Files
MastersThesis/src/dataset_formatting/convert_to_hf_dataset.py

139 lines
3.5 KiB
Python
Raw Normal View History

2026-01-19 14:00:28 +01:00
#!/usr/bin/env python3
"""Convert custom OCR dataset to Hugging Face format."""
import json
import shutil
from pathlib import Path
def convert_dataset(source_dir: str, output_dir: str):
"""Convert folder-based dataset to HF ImageFolder format."""
source = Path(source_dir)
output = Path(output_dir)
data_dir = output / "data"
data_dir.mkdir(parents=True, exist_ok=True)
metadata = []
for doc_folder in sorted(source.iterdir()):
if not doc_folder.is_dir():
continue
doc_id = doc_folder.name
img_dir = doc_folder / "img"
txt_dir = doc_folder / "txt"
if not img_dir.exists() or not txt_dir.exists():
continue
for img_file in sorted(img_dir.glob("*.png")):
txt_file = txt_dir / f"{img_file.stem}.txt"
if not txt_file.exists():
continue
# Extract page number
page_num = int(img_file.stem.split("_")[-1])
# New filename: page_{doc_id}_{page_num:04d}.png
new_name = f"page_{doc_id}_{page_num:04d}.png"
# Copy image
shutil.copy(img_file, data_dir / new_name)
# Read text
text = txt_file.read_text(encoding="utf-8").strip()
# Add metadata entry
metadata.append({
"file_name": f"data/{new_name}",
"text": text,
"document_id": doc_id,
"page_number": page_num
})
# Write metadata.jsonl
with open(output / "metadata.jsonl", "w", encoding="utf-8") as f:
for entry in metadata:
f.write(json.dumps(entry, ensure_ascii=False) + "\n")
# Write dataset card
write_dataset_card(output, len(metadata))
print(f"Converted {len(metadata)} samples to {output}")
def write_dataset_card(output_dir: Path, num_samples: int):
"""Write HF dataset card."""
card = f'''---
dataset_info:
features:
- name: image
dtype: image
- name: text
dtype: string
- name: document_id
dtype: string
- name: page_number
dtype: int32
splits:
- name: train
num_examples: {num_samples}
license: cc-by-4.0
language:
- es
task_categories:
- image-to-text
tags:
- ocr
- spanish
- academic-documents
- unir
---
# UNIR OCR Dataset
Dataset de documentos académicos en español para evaluación de sistemas OCR.
## Descripción
- **Idioma**: Español
- **Dominio**: Documentos académicos (instrucciones TFE de UNIR)
- **Formato**: Imágenes PNG (300 DPI) + texto ground truth
- **Total**: {num_samples} pares imagen-texto
## Uso
```python
from datasets import load_dataset
dataset = load_dataset("path/to/dataset")
for sample in dataset["train"]:
image = sample["image"]
text = sample["text"]
```
## Estructura
Cada muestra contiene:
- `image`: Imagen de la página (PIL.Image)
- `text`: Texto ground truth extraído del PDF
- `document_id`: ID del documento fuente
- `page_number`: Número de página
## Citación
Parte del TFM "Optimización de Hiperparámetros OCR con Ray Tune" - UNIR 2025
'''
(output_dir / "README.md").write_text(card, encoding="utf-8")
if __name__ == "__main__":
import sys
source = sys.argv[1] if len(sys.argv) > 1 else "src/dataset"
output = sys.argv[2] if len(sys.argv) > 2 else "src/dataset_hf"
convert_dataset(source, output)