:00
### x86_64 GPU Setup (Working)
2026-01-17 10:24:00 +01:00
2026-01-17 10:46:36 +01:00
For x86_64 systems with NVIDIA GPU, the GPU Docker works:
2026-01-17 10:24:00 +01:00
```bash
2026-01-17 10:46:36 +01:00
# Verify GPU is accessible
nvidia-smi
2026-01-17 10:24:00 +01:00
2026-01-17 10:46:36 +01:00
# Verify Docker GPU access
docker run --rm --gpus all nvidia/cuda:12.0-base nvidia-smi
# Build and run GPU version
docker compose up ocr-gpu
```
### GPU Docker Compose Configuration
The `docker-compose.yml` configures GPU access via:
```yaml
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: [gpu]
2026-01-17 10:24:00 +01:00
```
2026-01-17 10:46:36 +01:00
This requires Docker Compose v2 and nvidia-container-toolkit.
## DGX Spark / ARM64 Quick Start
2026-01-17 10:24:00 +01:00
2026-01-17 10:46:36 +01:00
For ARM64 systems (DGX Spark, Jetson, Graviton), use CPU-only:
2026-01-17 10:24:00 +01:00
2026-01-17 10:46:36 +01:00
```bash
cd src/paddle_ocr
# Build ARM64-native CPU image
docker build -f Dockerfile.cpu -t paddle-ocr-api:arm64 .
# Run
docker run -d -p 8000:8000 \
-v $(pwd)/../dataset:/app/dataset:ro \
paddle-ocr-api:arm64
# Test
curl http://localhost:8000/health
```
### Cross-Compile from x86_64
Build ARM64 images from an x86_64 machine:
2026-01-17 10:24:00 +01:00
```bash
# Setup buildx for multi-arch
docker buildx create --name mybuilder --use
# Build ARM64 image from x86_64 machine
docker buildx build -f Dockerfile.cpu \
--platform linux/arm64 \
-t paddle-ocr-api:arm64 \
--load .
# Save and transfer to DGX Spark
docker save paddle-ocr-api:arm64 | gzip > paddle-ocr-arm64.tar.gz
scp paddle-ocr-arm64.tar.gz dgx-spark:~/
2026-01-17 10:46:36 +01:00
2026-01-17 10:24:00 +01:00
# On DGX Spark:
docker load < paddle-ocr-arm64.tar.gz
```
## Using with Ray Tune
Update your notebook's `trainable_paddle_ocr` function:
```python
import requests
API_URL = "http://localhost:8000/evaluate"
def trainable_paddle_ocr(config):
"""Call OCR API instead of subprocess."""
payload = {
"pdf_folder": "/app/dataset",
"use_doc_orientation_classify": config.get("use_doc_orientation_classify", False),
"use_doc_unwarping": config.get("use_doc_unwarping", False),
"textline_orientation": config.get("textline_orientation", True),
"text_det_thresh": config.get("text_det_thresh", 0.0),
"text_det_box_thresh": config.get("text_det_box_thresh", 0.0),
"text_det_unclip_ratio": config.get("text_det_unclip_ratio", 1.5),
"text_rec_score_thresh": config.get("text_rec_score_thresh", 0.0),
}
try:
response = requests.post(API_URL, json=payload, timeout=600)
response.raise_for_status()
metrics = response.json()
tune.report(metrics=metrics)
except Exception as e:
tune.report({"CER": 1.0, "WER": 1.0, "ERROR": str(e)[:500]})
```
## Architecture: Model Lifecycle
The model is loaded **once ** at container startup and stays in memory for all requests:
```mermaid
flowchart TB
subgraph Container["Docker Container Lifecycle"]
Start([Container Start]) --> Load[Load PaddleOCR Models<br/>~10-30s one-time cost]
Load --> Ready[API Ready<br/>Models in RAM ~500MB]
subgraph Requests["Incoming Requests - Models Stay Loaded"]
Ready --> R1[Request 1] --> Ready
Ready --> R2[Request 2] --> Ready
Ready --> RN[Request N...] --> Ready
end
Ready --> Stop([Container Stop])
Stop --> Free[Models Freed]
end
style Load fill:#f9f ,stroke:#333
style Ready fill:#9f9 ,stroke:#333
style Requests fill:#e8f4ea ,stroke:#090
```
**Subprocess vs REST API comparison:**
```mermaid
flowchart LR
subgraph Subprocess["❌ Subprocess Approach"]
direction TB
S1[Trial 1] --> L1[Load Model ~10s]
L1 --> E1[Evaluate ~60s]
E1 --> U1[Unload]
U1 --> S2[Trial 2]
S2 --> L2[Load Model ~10s]
L2 --> E2[Evaluate ~60s]
end
subgraph REST["✅ REST API Approach"]
direction TB
Start2[Start Container] --> Load2[Load Model ~10s]
Load2 --> Ready2[Model in Memory]
Ready2 --> T1[Trial 1 ~60s]
T1 --> Ready2
Ready2 --> T2[Trial 2 ~60s]
T2 --> Ready2
Ready2 --> TN[Trial N ~60s]
end
style L1 fill:#faa
style L2 fill:#faa
style Load2 fill:#afa
style Ready2 fill:#afa
```
## Performance Comparison
| Approach | Model Load | Per-Trial Overhead | 64 Trials |
|----------|------------|-------------------|-----------|
| Subprocess (original) | Every trial (~10s) | ~10s | ~7 hours |
| Docker per trial | Every trial (~10s) | ~12-15s | ~7.5 hours |
| **REST API ** | **Once ** | * * ~0.1s** | * * ~5.8 hours** |
The REST API saves ~1+ hour by loading the model only once.
## Troubleshooting
### Model download slow on first run
The first run downloads ~500MB of models. Use volume `paddlex-cache` to persist them.
