From 09ec70de270a9013454974681d9eb0d240ee5087 Mon Sep 17 00:00:00 2001 From: Sergio Jimenez Jimenez Date: Sun, 7 Dec 2025 20:07:59 +0100 Subject: [PATCH] Hyper param serach results --- .gitignore | 2 +- prepare_dataset.ipynb | 496 --- dataset_manager.py => src/dataset_manager.py | 0 .../paddle_ocr_fine_tune_unir_raytune.ipynb | 2671 ++++++++--------- .../paddle_ocr_tuning.py | 27 +- src/prepare_dataset.ipynb | 504 ++++ ...paddle_subproc_results_20251207_192320.csv | 65 + 7 files changed, 1897 insertions(+), 1868 deletions(-) delete mode 100644 prepare_dataset.ipynb rename dataset_manager.py => src/dataset_manager.py (100%) rename paddle_ocr_fine_tune_unir_raytune.ipynb => src/paddle_ocr_fine_tune_unir_raytune.ipynb (52%) rename paddle_ocr_tuning.py => src/paddle_ocr_tuning.py (74%) create mode 100644 src/prepare_dataset.ipynb create mode 100644 src/raytune_paddle_subproc_results_20251207_192320.csv diff --git a/.gitignore b/.gitignore index 902a548..427e430 100644 --- a/.gitignore +++ b/.gitignore @@ -1,5 +1,5 @@ ~$*.docx results/ -__pycache__/* +__pycache__/ dataset results \ No newline at end of file diff --git a/prepare_dataset.ipynb b/prepare_dataset.ipynb deleted file mode 100644 index e9a60ed..0000000 --- a/prepare_dataset.ipynb +++ /dev/null @@ -1,496 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 108, - "id": "93809ffc", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Requirement already satisfied: pip in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (25.3)\n", - "Note: you may need to restart the kernel to use updated packages.\n", - "Requirement already satisfied: jupyter in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (1.1.1)\n", - "Requirement already satisfied: notebook in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyter) (7.5.0)\n", - "Requirement already satisfied: jupyter-console in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyter) (6.6.3)\n", - "Requirement already satisfied: nbconvert in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyter) (7.16.6)\n", - "Requirement already satisfied: ipykernel in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from jupyter) (7.1.0)\n", - "Requirement already satisfied: ipywidgets in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyter) (8.1.8)\n", - "Requirement already satisfied: jupyterlab in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyter) (4.5.0)\n", - "Requirement already satisfied: comm>=0.1.1 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel->jupyter) (0.2.3)\n", - "Requirement already satisfied: debugpy>=1.6.5 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel->jupyter) (1.8.17)\n", - "Requirement already satisfied: ipython>=7.23.1 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel->jupyter) (9.8.0)\n", - "Requirement already satisfied: jupyter-client>=8.0.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel->jupyter) (8.6.3)\n", - "Requirement already satisfied: jupyter-core!=5.0.*,>=4.12 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel->jupyter) (5.9.1)\n", - "Requirement already satisfied: matplotlib-inline>=0.1 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel->jupyter) (0.2.1)\n", - "Requirement already satisfied: nest-asyncio>=1.4 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel->jupyter) (1.6.0)\n", - "Requirement already satisfied: packaging>=22 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel->jupyter) (25.0)\n", - "Requirement already satisfied: psutil>=5.7 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel->jupyter) (7.1.3)\n", - "Requirement already satisfied: pyzmq>=25 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel->jupyter) (27.1.0)\n", - "Requirement already satisfied: tornado>=6.2 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel->jupyter) (6.5.2)\n", - "Requirement already satisfied: traitlets>=5.4.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel->jupyter) (5.14.3)\n", - "Requirement already satisfied: colorama>=0.4.4 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (0.4.6)\n", - "Requirement already satisfied: decorator>=4.3.2 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (5.2.1)\n", - "Requirement already satisfied: ipython-pygments-lexers>=1.0.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (1.1.1)\n", - "Requirement already satisfied: jedi>=0.18.1 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (0.19.2)\n", - "Requirement already satisfied: prompt_toolkit<3.1.0,>=3.0.41 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (3.0.52)\n", - "Requirement already satisfied: pygments>=2.11.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (2.19.2)\n", - "Requirement already satisfied: stack_data>=0.6.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (0.6.3)\n", - "Requirement already satisfied: typing_extensions>=4.6 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (4.15.0)\n", - "Requirement already satisfied: wcwidth in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from prompt_toolkit<3.1.0,>=3.0.41->ipython>=7.23.1->ipykernel->jupyter) (0.2.14)\n", - "Requirement already satisfied: parso<0.9.0,>=0.8.4 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from jedi>=0.18.1->ipython>=7.23.1->ipykernel->jupyter) (0.8.5)\n", - "Requirement already satisfied: python-dateutil>=2.8.2 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from jupyter-client>=8.0.0->ipykernel->jupyter) (2.9.0.post0)\n", - "Requirement already satisfied: platformdirs>=2.5 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from jupyter-core!=5.0.*,>=4.12->ipykernel->jupyter) (4.5.1)\n", - "Requirement already satisfied: six>=1.5 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from python-dateutil>=2.8.2->jupyter-client>=8.0.0->ipykernel->jupyter) (1.17.0)\n", - "Requirement already satisfied: executing>=1.2.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from stack_data>=0.6.0->ipython>=7.23.1->ipykernel->jupyter) (2.2.1)\n", - "Requirement already satisfied: asttokens>=2.1.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from stack_data>=0.6.0->ipython>=7.23.1->ipykernel->jupyter) (3.0.1)\n", - "Requirement already satisfied: pure-eval in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from stack_data>=0.6.0->ipython>=7.23.1->ipykernel->jupyter) (0.2.3)\n", - "Requirement already satisfied: widgetsnbextension~=4.0.14 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from ipywidgets->jupyter) (4.0.15)\n", - "Requirement already satisfied: jupyterlab_widgets~=3.0.15 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from ipywidgets->jupyter) (3.0.16)\n", - "Requirement already satisfied: async-lru>=1.0.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyterlab->jupyter) (2.0.5)\n", - "Requirement already satisfied: httpx<1,>=0.25.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyterlab->jupyter) (0.28.1)\n", - "Requirement already satisfied: jinja2>=3.0.3 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyterlab->jupyter) (3.1.6)\n", - "Requirement already satisfied: jupyter-lsp>=2.0.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyterlab->jupyter) (2.3.0)\n", - "Requirement already satisfied: jupyter-server<3,>=2.4.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyterlab->jupyter) (2.17.0)\n", - "Requirement already satisfied: jupyterlab-server<3,>=2.28.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyterlab->jupyter) (2.28.0)\n", - "Requirement already satisfied: notebook-shim>=0.2 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyterlab->jupyter) (0.2.4)\n", - "Requirement already satisfied: setuptools>=41.1.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyterlab->jupyter) (65.5.0)\n", - "Requirement already satisfied: anyio in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from httpx<1,>=0.25.0->jupyterlab->jupyter) (4.12.0)\n", - "Requirement already satisfied: certifi in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from httpx<1,>=0.25.0->jupyterlab->jupyter) (2025.11.12)\n", - "Requirement already satisfied: httpcore==1.* in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from httpx<1,>=0.25.0->jupyterlab->jupyter) (1.0.9)\n", - "Requirement already satisfied: idna in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from httpx<1,>=0.25.0->jupyterlab->jupyter) (3.11)\n", - "Requirement already satisfied: h11>=0.16 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from httpcore==1.*->httpx<1,>=0.25.0->jupyterlab->jupyter) (0.16.0)\n", - "Requirement already satisfied: argon2-cffi>=21.1 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (25.1.0)\n", - "Requirement already satisfied: jupyter-events>=0.11.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.12.0)\n", - "Requirement already satisfied: jupyter-server-terminals>=0.4.4 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.5.3)\n", - "Requirement already satisfied: nbformat>=5.3.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (5.10.4)\n", - "Requirement already satisfied: overrides>=5.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (7.7.0)\n", - "Requirement already satisfied: prometheus-client>=0.9 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.23.1)\n", - "Requirement already satisfied: pywinpty>=2.0.1 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (3.0.2)\n", - "Requirement already satisfied: send2trash>=1.8.2 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.8.3)\n", - "Requirement already satisfied: terminado>=0.8.3 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.18.1)\n", - "Requirement already satisfied: websocket-client>=1.7 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.9.0)\n", - "Requirement already satisfied: babel>=2.10 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (2.17.0)\n", - "Requirement already satisfied: json5>=0.9.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (0.12.1)\n", - "Requirement already satisfied: jsonschema>=4.18.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (4.25.1)\n", - "Requirement already satisfied: requests>=2.31 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (2.32.5)\n", - "Requirement already satisfied: argon2-cffi-bindings in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from argon2-cffi>=21.1->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (25.1.0)\n", - "Requirement already satisfied: MarkupSafe>=2.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jinja2>=3.0.3->jupyterlab->jupyter) (3.0.3)\n", - "Requirement already satisfied: attrs>=22.2.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (25.4.0)\n", - "Requirement already satisfied: jsonschema-specifications>=2023.03.6 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (2025.9.1)\n", - "Requirement already satisfied: referencing>=0.28.4 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (0.37.0)\n", - "Requirement already satisfied: rpds-py>=0.7.1 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (0.30.0)\n", - "Requirement already satisfied: python-json-logger>=2.0.4 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (4.0.0)\n", - "Requirement already satisfied: pyyaml>=5.3 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (6.0.2)\n", - "Requirement already satisfied: rfc3339-validator in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.1.4)\n", - "Requirement already satisfied: rfc3986-validator>=0.1.1 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.1.1)\n", - "Requirement already satisfied: fqdn in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.5.1)\n", - "Requirement already satisfied: isoduration in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (20.11.0)\n", - "Requirement already satisfied: jsonpointer>1.13 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (3.0.0)\n", - "Requirement already satisfied: rfc3987-syntax>=1.1.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.1.0)\n", - "Requirement already satisfied: uri-template in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.3.0)\n", - "Requirement already satisfied: webcolors>=24.6.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (25.10.0)\n", - "Requirement already satisfied: beautifulsoup4 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from nbconvert->jupyter) (4.14.3)\n", - "Requirement already satisfied: bleach!=5.0.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from bleach[css]!=5.0.0->nbconvert->jupyter) (6.3.0)\n", - "Requirement already satisfied: defusedxml in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from nbconvert->jupyter) (0.7.1)\n", - "Requirement already satisfied: jupyterlab-pygments in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from nbconvert->jupyter) (0.3.0)\n", - "Requirement already satisfied: mistune<4,>=2.0.3 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from nbconvert->jupyter) (3.1.4)\n", - "Requirement already satisfied: nbclient>=0.5.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from nbconvert->jupyter) (0.10.2)\n", - "Requirement already satisfied: pandocfilters>=1.4.1 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from nbconvert->jupyter) (1.5.1)\n", - "Requirement already satisfied: webencodings in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from bleach!=5.0.0->bleach[css]!=5.0.0->nbconvert->jupyter) (0.5.1)\n", - "Requirement already satisfied: tinycss2<1.5,>=1.1.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from bleach[css]!=5.0.0->nbconvert->jupyter) (1.4.0)\n", - "Requirement already satisfied: fastjsonschema>=2.15 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from nbformat>=5.3.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (2.21.2)\n", - "Requirement already satisfied: charset_normalizer<4,>=2 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from requests>=2.31->jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (3.4.4)\n", - "Requirement already satisfied: urllib3<3,>=1.21.1 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from requests>=2.31->jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (2.6.0)\n", - "Requirement already satisfied: lark>=1.2.2 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from rfc3987-syntax>=1.1.0->jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.3.1)\n", - "Requirement already satisfied: cffi>=1.0.1 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from argon2-cffi-bindings->argon2-cffi>=21.1->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (2.0.0)\n", - "Requirement already satisfied: pycparser in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from cffi>=1.0.1->argon2-cffi-bindings->argon2-cffi>=21.1->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (2.23)\n", - "Requirement already satisfied: soupsieve>=1.6.1 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from beautifulsoup4->nbconvert->jupyter) (2.8)\n", - "Requirement already satisfied: arrow>=0.15.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from isoduration->jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.4.0)\n", - "Requirement already satisfied: tzdata in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from arrow>=0.15.0->isoduration->jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (2025.2)\n", - "Note: you may need to restart the kernel to use updated packages.\n", - "Requirement already satisfied: ipywidgets in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (8.1.8)\n", - "Requirement already satisfied: comm>=0.1.3 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipywidgets) (0.2.3)\n", - "Requirement already satisfied: ipython>=6.1.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipywidgets) (9.8.0)\n", - "Requirement already satisfied: traitlets>=4.3.1 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipywidgets) (5.14.3)\n", - "Requirement already satisfied: widgetsnbextension~=4.0.14 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from ipywidgets) (4.0.15)\n", - "Requirement already satisfied: jupyterlab_widgets~=3.0.15 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from ipywidgets) (3.0.16)\n", - "Requirement already satisfied: colorama>=0.4.4 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=6.1.0->ipywidgets) (0.4.6)\n", - "Requirement already satisfied: decorator>=4.3.2 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=6.1.0->ipywidgets) (5.2.1)\n", - "Requirement already satisfied: ipython-pygments-lexers>=1.0.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=6.1.0->ipywidgets) (1.1.1)\n", - "Requirement already satisfied: jedi>=0.18.1 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=6.1.0->ipywidgets) (0.19.2)\n", - "Requirement already satisfied: matplotlib-inline>=0.1.5 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=6.1.0->ipywidgets) (0.2.1)\n", - "Requirement already satisfied: prompt_toolkit<3.1.0,>=3.0.41 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=6.1.0->ipywidgets) (3.0.52)\n", - "Requirement already satisfied: pygments>=2.11.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=6.1.0->ipywidgets) (2.19.2)\n", - "Requirement already satisfied: stack_data>=0.6.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=6.1.0->ipywidgets) (0.6.3)\n", - "Requirement already satisfied: typing_extensions>=4.6 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=6.1.0->ipywidgets) (4.15.0)\n", - "Requirement already satisfied: wcwidth in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from prompt_toolkit<3.1.0,>=3.0.41->ipython>=6.1.0->ipywidgets) (0.2.14)\n", - "Requirement already satisfied: parso<0.9.0,>=0.8.4 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from jedi>=0.18.1->ipython>=6.1.0->ipywidgets) (0.8.5)\n", - "Requirement already satisfied: executing>=1.2.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from stack_data>=0.6.0->ipython>=6.1.0->ipywidgets) (2.2.1)\n", - "Requirement already satisfied: asttokens>=2.1.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from stack_data>=0.6.0->ipython>=6.1.0->ipywidgets) (3.0.1)\n", - "Requirement already satisfied: pure-eval in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from stack_data>=0.6.0->ipython>=6.1.0->ipywidgets) (0.2.3)\n", - "Note: you may need to restart the kernel to use updated packages.\n", - "Requirement already satisfied: ipykernel in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (7.1.0)\n", - "Requirement already satisfied: comm>=0.1.1 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel) (0.2.3)\n", - "Requirement already satisfied: debugpy>=1.6.5 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel) (1.8.17)\n", - "Requirement already satisfied: ipython>=7.23.1 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel) (9.8.0)\n", - "Requirement already satisfied: jupyter-client>=8.0.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel) (8.6.3)\n", - "Requirement already satisfied: jupyter-core!=5.0.*,>=4.12 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel) (5.9.1)\n", - "Requirement already satisfied: matplotlib-inline>=0.1 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel) (0.2.1)\n", - "Requirement already satisfied: nest-asyncio>=1.4 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel) (1.6.0)\n", - "Requirement already satisfied: packaging>=22 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel) (25.0)\n", - "Requirement already satisfied: psutil>=5.7 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel) (7.1.3)\n", - "Requirement already satisfied: pyzmq>=25 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel) (27.1.0)\n", - "Requirement already satisfied: tornado>=6.2 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel) (6.5.2)\n", - "Requirement already satisfied: traitlets>=5.4.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel) (5.14.3)\n", - "Requirement already satisfied: colorama>=0.4.4 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=7.23.1->ipykernel) (0.4.6)\n", - "Requirement already satisfied: decorator>=4.3.2 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=7.23.1->ipykernel) (5.2.1)\n", - "Requirement already satisfied: ipython-pygments-lexers>=1.0.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=7.23.1->ipykernel) (1.1.1)\n", - "Requirement already satisfied: jedi>=0.18.1 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=7.23.1->ipykernel) (0.19.2)\n", - "Requirement already satisfied: prompt_toolkit<3.1.0,>=3.0.41 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=7.23.1->ipykernel) (3.0.52)\n", - "Requirement already satisfied: pygments>=2.11.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=7.23.1->ipykernel) (2.19.2)\n", - "Requirement already satisfied: stack_data>=0.6.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=7.23.1->ipykernel) (0.6.3)\n", - "Requirement already satisfied: typing_extensions>=4.6 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=7.23.1->ipykernel) (4.15.0)\n", - "Requirement already satisfied: wcwidth in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from prompt_toolkit<3.1.0,>=3.0.41->ipython>=7.23.1->ipykernel) (0.2.14)\n", - "Requirement already satisfied: parso<0.9.0,>=0.8.4 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from jedi>=0.18.1->ipython>=7.23.1->ipykernel) (0.8.5)\n", - "Requirement already satisfied: python-dateutil>=2.8.2 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from jupyter-client>=8.0.0->ipykernel) (2.9.0.post0)\n", - "Requirement already satisfied: platformdirs>=2.5 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from jupyter-core!=5.0.*,>=4.12->ipykernel) (4.5.1)\n", - "Requirement already satisfied: six>=1.5 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from python-dateutil>=2.8.2->jupyter-client>=8.0.0->ipykernel) (1.17.0)\n", - "Requirement already satisfied: executing>=1.2.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from stack_data>=0.6.0->ipython>=7.23.1->ipykernel) (2.2.1)\n", - "Requirement already satisfied: asttokens>=2.1.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from stack_data>=0.6.0->ipython>=7.23.1->ipykernel) (3.0.1)\n", - "Requirement already satisfied: pure-eval in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from stack_data>=0.6.0->ipython>=7.23.1->ipykernel) (0.2.3)\n", - "Note: you may need to restart the kernel to use updated packages.\n" - ] - } - ], - "source": [ - "%pip install --upgrade pip\n", - "%pip install --upgrade jupyter\n", - "%pip install --upgrade ipywidgets\n", - "%pip install --upgrade ipykernel" - ] - }, - { - "cell_type": "code", - "execution_count": 109, - "id": "48724594", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Requirement already satisfied: pdf2image in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (1.17.0)\n", - "Requirement already satisfied: pillow in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (12.0.0)\n", - "Note: you may need to restart the kernel to use updated packages.\n", - "Requirement already satisfied: PyMuPDF in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (1.26.6)\n", - "Note: you may need to restart the kernel to use updated packages.\n", - "Requirement already satisfied: pandas in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (2.3.3)\n", - "Requirement already satisfied: numpy>=1.23.2 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from pandas) (2.3.5)\n", - "Requirement already satisfied: python-dateutil>=2.8.2 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from pandas) (2.9.0.post0)\n", - "Requirement already satisfied: pytz>=2020.1 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from pandas) (2025.2)\n", - "Requirement already satisfied: tzdata>=2022.7 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from pandas) (2025.2)\n", - "Requirement already satisfied: six>=1.5 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from python-dateutil>=2.8.2->pandas) (1.17.0)\n", - "Note: you may need to restart the kernel to use updated packages.