Files
MastersThesis/src/doctr_service/README.md

262 lines
6.8 KiB
Markdown
Raw Normal View History

# DocTR Tuning REST API
REST API service for DocTR (Document Text Recognition) hyperparameter evaluation. Keeps the model loaded in memory for fast repeated evaluations during hyperparameter search.
## Quick Start
### CPU Version
```bash
cd src/doctr_service
# Build
docker build -t doctr-api:cpu .
# Run
docker run -d -p 8003:8000 \
-v $(pwd)/../dataset:/app/dataset:ro \
-v doctr-cache:/root/.cache/doctr \
doctr-api:cpu
# Test
curl http://localhost:8003/health
```
### GPU Version
```bash
# Build GPU image
docker build -f Dockerfile.gpu -t doctr-api:gpu .
# Run with GPU
docker run -d -p 8003:8000 --gpus all \
-v $(pwd)/../dataset:/app/dataset:ro \
-v doctr-cache:/root/.cache/doctr \
doctr-api:gpu
```
## Files
| File | Description |
|------|-------------|
| `doctr_tuning_rest.py` | FastAPI REST service with 9 tunable hyperparameters |
| `dataset_manager.py` | Dataset loader (shared with other services) |
| `Dockerfile` | CPU-only image (amd64 + arm64) |
| `Dockerfile.gpu` | GPU/CUDA image (amd64 + arm64) |
| `requirements.txt` | Python dependencies |
## API Endpoints
### `GET /health`
Check if service is ready.
```json
{
"status": "ok",
"model_loaded": true,
"dataset_loaded": true,
"dataset_size": 24,
"det_arch": "db_resnet50",
"reco_arch": "crnn_vgg16_bn",
"cuda_available": true,
"device": "cuda",
"gpu_name": "NVIDIA GB10"
}
```
### `POST /evaluate`
Run OCR evaluation with given hyperparameters.
**Request (9 tunable parameters):**
```json
{
"pdf_folder": "/app/dataset",
"assume_straight_pages": true,
"straighten_pages": false,
"preserve_aspect_ratio": true,
"symmetric_pad": true,
"disable_page_orientation": false,
"disable_crop_orientation": false,
"resolve_lines": true,
"resolve_blocks": false,
"paragraph_break": 0.035,
"start_page": 5,
"end_page": 10
}
```
**Response:**
```json
{
"CER": 0.0189,
"WER": 0.1023,
"TIME": 52.3,
"PAGES": 5,
"TIME_PER_PAGE": 10.46,
"model_reinitialized": false
}
```
**Note:** `model_reinitialized` indicates if the model was reloaded due to changed processing flags (adds ~2-5s overhead).
## Debug Output (debugset)
The `debugset` folder allows saving OCR predictions for debugging and analysis. When `save_output=True` is passed to `/evaluate`, predictions are written to `/app/debugset`.
### Enable Debug Output
```json
{
"pdf_folder": "/app/dataset",
"save_output": true,
"start_page": 5,
"end_page": 10
}
```
### Output Structure
```
debugset/
├── doc1/
│ └── doctr/
│ ├── page_0005.txt
│ ├── page_0006.txt
│ └── ...
├── doc2/
│ └── doctr/
│ └── ...
```
Each `.txt` file contains the OCR-extracted text for that page.
### Docker Mount
Add the debugset volume to your docker run command:
```bash
docker run -d -p 8003:8000 \
-v $(pwd)/../dataset:/app/dataset:ro \
-v $(pwd)/../debugset:/app/debugset:rw \
-v doctr-cache:/root/.cache/doctr \
doctr-api:cpu
```
### Use Cases
- **Compare OCR engines**: Run same pages through PaddleOCR, DocTR, EasyOCR with `save_output=True`, then diff results
- **Debug hyperparameters**: See how different settings affect text extraction
- **Ground truth comparison**: Compare predictions against expected output
## Hyperparameters
### Processing Flags (Require Model Reinitialization)
| Parameter | Default | Description |
|-----------|---------|-------------|
| `assume_straight_pages` | true | Skip rotation handling for straight documents |
| `straighten_pages` | false | Pre-straighten pages before detection |
| `preserve_aspect_ratio` | true | Maintain document proportions during resize |
| `symmetric_pad` | true | Use symmetric padding when preserving aspect ratio |
**Note:** Changing these flags requires model reinitialization (~2-5s).
### Orientation Flags
| Parameter | Default | Description |
|-----------|---------|-------------|
| `disable_page_orientation` | false | Skip page orientation classification |
| `disable_crop_orientation` | false | Skip crop orientation detection |
### Output Grouping
| Parameter | Default | Range | Description |
|-----------|---------|-------|-------------|
| `resolve_lines` | true | bool | Group words into lines |
| `resolve_blocks` | false | bool | Group lines into blocks |
| `paragraph_break` | 0.035 | 0.0-1.0 | Minimum space ratio separating paragraphs |
## Model Architecture
DocTR uses a two-stage pipeline:
1. **Detection** (`det_arch`): Localizes text regions
- Default: `db_resnet50` (DBNet with ResNet-50 backbone)
- Alternatives: `linknet_resnet18`, `db_mobilenet_v3_large`
2. **Recognition** (`reco_arch`): Recognizes characters
- Default: `crnn_vgg16_bn` (CRNN with VGG-16 backbone)
- Alternatives: `sar_resnet31`, `master`, `vitstr_small`
Architecture is set via environment variables (fixed at startup).
## GPU Support
### Platform Support
| Platform | CPU | GPU |
|----------|-----|-----|
| Linux x86_64 (amd64) | ✅ | ✅ PyTorch CUDA |
| Linux ARM64 (GH200/GB200/DGX Spark) | ✅ | ✅ PyTorch CUDA (cu128 index) |
| macOS ARM64 (M1/M2) | ✅ | ❌ |
### PyTorch CUDA on ARM64
Unlike PaddlePaddle, PyTorch provides **official ARM64 CUDA wheels** on the cu128 index:
```bash
pip install torch torchvision --index-url https://download.pytorch.org/whl/cu128
```
This works on both amd64 and arm64 platforms with CUDA support.
### GPU Detection
DocTR automatically uses GPU when available:
```python
import torch
print(torch.cuda.is_available()) # True if GPU available
# DocTR model moves to GPU
model = ocr_predictor(pretrained=True)
if torch.cuda.is_available():
model = model.cuda()
```
The `/health` endpoint shows GPU status:
```json
{
"cuda_available": true,
"device": "cuda",
"gpu_name": "NVIDIA GB10",
"gpu_memory_total": "128.00 GB"
}
```
## Environment Variables
| Variable | Default | Description |
|----------|---------|-------------|
| `DOCTR_DET_ARCH` | `db_resnet50` | Detection architecture |
| `DOCTR_RECO_ARCH` | `crnn_vgg16_bn` | Recognition architecture |
| `CUDA_VISIBLE_DEVICES` | `0` | GPU device selection |
## CI/CD
Built images available from registry:
| Image | Architecture |
|-------|--------------|
| `seryus.ddns.net/unir/doctr-cpu:latest` | amd64, arm64 |
| `seryus.ddns.net/unir/doctr-gpu:latest` | amd64, arm64 |
## Sources
- [DocTR Documentation](https://mindee.github.io/doctr/)
- [DocTR GitHub](https://github.com/mindee/doctr)
- [DocTR Model Usage](https://mindee.github.io/doctr/latest/using_doctr/using_models.html)
- [PyTorch ARM64 CUDA Wheels](https://github.com/pytorch/pytorch/issues/160162)