### Out of memory
Reduce `max_concurrent_trials` in Ray Tune, or increase container memory:
```bash
docker run --memory=8g ...
```
### GPU not detected
Ensure NVIDIA Container Toolkit is installed:
```bash
nvidia-smi # Should work
docker run --rm --gpus all nvidia/cuda:12.0-base nvidia-smi # Should work
```
2026-01-17 11:10:13 +01:00
### PaddlePaddle GPU installation fails
PaddlePaddle 3.x GPU packages are **not available on PyPI ** . They must be installed from PaddlePaddle's official index:
```bash
# For CUDA 12.x
pip install paddlepaddle-gpu==3.2.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu126/
# For CUDA 11.8
pip install paddlepaddle-gpu==3.2.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/
```
The Dockerfile.gpu handles this automatically.
2026-01-17 16:15:53 +01:00
## CI/CD Pipeline
The project includes a Gitea Actions workflow (`.gitea/workflows/ci.yaml` ) for automated builds.
### What CI Builds
| Image | Architecture | Source |
|-------|--------------|--------|
| `paddle-ocr-cpu:amd64` | amd64 | PyPI paddlepaddle |
| `paddle-ocr-cpu:arm64` | arm64 | Pre-built wheel from Gitea packages |
| `paddle-ocr-gpu:amd64` | amd64 | PyPI paddlepaddle-gpu |
| `paddle-ocr-gpu:arm64` | arm64 | Pre-built wheel from Gitea packages |
### ARM64 Wheel Workflow
Since PyPI wheels don't work on ARM64 (x86 SSE instructions), wheels must be built from source using sse2neon:
1. Built manually on an ARM64 machine (one-time)
2. Uploaded to Gitea generic packages
3. Downloaded by CI when building ARM64 images
#### Step 1: Build ARM64 Wheels (One-time, on ARM64 machine)
```bash
cd src/paddle_ocr
# Build GPU wheel (requires NVIDIA GPU, takes 1-2 hours)
sudo docker build -t paddle-builder:gpu-arm64 -f Dockerfile.build-paddle .
sudo docker run --rm -v ./wheels:/wheels paddle-builder:gpu-arm64
# Build CPU wheel (no GPU required, takes 1-2 hours)
sudo docker build -t paddle-builder:cpu-arm64 -f Dockerfile.build-paddle-cpu .
sudo docker run --rm -v ./wheels:/wheels paddle-builder:cpu-arm64
# Verify wheels were created
ls -la wheels/paddlepaddle*.whl
# paddlepaddle_gpu-3.0.0-cp311-cp311-linux_aarch64.whl (GPU)
# paddlepaddle-3.0.0-cp311-cp311-linux_aarch64.whl (CPU)
```
#### Step 2: Upload Wheels to Gitea Packages
```bash
export GITEA_TOKEN="your-token-here"
# Upload GPU wheel
curl -X PUT \
-H "Authorization: token $GITEA_TOKEN" \
--upload-file wheels/paddlepaddle_gpu-3.0.0-cp311-cp311-linux_aarch64.whl \
"https://seryus.ddns.net/api/packages/unir/generic/paddlepaddle-gpu-arm64/3.0.0/paddlepaddle_gpu-3.0.0-cp311-cp311-linux_aarch64.whl"
# Upload CPU wheel
curl -X PUT \
-H "Authorization: token $GITEA_TOKEN" \
--upload-file wheels/paddlepaddle-3.0.0-cp311-cp311-linux_aarch64.whl \
"https://seryus.ddns.net/api/packages/unir/generic/paddlepaddle-cpu-arm64/3.0.0/paddlepaddle-3.0.0-cp311-cp311-linux_aarch64.whl"
```
Wheels available at:
```
https://seryus.ddns.net/api/packages/unir/generic/paddlepaddle-gpu-arm64/3.0.0/paddlepaddle_gpu-3.0.0-cp311-cp311-linux_aarch64.whl
https://seryus.ddns.net/api/packages/unir/generic/paddlepaddle-cpu-arm64/3.0.0/paddlepaddle-3.0.0-cp311-cp311-linux_aarch64.whl
```
#### Step 3: CI Builds Images
CI automatically:
1. Downloads ARM64 wheels from Gitea packages (for arm64 builds only)
2. Builds both CPU and GPU images for amd64 and arm64
3. Pushes to registry with arch-specific tags
### Required CI Secrets
Configure these in Gitea repository settings:
| Secret | Description |
|--------|-------------|
| `CI_READWRITE` | Gitea token with registry read/write access |
### Manual Image Push
```bash
# Login to registry
docker login seryus.ddns.net
# Build and push CPU (multi-arch)
docker buildx build -f Dockerfile.cpu \
--platform linux/amd64,linux/arm64 \
-t seryus.ddns.net/unir/paddle-ocr-api:cpu \
--push .
# Build and push GPU (x86_64)
docker build -f Dockerfile.gpu -t seryus.ddns.net/unir/paddle-ocr-api:gpu-amd64 .
docker push seryus.ddns.net/unir/paddle-ocr-api:gpu-amd64
# Build and push GPU (ARM64) - requires wheel in wheels/
docker buildx build -f Dockerfile.gpu \
--platform linux/arm64 \
-t seryus.ddns.net/unir/paddle-ocr-api:gpu-arm64 \
--push .
```
### Updating the ARM64 Wheels
When PaddlePaddle releases a new version:
1. Update `PADDLE_VERSION` in `Dockerfile.build-paddle` and `Dockerfile.build-paddle-cpu`
2. Rebuild both wheels on an ARM64 machine
3. Upload to Gitea packages with new version
4. Update `PADDLE_VERSION` in `.gitea/workflows/ci.yaml`