\n", - "Requirement already satisfied: matplotlib in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (3.10.7)\n", - "Requirement already satisfied: contourpy>=1.0.1 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from matplotlib) (1.3.3)\n", - "Requirement already satisfied: cycler>=0.10 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from matplotlib) (0.12.1)\n", - "Requirement already satisfied: fonttools>=4.22.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from matplotlib) (4.61.0)\n", - "Requirement already satisfied: kiwisolver>=1.3.1 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from matplotlib) (1.4.9)\n", - "Requirement already satisfied: numpy>=1.23 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from matplotlib) (2.3.5)\n", - "Requirement already satisfied: packaging>=20.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from matplotlib) (25.0)\n", - "Requirement already satisfied: pillow>=8 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from matplotlib) (12.0.0)\n", - "Requirement already satisfied: pyparsing>=3 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from matplotlib) (3.2.5)\n", - "Requirement already satisfied: python-dateutil>=2.7 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from matplotlib) (2.9.0.post0)\n", - "Requirement already satisfied: six>=1.5 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from python-dateutil>=2.7->matplotlib) (1.17.0)\n", - "Note: you may need to restart the kernel to use updated packages.\n", - "Requirement already satisfied: seaborn in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (0.13.2)\n", - "Requirement already satisfied: numpy!=1.24.0,>=1.20 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from seaborn) (2.3.5)\n", - "Requirement already satisfied: pandas>=1.2 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from seaborn) (2.3.3)\n", - "Requirement already satisfied: matplotlib!=3.6.1,>=3.4 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from seaborn) (3.10.7)\n", - "Requirement already satisfied: contourpy>=1.0.1 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (1.3.3)\n", - "Requirement already satisfied: cycler>=0.10 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (0.12.1)\n", - "Requirement already satisfied: fonttools>=4.22.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (4.61.0)\n", - "Requirement already satisfied: kiwisolver>=1.3.1 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (1.4.9)\n", - "Requirement already satisfied: packaging>=20.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (25.0)\n", - "Requirement already satisfied: pillow>=8 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (12.0.0)\n", - "Requirement already satisfied: pyparsing>=3 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (3.2.5)\n", - "Requirement already satisfied: python-dateutil>=2.7 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (2.9.0.post0)\n", - "Requirement already satisfied: pytz>=2020.1 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from pandas>=1.2->seaborn) (2025.2)\n", - "Requirement already satisfied: tzdata>=2022.7 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from pandas>=1.2->seaborn) (2025.2)\n", - "Requirement already satisfied: six>=1.5 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from python-dateutil>=2.7->matplotlib!=3.6.1,>=3.4->seaborn) (1.17.0)\n", - "Note: you may need to restart the kernel to use updated packages.\n" - ] - } - ], - "source": [ - "# Install necessary packages\n", - "%pip install pdf2image pillow \n", - "# pdf reading\n", - "%pip install PyMuPDF\n", - "\n", - "# Data analysis and visualization\n", - "%pip install pandas\n", - "%pip install matplotlib\n", - "%pip install seaborn" - ] - }, - { - "cell_type": "code", - "execution_count": 110, - "id": "e1f793b6", - "metadata": {}, - "outputs": [], - "source": [ - "import os, json\n", - "import numpy as np\n", - "import pandas as pd\n", - "import matplotlib.pyplot as plt\n", - "from pdf2image import convert_from_path\n", - "from PIL import Image, ImageOps\n", - "import fitz # PyMuPDF\n", - "import re\n", - "from datetime import datetime\n", - "from typing import List\n", - "import shutil" - ] - }, - { - "cell_type": "code", - "execution_count": 111, - "id": "1652a78e", - "metadata": {}, - "outputs": [], - "source": [ - "def pdf_to_images(pdf_path: str, output_dir: str, dpi: int = 300):\n", - " \"\"\"\n", - " Render a PDF into a list of PIL Images using PyMuPDF or pdf2image.\n", - " 'pages' is 1-based (e.g., range(1, 10) -> pages 1–9).\n", - " \"\"\"\n", - " if fitz is not None:\n", - " doc = fitz.open(pdf_path)\n", - " total_pages = len(doc)\n", - "\n", - " # Adjust page indices (PyMuPDF uses 0-based indexing)\n", - " page_indices = list(range(total_pages))\n", - "\n", - " for i in page_indices:\n", - " page = doc.load_page(i)\n", - " mat = fitz.Matrix(dpi / 72.0, dpi / 72.0)\n", - " pix = page.get_pixmap(matrix=mat, alpha=False)\n", - " img = Image.frombytes(\"RGB\", [pix.width, pix.height], pix.samples)\n", - " # Build filename\n", - " out_path = os.path.join(\n", - " output_dir,\n", - " f\"page_{i + 1:04d}.png\"\n", - " )\n", - "\n", - " img.save(out_path, \"PNG\")\n", - " doc.close()\n", - " else:\n", - " raise RuntimeError(\"Install PyMuPDF or pdf2image to convert PDFs.\")" - ] - }, - { - "cell_type": "code", - "execution_count": 112, - "id": "f523dd58", - "metadata": {}, - "outputs": [], - "source": [ - "import fitz\n", - "import re\n", - "import os\n", - "\n", - "def _pdf_extract_text_structured(page, margin_threshold=50):\n", - " \"\"\"\n", - " Extract text using PyMuPDF's dict mode which preserves\n", - " the actual line structure from the PDF.\n", - " \"\"\"\n", - " data = page.get_text(\"dict\")\n", - " \n", - " # Collect all lines with their Y position\n", - " all_lines = []\n", - " margin_text_parts = [] # Collect vertical/margin text\n", - " margin_y_positions = []\n", - " \n", - " for block in data.get(\"blocks\", []):\n", - " if block.get(\"type\") != 0: # Skip non-text blocks\n", - " continue\n", - " \n", - " block_bbox = block.get(\"bbox\", (0, 0, 0, 0))\n", - " block_width = block_bbox[2] - block_bbox[0]\n", - " block_height = block_bbox[3] - block_bbox[1]\n", - " \n", - " # Detect vertical/margin text\n", - " is_margin_text = (block_bbox[0] < margin_threshold or \n", - " block_height > block_width * 2)\n", - " \n", - " for line in block.get(\"lines\", []):\n", - " direction = line.get(\"dir\", (1, 0))\n", - " bbox = line.get(\"bbox\", (0, 0, 0, 0))\n", - " y_center = (bbox[1] + bbox[3]) / 2\n", - " x_start = bbox[0]\n", - " \n", - " # Collect text from all spans\n", - " line_text = \"\"\n", - " for span in line.get(\"spans\", []):\n", - " text = span.get(\"text\", \"\")\n", - " line_text += text\n", - " \n", - " line_text = line_text.strip()\n", - " line_text = re.sub(r\"[•▪◦●❖▶■\\uf000-\\uf0ff]\", \"\", line_text)\n", - " \n", - " if not line_text:\n", - " continue\n", - " \n", - " # Check if this is margin/vertical text\n", - " if is_margin_text or abs(direction[0]) < 0.9:\n", - " margin_text_parts.append((y_center, line_text))\n", - " margin_y_positions.append(y_center)\n", - " else:\n", - " all_lines.append((y_center, x_start, line_text))\n", - " \n", - " # Reconstruct margin text as single line at its vertical center\n", - " if margin_text_parts:\n", - " # Sort by Y position (top to bottom) and join\n", - " margin_text_parts.sort(key=lambda x: x[0])\n", - " full_margin_text = \" \".join(part[1] for part in margin_text_parts)\n", - " # Calculate vertical center of the watermark\n", - " avg_y = sum(margin_y_positions) / len(margin_y_positions)\n", - " # Add as a single line\n", - " all_lines.append((avg_y, -1, full_margin_text)) # x=-1 to sort first\n", - " \n", - " if not all_lines:\n", - " return \"\"\n", - " \n", - " # Sort by Y first, then by X\n", - " all_lines.sort(key=lambda x: (x[0], x[1]))\n", - " \n", - " # Group lines at same vertical position\n", - " merged_rows = []\n", - " current_row = [all_lines[0]]\n", - " current_y = all_lines[0][0]\n", - " \n", - " for y_center, x_start, text in all_lines[1:]:\n", - " if abs(y_center - current_y) <= 2:\n", - " current_row.append((y_center, x_start, text))\n", - " else:\n", - " current_row.sort(key=lambda x: x[1])\n", - " row_text = \" \".join(item[2] for item in current_row)\n", - " merged_rows.append((current_y, row_text))\n", - " current_row = [(y_center, x_start, text)]\n", - " current_y = y_center\n", - " \n", - " if current_row:\n", - " current_row.sort(key=lambda x: x[1])\n", - " row_text = \" \".join(item[2] for item in current_row)\n", - " merged_rows.append((current_y, row_text))\n", - " \n", - " # Sort rows by Y and extract text\n", - " merged_rows.sort(key=lambda x: x[0])\n", - " lines = [row[1] for row in merged_rows]\n", - " \n", - " # Join and clean up\n", - " text = \"\\n\".join(lines)\n", - " text = re.sub(r\" +\", \" \", text).strip()\n", - " text = re.sub(r\"\\n{3,}\", \"\\n\\n\", text).strip()\n", - " \n", - " return text\n", - "\n", - "def pdf_extract_text(pdf_path, output_dir, margin_threshold=50):\n", - " os.makedirs(output_dir, exist_ok=True)\n", - " doc = fitz.open(pdf_path)\n", - " \n", - " for i, page in enumerate(doc):\n", - " text = _pdf_extract_text_structured(page, margin_threshold)\n", - " if not text.strip():\n", - " continue\n", - " out_path = os.path.join(output_dir, f\"page_{i + 1:04d}.txt\")\n", - " with open(out_path, \"w\", encoding=\"utf-8\") as f:\n", - " f.write(text)" - ] - }, - { - "cell_type": "code", - "execution_count": 113, - "id": "9f64a8c0", - "metadata": {}, - "outputs": [], - "source": [ - "PDF_FOLDER = './instructions' # Folder containing PDF files\n", - "OUTPUT_FOLDER = './dataset'\n", - "\n", - "os.makedirs(OUTPUT_FOLDER, exist_ok=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 114, - "id": "41e4651d", - "metadata": {}, - "outputs": [], - "source": [ - "i = 0\n", - "\n", - "pdf_files = sorted([\n", - " fname for fname in os.listdir(PDF_FOLDER)\n", - " if fname.lower().endswith(\".pdf\")\n", - "])\n", - "\n", - "\n", - "for fname in pdf_files:\n", - " # build output directories\n", - " out_img_path = os.path.join(OUTPUT_FOLDER, str(i), \"img\")\n", - " out_txt_path = os.path.join(OUTPUT_FOLDER, str(i), \"txt\")\n", - "\n", - " os.makedirs(out_img_path, exist_ok=True)\n", - " os.makedirs(out_txt_path, exist_ok=True)\n", - "\n", - " # source and destination PDF paths\n", - " src_pdf = os.path.join(PDF_FOLDER, fname)\n", - " pdf_path = os.path.join(OUTPUT_FOLDER, str(i), fname)\n", - "\n", - " # copy PDF into numbered folder\n", - " shutil.copy(src_pdf, pdf_path)\n", - "\n", - " # convert PDF → images\n", - " pdf_to_images(\n", - " pdf_path=pdf_path,\n", - " output_dir=out_img_path,\n", - " dpi=300\n", - " )\n", - " pdf_extract_text(\n", - " pdf_path=pdf_path,\n", - " output_dir=out_txt_path,\n", - " margin_threshold=40\n", - " )\n", - "\n", - " i += 1" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.9" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/dataset_manager.py b/src/dataset_manager.py similarity index 100% rename from dataset_manager.py rename to src/dataset_manager.py diff --git a/paddle_ocr_fine_tune_unir_raytune.ipynb b/src/paddle_ocr_fine_tune_unir_raytune.ipynb similarity index 52% rename from paddle_ocr_fine_tune_unir_raytune.ipynb rename to src/paddle_ocr_fine_tune_unir_raytune.ipynb index dec1461..6f9f1ef 100644 --- a/paddle_ocr_fine_tune_unir_raytune.ipynb +++ b/src/paddle_ocr_fine_tune_unir_raytune.ipynb @@ -21,157 +21,157 @@ "name": "stdout", "output_type": "stream", "text": [ - "Requirement already satisfied: pip in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (25.3)\n", + "Requirement already satisfied: pip in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (25.3)\n", "Note: you may need to restart the kernel to use updated packages.\n", - "Requirement already satisfied: jupyter in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (1.1.1)\n", - "Requirement already satisfied: notebook in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyter) (7.5.0)\n", - "Requirement already satisfied: jupyter-console in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyter) (6.6.3)\n", - "Requirement already satisfied: nbconvert in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyter) (7.16.6)\n", - "Requirement already satisfied: ipykernel in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from jupyter) (7.1.0)\n", - "Requirement already satisfied: ipywidgets in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyter) (8.1.8)\n", - "Requirement already satisfied: jupyterlab in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyter) (4.5.0)\n", - "Requirement already satisfied: comm>=0.1.1 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel->jupyter) (0.2.3)\n", - "Requirement already satisfied: debugpy>=1.6.5 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel->jupyter) (1.8.17)\n", - "Requirement already satisfied: ipython>=7.23.1 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel->jupyter) (9.8.0)\n", - "Requirement already satisfied: jupyter-client>=8.0.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel->jupyter) (8.6.3)\n", - "Requirement already satisfied: jupyter-core!=5.0.*,>=4.12 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel->jupyter) (5.9.1)\n", - "Requirement already satisfied: matplotlib-inline>=0.1 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel->jupyter) (0.2.1)\n", - "Requirement already satisfied: nest-asyncio>=1.4 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel->jupyter) (1.6.0)\n", - "Requirement already satisfied: packaging>=22 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel->jupyter) (25.0)\n", - "Requirement already satisfied: psutil>=5.7 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel->jupyter) (7.1.3)\n", - "Requirement already satisfied: pyzmq>=25 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel->jupyter) (27.1.0)\n", - "Requirement already satisfied: tornado>=6.2 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel->jupyter) (6.5.2)\n", - "Requirement already satisfied: traitlets>=5.4.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel->jupyter) (5.14.3)\n", - "Requirement already satisfied: colorama>=0.4.4 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (0.4.6)\n", - "Requirement already satisfied: decorator>=4.3.2 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (5.2.1)\n", - "Requirement already satisfied: ipython-pygments-lexers>=1.0.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (1.1.1)\n", - "Requirement already satisfied: jedi>=0.18.1 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (0.19.2)\n", - "Requirement already satisfied: prompt_toolkit<3.1.0,>=3.0.41 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (3.0.52)\n", - "Requirement already satisfied: pygments>=2.11.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (2.19.2)\n", - "Requirement already satisfied: stack_data>=0.6.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (0.6.3)\n", - "Requirement already satisfied: typing_extensions>=4.6 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (4.15.0)\n", - "Requirement already satisfied: wcwidth in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from prompt_toolkit<3.1.0,>=3.0.41->ipython>=7.23.1->ipykernel->jupyter) (0.2.14)\n", - "Requirement already satisfied: parso<0.9.0,>=0.8.4 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from jedi>=0.18.1->ipython>=7.23.1->ipykernel->jupyter) (0.8.5)\n", - "Requirement already satisfied: python-dateutil>=2.8.2 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from jupyter-client>=8.0.0->ipykernel->jupyter) (2.9.0.post0)\n", - "Requirement already satisfied: platformdirs>=2.5 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from jupyter-core!=5.0.*,>=4.12->ipykernel->jupyter) (4.5.1)\n", - "Requirement already satisfied: six>=1.5 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from python-dateutil>=2.8.2->jupyter-client>=8.0.0->ipykernel->jupyter) (1.17.0)\n", - "Requirement already satisfied: executing>=1.2.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from stack_data>=0.6.0->ipython>=7.23.1->ipykernel->jupyter) (2.2.1)\n", - "Requirement already satisfied: asttokens>=2.1.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from stack_data>=0.6.0->ipython>=7.23.1->ipykernel->jupyter) (3.0.1)\n", - "Requirement already satisfied: pure-eval in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from stack_data>=0.6.0->ipython>=7.23.1->ipykernel->jupyter) (0.2.3)\n", - "Requirement already satisfied: widgetsnbextension~=4.0.14 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from ipywidgets->jupyter) (4.0.15)\n", - "Requirement already satisfied: jupyterlab_widgets~=3.0.15 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from ipywidgets->jupyter) (3.0.16)\n", - "Requirement already satisfied: async-lru>=1.0.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyterlab->jupyter) (2.0.5)\n", - "Requirement already satisfied: httpx<1,>=0.25.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyterlab->jupyter) (0.28.1)\n", - "Requirement already satisfied: jinja2>=3.0.3 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyterlab->jupyter) (3.1.6)\n", - "Requirement already satisfied: jupyter-lsp>=2.0.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyterlab->jupyter) (2.3.0)\n", - "Requirement already satisfied: jupyter-server<3,>=2.4.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyterlab->jupyter) (2.17.0)\n", - "Requirement already satisfied: jupyterlab-server<3,>=2.28.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyterlab->jupyter) (2.28.0)\n", - "Requirement already satisfied: notebook-shim>=0.2 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyterlab->jupyter) (0.2.4)\n", - "Requirement already satisfied: setuptools>=41.1.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyterlab->jupyter) (65.5.0)\n", - "Requirement already satisfied: anyio in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from httpx<1,>=0.25.0->jupyterlab->jupyter) (4.12.0)\n", - "Requirement already satisfied: certifi in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from httpx<1,>=0.25.0->jupyterlab->jupyter) (2025.11.12)\n", - "Requirement already satisfied: httpcore==1.* in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from httpx<1,>=0.25.0->jupyterlab->jupyter) (1.0.9)\n", - "Requirement already satisfied: idna in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from httpx<1,>=0.25.0->jupyterlab->jupyter) (3.11)\n", - "Requirement already satisfied: h11>=0.16 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from httpcore==1.*->httpx<1,>=0.25.0->jupyterlab->jupyter) (0.16.0)\n", - "Requirement already satisfied: argon2-cffi>=21.1 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (25.1.0)\n", - "Requirement already satisfied: jupyter-events>=0.11.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.12.0)\n", - "Requirement already satisfied: jupyter-server-terminals>=0.4.4 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.5.3)\n", - "Requirement already satisfied: nbformat>=5.3.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (5.10.4)\n", - "Requirement already satisfied: overrides>=5.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (7.7.0)\n", - "Requirement already satisfied: prometheus-client>=0.9 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.23.1)\n", - "Requirement already satisfied: pywinpty>=2.0.1 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (3.0.2)\n", - "Requirement already satisfied: send2trash>=1.8.2 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.8.3)\n", - "Requirement already satisfied: terminado>=0.8.3 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.18.1)\n", - "Requirement already satisfied: websocket-client>=1.7 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.9.0)\n", - "Requirement already satisfied: babel>=2.10 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (2.17.0)\n", - "Requirement already satisfied: json5>=0.9.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (0.12.1)\n", - "Requirement already satisfied: jsonschema>=4.18.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (4.25.1)\n", - "Requirement already satisfied: requests>=2.31 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (2.32.5)\n", - "Requirement already satisfied: argon2-cffi-bindings in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from argon2-cffi>=21.1->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (25.1.0)\n", - "Requirement already satisfied: MarkupSafe>=2.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jinja2>=3.0.3->jupyterlab->jupyter) (3.0.3)\n", - "Requirement already satisfied: attrs>=22.2.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (25.4.0)\n", - "Requirement already satisfied: jsonschema-specifications>=2023.03.6 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (2025.9.1)\n", - "Requirement already satisfied: referencing>=0.28.4 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (0.37.0)\n", - "Requirement already satisfied: rpds-py>=0.7.1 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (0.30.0)\n", - "Requirement already satisfied: python-json-logger>=2.0.4 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (4.0.0)\n", - "Requirement already satisfied: pyyaml>=5.3 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (6.0.2)\n", - "Requirement already satisfied: rfc3339-validator in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.1.4)\n", - "Requirement already satisfied: rfc3986-validator>=0.1.1 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.1.1)\n", - "Requirement already satisfied: fqdn in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.5.1)\n", - "Requirement already satisfied: isoduration in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (20.11.0)\n", - "Requirement already satisfied: jsonpointer>1.13 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (3.0.0)\n", - "Requirement already satisfied: rfc3987-syntax>=1.1.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.1.0)\n", - "Requirement already satisfied: uri-template in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.3.0)\n", - "Requirement already satisfied: webcolors>=24.6.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (25.10.0)\n", - "Requirement already satisfied: beautifulsoup4 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from nbconvert->jupyter) (4.14.3)\n", - "Requirement already satisfied: bleach!=5.0.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from bleach[css]!=5.0.0->nbconvert->jupyter) (6.3.0)\n", - "Requirement already satisfied: defusedxml in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from nbconvert->jupyter) (0.7.1)\n", - "Requirement already satisfied: jupyterlab-pygments in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from nbconvert->jupyter) (0.3.0)\n", - "Requirement already satisfied: mistune<4,>=2.0.3 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from nbconvert->jupyter) (3.1.4)\n", - "Requirement already satisfied: nbclient>=0.5.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from nbconvert->jupyter) (0.10.2)\n", - "Requirement already satisfied: pandocfilters>=1.4.1 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from nbconvert->jupyter) (1.5.1)\n", - "Requirement already satisfied: webencodings in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from bleach!=5.0.0->bleach[css]!=5.0.0->nbconvert->jupyter) (0.5.1)\n", - "Requirement already satisfied: tinycss2<1.5,>=1.1.