Este capítulo presenta el desarrollo completo del estudio comparativo y la optimización de hiperparámetros de sistemas OCR. Se estructura según el tipo de trabajo "Comparativa de soluciones" establecido por las instrucciones de UNIR: planteamiento de la comparativa, desarrollo de la comparativa, y discusión y análisis de resultados.
Esta sección presenta los resultados del estudio comparativo realizado entre tres soluciones OCR de código abierto: EasyOCR, PaddleOCR y DocTR. Los experimentos fueron documentados en el notebook `ocr_benchmark_notebook.ipynb` del repositorio. El objetivo es identificar el modelo base más prometedor para la posterior fase de optimización de hiperparámetros.
Se utilizó el documento "Instrucciones para la redacción y elaboración del TFE" del Máster Universitario en Inteligencia Artificial de UNIR, ubicado en la carpeta `instructions/`.
Durante el benchmark inicial se evaluó PaddleOCR con configuración por defecto en un subconjunto del dataset. Los resultados preliminares mostraron variabilidad significativa entre páginas, con CER entre 1.54% y 6.40% dependiendo de la complejidad del layout.
Del archivo CSV, un ejemplo de predicción de PaddleOCR para la página 8:
> "Escribe siempre al menos un párrafo de introducción en cada capítulo o apartado, explicando de qué vas a tratar en esa sección. Evita que aparezcan dos encabezados de nivel consecutivos sin ningún texto entre medias. [...] En esta titulacióon se cita de acuerdo con la normativa Apa."
**Errores observados en este ejemplo:**
-`titulacióon` en lugar de `titulación` (carácter duplicado)
Esta sección describe el proceso de optimización de hiperparámetros de PaddleOCR utilizando Ray Tune con el algoritmo de búsqueda Optuna. Los experimentos fueron implementados en el notebook `src/paddle_ocr_fine_tune_unir_raytune.ipynb` y los resultados se almacenaron en `src/raytune_paddle_subproc_results_20251207_192320.csv`.
Correlación de Pearson entre parámetros y métricas de error (del notebook):
**Correlación con CER:**
| Parámetro | Correlación |
|-----------|-------------|
| CER | 1.000 |
| config/text_det_box_thresh | 0.226 |
| config/text_rec_score_thresh | -0.161 |
| **config/text_det_thresh** | **-0.523** |
| config/text_det_unclip_ratio | NaN |
**Correlación con WER:**
| Parámetro | Correlación |
|-----------|-------------|
| WER | 1.000 |
| config/text_det_box_thresh | 0.227 |
| config/text_rec_score_thresh | -0.173 |
| **config/text_det_thresh** | **-0.521** |
| config/text_det_unclip_ratio | NaN |
**Hallazgo clave**: El parámetro `text_det_thresh` muestra la correlación más fuerte (-0.52), indicando que valores más altos de este umbral tienden a reducir el error.
#### Impacto del Parámetro textline_orientation
Según el análisis del notebook, este parámetro booleano tiene el mayor impacto:
*Fuente: Análisis del notebook `src/paddle_ocr_fine_tune_unir_raytune.ipynb`.*
**Interpretación**:
El CER medio es ~3.3x menor con `textline_orientation=True` (3.76% vs 12.40%). Además, la varianza es mucho menor, lo que indica resultados más consistentes. Para documentos en español con layouts mixtos (tablas, encabezados, direcciones), la clasificación de orientación ayuda a PaddleOCR a ordenar correctamente las líneas de texto.
> "La optimización de hiperparámetros mejoró la precisión de caracteres de 92.2% a 98.5%, una ganancia de 6.3 puntos porcentuales. Aunque el baseline ya ofrecía resultados aceptables, la configuración optimizada reduce los errores residuales en un 80.9%."
Esta sección presenta un análisis consolidado de los resultados obtenidos en las fases de benchmark comparativo y optimización de hiperparámetros. Se discuten las implicaciones prácticas y se evalúa el cumplimiento de los objetivos planteados.
En el benchmark inicial, PaddleOCR con configuración por defecto mostró variabilidad en el rendimiento según la complejidad de cada página, con CER promedio en torno al 5-6% y variaciones significativas entre páginas con layouts simples (~1.5%) y complejos (~6.4%).
1.**Importancia de la clasificación de orientación de línea**: El parámetro `textline_orientation=True` es el factor más determinante. Esto tiene sentido para documentos con layouts mixtos (tablas, encabezados, direcciones) donde el orden correcto de las líneas de texto es crucial.
2.**Umbral de detección crítico**: El parámetro `text_det_thresh` presenta un umbral mínimo efectivo (~0.1). Valores inferiores generan demasiados falsos positivos en la detección, corrompiendo el reconocimiento posterior.
3.**Componentes opcionales innecesarios**: Para documentos académicos digitales (no escaneados), los módulos de corrección de orientación de documento (`use_doc_orientation_classify`) y corrección de deformación (`use_doc_unwarping`) no aportan mejora e incluso pueden introducir overhead.
#### Interpretación de la Correlación Negativa
La correlación negativa de `text_det_thresh` (-0.52) con el CER indica que:
- Umbrales más altos filtran detecciones de baja confianza
- Esto reduce falsos positivos que generan texto erróneo
- El reconocimiento es más preciso con menos regiones pero más confiables
#### Limitaciones de los Resultados
1.**Generalización**: Los resultados se obtuvieron sobre documentos de un único tipo (instrucciones académicas UNIR). La configuración óptima puede variar para otros tipos de documentos.
2.**Ground truth automático**: El texto de referencia se extrajo programáticamente del PDF. En layouts complejos, esto puede introducir errores en la evaluación.
3.**Ejecución en CPU**: Los tiempos reportados (~69s/página) corresponden a ejecución en CPU. Con GPU, los tiempos serían significativamente menores.
4.**Parámetro fijo**: `text_det_unclip_ratio` permaneció fijo en 0.0 durante todo el experimento por decisión de diseño.
1. Los resultados consolidados del benchmark y la optimización
2. El análisis del impacto de cada hiperparámetro
3. La configuración óptima identificada
4. La discusión de limitaciones y aplicabilidad
5. El cumplimiento de los objetivos planteados
**Resultado principal**: Se logró reducir el CER del 7.78% al 1.49% (mejora del 80.9%) mediante optimización de hiperparámetros, cumpliendo el objetivo de alcanzar CER < 2%.