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from bleach[css]!=5.0.0->nbconvert->jupyter) (1.4.0)\n", - "Requirement already satisfied: fastjsonschema>=2.15 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from nbformat>=5.3.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (2.21.2)\n", - "Requirement already satisfied: charset_normalizer<4,>=2 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from requests>=2.31->jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (3.4.4)\n", - "Requirement already satisfied: urllib3<3,>=1.21.1 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from requests>=2.31->jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (2.6.0)\n", - "Requirement already satisfied: lark>=1.2.2 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from rfc3987-syntax>=1.1.0->jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.3.1)\n", - "Requirement already satisfied: cffi>=1.0.1 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from argon2-cffi-bindings->argon2-cffi>=21.1->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (2.0.0)\n", - "Requirement already satisfied: pycparser in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from cffi>=1.0.1->argon2-cffi-bindings->argon2-cffi>=21.1->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (2.23)\n", - "Requirement already satisfied: soupsieve>=1.6.1 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from beautifulsoup4->nbconvert->jupyter) (2.8)\n", - "Requirement already satisfied: arrow>=0.15.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from isoduration->jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.4.0)\n", - "Requirement already satisfied: tzdata in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from arrow>=0.15.0->isoduration->jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (2025.2)\n", + "Requirement already satisfied: jupyter in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (1.1.1)\n", + "Requirement already satisfied: notebook in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter) (7.5.0)\n", + "Requirement already satisfied: jupyter-console in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter) (6.6.3)\n", + "Requirement already satisfied: nbconvert in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter) (7.16.6)\n", + "Requirement already satisfied: ipykernel in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter) (7.1.0)\n", + "Requirement already satisfied: ipywidgets in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter) (8.1.8)\n", + "Requirement already satisfied: jupyterlab in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter) (4.5.0)\n", + "Requirement already satisfied: comm>=0.1.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (0.2.3)\n", + "Requirement already satisfied: debugpy>=1.6.5 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (1.8.17)\n", + "Requirement already satisfied: ipython>=7.23.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (9.8.0)\n", + "Requirement already satisfied: jupyter-client>=8.0.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (8.6.3)\n", + "Requirement already satisfied: jupyter-core!=5.0.*,>=4.12 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (5.9.1)\n", + "Requirement already satisfied: matplotlib-inline>=0.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (0.2.1)\n", + "Requirement already satisfied: nest-asyncio>=1.4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (1.6.0)\n", + "Requirement already satisfied: packaging>=22 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (25.0)\n", + "Requirement already satisfied: psutil>=5.7 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (7.1.3)\n", + "Requirement already satisfied: pyzmq>=25 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (27.1.0)\n", + "Requirement already satisfied: tornado>=6.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (6.5.2)\n", + "Requirement already satisfied: traitlets>=5.4.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (5.14.3)\n", + "Requirement already satisfied: colorama>=0.4.4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (0.4.6)\n", + "Requirement already satisfied: decorator>=4.3.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (5.2.1)\n", + "Requirement already satisfied: ipython-pygments-lexers>=1.0.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (1.1.1)\n", + "Requirement already satisfied: jedi>=0.18.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (0.19.2)\n", + "Requirement already satisfied: prompt_toolkit<3.1.0,>=3.0.41 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (3.0.52)\n", + "Requirement already satisfied: pygments>=2.11.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (2.19.2)\n", + "Requirement already satisfied: stack_data>=0.6.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (0.6.3)\n", + "Requirement already satisfied: typing_extensions>=4.6 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (4.15.0)\n", + "Requirement already satisfied: wcwidth in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from prompt_toolkit<3.1.0,>=3.0.41->ipython>=7.23.1->ipykernel->jupyter) (0.2.14)\n", + "Requirement already satisfied: parso<0.9.0,>=0.8.4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jedi>=0.18.1->ipython>=7.23.1->ipykernel->jupyter) (0.8.5)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-client>=8.0.0->ipykernel->jupyter) (2.9.0.post0)\n", + "Requirement already satisfied: platformdirs>=2.5 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-core!=5.0.*,>=4.12->ipykernel->jupyter) (4.5.1)\n", + "Requirement already satisfied: six>=1.5 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from python-dateutil>=2.8.2->jupyter-client>=8.0.0->ipykernel->jupyter) (1.17.0)\n", + "Requirement already satisfied: executing>=1.2.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data>=0.6.0->ipython>=7.23.1->ipykernel->jupyter) (2.2.1)\n", + "Requirement already satisfied: asttokens>=2.1.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data>=0.6.0->ipython>=7.23.1->ipykernel->jupyter) (3.0.1)\n", + "Requirement already satisfied: pure-eval in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data>=0.6.0->ipython>=7.23.1->ipykernel->jupyter) (0.2.3)\n", + "Requirement already satisfied: widgetsnbextension~=4.0.14 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipywidgets->jupyter) (4.0.15)\n", + "Requirement already satisfied: jupyterlab_widgets~=3.0.15 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipywidgets->jupyter) (3.0.16)\n", + "Requirement already satisfied: async-lru>=1.0.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (2.0.5)\n", + "Requirement already satisfied: httpx<1,>=0.25.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (0.28.1)\n", + "Requirement already satisfied: jinja2>=3.0.3 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (3.1.6)\n", + "Requirement already satisfied: jupyter-lsp>=2.0.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (2.3.0)\n", + "Requirement already satisfied: jupyter-server<3,>=2.4.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (2.17.0)\n", + "Requirement already satisfied: jupyterlab-server<3,>=2.28.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (2.28.0)\n", + "Requirement already satisfied: notebook-shim>=0.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (0.2.4)\n", + "Requirement already satisfied: setuptools>=41.1.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (65.5.0)\n", + "Requirement already satisfied: anyio in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from httpx<1,>=0.25.0->jupyterlab->jupyter) (4.12.0)\n", + "Requirement already satisfied: certifi in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from httpx<1,>=0.25.0->jupyterlab->jupyter) (2025.11.12)\n", + "Requirement already satisfied: httpcore==1.* in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from httpx<1,>=0.25.0->jupyterlab->jupyter) (1.0.9)\n", + "Requirement already satisfied: idna in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from httpx<1,>=0.25.0->jupyterlab->jupyter) (3.11)\n", + "Requirement already satisfied: h11>=0.16 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from httpcore==1.*->httpx<1,>=0.25.0->jupyterlab->jupyter) (0.16.0)\n", + "Requirement already satisfied: argon2-cffi>=21.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (25.1.0)\n", + "Requirement already satisfied: jupyter-events>=0.11.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.12.0)\n", + "Requirement already satisfied: jupyter-server-terminals>=0.4.4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.5.3)\n", + "Requirement already satisfied: nbformat>=5.3.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (5.10.4)\n", + "Requirement already satisfied: overrides>=5.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (7.7.0)\n", + "Requirement already satisfied: prometheus-client>=0.9 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.23.1)\n", + "Requirement already satisfied: pywinpty>=2.0.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (3.0.2)\n", + "Requirement already satisfied: send2trash>=1.8.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.8.3)\n", + "Requirement already satisfied: terminado>=0.8.3 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.18.1)\n", + "Requirement already satisfied: websocket-client>=1.7 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.9.0)\n", + "Requirement already satisfied: babel>=2.10 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (2.17.0)\n", + "Requirement already satisfied: json5>=0.9.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (0.12.1)\n", + "Requirement already satisfied: jsonschema>=4.18.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (4.25.1)\n", + "Requirement already satisfied: requests>=2.31 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (2.32.5)\n", + "Requirement already satisfied: argon2-cffi-bindings in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from argon2-cffi>=21.1->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (25.1.0)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jinja2>=3.0.3->jupyterlab->jupyter) (3.0.3)\n", + "Requirement already satisfied: attrs>=22.2.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (25.4.0)\n", + "Requirement already satisfied: jsonschema-specifications>=2023.03.6 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (2025.9.1)\n", + "Requirement already satisfied: referencing>=0.28.4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (0.37.0)\n", + "Requirement already satisfied: rpds-py>=0.7.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (0.30.0)\n", + "Requirement already satisfied: python-json-logger>=2.0.4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (4.0.0)\n", + "Requirement already satisfied: pyyaml>=5.3 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (6.0.2)\n", + "Requirement already satisfied: rfc3339-validator in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.1.4)\n", + "Requirement already satisfied: rfc3986-validator>=0.1.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.1.1)\n", + "Requirement already satisfied: fqdn in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.5.1)\n", + "Requirement already satisfied: isoduration in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (20.11.0)\n", + "Requirement already satisfied: jsonpointer>1.13 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (3.0.0)\n", + "Requirement already satisfied: rfc3987-syntax>=1.1.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.1.0)\n", + "Requirement already satisfied: uri-template in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.3.0)\n", + "Requirement already satisfied: webcolors>=24.6.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (25.10.0)\n", + "Requirement already satisfied: beautifulsoup4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from nbconvert->jupyter) (4.14.3)\n", + "Requirement already satisfied: bleach!=5.0.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from bleach[css]!=5.0.0->nbconvert->jupyter) (6.3.0)\n", + "Requirement already satisfied: defusedxml in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from nbconvert->jupyter) (0.7.1)\n", + "Requirement already satisfied: jupyterlab-pygments in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from nbconvert->jupyter) (0.3.0)\n", + "Requirement already satisfied: mistune<4,>=2.0.3 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from nbconvert->jupyter) (3.1.4)\n", + "Requirement already satisfied: nbclient>=0.5.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from nbconvert->jupyter) (0.10.2)\n", + "Requirement already satisfied: pandocfilters>=1.4.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from nbconvert->jupyter) (1.5.1)\n", + "Requirement already satisfied: webencodings in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from bleach!=5.0.0->bleach[css]!=5.0.0->nbconvert->jupyter) (0.5.1)\n", + "Requirement already satisfied: tinycss2<1.5,>=1.1.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from bleach[css]!=5.0.0->nbconvert->jupyter) (1.4.0)\n", + "Requirement already satisfied: fastjsonschema>=2.15 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from nbformat>=5.3.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (2.21.2)\n", + "Requirement already satisfied: charset_normalizer<4,>=2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from requests>=2.31->jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (3.4.4)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from requests>=2.31->jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (2.6.0)\n", + "Requirement already satisfied: lark>=1.2.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from rfc3987-syntax>=1.1.0->jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.3.1)\n", + "Requirement already satisfied: cffi>=1.0.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from argon2-cffi-bindings->argon2-cffi>=21.1->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (2.0.0)\n", + "Requirement already satisfied: pycparser in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from cffi>=1.0.1->argon2-cffi-bindings->argon2-cffi>=21.1->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (2.23)\n", + "Requirement already satisfied: soupsieve>=1.6.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from beautifulsoup4->nbconvert->jupyter) (2.8)\n", + "Requirement already satisfied: arrow>=0.15.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from isoduration->jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.4.0)\n", + "Requirement already satisfied: tzdata in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from arrow>=0.15.0->isoduration->jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (2025.2)\n", "Note: you may need to restart the kernel to use updated packages.\n", - "Requirement already satisfied: ipywidgets in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (8.1.8)\n", - "Requirement already satisfied: comm>=0.1.3 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipywidgets) (0.2.3)\n", - "Requirement already satisfied: ipython>=6.1.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipywidgets) (9.8.0)\n", - "Requirement already satisfied: traitlets>=4.3.1 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipywidgets) (5.14.3)\n", - "Requirement already satisfied: widgetsnbextension~=4.0.14 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from ipywidgets) (4.0.15)\n", - "Requirement already satisfied: jupyterlab_widgets~=3.0.15 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from ipywidgets) (3.0.16)\n", - "Requirement already satisfied: colorama>=0.4.4 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=6.1.0->ipywidgets) (0.4.6)\n", - "Requirement already satisfied: decorator>=4.3.2 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=6.1.0->ipywidgets) (5.2.1)\n", - "Requirement already satisfied: ipython-pygments-lexers>=1.0.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=6.1.0->ipywidgets) (1.1.1)\n", - "Requirement already satisfied: jedi>=0.18.1 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=6.1.0->ipywidgets) (0.19.2)\n", - "Requirement already satisfied: matplotlib-inline>=0.1.5 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=6.1.0->ipywidgets) (0.2.1)\n", - "Requirement already satisfied: prompt_toolkit<3.1.0,>=3.0.41 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=6.1.0->ipywidgets) (3.0.52)\n", - "Requirement already satisfied: pygments>=2.11.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=6.1.0->ipywidgets) (2.19.2)\n", - "Requirement already satisfied: stack_data>=0.6.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=6.1.0->ipywidgets) (0.6.3)\n", - "Requirement already satisfied: typing_extensions>=4.6 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=6.1.0->ipywidgets) (4.15.0)\n", - "Requirement already satisfied: wcwidth in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from prompt_toolkit<3.1.0,>=3.0.41->ipython>=6.1.0->ipywidgets) (0.2.14)\n", - "Requirement already satisfied: parso<0.9.0,>=0.8.4 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from jedi>=0.18.1->ipython>=6.1.0->ipywidgets) (0.8.5)\n", - "Requirement already satisfied: executing>=1.2.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from stack_data>=0.6.0->ipython>=6.1.0->ipywidgets) (2.2.1)\n", - "Requirement already satisfied: asttokens>=2.1.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from stack_data>=0.6.0->ipython>=6.1.0->ipywidgets) (3.0.1)\n", - "Requirement already satisfied: pure-eval in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from stack_data>=0.6.0->ipython>=6.1.0->ipywidgets) (0.2.3)\n", + "Requirement already satisfied: ipywidgets in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (8.1.8)\n", + "Requirement already satisfied: comm>=0.1.3 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipywidgets) (0.2.3)\n", + "Requirement already satisfied: ipython>=6.1.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipywidgets) (9.8.0)\n", + "Requirement already satisfied: traitlets>=4.3.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipywidgets) (5.14.3)\n", + "Requirement already satisfied: widgetsnbextension~=4.0.14 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipywidgets) (4.0.15)\n", + "Requirement already satisfied: jupyterlab_widgets~=3.0.15 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipywidgets) (3.0.16)\n", + "Requirement already satisfied: colorama>=0.4.4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (0.4.6)\n", + "Requirement already satisfied: decorator>=4.3.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (5.2.1)\n", + "Requirement already satisfied: ipython-pygments-lexers>=1.0.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (1.1.1)\n", + "Requirement already satisfied: jedi>=0.18.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (0.19.2)\n", + "Requirement already satisfied: matplotlib-inline>=0.1.5 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (0.2.1)\n", + "Requirement already satisfied: prompt_toolkit<3.1.0,>=3.0.41 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (3.0.52)\n", + "Requirement already satisfied: pygments>=2.11.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (2.19.2)\n", + "Requirement already satisfied: stack_data>=0.6.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (0.6.3)\n", + "Requirement already satisfied: typing_extensions>=4.6 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (4.15.0)\n", + "Requirement already satisfied: wcwidth in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from prompt_toolkit<3.1.0,>=3.0.41->ipython>=6.1.0->ipywidgets) (0.2.14)\n", + "Requirement already satisfied: parso<0.9.0,>=0.8.4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jedi>=0.18.1->ipython>=6.1.0->ipywidgets) (0.8.5)\n", + "Requirement already satisfied: executing>=1.2.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data>=0.6.0->ipython>=6.1.0->ipywidgets) (2.2.1)\n", + "Requirement already satisfied: asttokens>=2.1.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data>=0.6.0->ipython>=6.1.0->ipywidgets) (3.0.1)\n", + "Requirement already satisfied: pure-eval in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data>=0.6.0->ipython>=6.1.0->ipywidgets) (0.2.3)\n", "Note: you may need to restart the kernel to use updated packages.\n", - "Requirement already satisfied: ipykernel in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (7.1.0)\n", - "Requirement already satisfied: comm>=0.1.1 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel) (0.2.3)\n", - "Requirement already satisfied: debugpy>=1.6.5 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel) (1.8.17)\n", - "Requirement already satisfied: ipython>=7.23.1 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel) (9.8.0)\n", - "Requirement already satisfied: jupyter-client>=8.0.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel) (8.6.3)\n", - "Requirement already satisfied: jupyter-core!=5.0.*,>=4.12 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel) (5.9.1)\n", - "Requirement already satisfied: matplotlib-inline>=0.1 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel) (0.2.1)\n", - "Requirement already satisfied: nest-asyncio>=1.4 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel) (1.6.0)\n", - "Requirement already satisfied: packaging>=22 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel) (25.0)\n", - "Requirement already satisfied: psutil>=5.7 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel) (7.1.3)\n", - "Requirement already satisfied: pyzmq>=25 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel) (27.1.0)\n", - "Requirement already satisfied: tornado>=6.2 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel) (6.5.2)\n", - "Requirement already satisfied: traitlets>=5.4.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipykernel) (5.14.3)\n", - "Requirement already satisfied: colorama>=0.4.4 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=7.23.1->ipykernel) (0.4.6)\n", - "Requirement already satisfied: decorator>=4.3.2 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=7.23.1->ipykernel) (5.2.1)\n", - "Requirement already satisfied: ipython-pygments-lexers>=1.0.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=7.23.1->ipykernel) (1.1.1)\n", - "Requirement already satisfied: jedi>=0.18.1 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=7.23.1->ipykernel) (0.19.2)\n", - "Requirement already satisfied: prompt_toolkit<3.1.0,>=3.0.41 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=7.23.1->ipykernel) (3.0.52)\n", - "Requirement already satisfied: pygments>=2.11.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=7.23.1->ipykernel) (2.19.2)\n", - "Requirement already satisfied: stack_data>=0.6.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=7.23.1->ipykernel) (0.6.3)\n", - "Requirement already satisfied: typing_extensions>=4.6 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ipython>=7.23.1->ipykernel) (4.15.0)\n", - "Requirement already satisfied: wcwidth in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from prompt_toolkit<3.1.0,>=3.0.41->ipython>=7.23.1->ipykernel) (0.2.14)\n", - "Requirement already satisfied: parso<0.9.0,>=0.8.4 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from jedi>=0.18.1->ipython>=7.23.1->ipykernel) (0.8.5)\n", - "Requirement already satisfied: python-dateutil>=2.8.2 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from jupyter-client>=8.0.0->ipykernel) (2.9.0.post0)\n", - "Requirement already satisfied: platformdirs>=2.5 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from jupyter-core!=5.0.*,>=4.12->ipykernel) (4.5.1)\n", - "Requirement already satisfied: six>=1.5 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from python-dateutil>=2.8.2->jupyter-client>=8.0.0->ipykernel) (1.17.0)\n", - "Requirement already satisfied: executing>=1.2.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from stack_data>=0.6.0->ipython>=7.23.1->ipykernel) (2.2.1)\n", - "Requirement already satisfied: asttokens>=2.1.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from stack_data>=0.6.0->ipython>=7.23.1->ipykernel) (3.0.1)\n", - "Requirement already satisfied: pure-eval in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from stack_data>=0.6.0->ipython>=7.23.1->ipykernel) (0.2.3)\n", + "Requirement already satisfied: ipykernel in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (7.1.0)\n", + "Requirement already satisfied: comm>=0.1.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (0.2.3)\n", + "Requirement already satisfied: debugpy>=1.6.5 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (1.8.17)\n", + "Requirement already satisfied: ipython>=7.23.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (9.8.0)\n", + "Requirement already satisfied: jupyter-client>=8.0.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (8.6.3)\n", + "Requirement already satisfied: jupyter-core!=5.0.*,>=4.12 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (5.9.1)\n", + "Requirement already satisfied: matplotlib-inline>=0.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (0.2.1)\n", + "Requirement already satisfied: nest-asyncio>=1.4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (1.6.0)\n", + "Requirement already satisfied: packaging>=22 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (25.0)\n", + "Requirement already satisfied: psutil>=5.7 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (7.1.3)\n", + "Requirement already satisfied: pyzmq>=25 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (27.1.0)\n", + "Requirement already satisfied: tornado>=6.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (6.5.2)\n", + "Requirement already satisfied: traitlets>=5.4.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (5.14.3)\n", + "Requirement already satisfied: colorama>=0.4.4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel) (0.4.6)\n", + "Requirement already satisfied: decorator>=4.3.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel) (5.2.1)\n", + "Requirement already satisfied: ipython-pygments-lexers>=1.0.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel) (1.1.1)\n", + "Requirement already satisfied: jedi>=0.18.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel) (0.19.2)\n", + "Requirement already satisfied: prompt_toolkit<3.1.0,>=3.0.41 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel) (3.0.52)\n", + "Requirement already satisfied: pygments>=2.11.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel) (2.19.2)\n", + "Requirement already satisfied: stack_data>=0.6.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel) (0.6.3)\n", + "Requirement already satisfied: typing_extensions>=4.6 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel) (4.15.0)\n", + "Requirement already satisfied: wcwidth in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from prompt_toolkit<3.1.0,>=3.0.41->ipython>=7.23.1->ipykernel) (0.2.14)\n", + "Requirement already satisfied: parso<0.9.0,>=0.8.4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jedi>=0.18.1->ipython>=7.23.1->ipykernel) (0.8.5)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-client>=8.0.0->ipykernel) (2.9.0.post0)\n", + "Requirement already satisfied: platformdirs>=2.5 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-core!=5.0.*,>=4.12->ipykernel) (4.5.1)\n", + "Requirement already satisfied: six>=1.5 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from python-dateutil>=2.8.2->jupyter-client>=8.0.0->ipykernel) (1.17.0)\n", + "Requirement already satisfied: executing>=1.2.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data>=0.6.0->ipython>=7.23.1->ipykernel) (2.2.1)\n", + "Requirement already satisfied: asttokens>=2.1.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data>=0.6.0->ipython>=7.23.1->ipykernel) (3.0.1)\n", + "Requirement already satisfied: pure-eval in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data>=0.6.0->ipython>=7.23.1->ipykernel) (0.2.3)\n", "Note: you may need to restart the kernel to use updated packages.\n" ] } @@ -185,7 +185,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "id": "13103c58", "metadata": {}, "outputs": [ @@ -193,109 +193,115 @@ "name": "stdout", "output_type": "stream", "text": [ - "Requirement already satisfied: transformers in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (4.57.3)\n", - "Requirement already satisfied: pillow in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (12.0.0)\n", - "Requirement already satisfied: paddleocr in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (3.3.2)\n", - "Requirement already satisfied: hf_xet in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (1.2.0)\n", - "Requirement already satisfied: paddlepaddle in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (3.2.2)\n", - "Requirement already satisfied: filelock in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from transformers) (3.20.0)\n", - "Requirement already satisfied: huggingface-hub<1.0,>=0.34.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from transformers) (0.36.0)\n", - "Requirement already satisfied: numpy>=1.17 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from transformers) (2.3.5)\n", - "Requirement already satisfied: packaging>=20.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from transformers) (25.0)\n", - "Requirement already satisfied: pyyaml>=5.1 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from transformers) (6.0.2)\n", - "Requirement already satisfied: regex!=2019.12.17 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from transformers) (2025.11.3)\n", - "Requirement already satisfied: requests in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from transformers) (2.32.5)\n", - "Requirement already satisfied: tokenizers<=0.23.0,>=0.22.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from transformers) (0.22.1)\n", - "Requirement already satisfied: safetensors>=0.4.3 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from transformers) (0.7.0)\n", - "Requirement already satisfied: tqdm>=4.27 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from transformers) (4.67.1)\n", - "Requirement already satisfied: fsspec>=2023.5.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from huggingface-hub<1.0,>=0.34.0->transformers) (2025.12.0)\n", - "Requirement already satisfied: typing-extensions>=3.7.4.3 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from huggingface-hub<1.0,>=0.34.0->transformers) (4.15.0)\n", - "Requirement already satisfied: paddlex<3.4.0,>=3.3.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (3.3.10)\n", - "Requirement already satisfied: aistudio-sdk>=0.3.5 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (0.3.8)\n", - "Requirement already satisfied: chardet in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (5.2.0)\n", - "Requirement already satisfied: colorlog in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (6.10.1)\n", - "Requirement already satisfied: modelscope>=1.28.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (1.32.0)\n", - "Requirement already satisfied: pandas>=1.3 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (2.3.3)\n", - "Requirement already satisfied: prettytable in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (3.17.0)\n", - "Requirement already satisfied: py-cpuinfo in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (9.0.0)\n", - "Requirement already satisfied: pydantic>=2 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (2.12.5)\n", - "Requirement already satisfied: ruamel.yaml in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (0.18.16)\n", - "Requirement already satisfied: ujson in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (5.11.0)\n", - "Requirement already satisfied: imagesize in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (1.4.1)\n", - "Requirement already satisfied: opencv-contrib-python==4.10.0.84 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (4.10.0.84)\n", - "Requirement already satisfied: pyclipper in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (1.4.0)\n", - "Requirement already satisfied: pypdfium2>=4 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (5.1.0)\n", - "Requirement already satisfied: python-bidi in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (0.6.7)\n", - "Requirement already satisfied: shapely in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (2.1.2)\n", - "Requirement already satisfied: httpx in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from paddlepaddle) (0.28.1)\n", - "Requirement already satisfied: protobuf>=3.20.2 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from paddlepaddle) (6.33.2)\n", - "Requirement already satisfied: opt-einsum==3.3.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from paddlepaddle) (3.3.0)\n", - "Requirement already satisfied: networkx in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from paddlepaddle) (3.6)\n", - "Requirement already satisfied: psutil in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from aistudio-sdk>=0.3.5->paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (7.1.3)\n", - "Requirement already satisfied: bce-python-sdk in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from aistudio-sdk>=0.3.5->paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (0.9.55)\n", - "Requirement already satisfied: click in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from aistudio-sdk>=0.3.5->paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (8.2.1)\n", - "Requirement already satisfied: setuptools in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from modelscope>=1.28.0->paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (65.5.0)\n", - "Requirement already satisfied: urllib3>=1.26 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from modelscope>=1.28.0->paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (2.6.0)\n", - "Requirement already satisfied: python-dateutil>=2.8.2 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from pandas>=1.3->paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (2.9.0.post0)\n", - "Requirement already satisfied: pytz>=2020.1 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from pandas>=1.3->paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (2025.2)\n", - "Requirement already satisfied: tzdata>=2022.7 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from pandas>=1.3->paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (2025.2)\n", - "Requirement already satisfied: annotated-types>=0.6.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from pydantic>=2->paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (0.7.0)\n", - "Requirement already satisfied: pydantic-core==2.41.5 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from pydantic>=2->paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (2.41.5)\n", - "Requirement already satisfied: typing-inspection>=0.4.2 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from pydantic>=2->paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (0.4.2)\n", - "Requirement already satisfied: six>=1.5 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from python-dateutil>=2.8.2->pandas>=1.3->paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (1.17.0)\n", - "Requirement already satisfied: charset_normalizer<4,>=2 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from requests->transformers) (3.4.4)\n", - "Requirement already satisfied: idna<4,>=2.5 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from requests->transformers) (3.11)\n", - "Requirement already satisfied: certifi>=2017.4.17 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from requests->transformers) (2025.11.12)\n", - "Requirement already satisfied: colorama in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from tqdm>=4.27->transformers) (0.4.6)\n", - "Requirement already satisfied: pycryptodome>=3.8.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from bce-python-sdk->aistudio-sdk>=0.3.5->paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (3.23.0)\n", - "Requirement already satisfied: future>=0.6.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from bce-python-sdk->aistudio-sdk>=0.3.5->paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (1.0.0)\n", - "Requirement already satisfied: anyio in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from httpx->paddlepaddle) (4.12.0)\n", - "Requirement already satisfied: httpcore==1.* in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from httpx->paddlepaddle) (1.0.9)\n", - "Requirement already satisfied: h11>=0.16 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from httpcore==1.*->httpx->paddlepaddle) (0.16.0)\n", - "Requirement already satisfied: wcwidth in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from prettytable->paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (0.2.14)\n", - "Requirement already satisfied: ruamel.yaml.clib>=0.2.7 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from ruamel.yaml->paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (0.2.15)\n", + "Requirement already satisfied: transformers in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (4.57.3)\n", + "Requirement already satisfied: pillow in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (12.0.0)\n", + "Requirement already satisfied: paddleocr in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (3.3.2)\n", + "Requirement already satisfied: hf_xet in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (1.2.0)\n", + "Requirement already satisfied: paddlepaddle in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (3.2.2)\n", + "Requirement already satisfied: jiwer in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (4.0.0)\n", + "Requirement already satisfied: rich in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (14.2.0)\n", + "Requirement already satisfied: filelock in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from transformers) (3.20.0)\n", + "Requirement already satisfied: huggingface-hub<1.0,>=0.34.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from transformers) (0.36.0)\n", + "Requirement already satisfied: numpy>=1.17 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from transformers) (2.3.5)\n", + "Requirement already satisfied: packaging>=20.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from transformers) (25.0)\n", + "Requirement already satisfied: pyyaml>=5.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from transformers) (6.0.2)\n", + "Requirement already satisfied: regex!=2019.12.17 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from transformers) (2025.11.3)\n", + "Requirement already satisfied: requests in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from transformers) (2.32.5)\n", + "Requirement already satisfied: tokenizers<=0.23.0,>=0.22.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from transformers) (0.22.1)\n", + "Requirement already satisfied: safetensors>=0.4.3 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from transformers) (0.7.0)\n", + "Requirement already satisfied: tqdm>=4.27 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from transformers) (4.67.1)\n", + "Requirement already satisfied: fsspec>=2023.5.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from huggingface-hub<1.0,>=0.34.0->transformers) (2025.12.0)\n", + "Requirement already satisfied: typing-extensions>=3.7.4.3 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from huggingface-hub<1.0,>=0.34.0->transformers) (4.15.0)\n", + "Requirement already satisfied: paddlex<3.4.0,>=3.3.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (3.3.10)\n", + "Requirement already satisfied: aistudio-sdk>=0.3.5 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (0.3.8)\n", + "Requirement already satisfied: chardet in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (5.2.0)\n", + "Requirement already satisfied: colorlog in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (6.10.1)\n", + "Requirement already satisfied: modelscope>=1.28.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (1.32.0)\n", + "Requirement already satisfied: pandas>=1.3 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (2.3.3)\n", + "Requirement already satisfied: prettytable in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (3.17.0)\n", + "Requirement already satisfied: py-cpuinfo in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (9.0.0)\n", + "Requirement already satisfied: pydantic>=2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (2.12.5)\n", + "Requirement already satisfied: ruamel.yaml in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (0.18.16)\n", + "Requirement already satisfied: ujson in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (5.11.0)\n", + "Requirement already satisfied: imagesize in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (1.4.1)\n", + "Requirement already satisfied: opencv-contrib-python==4.10.0.84 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (4.10.0.84)\n", + "Requirement already satisfied: pyclipper in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (1.4.0)\n", + "Requirement already satisfied: pypdfium2>=4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (5.1.0)\n", + "Requirement already satisfied: python-bidi in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (0.6.7)\n", + "Requirement already satisfied: shapely in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (2.1.2)\n", + "Requirement already satisfied: httpx in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from paddlepaddle) (0.28.1)\n", + "Requirement already satisfied: protobuf>=3.20.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from paddlepaddle) (6.33.2)\n", + "Requirement already satisfied: opt-einsum==3.3.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from paddlepaddle) (3.3.0)\n", + "Requirement already satisfied: networkx in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from paddlepaddle) (3.6)\n", + "Requirement already satisfied: click>=8.1.8 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jiwer) (8.2.1)\n", + "Requirement already satisfied: rapidfuzz>=3.9.7 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jiwer) (3.14.3)\n", + "Requirement already satisfied: markdown-it-py>=2.2.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from rich) (4.0.0)\n", + "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from rich) (2.19.2)\n", + "Requirement already satisfied: psutil in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from aistudio-sdk>=0.3.5->paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (7.1.3)\n", + "Requirement already satisfied: bce-python-sdk in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from aistudio-sdk>=0.3.5->paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (0.9.55)\n", + "Requirement already satisfied: colorama in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from click>=8.1.8->jiwer) (0.4.6)\n", + "Requirement already satisfied: mdurl~=0.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from markdown-it-py>=2.2.0->rich) (0.1.2)\n", + "Requirement already satisfied: setuptools in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from modelscope>=1.28.0->paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (65.5.0)\n", + "Requirement already satisfied: urllib3>=1.26 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from modelscope>=1.28.0->paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (2.6.0)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pandas>=1.3->paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (2.9.0.post0)\n", + "Requirement already satisfied: pytz>=2020.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pandas>=1.3->paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (2025.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pandas>=1.3->paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (2025.2)\n", + "Requirement already satisfied: annotated-types>=0.6.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pydantic>=2->paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (0.7.0)\n", + "Requirement already satisfied: pydantic-core==2.41.5 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pydantic>=2->paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (2.41.5)\n", + "Requirement already satisfied: typing-inspection>=0.4.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pydantic>=2->paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (0.4.2)\n", + "Requirement already satisfied: six>=1.5 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from python-dateutil>=2.8.2->pandas>=1.3->paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (1.17.0)\n", + "Requirement already satisfied: charset_normalizer<4,>=2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from requests->transformers) (3.4.4)\n", + "Requirement already satisfied: idna<4,>=2.5 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from requests->transformers) (3.11)\n", + "Requirement already satisfied: certifi>=2017.4.17 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from requests->transformers) (2025.11.12)\n", + "Requirement already satisfied: pycryptodome>=3.8.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from bce-python-sdk->aistudio-sdk>=0.3.5->paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (3.23.0)\n", + "Requirement already satisfied: future>=0.6.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from bce-python-sdk->aistudio-sdk>=0.3.5->paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (1.0.0)\n", + "Requirement already satisfied: anyio in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from httpx->paddlepaddle) (4.12.0)\n", + "Requirement already satisfied: httpcore==1.* in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from httpx->paddlepaddle) (1.0.9)\n", + "Requirement already satisfied: h11>=0.16 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from httpcore==1.*->httpx->paddlepaddle) (0.16.0)\n", + "Requirement already satisfied: wcwidth in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from prettytable->paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (0.2.14)\n", + "Requirement already satisfied: ruamel.yaml.clib>=0.2.7 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ruamel.yaml->paddlex<3.4.0,>=3.3.0->paddlex[ocr-core]<3.4.0,>=3.3.0->paddleocr) (0.2.15)\n", "Note: you may need to restart the kernel to use updated packages.\n", - "Requirement already satisfied: pandas in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (2.3.3)\n", - "Requirement already satisfied: numpy>=1.23.2 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from pandas) (2.3.5)\n", - "Requirement already satisfied: python-dateutil>=2.8.2 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from pandas) (2.9.0.post0)\n", - "Requirement already satisfied: pytz>=2020.1 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from pandas) (2025.2)\n", - "Requirement already satisfied: tzdata>=2022.7 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from pandas) (2025.2)\n", - "Requirement already satisfied: six>=1.5 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from python-dateutil>=2.8.2->pandas) (1.17.0)\n", + "Requirement already satisfied: pandas in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (2.3.3)\n", + "Requirement already satisfied: numpy>=1.23.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pandas) (2.3.5)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pandas) (2.9.0.post0)\n", + "Requirement already satisfied: pytz>=2020.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pandas) (2025.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pandas) (2025.2)\n", + "Requirement already satisfied: six>=1.5 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from python-dateutil>=2.8.2->pandas) (1.17.0)\n", "Note: you may need to restart the kernel to use updated packages.\n", - "Requirement already satisfied: matplotlib in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (3.10.7)\n", - "Requirement already satisfied: contourpy>=1.0.1 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from matplotlib) (1.3.3)\n", - "Requirement already satisfied: cycler>=0.10 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from matplotlib) (0.12.1)\n", - "Requirement already satisfied: fonttools>=4.22.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from matplotlib) (4.61.0)\n", - "Requirement already satisfied: kiwisolver>=1.3.1 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from matplotlib) (1.4.9)\n", - "Requirement already satisfied: numpy>=1.23 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from matplotlib) (2.3.5)\n", - "Requirement already satisfied: packaging>=20.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from matplotlib) (25.0)\n", - "Requirement already satisfied: pillow>=8 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from matplotlib) (12.0.0)\n", - "Requirement already satisfied: pyparsing>=3 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from matplotlib) (3.2.5)\n", - "Requirement already satisfied: python-dateutil>=2.7 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from matplotlib) (2.9.0.post0)\n", - "Requirement already satisfied: six>=1.5 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from python-dateutil>=2.7->matplotlib) (1.17.0)\n", + "Requirement already satisfied: matplotlib in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (3.10.7)\n", + "Requirement already satisfied: contourpy>=1.0.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (1.3.3)\n", + "Requirement already satisfied: cycler>=0.10 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (4.61.0)\n", + "Requirement already satisfied: kiwisolver>=1.3.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (1.4.9)\n", + "Requirement already satisfied: numpy>=1.23 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (2.3.5)\n", + "Requirement already satisfied: packaging>=20.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (25.0)\n", + "Requirement already satisfied: pillow>=8 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (12.0.0)\n", + "Requirement already satisfied: pyparsing>=3 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (3.2.5)\n", + "Requirement already satisfied: python-dateutil>=2.7 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (2.9.0.post0)\n", + "Requirement already satisfied: six>=1.5 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from python-dateutil>=2.7->matplotlib) (1.17.0)\n", "Note: you may need to restart the kernel to use updated packages.\n", - "Requirement already satisfied: seaborn in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (0.13.2)\n", - "Requirement already satisfied: numpy!=1.24.0,>=1.20 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from seaborn) (2.3.5)\n", - "Requirement already satisfied: pandas>=1.2 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from seaborn) (2.3.3)\n", - "Requirement already satisfied: matplotlib!=3.6.1,>=3.4 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from seaborn) (3.10.7)\n", - "Requirement already satisfied: contourpy>=1.0.1 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (1.3.3)\n", - "Requirement already satisfied: cycler>=0.10 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (0.12.1)\n", - "Requirement already satisfied: fonttools>=4.22.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (4.61.0)\n", - "Requirement already satisfied: kiwisolver>=1.3.1 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (1.4.9)\n", - "Requirement already satisfied: packaging>=20.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (25.0)\n", - "Requirement already satisfied: pillow>=8 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (12.0.0)\n", - "Requirement already satisfied: pyparsing>=3 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (3.2.5)\n", - "Requirement already satisfied: python-dateutil>=2.7 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (2.9.0.post0)\n", - "Requirement already satisfied: pytz>=2020.1 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from pandas>=1.2->seaborn) (2025.2)\n", - "Requirement already satisfied: tzdata>=2022.7 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from pandas>=1.2->seaborn) (2025.2)\n", - "Requirement already satisfied: six>=1.5 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from python-dateutil>=2.7->matplotlib!=3.6.1,>=3.4->seaborn) (1.17.0)\n", + "Requirement already satisfied: seaborn in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (0.13.2)\n", + "Requirement already satisfied: numpy!=1.24.0,>=1.20 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from seaborn) (2.3.5)\n", + "Requirement already satisfied: pandas>=1.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from seaborn) (2.3.3)\n", + "Requirement already satisfied: matplotlib!=3.6.1,>=3.4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from seaborn) (3.10.7)\n", + "Requirement already satisfied: contourpy>=1.0.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (1.3.3)\n", + "Requirement already satisfied: cycler>=0.10 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (4.61.0)\n", + "Requirement already satisfied: kiwisolver>=1.3.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (1.4.9)\n", + "Requirement already satisfied: packaging>=20.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (25.0)\n", + "Requirement already satisfied: pillow>=8 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (12.0.0)\n", + "Requirement already satisfied: pyparsing>=3 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (3.2.5)\n", + "Requirement already satisfied: python-dateutil>=2.7 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (2.9.0.post0)\n", + "Requirement already satisfied: pytz>=2020.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pandas>=1.2->seaborn) (2025.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pandas>=1.2->seaborn) (2025.2)\n", + "Requirement already satisfied: six>=1.5 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from python-dateutil>=2.7->matplotlib!=3.6.1,>=3.4->seaborn) (1.17.0)\n", "Note: you may need to restart the kernel to use updated packages.\n" ] } ], "source": [ "# Install necessary packages\n", - "%pip install transformers pillow paddleocr hf_xet paddlepaddle jiwer\n", + "%pip install transformers pillow paddleocr hf_xet paddlepaddle jiwer rich\n", "\n", "\n", "\n", @@ -307,7 +313,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 1, "id": "ae33632a", "metadata": {}, "outputs": [], @@ -319,7 +325,14 @@ "import matplotlib.pyplot as plt\n", "\n", "import re\n", - "from datetime import datetime" + "from datetime import datetime\n", + "\n", + "from rich.console import Console\n", + "import colorama\n", + "\n", + "colorama.just_fix_windows_console()\n", + "# Tell Ray Tune to use a Jupyter-compatible console\n", + "console = Console(force_jupyter=True)" ] }, { @@ -332,7 +345,8 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 2, + "id": "8bfa3329", "metadata": {}, "outputs": [], "source": [ @@ -343,48 +357,18 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 3, "id": "8bd4ca23", "metadata": {}, "outputs": [ { - "data": { - "text/html": [ - "
c:\\Users\\Sergio\\Desktop\\MastersThesis\\dataset\n",
-       "
\n" - ], - "text/plain": [ - "c:\\Users\\Sergio\\Desktop\\MastersThesis\\dataset\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
c:\\Users\\Sergio\\Desktop\\MastersThesis\\paddle_ocr_tuning.py\n",
-       "
\n" - ], - "text/plain": [ - "c:\\Users\\Sergio\\Desktop\\MastersThesis\\paddle_ocr_tuning.py\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
c:\\Users\\Sergio\\Desktop\\MastersThesis\n",
-       "
\n" - ], - "text/plain": [ - "c:\\Users\\Sergio\\Desktop\\MastersThesis\n" - ] - }, - "metadata": {}, - "output_type": "display_data" + "name": "stdout", + "output_type": "stream", + "text": [ + "c:\\Users\\Sergio\\Desktop\\MastersThesis\\src\\dataset\n", + "c:\\Users\\Sergio\\Desktop\\MastersThesis\\src\\paddle_ocr_tuning.py\n", + "c:\\Users\\Sergio\\Desktop\\MastersThesis\\src\n" + ] } ], "source": [ @@ -399,61 +383,27 @@ }, { "cell_type": "code", - "execution_count": 93, + "execution_count": 4, "id": "9c658b58", "metadata": {}, "outputs": [ { - "data": { - "text/html": [ - "
Paddle version: 3.2.2\n",
-       "
\n" - ], - "text/plain": [ - "Paddle version: \u001b[1;36m3.2\u001b[0m.\u001b[1;36m2\u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\Sergio\\Desktop\\MastersThesis\\.venv\\Lib\\site-packages\\paddle\\utils\\cpp_extension\\extension_utils.py:718: UserWarning: No ccache found. Please be aware that recompiling all source files may be required. You can download and install ccache from: https://github.com/ccache/ccache/blob/master/doc/INSTALL.md\n", + " warnings.warn(warning_message)\n" + ] }, { - "data": { - "text/html": [ - "
GPU available: False\n",
-       "
\n" - ], - "text/plain": [ - "GPU available: \u001b[3;91mFalse\u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
GPU count: 0\n",
-       "
\n" - ], - "text/plain": [ - "GPU count: \u001b[1;36m0\u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
Current device: cpu\n",
-       "
\n" - ], - "text/plain": [ - "Current device: cpu\n" - ] - }, - "metadata": {}, - "output_type": "display_data" + "name": "stdout", + "output_type": "stream", + "text": [ + "Paddle version: 3.2.2\n", + "GPU available: False\n", + "GPU count: 0\n", + "Current device: cpu\n" + ] } ], "source": [ @@ -467,7 +417,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 7, "id": "243849b9", "metadata": {}, "outputs": [ @@ -503,22 +453,16 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 8, "id": "329da34a", "metadata": {}, "outputs": [ { - "data": { - "text/html": [ - "
3.3.2\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[1;36m3.3\u001b[0m.\u001b[1;36m2\u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" + "name": "stdout", + "output_type": "stream", + "text": [ + "3.3.2\n" + ] } ], "source": [ @@ -529,22 +473,16 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 9, "id": "b1541bb6", "metadata": {}, "outputs": [ { - "data": { - "text/html": [ - "
c:\\Users\\Sergio\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\paddleocr\n",
-       "
\n" - ], - "text/plain": [ - "c:\\Users\\Sergio\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\paddleocr\n" - ] - }, - "metadata": {}, - "output_type": "display_data" + "name": "stdout", + "output_type": "stream", + "text": [ + "c:\\Users\\Sergio\\Desktop\\MastersThesis\\.venv\\Lib\\site-packages\\paddleocr\n" + ] } ], "source": [ @@ -563,7 +501,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 10, "id": "9596c7df", "metadata": {}, "outputs": [], @@ -575,7 +513,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 11, "id": "b7c1bbf8", "metadata": {}, "outputs": [], @@ -603,7 +541,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 12, "id": "b9d3fe25", "metadata": {}, "outputs": [ @@ -618,55 +556,30 @@ "output_type": "display_data" }, { - "data": { - "text/html": [ - "
Índice\n",
-       "1. Indicaciones generales 3\n",
-       "1.1. Línea de discurso 3\n",
-       "1.2. Estructura general y extensión del TFE 4\n",
-       "1.3. Formatos y plantilla de trabajo 5\n",
-       "1.4. Estética y estilo de redacción 7\n",
-       "1.5. Normativa de citas 8\n",
-       "2. Estructura del documento 9\n",
-       "2.1. Resumen 10\n",
-       "2.2. Organización del trabajo en grupo 11\n",
-       "2.3. Introducción 11\n",
-       "2.4. Contexto y estado del arte 13\n",
-       "2.5. Objetivos concretos y metodología de trabajo 14\n",
-       "2.6. Desarrollo específico de la contribución 17\n",
-       "2.7. Conclusiones y trabajo futuro 20\n",
-       "2.8. Referencias bibliográficas 21\n",
-       "© Universidad Internacional de La Rioja (UNIR)\n",
-       "2.8.1. Herramientas para buscar bibliografía 22\n",
-       "2.9. Anexos 23\n",
-       "2.10. Índice de acrónimos 24\n",
-       "
\n" - ], - "text/plain": [ - "Índice\n", - "\u001b[1;36m1\u001b[0m. Indicaciones generales \u001b[1;36m3\u001b[0m\n", - "\u001b[1;36m1.1\u001b[0m. Línea de discurso \u001b[1;36m3\u001b[0m\n", - "\u001b[1;36m1.2\u001b[0m. Estructura general y extensión del TFE \u001b[1;36m4\u001b[0m\n", - "\u001b[1;36m1.3\u001b[0m. Formatos y plantilla de trabajo \u001b[1;36m5\u001b[0m\n", - "\u001b[1;36m1.4\u001b[0m. Estética y estilo de redacción \u001b[1;36m7\u001b[0m\n", - "\u001b[1;36m1.5\u001b[0m. Normativa de citas \u001b[1;36m8\u001b[0m\n", - "\u001b[1;36m2\u001b[0m. Estructura del documento \u001b[1;36m9\u001b[0m\n", - "\u001b[1;36m2.1\u001b[0m. Resumen \u001b[1;36m10\u001b[0m\n", - "\u001b[1;36m2.2\u001b[0m. Organización del trabajo en grupo \u001b[1;36m11\u001b[0m\n", - "\u001b[1;36m2.3\u001b[0m. Introducción \u001b[1;36m11\u001b[0m\n", - "\u001b[1;36m2.4\u001b[0m. Contexto y estado del arte \u001b[1;36m13\u001b[0m\n", - "\u001b[1;36m2.5\u001b[0m. Objetivos concretos y metodología de trabajo \u001b[1;36m14\u001b[0m\n", - "\u001b[1;36m2.6\u001b[0m. Desarrollo específico de la contribución \u001b[1;36m17\u001b[0m\n", - "\u001b[1;36m2.7\u001b[0m. Conclusiones y trabajo futuro \u001b[1;36m20\u001b[0m\n", - "\u001b[1;36m2.8\u001b[0m. Referencias bibliográficas \u001b[1;36m21\u001b[0m\n", - "© Universidad Internacional de La Rioja \u001b[1m(\u001b[0mUNIR\u001b[1m)\u001b[0m\n", - "\u001b[1;36m2.8\u001b[0m.\u001b[1;36m1\u001b[0m. Herramientas para buscar bibliografía \u001b[1;36m22\u001b[0m\n", - "\u001b[1;36m2.9\u001b[0m. Anexos \u001b[1;36m23\u001b[0m\n", - "\u001b[1;36m2.10\u001b[0m. Índice de acrónimos \u001b[1;36m24\u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" + "name": "stdout", + "output_type": "stream", + "text": [ + "Índice\n", + "1. Indicaciones generales 3\n", + "1.1. Línea de discurso 3\n", + "1.2. Estructura general y extensión del TFE 4\n", + "1.3. Formatos y plantilla de trabajo 5\n", + "1.4. Estética y estilo de redacción 7\n", + "1.5. Normativa de citas 8\n", + "2. Estructura del documento 9\n", + "2.1. Resumen 10\n", + "2.2. Organización del trabajo en grupo 11\n", + "2.3. Introducción 11\n", + "2.4. Contexto y estado del arte 13\n", + "2.5. Objetivos concretos y metodología de trabajo 14\n", + "2.6. Desarrollo específico de la contribución 17\n", + "2.7. Conclusiones y trabajo futuro 20\n", + "2.8. Referencias bibliográficas 21\n", + "© Universidad Internacional de La Rioja (UNIR)\n", + "2.8.1. Herramientas para buscar bibliografía 22\n", + "2.9. Anexos 23\n", + "2.10. Índice de acrónimos 24\n" + ] } ], "source": [ @@ -679,7 +592,7 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 13, "id": "dcd27755", "metadata": {}, "outputs": [ @@ -694,81 +607,43 @@ "output_type": "display_data" }, { - "data": { - "text/html": [ - "
Superior e inferior: 2,5 cm.\n",
-       "Formato de párrafo en texto principal (estilo de la plantilla “Normal”):\n",
-       " Calibri 12, justificado, interlineado 1,5, espacio entre párrafos 6 puntos\n",
-       "anterior y 6 puntos posterior, sin sangría.\n",
-       "Títulos:\n",
-       " Primer nivel (estilo de la plantilla “Título 1): Calibri Light 18, azul, justificado,\n",
-       "interlineado 1,5, espacio entre párrafos 6 puntos anterior y 6 puntos\n",
-       "posterior, sin sangría.\n",
-       " Segundo nivel (estilo de la plantilla “Título 2): Calibri Light 14, azul,\n",
-       "justificado, interlineado 1,5, espacio entre párrafos 6 puntos anterior y 6\n",
-       "puntos posterior, sin sangría.\n",
-       " Tercer nivel (estilo de la plantilla “Título 3”: Calibri Light 12, justificado,\n",
-       "interlineado 1,5, espacio entre párrafos 6 puntos anterior y 6 puntos\n",
-       "posterior, sin sangría.\n",
-       "Notas al pie:\n",
-       " Calibri 10, justificado, interlineado sencillo, espacio entre párrafos 0 puntos\n",
-       "anterior y 0 puntos posterior, sin sangría.\n",
-       "Tablas y figuras:\n",
-       " Título en la parte superior de la tabla o figura.\n",
-       " Numeración tabla o figura (Tabla 1/ Figura1): Calibri 12, negrita, justificado.\n",
-       " Nombre tabla o figura: Calibri 12, cursiva, justificado.\n",
-       " Cuerpo: la tipografía de las tablas o figuras se pueden reducir hasta los 9\n",
-       "puntos si estas contienen mucha información. Si la tabla o figura es muy\n",
-       "grande, también se puede colocar en apaisado dentro de la hoja.\n",
-       " Fuente de la tabla o figura en la parte inferior. Calibri 9,5, centrado.\n",
-       "Encabezado y pie de página:\n",
-       " Todas las páginas llevarán un encabezado con el nombre completo del\n",
-       "estudiante y el título del TFE.\n",
-       "© Universidad Internacional de La Rioja (UNIR)\n",
-       " Todas las páginas llevarán también un pie de página con el número de página.\n",
-       "Instrucciones para la redacción y elaboración del TFE\n",
-       "6\n",
-       "Máster Universitario en Inteligencia Artificial\n",
-       "
\n" - ], - "text/plain": [ - "Superior e inferior: \u001b[1;36m2\u001b[0m,\u001b[1;36m5\u001b[0m cm.\n", - "Formato de párrafo en texto principal \u001b[1m(\u001b[0mestilo de la plantilla “Normal”\u001b[1m)\u001b[0m:\n", - " Calibri \u001b[1;36m12\u001b[0m, justificado, interlineado \u001b[1;36m1\u001b[0m,\u001b[1;36m5\u001b[0m, espacio entre párrafos \u001b[1;36m6\u001b[0m puntos\n", - "anterior y \u001b[1;36m6\u001b[0m puntos posterior, sin sangría.\n", - "Títulos:\n", - " Primer nivel \u001b[1m(\u001b[0mestilo de la plantilla “Título \u001b[1;36m1\u001b[0m”\u001b[1m)\u001b[0m: Calibri Light \u001b[1;36m18\u001b[0m, azul, justificado,\n", - "interlineado \u001b[1;36m1\u001b[0m,\u001b[1;36m5\u001b[0m, espacio entre párrafos \u001b[1;36m6\u001b[0m puntos anterior y \u001b[1;36m6\u001b[0m puntos\n", - "posterior, sin sangría.\n", - " Segundo nivel \u001b[1m(\u001b[0mestilo de la plantilla “Título \u001b[1;36m2\u001b[0m”\u001b[1m)\u001b[0m: Calibri Light \u001b[1;36m14\u001b[0m, azul,\n", - "justificado, interlineado \u001b[1;36m1\u001b[0m,\u001b[1;36m5\u001b[0m, espacio entre párrafos \u001b[1;36m6\u001b[0m puntos anterior y \u001b[1;36m6\u001b[0m\n", - "puntos posterior, sin sangría.\n", - " Tercer nivel \u001b[1m(\u001b[0mestilo de la plantilla “Título \u001b[1;36m3\u001b[0m”: Calibri Light \u001b[1;36m12\u001b[0m, justificado,\n", - "interlineado \u001b[1;36m1\u001b[0m,\u001b[1;36m5\u001b[0m, espacio entre párrafos \u001b[1;36m6\u001b[0m puntos anterior y \u001b[1;36m6\u001b[0m puntos\n", - "posterior, sin sangría.\n", - "Notas al pie:\n", - " Calibri \u001b[1;36m10\u001b[0m, justificado, interlineado sencillo, espacio entre párrafos \u001b[1;36m0\u001b[0m puntos\n", - "anterior y \u001b[1;36m0\u001b[0m puntos posterior, sin sangría.\n", - "Tablas y figuras:\n", - " Título en la parte superior de la tabla o figura.\n", - " Numeración tabla o figura \u001b[1m(\u001b[0mTabla \u001b[1;36m1\u001b[0m/ Figura1\u001b[1m)\u001b[0m: Calibri \u001b[1;36m12\u001b[0m, negrita, justificado.\n", - " Nombre tabla o figura: Calibri \u001b[1;36m12\u001b[0m, cursiva, justificado.\n", - " Cuerpo: la tipografía de las tablas o figuras se pueden reducir hasta los \u001b[1;36m9\u001b[0m\n", - "puntos si estas contienen mucha información. Si la tabla o figura es muy\n", - "grande, también se puede colocar en apaisado dentro de la hoja.\n", - " Fuente de la tabla o figura en la parte inferior. Calibri \u001b[1;36m9\u001b[0m,\u001b[1;36m5\u001b[0m, centrado.\n", - "Encabezado y pie de página:\n", - " Todas las páginas llevarán un encabezado con el nombre completo del\n", - "estudiante y el título del TFE.\n", - "© Universidad Internacional de La Rioja \u001b[1m(\u001b[0mUNIR\u001b[1m)\u001b[0m\n", - " Todas las páginas llevarán también un pie de página con el número de página.\n", - "Instrucciones para la redacción y elaboración del TFE\n", - "\u001b[1;36m6\u001b[0m\n", - "Máster Universitario en Inteligencia Artificial\n" - ] - }, - "metadata": {}, - "output_type": "display_data" + "name": "stdout", + "output_type": "stream", + "text": [ + "Superior e inferior: 2,5 cm.\n", + "Formato de párrafo en texto principal (estilo de la plantilla “Normal”):\n", + " Calibri 12, justificado, interlineado 1,5, espacio entre párrafos 6 puntos\n", + "anterior y 6 puntos posterior, sin sangría.\n", + "Títulos:\n", + " Primer nivel (estilo de la plantilla “Título 1”): Calibri Light 18, azul, justificado,\n", + "interlineado 1,5, espacio entre párrafos 6 puntos anterior y 6 puntos\n", + "posterior, sin sangría.\n", + " Segundo nivel (estilo de la plantilla “Título 2”): Calibri Light 14, azul,\n", + "justificado, interlineado 1,5, espacio entre párrafos 6 puntos anterior y 6\n", + "puntos posterior, sin sangría.\n", + " Tercer nivel (estilo de la plantilla “Título 3”: Calibri Light 12, justificado,\n", + "interlineado 1,5, espacio entre párrafos 6 puntos anterior y 6 puntos\n", + "posterior, sin sangría.\n", + "Notas al pie:\n", + " Calibri 10, justificado, interlineado sencillo, espacio entre párrafos 0 puntos\n", + "anterior y 0 puntos posterior, sin sangría.\n", + "Tablas y figuras:\n", + " Título en la parte superior de la tabla o figura.\n", + " Numeración tabla o figura (Tabla 1/ Figura1): Calibri 12, negrita, justificado.\n", + " Nombre tabla o figura: Calibri 12, cursiva, justificado.\n", + " Cuerpo: la tipografía de las tablas o figuras se pueden reducir hasta los 9\n", + "puntos si estas contienen mucha información. Si la tabla o figura es muy\n", + "grande, también se puede colocar en apaisado dentro de la hoja.\n", + " Fuente de la tabla o figura en la parte inferior. Calibri 9,5, centrado.\n", + "Encabezado y pie de página:\n", + " Todas las páginas llevarán un encabezado con el nombre completo del\n", + "estudiante y el título del TFE.\n", + "© Universidad Internacional de La Rioja (UNIR)\n", + " Todas las páginas llevarán también un pie de página con el número de página.\n", + "Instrucciones para la redacción y elaboración del TFE\n", + "6\n", + "Máster Universitario en Inteligencia Artificial\n" + ] } ], "source": [ @@ -788,7 +663,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 14, "id": "9b55c154", "metadata": {}, "outputs": [ @@ -1175,7 +1050,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 15, "id": "da3155e3", "metadata": {}, "outputs": [ @@ -1183,7 +1058,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Benchmark results saved as ai_ocr_benchmark_finetune_results_20251206_200806.csv\n", + "Benchmark results saved as ai_ocr_benchmark_finetune_results_20251207_155752.csv\n", " WER CER\n", "Model \n", "PaddleOCR 0.104067 0.012581\n" @@ -1245,7 +1120,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 16, "id": "3a4bd700", "metadata": {}, "outputs": [ @@ -1253,15 +1128,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "Python 3.11.9\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\"pip\" no se reconoce como un comando interno o externo,\n", - "programa o archivo por lotes ejecutable.\n" + "Python 3.11.9\n", + "pip 25.3 from c:\\Users\\Sergio\\Desktop\\MastersThesis\\.venv\\Lib\\site-packages\\pip (python 3.11)\n", + "\n" ] } ], @@ -1272,7 +1141,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 17, "id": "b0cf4bcf", "metadata": {}, "outputs": [ @@ -1280,62 +1149,73 @@ "name": "stdout", "output_type": "stream", "text": [ - "Requirement already satisfied: rich in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (14.2.0)\n", - "Requirement already satisfied: ray[tune] in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (2.52.1)\n", - "Requirement already satisfied: click!=8.3.*,>=7.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from ray[tune]) (8.2.1)\n", - "Requirement already satisfied: filelock in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from ray[tune]) (3.20.0)\n", - "Requirement already satisfied: jsonschema in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from ray[tune]) (4.25.1)\n", - "Requirement already satisfied: msgpack<2.0.0,>=1.0.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from ray[tune]) (1.1.2)\n", - "Requirement already satisfied: packaging in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from ray[tune]) (25.0)\n", - "Requirement already satisfied: protobuf>=3.20.3 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from ray[tune]) (6.33.2)\n", - "Requirement already satisfied: pyyaml in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from ray[tune]) (6.0.2)\n", - "Requirement already satisfied: requests in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from ray[tune]) (2.32.5)\n", - "Requirement already satisfied: pandas in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from ray[tune]) (2.3.3)\n", - "Requirement already satisfied: pydantic!=2.0.*,!=2.1.*,!=2.2.*,!=2.3.*,!=2.4.*,<3 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from ray[tune]) (2.12.5)\n", - "Requirement already satisfied: tensorboardX>=1.9 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from ray[tune]) (2.6.4)\n", - "Requirement already satisfied: pyarrow>=9.0.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from ray[tune]) (22.0.0)\n", - "Requirement already satisfied: fsspec in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from ray[tune]) (2025.12.0)\n", - "Requirement already satisfied: annotated-types>=0.6.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from pydantic!=2.0.*,!=2.1.*,!=2.2.*,!=2.3.*,!=2.4.*,<3->ray[tune]) (0.7.0)\n", - "Requirement already satisfied: pydantic-core==2.41.5 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from pydantic!=2.0.*,!=2.1.*,!=2.2.*,!=2.3.*,!=2.4.*,<3->ray[tune]) (2.41.5)\n", - "Requirement already satisfied: typing-extensions>=4.14.1 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from pydantic!=2.0.*,!=2.1.*,!=2.2.*,!=2.3.*,!=2.4.*,<3->ray[tune]) (4.15.0)\n", - "Requirement already satisfied: typing-inspection>=0.4.2 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from pydantic!=2.0.*,!=2.1.*,!=2.2.*,!=2.3.*,!=2.4.*,<3->ray[tune]) (0.4.2)\n", - "Requirement already satisfied: markdown-it-py>=2.2.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from rich) (4.0.0)\n", - "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from rich) (2.19.2)\n", - "Requirement already satisfied: colorama in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from click!=8.3.*,>=7.0->ray[tune]) (0.4.6)\n", - "Requirement already satisfied: mdurl~=0.1 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from markdown-it-py>=2.2.0->rich) (0.1.2)\n", - "Requirement already satisfied: numpy in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from tensorboardX>=1.9->ray[tune]) (2.3.5)\n", - "Requirement already satisfied: attrs>=22.2.0 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jsonschema->ray[tune]) (25.4.0)\n", - "Requirement already satisfied: jsonschema-specifications>=2023.03.6 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jsonschema->ray[tune]) (2025.9.1)\n", - "Requirement already satisfied: referencing>=0.28.4 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jsonschema->ray[tune]) (0.37.0)\n", - "Requirement already satisfied: rpds-py>=0.7.1 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from jsonschema->ray[tune]) (0.30.0)\n", - "Requirement already satisfied: python-dateutil>=2.8.2 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from pandas->ray[tune]) (2.9.0.post0)\n", - "Requirement already satisfied: pytz>=2020.1 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from pandas->ray[tune]) (2025.2)\n", - "Requirement already satisfied: tzdata>=2022.7 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from pandas->ray[tune]) (2025.2)\n", - "Requirement already satisfied: six>=1.5 in c:\\users\\sergio\\appdata\\roaming\\python\\python311\\site-packages (from python-dateutil>=2.8.2->pandas->ray[tune]) (1.17.0)\n", - "Requirement already satisfied: charset_normalizer<4,>=2 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from requests->ray[tune]) (3.4.4)\n", - "Requirement already satisfied: idna<4,>=2.5 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from requests->ray[tune]) (3.11)\n", - "Requirement already satisfied: urllib3<3,>=1.21.1 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from requests->ray[tune]) (2.6.0)\n", - "Requirement already satisfied: certifi>=2017.4.17 in c:\\users\\sergio\\appdata\\local\\programs\\python\\python311\\lib\\site-packages (from requests->ray[tune]) (2025.11.12)\n", + "Requirement already satisfied: ray[tune] in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (2.52.1)\n", + "Requirement already satisfied: click!=8.3.*,>=7.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ray[tune]) (8.2.1)\n", + "Requirement already satisfied: filelock in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ray[tune]) (3.20.0)\n", + "Requirement already satisfied: jsonschema in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ray[tune]) (4.25.1)\n", + "Requirement already satisfied: msgpack<2.0.0,>=1.0.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ray[tune]) (1.1.2)\n", + "Requirement already satisfied: packaging in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ray[tune]) (25.0)\n", + "Requirement already satisfied: protobuf>=3.20.3 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ray[tune]) (6.33.2)\n", + "Requirement already satisfied: pyyaml in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ray[tune]) (6.0.2)\n", + "Requirement already satisfied: requests in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ray[tune]) (2.32.5)\n", + "Requirement already satisfied: pandas in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ray[tune]) (2.3.3)\n", + "Requirement already satisfied: pydantic!=2.0.*,!=2.1.*,!=2.2.*,!=2.3.*,!=2.4.*,<3 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ray[tune]) (2.12.5)\n", + "Requirement already satisfied: tensorboardX>=1.9 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ray[tune]) (2.6.4)\n", + "Requirement already satisfied: pyarrow>=9.0.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ray[tune]) (22.0.0)\n", + "Requirement already satisfied: fsspec in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ray[tune]) (2025.12.0)\n", + "Requirement already satisfied: annotated-types>=0.6.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pydantic!=2.0.*,!=2.1.*,!=2.2.*,!=2.3.*,!=2.4.*,<3->ray[tune]) (0.7.0)\n", + "Requirement already satisfied: pydantic-core==2.41.5 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pydantic!=2.0.*,!=2.1.*,!=2.2.*,!=2.3.*,!=2.4.*,<3->ray[tune]) (2.41.5)\n", + "Requirement already satisfied: typing-extensions>=4.14.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pydantic!=2.0.*,!=2.1.*,!=2.2.*,!=2.3.*,!=2.4.*,<3->ray[tune]) (4.15.0)\n", + "Requirement already satisfied: typing-inspection>=0.4.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pydantic!=2.0.*,!=2.1.*,!=2.2.*,!=2.3.*,!=2.4.*,<3->ray[tune]) (0.4.2)\n", + "Requirement already satisfied: colorama in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from click!=8.3.*,>=7.0->ray[tune]) (0.4.6)\n", + "Requirement already satisfied: numpy in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from tensorboardX>=1.9->ray[tune]) (2.3.5)\n", + "Requirement already satisfied: attrs>=22.2.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema->ray[tune]) (25.4.0)\n", + "Requirement already satisfied: jsonschema-specifications>=2023.03.6 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema->ray[tune]) (2025.9.1)\n", + "Requirement already satisfied: referencing>=0.28.4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema->ray[tune]) (0.37.0)\n", + "Requirement already satisfied: rpds-py>=0.7.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema->ray[tune]) (0.30.0)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pandas->ray[tune]) (2.9.0.post0)\n", + "Requirement already satisfied: pytz>=2020.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pandas->ray[tune]) (2025.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pandas->ray[tune]) (2025.2)\n", + "Requirement already satisfied: six>=1.5 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from python-dateutil>=2.8.2->pandas->ray[tune]) (1.17.0)\n", + "Requirement already satisfied: charset_normalizer<4,>=2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from requests->ray[tune]) (3.4.4)\n", + "Requirement already satisfied: idna<4,>=2.5 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from requests->ray[tune]) (3.11)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from requests->ray[tune]) (2.6.0)\n", + "Requirement already satisfied: certifi>=2017.4.17 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from requests->ray[tune]) (2025.11.12)\n", + "Note: you may need to restart the kernel to use updated packages.\n", + "Requirement already satisfied: optuna in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (4.6.0)\n", + "Requirement already satisfied: alembic>=1.5.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from optuna) (1.17.2)\n", + "Requirement already satisfied: colorlog in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from optuna) (6.10.1)\n", + "Requirement already satisfied: numpy in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from optuna) (2.3.5)\n", + "Requirement already satisfied: packaging>=20.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from optuna) (25.0)\n", + "Requirement already satisfied: sqlalchemy>=1.4.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from optuna) (2.0.44)\n", + "Requirement already satisfied: tqdm in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from optuna) (4.67.1)\n", + "Requirement already satisfied: PyYAML in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from optuna) (6.0.2)\n", + "Requirement already satisfied: Mako in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from alembic>=1.5.0->optuna) (1.3.10)\n", + "Requirement already satisfied: typing-extensions>=4.12 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from alembic>=1.5.0->optuna) (4.15.0)\n", + "Requirement already satisfied: greenlet>=1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from sqlalchemy>=1.4.2->optuna) (3.3.0)\n", + "Requirement already satisfied: colorama in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from colorlog->optuna) (0.4.6)\n", + "Requirement already satisfied: MarkupSafe>=0.9.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from Mako->alembic>=1.5.0->optuna) (3.0.3)\n", "Note: you may need to restart the kernel to use updated packages.\n" ] } ], "source": [ "# Instalación de Ray y Ray Tune\n", - "%pip install -U \"ray[tune]\" rich" + "%pip install -U \"ray[tune]\" \n", + "%pip install optuna" ] }, { "cell_type": "code", - "execution_count": 27, - "id": "f3ca0b9b", + "execution_count": 6, + "id": "ae5a10c4", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2025-12-06 20:08:33,299\tINFO worker.py:2023 -- Started a local Ray instance.\n" + "2025-12-07 19:58:07,710\tINFO worker.py:2023 -- Started a local Ray instance.\n" ] }, { @@ -1349,160 +1229,89 @@ "name": "stderr", "output_type": "stream", "text": [ - "c:\\Users\\Sergio\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\ray\\_private\\worker.py:2062: FutureWarning: Tip: In future versions of Ray, Ray will no longer override accelerator visible devices env var if num_gpus=0 or num_gpus=None (default). To enable this behavior and turn off this error message, set RAY_ACCEL_ENV_VAR_OVERRIDE_ON_ZERO=0\n", + "c:\\Users\\Sergio\\Desktop\\MastersThesis\\.venv\\Lib\\site-packages\\ray\\_private\\worker.py:2062: FutureWarning: Tip: In future versions of Ray, Ray will no longer override accelerator visible devices env var if num_gpus=0 or num_gpus=None (default). To enable this behavior and turn off this error message, set RAY_ACCEL_ENV_VAR_OVERRIDE_ON_ZERO=0\n", " warnings.warn(\n" ] } ], - "source": [ - "import ray\n", - "from ray import tune\n", - "from ray.tune.schedulers import ASHAScheduler\n", - "\n", - "ray.init(ignore_reinit_error=True)\n", - "print(\"Ray Tune listo (versión:\", ray.__version__, \")\")" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "id": "ae5a10c4", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2025-12-06 20:08:38,850\tINFO worker.py:1855 -- Calling ray.init() again after it has already been called.\n" - ] - } - ], "source": [ "# ===============================================================\n", "# 🔍 RAY TUNE: OPTIMIZACIÓN AUTOMÁTICA DE HIPERPARÁMETROS OCR\n", "# ===============================================================\n", - "\n", + "import ray\n", "from ray import tune, air\n", - "from ray.tune.schedulers import ASHAScheduler\n", "import pandas as pd\n", - "import time\n", - "import colorama\n", - "from rich import print\n", - "import sys, subprocess \n", - "from rich.console import Console\n", "\n", - "colorama.just_fix_windows_console()\n", + "\n", "ray.init(ignore_reinit_error=True)\n", - "\n", - "# Tell Ray Tune to use a Jupyter-compatible console\n", - "console = Console(force_jupyter=True)" + "print(\"Ray Tune listo (versión:\", ray.__version__, \")\")\n" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "id": "96c320e8", "metadata": {}, "outputs": [], "source": [ - "\n", - "\n", "# --- Configuración base del experimento ---\n", "search_space = {\n", + " #Whether to use document image orientation classification.\n", + " \"use_doc_orientation_classify\": tune.choice([True, False]), \n", + " # Whether to use text image unwarping.\n", + " \"use_doc_unwarping\": tune.choice([True, False]),\n", + " # Whether to use text line orientation classification.\n", " \"textline_orientation\": tune.choice([True, False]),\n", - " \"text_det_box_thresh\": tune.uniform(0.4, 0.7),\n", - " \"text_det_unclip_ratio\": tune.uniform(1.0, 2.0),\n", - " \"text_rec_score_thresh\": tune.uniform(0, 1.0),\n", - " \"line_tolerance\": tune.uniform(0, 2.0),\n", - " \"min_box_score\": tune.uniform(0, 1.0)\n", + " # Detection pixel threshold for the text detection model. Pixels with scores greater than this threshold in the output probability map are considered text pixels.\n", + " \"text_det_thresh\" : tune.uniform(0.0, 0.7),\n", + " # Detection box threshold for the text detection model. A detection result is considered a text region if the average score of all pixels within the border of the result is greater than this threshold.\n", + " \"text_det_box_thresh\": tune.uniform(0.0, 0.7),\n", + " # Text detection expansion coefficient, which expands the text region using this method. The larger the value, the larger the expansion area.\n", + " \"text_det_unclip_ratio\": tune.choice([0.0]),\n", + " # Text recognition threshold. Text results with scores greater than this threshold are retained.\n", + " \"text_rec_score_thresh\": tune.uniform(0.0, 0.7),\n", "}\n", "KEYMAP = {\n", " \"textline_orientation\": \"textline-orientation\",\n", + " \"use_doc_unwarping\": \"use-doc-unwarping\",\n", + " \"use_doc_orientation_classify\": \"use-doc-orientation-classify\",\n", " \"text_det_box_thresh\": \"text-det-box-thresh\",\n", " \"text_det_unclip_ratio\": \"text-det-unclip-ratio\",\n", " \"text_rec_score_thresh\": \"text-rec-score-thresh\",\n", - " \"line_tolerance\": \"line-tolerance\",\n", - " \"min_box_score\": \"min-box-score\",\n", + " \"text_det_thresh\": \"text-det-thresh\"\n", "}" ] }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 20, "id": "accb4e9d", "metadata": {}, "outputs": [ { - "data": { - "text/html": [ - "
Notebook Python: c:\\Users\\Sergio\\AppData\\Local\\Programs\\Python\\Python311\\python.exe\n",
-       "
\n" - ], - "text/plain": [ - "Notebook Python: c:\\Users\\Sergio\\AppData\\Local\\Programs\\Python\\Python311\\python.exe\n" - ] - }, - "metadata": {}, - "output_type": "display_data" + "name": "stdout", + "output_type": "stream", + "text": [ + "Notebook Python: c:\\Users\\Sergio\\Desktop\\MastersThesis\\.venv\\Scripts\\python.exe\n" + ] }, { - "data": { - "text/html": [ - "
{\n",
-       "    'CER': 0.06378901032380213,\n",
-       "    'WER': 0.15152788564460193,\n",
-       "    'TIME': 339.62537813186646,\n",
-       "    'PAGES': 5,\n",
-       "    'TIME_PER_PAGE': 67.83050785064697\n",
-       "}\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[1m{\u001b[0m\n", - " \u001b[32m'CER'\u001b[0m: \u001b[1;36m0.06378901032380213\u001b[0m,\n", - " \u001b[32m'WER'\u001b[0m: \u001b[1;36m0.15152788564460193\u001b[0m,\n", - " \u001b[32m'TIME'\u001b[0m: \u001b[1;36m339.62537813186646\u001b[0m,\n", - " \u001b[32m'PAGES'\u001b[0m: \u001b[1;36m5\u001b[0m,\n", - " \u001b[32m'TIME_PER_PAGE'\u001b[0m: \u001b[1;36m67.83050785064697\u001b[0m\n", - "\u001b[1m}\u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[36m(pid=gcs_server)\u001b[0m [2025-12-07 15:58:31,070 E 25184 15184] (gcs_server.exe) gcs_server.cc:303: Failed to establish connection to the event+metrics exporter agent. Events and metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "\u001b[33m(raylet)\u001b[0m [2025-12-07 15:58:32,657 E 10072 20448] (raylet.exe) main.cc:979: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "\u001b[36m(pid=18776)\u001b[0m [2025-12-07 15:58:36,373 E 18776 26484] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n" + ] }, { - "data": { - "text/html": [ - "
return code: 0\n",
-       "
\n" - ], - "text/plain": [ - "return code: \u001b[1;36m0\u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
args: ['c:\\\\Users\\\\Sergio\\\\AppData\\\\Local\\\\Programs\\\\Python\\\\Python311\\\\python.exe', \n",
-       "'c:\\\\Users\\\\Sergio\\\\Desktop\\\\MastersThesis\\\\paddle_ocr_tuning.py', '--pdf-folder', \n",
-       "'c:\\\\Users\\\\Sergio\\\\Desktop\\\\MastersThesis\\\\dataset', '--textline-orientation', 'True', '--text-det-box-thresh', \n",
-       "'0.46611732611383844', '--text-det-unclip-ratio', '1.3598680409827462', '--text-rec-score-thresh', '0.0', \n",
-       "'--line-tolerance', '0.5', '--min-box-score', '0.6']\n",
-       "
\n" - ], - "text/plain": [ - "args: \u001b[1m[\u001b[0m\u001b[32m'c:\\\\Users\\\\Sergio\\\\AppData\\\\Local\\\\Programs\\\\Python\\\\Python311\\\\python.exe'\u001b[0m, \n", - "\u001b[32m'c:\\\\Users\\\\Sergio\\\\Desktop\\\\MastersThesis\\\\paddle_ocr_tuning.py'\u001b[0m, \u001b[32m'--pdf-folder'\u001b[0m, \n", - "\u001b[32m'c:\\\\Users\\\\Sergio\\\\Desktop\\\\MastersThesis\\\\dataset'\u001b[0m, \u001b[32m'--textline-orientation'\u001b[0m, \u001b[32m'True'\u001b[0m, \u001b[32m'--text-det-box-thresh'\u001b[0m, \n", - "\u001b[32m'0.46611732611383844'\u001b[0m, \u001b[32m'--text-det-unclip-ratio'\u001b[0m, \u001b[32m'1.3598680409827462'\u001b[0m, \u001b[32m'--text-rec-score-thresh'\u001b[0m, \u001b[32m'0.0'\u001b[0m, \n", - "\u001b[32m'--line-tolerance'\u001b[0m, \u001b[32m'0.5'\u001b[0m, \u001b[32m'--min-box-score'\u001b[0m, \u001b[32m'0.6'\u001b[0m\u001b[1m]\u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" + "name": "stdout", + "output_type": "stream", + "text": [ + "{'CER': 0.012581110635031723, 'WER': 0.10406694286511942, 'TIME': 331.0908589363098, 'PAGES': 5, 'TIME_PER_PAGE': 66.11821403503419}\n", + "return code: 0\n", + "args: ['c:\\\\Users\\\\Sergio\\\\Desktop\\\\MastersThesis\\\\.venv\\\\Scripts\\\\python.exe', 'c:\\\\Users\\\\Sergio\\\\Desktop\\\\MastersThesis\\\\src\\\\paddle_ocr_tuning.py', '--pdf-folder', 'c:\\\\Users\\\\Sergio\\\\Desktop\\\\MastersThesis\\\\src\\\\dataset', '--textline-orientation', 'True', '--use-doc-unwarping', 'False', '--use-doc-orientation-classify', 'False', '--text-det-box-thresh', '0.0', '--text-det-unclip-ratio', '1.5', '--text-det-thresh', '0.0', '--text-rec-score-thresh', '0.0']\n" + ] } ], "source": [ @@ -1513,11 +1322,12 @@ " SCRIPT_ABS, \n", " \"--pdf-folder\", PDF_FOLDER_ABS, \n", " \"--textline-orientation\",\"True\",\n", - " \"--text-det-box-thresh\",\"0.46611732611383844\",\n", - " \"--text-det-unclip-ratio\",\"1.3598680409827462\",\n", - " \"--text-rec-score-thresh\",\"0.0\",\n", - " \"--line-tolerance\", \"0.5\",\n", - " \"--min-box-score\",\"0.6\"]\n", + " \"--use-doc-unwarping\",\"False\",\n", + " \"--use-doc-orientation-classify\",\"False\",\n", + " \"--text-det-box-thresh\",\"0.0\",\n", + " \"--text-det-unclip-ratio\",\"1.5\",\n", + " \"--text-det-thresh\", \"0.0\",\n", + " \"--text-rec-score-thresh\",\"0.0\"]\n", "test_proc = subprocess.run(args, capture_output=True, text=True, cwd=SCRIPT_DIR)\n", "if test_proc.returncode != 0:\n", " print(test_proc.stderr)\n", @@ -1532,7 +1342,7 @@ }, { "cell_type": "code", - "execution_count": 69, + "execution_count": 21, "id": "8df28468", "metadata": {}, "outputs": [ @@ -1540,9 +1350,10 @@ "name": "stderr", "output_type": "stream", "text": [ - "c:\\Users\\Sergio\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\ray\\tune\\impl\\tuner_internal.py:144: RayDeprecationWarning: The `RunConfig` class should be imported from `ray.tune` when passing it to the Tuner. Please update your imports. See this issue for more context and migration options: https://github.com/ray-project/ray/issues/49454. Disable these warnings by setting the environment variable: RAY_TRAIN_ENABLE_V2_MIGRATION_WARNINGS=0\n", + "c:\\Users\\Sergio\\Desktop\\MastersThesis\\.venv\\Lib\\site-packages\\ray\\tune\\impl\\tuner_internal.py:144: RayDeprecationWarning: The `RunConfig` class should be imported from `ray.tune` when passing it to the Tuner. Please update your imports. See this issue for more context and migration options: https://github.com/ray-project/ray/issues/49454. Disable these warnings by setting the environment variable: RAY_TRAIN_ENABLE_V2_MIGRATION_WARNINGS=0\n", " _log_deprecation_warning(\n", - "2025-12-06 20:56:49,361\tINFO tune.py:616 -- [output] This uses the legacy output and progress reporter, as Jupyter notebooks are not supported by the new engine, yet. For more information, please see https://github.com/ray-project/ray/issues/36949\n" + "2025-12-07 16:03:56,654\tINFO tune.py:616 -- [output] This uses the legacy output and progress reporter, as Jupyter notebooks are not supported by the new engine, yet. For more information, please see https://github.com/ray-project/ray/issues/36949\n", + "[I 2025-12-07 16:03:56,662] A new study created in memory with name: optuna\n" ] }, { @@ -1554,16 +1365,16 @@ "

Tune Status

\n", " \n", "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", "\n", "
Current time:2025-12-06 22:38:36
Running for: 01:41:47.58
Memory: 4.5/15.9 GiB
Current time:2025-12-07 19:23:17
Running for: 03:19:21.23
Memory: 4.4/15.9 GiB
\n", " \n", "
\n", "
\n", "

System Info

\n", - " Using AsyncHyperBand: num_stopped=13
Bracket: Iter 64.000: None | Iter 32.000: None | Iter 16.000: None | Iter 8.000: None | Iter 4.000: None | Iter 2.000: None | Iter 1.000: -0.11205841913079691
Logical resource usage: 1.0/16 CPUs, 0/1 GPUs (0.0/1.0 accelerator_type:G)\n", + " Using FIFO scheduling algorithm.
Logical resource usage: 1.0/16 CPUs, 0/1 GPUs (0.0/1.0 accelerator_type:G)\n", "
\n", " \n", " \n", @@ -1572,43 +1383,76 @@ "

Trial Status

\n", " \n", "\n", - "\n", + "\n", "\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", "
Trial name status loc line_tolerance min_box_score text_det_box_thresh text_det_unclip_rati\n", - "o text_rec_score_thres\n", - "htextline_orientation iter total time (s) CER WER TIME
Trial name status loc text_det_box_thresh text_det_thresh text_det_unclip_rati\n", + "o text_rec_score_thres\n", + "htextline_orientation use_doc_orientation_\n", + "classify use_doc_unwarping iter total time (s) CER WER TIME
trainable_paddle_ocr_b3bdc_00000TERMINATED127.0.0.1:19504 0.7 0 0.5652971.282490.2True 1 399.5250.06391320.148775376.277
trainable_paddle_ocr_b3bdc_00001TERMINATED127.0.0.1:18012 0.7 0 0.6107611.788240 True 1 386.4870.13589 0.304316362.611
trainable_paddle_ocr_b3bdc_00002TERMINATED127.0.0.1:10864 0.6 0 0.5329721.9115 0.4False 1 377.0080.125817 0.356445351.958
trainable_paddle_ocr_b3bdc_00003TERMINATED127.0.0.1:11400 0.7 0.5 0.6633 1.695260.4False 1 373.1720.152864 0.2617 349.995
trainable_paddle_ocr_b3bdc_00004TERMINATED127.0.0.1:16556 0.6 0 0.5050191.882710.4False 1 379.8860.127304 0.342154355.984
trainable_paddle_ocr_b3bdc_00005TERMINATED127.0.0.1:12240 0.7 0.5 0.60097 1.6219 0.4True 1 382.5450.09812260.237748360.209
trainable_paddle_ocr_b3bdc_00006TERMINATED127.0.0.1:19712 0.7 0.5 0.4545681.359530.2False 1 397.7640.06298210.151528373.757
trainable_paddle_ocr_b3bdc_00007TERMINATED127.0.0.1:17768 0.6 0.5 0.6493151.695950.2True 1 385.2290.125408 0.252182362.127
trainable_paddle_ocr_b3bdc_00008TERMINATED127.0.0.1:14292 0.6 0.5 0.5146541.822850.4False 1 380.6470.113582 0.308721356.781
trainable_paddle_ocr_b3bdc_00009TERMINATED127.0.0.1:7292 0.6 0.6 0.6190981.790970.4False 1 375.6860.141796 0.301124352.926
trainable_paddle_ocr_b3bdc_00010TERMINATED127.0.0.1:22764 0.7 0.5 0.47992 1.648770 False 1 385.4060.08279620.218071361.063
trainable_paddle_ocr_b3bdc_00011TERMINATED127.0.0.1:6256 0.7 0.6 0.6730781.631110 True 1 377.8390.190876 0.292151353.255
trainable_paddle_ocr_b3bdc_00012TERMINATED127.0.0.1:12344 0.5 0.6 0.4971961.313680.4True 1 393.1020.065148 0.162362368.717
trainable_paddle_ocr_b3bdc_00013TERMINATED127.0.0.1:15216 0.6 0.6 0.5925431.3073 0.2True 1 391.8360.06416230.155348369.637
trainable_paddle_ocr_b3bdc_00014TERMINATED127.0.0.1:22580 0.7 0 0.6694691.853260.2False 1 358.2560.207922 0.354745335.335
trainable_paddle_ocr_b3bdc_00015TERMINATED127.0.0.1:23532 0.6 0.5 0.4460471.228360 False 1 380.0530.06346270.150588359.242
trainable_paddle_ocr_b3bdc_00016TERMINATED127.0.0.1:4760 0.6 0.5 0.4646921.653760.2False 1 366.5380.07256270.212321343.623
trainable_paddle_ocr_b3bdc_00017TERMINATED127.0.0.1:10784 0.7 0.6 0.57992 1.408870 True 1 369.3780.06798260.163942347.845
trainable_paddle_ocr_b3bdc_00018TERMINATED127.0.0.1:10972 0.7 0 0.6987421.640070.2False 1 352.4810.212477 0.32237 331.44
trainable_paddle_ocr_b3bdc_00019TERMINATED127.0.0.1:4780 0.5 0.5 0.6516561.205430 False 1 370.6790.126101 0.21466 349.24
trainable_paddle_ocr_b3bdc_00020TERMINATED127.0.0.1:20080 0.5 0.6 0.5562851.645390 False 1 365.1020.08233360.214002343.422
trainable_paddle_ocr_b3bdc_00021TERMINATED127.0.0.1:1072 0.6 0.5 0.5566931.592570.4True 1 371.4780.08044530.205515349.989
trainable_paddle_ocr_b3bdc_00022TERMINATED127.0.0.1:19888 0.7 0 0.4255311.325310.4False 1 376.6790.06319580.14949 354.681
trainable_paddle_ocr_b3bdc_00023TERMINATED127.0.0.1:18380 0.6 0 0.49713 1.788140.2False 1 368.4290.09891760.278952346.66
trainable_paddle_ocr_b3bdc_00024TERMINATED127.0.0.1:10164 0.5 0.5 0.4561051.928520.2False 1 362.5730.138896 0.371172340.864
trainable_paddle_ocr_b3bdc_00025TERMINATED127.0.0.1:10396 0.6 0.6 0.6772631.407550.2True 1 367.9180.185939 0.280449346.613
trainable_paddle_ocr_b3bdc_00026TERMINATED127.0.0.1:1824 0.5 0 0.6926371.203170.4True 1 369.1470.198069 0.289923347.498
trainable_paddle_ocr_b3bdc_00027TERMINATED127.0.0.1:21808 0.7 0.6 0.6211161.853430.4True 1 361.9010.156036 0.331298340.435
trainable_paddle_ocr_b3bdc_00028TERMINATED127.0.0.1:19872 0.6 0.6 0.5298331.261360 False 1 377.2970.063679 0.154287355.93
trainable_paddle_ocr_b3bdc_00029TERMINATED127.0.0.1:2816 0.6 0.6 0.6074591.644670.4False 1 368.3460.110535 0.249928346.987
trainable_paddle_ocr_b3bdc_00030TERMINATED127.0.0.1:7328 0.7 0.6 0.6545241.434760.4True 1 367.2740.143618 0.235326345.124
trainable_paddle_ocr_b3bdc_00031TERMINATED127.0.0.1:11640 0.5 0 0.4511051.353360 True 1 373.7460.06400480.152993352.525
trainable_paddle_ocr_d5238c33TERMINATED127.0.0.1:19452 0.623029 0.088782100.229944 True True False 1 374.2780.01351590.105003 353.851
trainable_paddle_ocr_ea8a2f7aTERMINATED127.0.0.1:7472 0.671201 0.393201 00.168802 False FalseFalse 1 374.3 0.039052 0.132086 354.615
trainable_paddle_ocr_ebb12e5bTERMINATED127.0.0.1:21480 0.235725 0.432878 00.184435 True True True 1 379.5440.06606240.166192 359.097
trainable_paddle_ocr_b3775034TERMINATED127.0.0.1:23084 0.337744 0.064128800.576405 False True True 1 356.5260.418109 0.50371 336.661
trainable_paddle_ocr_bf10d370TERMINATED127.0.0.1:26140 0.690232 0.671955 00.39649 True True True 1 370.9030.197252 0.295353 350.147
trainable_paddle_ocr_111e5a9eTERMINATED127.0.0.1:20664 0.483266 0.044816 00.546416 False True False 1 341.0710.38641 0.455836 320.966
trainable_paddle_ocr_415d7ba1TERMINATED127.0.0.1:23848 0.523385 0.016997100.208331 True True True 1 347.2990.516069 0.59453 326.657
trainable_paddle_ocr_a58d8109TERMINATED127.0.0.1:25248 0.670589 0.040243200.188585 True FalseTrue 1 346.09 0.502513 0.567716 326.916
trainable_paddle_ocr_33bdf2a9TERMINATED127.0.0.1:24024 0.490009 0.434737 00.151906 False FalseTrue 1 388.1510.07092030.17391 368.571
trainable_paddle_ocr_d9df79f3TERMINATED127.0.0.1:5368 0.626194 0.178064 00.385477 False True True 1 384.6770.116825 0.22213 364.623
trainable_paddle_ocr_80ea65f2TERMINATED127.0.0.1:14064 0.251382 0.601112 00.313124 False True True 1 387.6790.06459480.164937 366.607
trainable_paddle_ocr_2e978bfaTERMINATED127.0.0.1:11060 0.0777319 0.234859 00.0236948 True FalseFalse 1 380.2810.01340060.107419 359.597
trainable_paddle_ocr_8518cc40TERMINATED127.0.0.1:21016 0.000241868 0.222556 00.00289108True FalseFalse 1 368.5460.01340060.107419 347.929
trainable_paddle_ocr_2c691aaaTERMINATED127.0.0.1:21540 0.0303334 0.224727 00.0509969 True FalseFalse 1 366.3460.01340060.107419 347.145
trainable_paddle_ocr_31e60691TERMINATED127.0.0.1:17532 0.00196041 0.259141 00.00350944True FalseFalse 1 368.0380.01304040.104854 347.22
trainable_paddle_ocr_d4d288c6TERMINATED127.0.0.1:22216 0.00339892 0.273408 00.0154205 True FalseFalse 1 368.9040.01258290.10328 349.232
trainable_paddle_ocr_7645b77cTERMINATED127.0.0.1:2272 0.113841 0.279242 00.0753151 True FalseFalse 1 367.4560.01258290.10328 346.698
trainable_paddle_ocr_3256ae36TERMINATED127.0.0.1:6604 0.129213 0.30993 00.11202 True FalseFalse 1 366.0020.01240760.102016 346.52
trainable_paddle_ocr_b0dda58bTERMINATED127.0.0.1:9732 0.117838 0.314952 00.682573 True FalseFalse 1 364.8280.01240760.102016 344.029
trainable_paddle_ocr_e9d40333TERMINATED127.0.0.1:23416 0.156939 0.530252 00.100194 True FalseFalse 1 365.6260.01242980.102051 346.118
trainable_paddle_ocr_aa89fe7aTERMINATED127.0.0.1:16200 0.162083 0.50397 00.676539 True FalseFalse 1 366.7530.01199070.100476 346.54
trainable_paddle_ocr_92c48d07TERMINATED127.0.0.1:15432 0.186443 0.333219 00.67753 True FalseFalse 1 365.0940.01196850.100441 345.979
trainable_paddle_ocr_187790d7TERMINATED127.0.0.1:24676 0.235252 0.337251 00.698732 True FalseFalse 1 364.4740.01196850.100441 344.173
trainable_paddle_ocr_442a2439TERMINATED127.0.0.1:7892 0.212276 0.509804 00.699247 True FalseFalse 1 364.7550.01176010.0996499345.943
trainable_paddle_ocr_70862adcTERMINATED127.0.0.1:15412 0.216306 0.396397 00.685918 True FalseFalse 1 365.9750.01196850.100441 345.403
trainable_paddle_ocr_e6821f34TERMINATED127.0.0.1:26088 0.240775 0.366898 00.573762 True FalseFalse 1 365.2550.01240760.102016 345.881
trainable_paddle_ocr_8b680875TERMINATED127.0.0.1:1720 0.319343 0.53125 00.591253 True FalseFalse 1 367.2030.01219920.101225 347.056
trainable_paddle_ocr_fc54867bTERMINATED127.0.0.1:4888 0.304286 0.503408 00.502491 True FalseFalse 1 368.7360.01242980.102051 349.607
trainable_paddle_ocr_c32d0d5eTERMINATED127.0.0.1:25808 0.398489 0.153007 00.516768 True FalseFalse 1 364.4230.01338550.109273 343.855
trainable_paddle_ocr_4762fbbbTERMINATED127.0.0.1:20760 0.40101 0.133426 00.618812 True FalseFalse 1 363.3260.01353720.108525 344.601
trainable_paddle_ocr_522ac97cTERMINATED127.0.0.1:2372 0.402755 0.448976 00.642637 True FalseFalse 1 364.72 0.01176380.099689 344.038
trainable_paddle_ocr_5784f433TERMINATED127.0.0.1:22900 0.192769 0.46205 00.632828 True FalseFalse 1 362.93 0.01165030.0989016343.513
trainable_paddle_ocr_83af0528TERMINATED127.0.0.1:9832 0.184587 0.466314 00.629921 True FalseFalse 1 364.5850.01165030.0989016343.81
trainable_paddle_ocr_12cbaa22TERMINATED127.0.0.1:5968 0.405622 0.472779 00.631499 True FalseFalse 1 364.2470.01165030.0989016344.114
trainable_paddle_ocr_a3a87765TERMINATED127.0.0.1:24372 0.28557 0.4501 00.635152 True FalseFalse 1 369.2740.01176380.099689 348.58
trainable_paddle_ocr_cf2bad0cTERMINATED127.0.0.1:3272 0.283661 0.589012 00.460291 False FalseFalse 1 366.1880.044199 0.132047 347.034
trainable_paddle_ocr_9a9b91e7TERMINATED127.0.0.1:2272 0.364609 0.608959 00.465225 False FalseFalse 1 364.0170.044199 0.132047 343.539
trainable_paddle_ocr_e326d901TERMINATED127.0.0.1:24932 0.373537 0.593229 00.463688 True FalseFalse 1 365.4280.01219920.101225 345.762
trainable_paddle_ocr_ccb3f19aTERMINATED127.0.0.1:1104 0.453777 0.686641 00.305928 True True False 1 365.1470.01199030.0991043344.408
trainable_paddle_ocr_8c12c55fTERMINATED127.0.0.1:19700 0.444416 0.67104 00.264132 True True False 1 363.2970.01218620.101228 343.939
trainable_paddle_ocr_5a62d5b6TERMINATED127.0.0.1:26528 0.201047 0.404141 00.599257 True True True 1 380.3330.06627090.168515 359.467
trainable_paddle_ocr_bb4495b7TERMINATED127.0.0.1:21772 0.576439 0.390737 00.541396 False FalseTrue 1 375.9770.07070080.17391 356.322
trainable_paddle_ocr_9d90711dTERMINATED127.0.0.1:17592 0.541158 0.468954 00.635015 True FalseFalse 1 365.77 0.01153510.0989016344.718
trainable_paddle_ocr_daaec3f8TERMINATED127.0.0.1:21292 0.521341 0.474351 00.644567 True FalseFalse 1 363.0190.01153510.0989016343.697
trainable_paddle_ocr_51fb5915TERMINATED127.0.0.1:21772 0.58105 0.485412 00.64636 True FalseFalse 1 364.02 0.01153510.0989016343.604
trainable_paddle_ocr_18966a33TERMINATED127.0.0.1:16900 0.51329 0.550159 00.648982 True FalseFalse 1 363.3370.01164490.0996499344.261
trainable_paddle_ocr_b67080f9TERMINATED127.0.0.1:20948 0.576074 0.553412 00.560972 True FalseFalse 1 366.0190.01231450.102051 345.495
trainable_paddle_ocr_2533f368TERMINATED127.0.0.1:11208 0.524608 0.557227 00.558307 True FalseTrue 1 371.2050.07209120.179189 351.967
trainable_paddle_ocr_451d018dTERMINATED127.0.0.1:3616 0.549464 0.634019 00.652105 False FalseTrue 1 378.8270.06479950.164937 357.17
trainable_paddle_ocr_2256e752TERMINATED127.0.0.1:25468 0.622863 0.647804 00.654609 False True False 1 369.88 0.04429210.132838 349.417
trainable_paddle_ocr_0a892729TERMINATED127.0.0.1:26212 0.542929 0.421733 00.601587 True FalseFalse 1 367.2370.01229230.102016 346.072
trainable_paddle_ocr_495075f5TERMINATED127.0.0.1:23604 0.631875 0.418675 00.595618 True FalseFalse 1 365.5360.01229230.102016 346.425
trainable_paddle_ocr_54c45552TERMINATED127.0.0.1:25352 0.619687 0.463823 00.612612 True FalseFalse 1 367.9470.01197420.100476 346.941
trainable_paddle_ocr_6b2e9b93TERMINATED127.0.0.1:25400 0.48925 0.475185 00.515482 True FalseFalse 1 365.9890.01197420.100476 346.414
trainable_paddle_ocr_e9a6b81fTERMINATED127.0.0.1:4036 0.492552 0.48793 00.648349 True FalseFalse 1 367.3320.01153510.0989016346.259
trainable_paddle_ocr_076c5450TERMINATED127.0.0.1:4832 0.588133 0.488422 00.656919 True FalseFalse 1 365.1880.01153510.0989016345.843
trainable_paddle_ocr_4a42a3eaTERMINATED127.0.0.1:14912 0.594041 0.559036 00.657323 True FalseFalse 1 370.9970.01187540.100476 350.244
trainable_paddle_ocr_041795f1TERMINATED127.0.0.1:22372 0.661744 0.565009 00.66295 True FalseFalse 1 370.9460.01208010.100476 351.5
trainable_paddle_ocr_8abb3f37TERMINATED127.0.0.1:22012 0.463682 0.489821 00.394583 True FalseFalse 1 364.6750.01231450.102051 343.539
trainable_paddle_ocr_f2cb682eTERMINATED127.0.0.1:5752 0.452248 0.491795 00.425971 True True False 1 364.9080.01231450.102051 345.592
trainable_paddle_ocr_463fe5e7TERMINATED127.0.0.1:16524 0.520238 0.537344 00.534057 True True False 1 370.5640.01231450.102051 349.509
trainable_paddle_ocr_88bbe87dTERMINATED127.0.0.1:15084 0.511078 0.527459 00.536896 True FalseFalse 1 369.55 0.01208390.101225 350.144
trainable_paddle_ocr_33ea1cc6TERMINATED127.0.0.1:17380 0.515807 0.522992 00.667966 True FalseFalse 1 376.7460.01187540.100476 355.524
trainable_paddle_ocr_1243723eTERMINATED127.0.0.1:11232 0.557315 0.372677 00.676613 True FalseFalse 1 375.4440.01185320.100441 355.679
\n", " \n", @@ -1655,15 +1499,16 @@ "name": "stderr", "output_type": "stream", "text": [ - "2025-12-06 20:56:49,376\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00000_0_line_tolerance=0.7000,min_box_score=0,text_det_box_thresh=0.5653,text_det_unclip_ratio=1.2825,t_2025-12-06_20-56-49\n", - "2025-12-06 20:56:49,380\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00000_0_line_tolerance=0.7000,min_box_score=0,text_det_box_thresh=0.5653,text_det_unclip_ratio=1.2825,t_2025-12-06_20-56-49\n", - "2025-12-06 20:56:49,384\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00001_1_line_tolerance=0.7000,min_box_score=0,text_det_box_thresh=0.6108,text_det_unclip_ratio=1.7882,t_2025-12-06_20-56-49\n", - "2025-12-06 20:56:49,387\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00001_1_line_tolerance=0.7000,min_box_score=0,text_det_box_thresh=0.6108,text_det_unclip_ratio=1.7882,t_2025-12-06_20-56-49\n", - "2025-12-06 20:56:54,158\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00001_1_line_tolerance=0.7000,min_box_score=0,text_det_box_thresh=0.6108,text_det_unclip_ratio=1.7882,t_2025-12-06_20-56-49\n", - "2025-12-06 20:56:54,158\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00001_1_line_tolerance=0.7000,min_box_score=0,text_det_box_thresh=0.6108,text_det_unclip_ratio=1.7882,t_2025-12-06_20-56-49\n", - "2025-12-06 20:56:54,163\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00000_0_line_tolerance=0.7000,min_box_score=0,text_det_box_thresh=0.5653,text_det_unclip_ratio=1.2825,t_2025-12-06_20-56-49\n", - "2025-12-06 20:56:54,163\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00000_0_line_tolerance=0.7000,min_box_score=0,text_det_box_thresh=0.5653,text_det_unclip_ratio=1.2825,t_2025-12-06_20-56-49\n", - "\u001b[36m(trainable_paddle_ocr pid=19504)\u001b[0m [2025-12-06 20:57:24,408 E 19504 14856] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n" + "2025-12-07 16:03:56,713\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_d5238c33_1_text_det_box_thresh=0.6230,text_det_thresh=0.0888,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-03-56\n", + "2025-12-07 16:03:56,718\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_d5238c33_1_text_det_box_thresh=0.6230,text_det_thresh=0.0888,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-03-56\n", + "2025-12-07 16:04:01,625\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_d5238c33_1_text_det_box_thresh=0.6230,text_det_thresh=0.0888,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-03-56\n", + "2025-12-07 16:04:01,626\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_d5238c33_1_text_det_box_thresh=0.6230,text_det_thresh=0.0888,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-03-56\n", + "2025-12-07 16:04:01,639\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_ea8a2f7a_2_text_det_box_thresh=0.6712,text_det_thresh=0.3932,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-04-01\n", + "2025-12-07 16:04:01,642\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_ea8a2f7a_2_text_det_box_thresh=0.6712,text_det_thresh=0.3932,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-04-01\n", + "2025-12-07 16:04:06,097\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_ea8a2f7a_2_text_det_box_thresh=0.6712,text_det_thresh=0.3932,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-04-01\n", + "2025-12-07 16:04:06,097\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_ea8a2f7a_2_text_det_box_thresh=0.6712,text_det_thresh=0.3932,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-04-01\n", + "\u001b[36m(trainable_paddle_ocr pid=19452)\u001b[0m [2025-12-07 16:04:31,654 E 19452 19604] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "\u001b[36m(trainable_paddle_ocr pid=7472)\u001b[0m [2025-12-07 16:04:37,442 E 7472 7092] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n" ] }, { @@ -1673,41 +1518,73 @@ "

Trial Progress

\n", " \n", "\n", - "\n", + "\n", "\n", "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", "\n", "
Trial name CER PAGES TIME TIME_PER_PAGE WER
Trial name CER PAGES TIME TIME_PER_PAGE WER
trainable_paddle_ocr_b3bdc_000000.0639132 5376.277 75.14850.148775
trainable_paddle_ocr_b3bdc_000010.13589 5362.611 72.40620.304316
trainable_paddle_ocr_b3bdc_000020.125817 5351.958 70.28870.356445
trainable_paddle_ocr_b3bdc_000030.152864 5349.995 69.89530.2617
trainable_paddle_ocr_b3bdc_000040.127304 5355.984 71.08980.342154
trainable_paddle_ocr_b3bdc_000050.0981226 5360.209 71.94280.237748
trainable_paddle_ocr_b3bdc_000060.0629821 5373.757 74.64480.151528
trainable_paddle_ocr_b3bdc_000070.125408 5362.127 72.31590.252182
trainable_paddle_ocr_b3bdc_000080.113582 5356.781 71.24290.308721
trainable_paddle_ocr_b3bdc_000090.141796 5352.926 70.46940.301124
trainable_paddle_ocr_b3bdc_000100.0827962 5361.063 72.10060.218071
trainable_paddle_ocr_b3bdc_000110.190876 5353.255 70.53770.292151
trainable_paddle_ocr_b3bdc_000120.065148 5368.717 73.63290.162362
trainable_paddle_ocr_b3bdc_000130.0641623 5369.637 73.82440.155348
trainable_paddle_ocr_b3bdc_000140.207922 5335.335 66.95990.354745
trainable_paddle_ocr_b3bdc_000150.0634627 5359.242 71.73560.150588
trainable_paddle_ocr_b3bdc_000160.0725627 5343.623 68.63450.212321
trainable_paddle_ocr_b3bdc_000170.0679826 5347.845 69.47630.163942
trainable_paddle_ocr_b3bdc_000180.212477 5331.44 66.19460.32237
trainable_paddle_ocr_b3bdc_000190.126101 5349.24 69.748 0.21466
trainable_paddle_ocr_b3bdc_000200.0823336 5343.422 68.59030.214002
trainable_paddle_ocr_b3bdc_000210.0804453 5349.989 69.89620.205515
trainable_paddle_ocr_b3bdc_000220.0631958 5354.681 70.83880.14949
trainable_paddle_ocr_b3bdc_000230.0989176 5346.66 69.23140.278952
trainable_paddle_ocr_b3bdc_000240.138896 5340.864 68.075 0.371172
trainable_paddle_ocr_b3bdc_000250.185939 5346.613 69.22950.280449
trainable_paddle_ocr_b3bdc_000260.198069 5347.498 69.39910.289923
trainable_paddle_ocr_b3bdc_000270.156036 5340.435 67.98820.331298
trainable_paddle_ocr_b3bdc_000280.063679 5355.93 71.08910.154287
trainable_paddle_ocr_b3bdc_000290.110535 5346.987 69.288 0.249928
trainable_paddle_ocr_b3bdc_000300.143618 5345.124 68.92890.235326
trainable_paddle_ocr_b3bdc_000310.0640048 5352.525 70.41770.152993
trainable_paddle_ocr_041795f10.0120801 5351.5 70.19010.100476
trainable_paddle_ocr_076c54500.0115351 5345.843 69.06780.0989016
trainable_paddle_ocr_0a8927290.0122923 5346.072 69.12430.102016
trainable_paddle_ocr_111e5a9e0.38641 5320.966 64.09520.455836
trainable_paddle_ocr_1243723e0.0118532 5355.679 71.02430.100441
trainable_paddle_ocr_12cbaa220.0116503 5344.114 68.724 0.0989016
trainable_paddle_ocr_187790d70.0119685 5344.173 68.74230.100441
trainable_paddle_ocr_18966a330.0116449 5344.261 68.75940.0996499
trainable_paddle_ocr_2256e7520.0442921 5349.417 69.77590.132838
trainable_paddle_ocr_2533f3680.0720912 5351.967 70.29540.179189
trainable_paddle_ocr_2c691aaa0.0134006 5347.145 69.32420.107419
trainable_paddle_ocr_2e978bfa0.0134006 5359.597 71.80430.107419
trainable_paddle_ocr_31e606910.0130404 5347.22 69.34550.104854
trainable_paddle_ocr_3256ae360.0124076 5346.52 69.19980.102016
trainable_paddle_ocr_33bdf2a90.0709203 5368.571 73.625 0.17391
trainable_paddle_ocr_33ea1cc60.0118754 5355.524 71.00810.100476
trainable_paddle_ocr_415d7ba10.516069 5326.657 65.23510.59453
trainable_paddle_ocr_442a24390.0117601 5345.943 69.08390.0996499
trainable_paddle_ocr_451d018d0.0647995 5357.17 71.33720.164937
trainable_paddle_ocr_463fe5e70.0123145 5349.509 69.80770.102051
trainable_paddle_ocr_4762fbbb0.0135372 5344.601 68.81450.108525
trainable_paddle_ocr_495075f50.0122923 5346.425 69.19190.102016
trainable_paddle_ocr_4a42a3ea0.0118754 5350.244 69.94840.100476
trainable_paddle_ocr_51fb59150.0115351 5343.604 68.62930.0989016
trainable_paddle_ocr_522ac97c0.0117638 5344.038 68.71830.099689
trainable_paddle_ocr_54c455520.0119742 5346.941 69.29810.100476
trainable_paddle_ocr_5784f4330.0116503 5343.513 68.60030.0989016
trainable_paddle_ocr_5a62d5b60.0662709 5359.467 71.79710.168515
trainable_paddle_ocr_6b2e9b930.0119742 5346.414 69.18590.100476
trainable_paddle_ocr_70862adc0.0119685 5345.403 68.98560.100441
trainable_paddle_ocr_7645b77c0.0125829 5346.698 69.24070.10328
trainable_paddle_ocr_80ea65f20.0645948 5366.607 73.222 0.164937
trainable_paddle_ocr_83af05280.0116503 5343.81 68.66910.0989016
trainable_paddle_ocr_8518cc400.0134006 5347.929 69.49 0.107419
trainable_paddle_ocr_88bbe87d0.0120839 5350.144 69.92810.101225
trainable_paddle_ocr_8abb3f370.0123145 5343.539 68.61340.102051
trainable_paddle_ocr_8b6808750.0121992 5347.056 69.31870.101225
trainable_paddle_ocr_8c12c55f0.0121862 5343.939 68.69270.101228
trainable_paddle_ocr_92c48d070.0119685 5345.979 69.09320.100441
trainable_paddle_ocr_9a9b91e70.044199 5343.539 68.61560.132047
trainable_paddle_ocr_9d90711d0.0115351 5344.718 68.85830.0989016
trainable_paddle_ocr_a3a877650.0117638 5348.58 69.61860.099689
trainable_paddle_ocr_a58d81090.502513 5326.916 65.28340.567716
trainable_paddle_ocr_aa89fe7a0.0119907 5346.54 69.21830.100476
trainable_paddle_ocr_b0dda58b0.0124076 5344.029 68.71350.102016
trainable_paddle_ocr_b37750340.418109 5336.661 67.22690.50371
trainable_paddle_ocr_b67080f90.0123145 5345.495 69.01210.102051
trainable_paddle_ocr_bb4495b70.0707008 5356.322 71.16440.17391
trainable_paddle_ocr_bf10d3700.197252 5350.147 69.93640.295353
trainable_paddle_ocr_c32d0d5e0.0133855 5343.855 68.67560.109273
trainable_paddle_ocr_ccb3f19a0.0119903 5344.408 68.78970.0991043
trainable_paddle_ocr_cf2bad0c0.044199 5347.034 69.311 0.132047
trainable_paddle_ocr_d4d288c60.0125829 5349.232 69.74630.10328
trainable_paddle_ocr_d5238c330.0135159 5353.851 70.66230.105003
trainable_paddle_ocr_d9df79f30.116825 5364.623 72.82480.22213
trainable_paddle_ocr_daaec3f80.0115351 5343.697 68.64240.0989016
trainable_paddle_ocr_e326d9010.0121992 5345.762 69.05780.101225
trainable_paddle_ocr_e6821f340.0124076 5345.881 69.07740.102016
trainable_paddle_ocr_e9a6b81f0.0115351 5346.259 69.15520.0989016
trainable_paddle_ocr_e9d403330.0124298 5346.118 69.12530.102051
trainable_paddle_ocr_ea8a2f7a0.039052 5354.615 70.82210.132086
trainable_paddle_ocr_ebb12e5b0.0660624 5359.097 71.72570.166192
trainable_paddle_ocr_f2cb682e0.0123145 5345.592 69.02380.102051
trainable_paddle_ocr_fc54867b0.0124298 5349.607 69.82530.102051
\n", "\n", @@ -1736,187 +1613,372 @@ "name": "stderr", "output_type": "stream", "text": [ - "2025-12-06 21:03:20,722\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00001_1_line_tolerance=0.7000,min_box_score=0,text_det_box_thresh=0.6108,text_det_unclip_ratio=1.7882,t_2025-12-06_20-56-49\n", - "2025-12-06 21:03:20,823\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00002_2_line_tolerance=0.6000,min_box_score=0,text_det_box_thresh=0.5330,text_det_unclip_ratio=1.9115,t_2025-12-06_21-03-20\n", - "2025-12-06 21:03:20,826\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00002_2_line_tolerance=0.6000,min_box_score=0,text_det_box_thresh=0.5330,text_det_unclip_ratio=1.9115,t_2025-12-06_21-03-20\n", - "2025-12-06 21:03:27,092\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00002_2_line_tolerance=0.6000,min_box_score=0,text_det_box_thresh=0.5330,text_det_unclip_ratio=1.9115,t_2025-12-06_21-03-20\n", - "2025-12-06 21:03:27,093\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00002_2_line_tolerance=0.6000,min_box_score=0,text_det_box_thresh=0.5330,text_det_unclip_ratio=1.9115,t_2025-12-06_21-03-20\n", - "2025-12-06 21:03:33,718\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00000_0_line_tolerance=0.7000,min_box_score=0,text_det_box_thresh=0.5653,text_det_unclip_ratio=1.2825,t_2025-12-06_20-56-49\n", - "2025-12-06 21:03:33,736\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00003_3_line_tolerance=0.7000,min_box_score=0.5000,text_det_box_thresh=0.6633,text_det_unclip_ratio=1.6_2025-12-06_21-03-33\n", - "2025-12-06 21:03:33,737\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00003_3_line_tolerance=0.7000,min_box_score=0.5000,text_det_box_thresh=0.6633,text_det_unclip_ratio=1.6_2025-12-06_21-03-33\n", - "2025-12-06 21:03:38,480\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00003_3_line_tolerance=0.7000,min_box_score=0.5000,text_det_box_thresh=0.6633,text_det_unclip_ratio=1.6_2025-12-06_21-03-33\n", - "2025-12-06 21:03:38,481\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00003_3_line_tolerance=0.7000,min_box_score=0.5000,text_det_box_thresh=0.6633,text_det_unclip_ratio=1.6_2025-12-06_21-03-33\n", - "\u001b[36m(trainable_paddle_ocr pid=10864)\u001b[0m [2025-12-06 21:03:56,519 E 10864 15180] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\u001b[32m [repeated 2x across cluster]\u001b[0m\n", - "\u001b[36m(trainable_paddle_ocr pid=11400)\u001b[0m [2025-12-06 21:04:08,749 E 11400 18988] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", - "2025-12-06 21:09:44,135\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00002_2_line_tolerance=0.6000,min_box_score=0,text_det_box_thresh=0.5330,text_det_unclip_ratio=1.9115,t_2025-12-06_21-03-20\n", - "2025-12-06 21:09:44,171\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00004_4_line_tolerance=0.6000,min_box_score=0,text_det_box_thresh=0.5050,text_det_unclip_ratio=1.8827,t_2025-12-06_21-09-44\n", - "2025-12-06 21:09:44,175\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00004_4_line_tolerance=0.6000,min_box_score=0,text_det_box_thresh=0.5050,text_det_unclip_ratio=1.8827,t_2025-12-06_21-09-44\n", - "2025-12-06 21:09:49,719\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00004_4_line_tolerance=0.6000,min_box_score=0,text_det_box_thresh=0.5050,text_det_unclip_ratio=1.8827,t_2025-12-06_21-09-44\n", - "2025-12-06 21:09:49,722\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00004_4_line_tolerance=0.6000,min_box_score=0,text_det_box_thresh=0.5050,text_det_unclip_ratio=1.8827,t_2025-12-06_21-09-44\n", - "2025-12-06 21:09:51,685\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00003_3_line_tolerance=0.7000,min_box_score=0.5000,text_det_box_thresh=0.6633,text_det_unclip_ratio=1.6_2025-12-06_21-03-33\n", - "2025-12-06 21:09:51,694\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00005_5_line_tolerance=0.7000,min_box_score=0.5000,text_det_box_thresh=0.6010,text_det_unclip_ratio=1.6_2025-12-06_21-09-51\n", - "2025-12-06 21:09:51,696\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00005_5_line_tolerance=0.7000,min_box_score=0.5000,text_det_box_thresh=0.6010,text_det_unclip_ratio=1.6_2025-12-06_21-09-51\n", - "2025-12-06 21:09:56,292\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00005_5_line_tolerance=0.7000,min_box_score=0.5000,text_det_box_thresh=0.6010,text_det_unclip_ratio=1.6_2025-12-06_21-09-51\n", - "2025-12-06 21:09:56,293\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00005_5_line_tolerance=0.7000,min_box_score=0.5000,text_det_box_thresh=0.6010,text_det_unclip_ratio=1.6_2025-12-06_21-09-51\n", - "\u001b[36m(trainable_paddle_ocr pid=16556)\u001b[0m [2025-12-06 21:10:19,454 E 16556 7328] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", - "\u001b[36m(trainable_paddle_ocr pid=12240)\u001b[0m [2025-12-06 21:10:26,611 E 12240 18476] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", - "2025-12-06 21:16:09,646\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00004_4_line_tolerance=0.6000,min_box_score=0,text_det_box_thresh=0.5050,text_det_unclip_ratio=1.8827,t_2025-12-06_21-09-44\n", - "2025-12-06 21:16:09,711\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00006_6_line_tolerance=0.7000,min_box_score=0.5000,text_det_box_thresh=0.4546,text_det_unclip_ratio=1.3_2025-12-06_21-16-09\n", - "2025-12-06 21:16:09,713\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00006_6_line_tolerance=0.7000,min_box_score=0.5000,text_det_box_thresh=0.4546,text_det_unclip_ratio=1.3_2025-12-06_21-16-09\n", - "2025-12-06 21:16:15,640\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00006_6_line_tolerance=0.7000,min_box_score=0.5000,text_det_box_thresh=0.4546,text_det_unclip_ratio=1.3_2025-12-06_21-16-09\n", - "2025-12-06 21:16:15,642\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00006_6_line_tolerance=0.7000,min_box_score=0.5000,text_det_box_thresh=0.4546,text_det_unclip_ratio=1.3_2025-12-06_21-16-09\n", - "2025-12-06 21:16:18,859\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00005_5_line_tolerance=0.7000,min_box_score=0.5000,text_det_box_thresh=0.6010,text_det_unclip_ratio=1.6_2025-12-06_21-09-51\n", - "2025-12-06 21:16:18,876\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00007_7_line_tolerance=0.6000,min_box_score=0.5000,text_det_box_thresh=0.6493,text_det_unclip_ratio=1.6_2025-12-06_21-16-18\n", - "2025-12-06 21:16:18,876\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00007_7_line_tolerance=0.6000,min_box_score=0.5000,text_det_box_thresh=0.6493,text_det_unclip_ratio=1.6_2025-12-06_21-16-18\n", - "2025-12-06 21:16:23,437\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00007_7_line_tolerance=0.6000,min_box_score=0.5000,text_det_box_thresh=0.6493,text_det_unclip_ratio=1.6_2025-12-06_21-16-18\n", - "2025-12-06 21:16:23,440\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00007_7_line_tolerance=0.6000,min_box_score=0.5000,text_det_box_thresh=0.6493,text_det_unclip_ratio=1.6_2025-12-06_21-16-18\n", - "\u001b[36m(trainable_paddle_ocr pid=19712)\u001b[0m [2025-12-06 21:16:45,168 E 19712 3960] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", - "\u001b[36m(trainable_paddle_ocr pid=17768)\u001b[0m [2025-12-06 21:16:53,820 E 17768 20672] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", - "2025-12-06 21:22:48,714\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00007_7_line_tolerance=0.6000,min_box_score=0.5000,text_det_box_thresh=0.6493,text_det_unclip_ratio=1.6_2025-12-06_21-16-18\n", - "2025-12-06 21:22:48,768\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00008_8_line_tolerance=0.6000,min_box_score=0.5000,text_det_box_thresh=0.5147,text_det_unclip_ratio=1.8_2025-12-06_21-22-48\n", - "2025-12-06 21:22:48,771\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00008_8_line_tolerance=0.6000,min_box_score=0.5000,text_det_box_thresh=0.5147,text_det_unclip_ratio=1.8_2025-12-06_21-22-48\n", - "2025-12-06 21:22:53,439\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00006_6_line_tolerance=0.7000,min_box_score=0.5000,text_det_box_thresh=0.4546,text_det_unclip_ratio=1.3_2025-12-06_21-16-09\n", - "2025-12-06 21:22:53,461\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00009_9_line_tolerance=0.6000,min_box_score=0.6000,text_det_box_thresh=0.6191,text_det_unclip_ratio=1.7_2025-12-06_21-22-53\n", - "2025-12-06 21:22:53,462\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00009_9_line_tolerance=0.6000,min_box_score=0.6000,text_det_box_thresh=0.6191,text_det_unclip_ratio=1.7_2025-12-06_21-22-53\n", - "2025-12-06 21:22:54,552\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00008_8_line_tolerance=0.6000,min_box_score=0.5000,text_det_box_thresh=0.5147,text_det_unclip_ratio=1.8_2025-12-06_21-22-48\n", - "2025-12-06 21:22:54,553\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00008_8_line_tolerance=0.6000,min_box_score=0.5000,text_det_box_thresh=0.5147,text_det_unclip_ratio=1.8_2025-12-06_21-22-48\n", - "2025-12-06 21:22:58,237\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00009_9_line_tolerance=0.6000,min_box_score=0.6000,text_det_box_thresh=0.6191,text_det_unclip_ratio=1.7_2025-12-06_21-22-53\n", - "2025-12-06 21:22:58,238\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00009_9_line_tolerance=0.6000,min_box_score=0.6000,text_det_box_thresh=0.6191,text_det_unclip_ratio=1.7_2025-12-06_21-22-53\n", - "\u001b[36m(trainable_paddle_ocr pid=14292)\u001b[0m [2025-12-06 21:23:24,260 E 14292 17720] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", - "2025-12-06 21:29:13,968\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00009_9_line_tolerance=0.6000,min_box_score=0.6000,text_det_box_thresh=0.6191,text_det_unclip_ratio=1.7_2025-12-06_21-22-53\n", - "2025-12-06 21:29:14,001\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00010_10_line_tolerance=0.7000,min_box_score=0.5000,text_det_box_thresh=0.4799,text_det_unclip_ratio=1._2025-12-06_21-29-14\n", - "2025-12-06 21:29:14,003\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00010_10_line_tolerance=0.7000,min_box_score=0.5000,text_det_box_thresh=0.4799,text_det_unclip_ratio=1._2025-12-06_21-29-14\n", - "2025-12-06 21:29:15,230\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00008_8_line_tolerance=0.6000,min_box_score=0.5000,text_det_box_thresh=0.5147,text_det_unclip_ratio=1.8_2025-12-06_21-22-48\n", - "2025-12-06 21:29:15,252\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00011_11_line_tolerance=0.7000,min_box_score=0.6000,text_det_box_thresh=0.6731,text_det_unclip_ratio=1._2025-12-06_21-29-15\n", - "2025-12-06 21:29:15,253\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00011_11_line_tolerance=0.7000,min_box_score=0.6000,text_det_box_thresh=0.6731,text_det_unclip_ratio=1._2025-12-06_21-29-15\n", - "2025-12-06 21:29:19,725\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00010_10_line_tolerance=0.7000,min_box_score=0.5000,text_det_box_thresh=0.4799,text_det_unclip_ratio=1._2025-12-06_21-29-14\n", - "2025-12-06 21:29:19,725\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00010_10_line_tolerance=0.7000,min_box_score=0.5000,text_det_box_thresh=0.4799,text_det_unclip_ratio=1._2025-12-06_21-29-14\n", - "2025-12-06 21:29:19,956\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00011_11_line_tolerance=0.7000,min_box_score=0.6000,text_det_box_thresh=0.6731,text_det_unclip_ratio=1._2025-12-06_21-29-15\n", - "2025-12-06 21:29:19,958\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00011_11_line_tolerance=0.7000,min_box_score=0.6000,text_det_box_thresh=0.6731,text_det_unclip_ratio=1._2025-12-06_21-29-15\n", - "\u001b[36m(trainable_paddle_ocr pid=22764)\u001b[0m [2025-12-06 21:29:49,308 E 22764 6536] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\u001b[32m [repeated 2x across cluster]\u001b[0m\n", - "2025-12-06 21:35:37,866\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00011_11_line_tolerance=0.7000,min_box_score=0.6000,text_det_box_thresh=0.6731,text_det_unclip_ratio=1._2025-12-06_21-29-15\n", - "2025-12-06 21:35:37,911\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00012_12_line_tolerance=0.5000,min_box_score=0.6000,text_det_box_thresh=0.4972,text_det_unclip_ratio=1._2025-12-06_21-35-37\n", - "2025-12-06 21:35:37,915\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00012_12_line_tolerance=0.5000,min_box_score=0.6000,text_det_box_thresh=0.4972,text_det_unclip_ratio=1._2025-12-06_21-35-37\n", - "2025-12-06 21:35:43,961\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00012_12_line_tolerance=0.5000,min_box_score=0.6000,text_det_box_thresh=0.4972,text_det_unclip_ratio=1._2025-12-06_21-35-37\n", - "2025-12-06 21:35:43,963\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00012_12_line_tolerance=0.5000,min_box_score=0.6000,text_det_box_thresh=0.4972,text_det_unclip_ratio=1._2025-12-06_21-35-37\n", - "2025-12-06 21:35:45,167\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00010_10_line_tolerance=0.7000,min_box_score=0.5000,text_det_box_thresh=0.4799,text_det_unclip_ratio=1._2025-12-06_21-29-14\n", - "2025-12-06 21:35:45,186\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00013_13_line_tolerance=0.6000,min_box_score=0.6000,text_det_box_thresh=0.5925,text_det_unclip_ratio=1._2025-12-06_21-35-45\n", - "2025-12-06 21:35:45,194\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00013_13_line_tolerance=0.6000,min_box_score=0.6000,text_det_box_thresh=0.5925,text_det_unclip_ratio=1._2025-12-06_21-35-45\n", - "2025-12-06 21:35:49,781\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00013_13_line_tolerance=0.6000,min_box_score=0.6000,text_det_box_thresh=0.5925,text_det_unclip_ratio=1._2025-12-06_21-35-45\n", - "2025-12-06 21:35:49,782\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00013_13_line_tolerance=0.6000,min_box_score=0.6000,text_det_box_thresh=0.5925,text_det_unclip_ratio=1._2025-12-06_21-35-45\n", - "\u001b[36m(trainable_paddle_ocr pid=12344)\u001b[0m [2025-12-06 21:36:14,512 E 12344 12400] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\u001b[32m [repeated 2x across cluster]\u001b[0m\n", - "\u001b[36m(trainable_paddle_ocr pid=15216)\u001b[0m [2025-12-06 21:36:20,204 E 15216 20000] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", - "2025-12-06 21:42:17,137\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00012_12_line_tolerance=0.5000,min_box_score=0.6000,text_det_box_thresh=0.4972,text_det_unclip_ratio=1._2025-12-06_21-35-37\n", - "2025-12-06 21:42:17,239\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00014_14_line_tolerance=0.7000,min_box_score=0,text_det_box_thresh=0.6695,text_det_unclip_ratio=1.8533,_2025-12-06_21-42-17\n", - "2025-12-06 21:42:17,242\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00014_14_line_tolerance=0.7000,min_box_score=0,text_det_box_thresh=0.6695,text_det_unclip_ratio=1.8533,_2025-12-06_21-42-17\n", - "2025-12-06 21:42:21,653\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00013_13_line_tolerance=0.6000,min_box_score=0.6000,text_det_box_thresh=0.5925,text_det_unclip_ratio=1._2025-12-06_21-35-45\n", - "2025-12-06 21:42:21,673\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00015_15_line_tolerance=0.6000,min_box_score=0.5000,text_det_box_thresh=0.4460,text_det_unclip_ratio=1._2025-12-06_21-42-21\n", - "2025-12-06 21:42:21,675\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00015_15_line_tolerance=0.6000,min_box_score=0.5000,text_det_box_thresh=0.4460,text_det_unclip_ratio=1._2025-12-06_21-42-21\n", - "2025-12-06 21:42:23,303\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00014_14_line_tolerance=0.7000,min_box_score=0,text_det_box_thresh=0.6695,text_det_unclip_ratio=1.8533,_2025-12-06_21-42-17\n", - "2025-12-06 21:42:23,303\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00014_14_line_tolerance=0.7000,min_box_score=0,text_det_box_thresh=0.6695,text_det_unclip_ratio=1.8533,_2025-12-06_21-42-17\n", - "2025-12-06 21:42:26,244\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00015_15_line_tolerance=0.6000,min_box_score=0.5000,text_det_box_thresh=0.4460,text_det_unclip_ratio=1._2025-12-06_21-42-21\n", - "2025-12-06 21:42:26,252\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00015_15_line_tolerance=0.6000,min_box_score=0.5000,text_det_box_thresh=0.4460,text_det_unclip_ratio=1._2025-12-06_21-42-21\n", - "\u001b[36m(trainable_paddle_ocr pid=22580)\u001b[0m [2025-12-06 21:42:53,892 E 22580 16980] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", - "2025-12-06 21:48:21,584\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00014_14_line_tolerance=0.7000,min_box_score=0,text_det_box_thresh=0.6695,text_det_unclip_ratio=1.8533,_2025-12-06_21-42-17\n", - "2025-12-06 21:48:21,613\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00016_16_line_tolerance=0.6000,min_box_score=0.5000,text_det_box_thresh=0.4647,text_det_unclip_ratio=1._2025-12-06_21-48-21\n", - "2025-12-06 21:48:21,616\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00016_16_line_tolerance=0.6000,min_box_score=0.5000,text_det_box_thresh=0.4647,text_det_unclip_ratio=1._2025-12-06_21-48-21\n", - "2025-12-06 21:48:27,021\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00016_16_line_tolerance=0.6000,min_box_score=0.5000,text_det_box_thresh=0.4647,text_det_unclip_ratio=1._2025-12-06_21-48-21\n", - "2025-12-06 21:48:27,022\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00016_16_line_tolerance=0.6000,min_box_score=0.5000,text_det_box_thresh=0.4647,text_det_unclip_ratio=1._2025-12-06_21-48-21\n", - "2025-12-06 21:48:46,315\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00015_15_line_tolerance=0.6000,min_box_score=0.5000,text_det_box_thresh=0.4460,text_det_unclip_ratio=1._2025-12-06_21-42-21\n", - "2025-12-06 21:48:46,330\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00017_17_line_tolerance=0.7000,min_box_score=0.6000,text_det_box_thresh=0.5799,text_det_unclip_ratio=1._2025-12-06_21-48-46\n", - "2025-12-06 21:48:46,334\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00017_17_line_tolerance=0.7000,min_box_score=0.6000,text_det_box_thresh=0.5799,text_det_unclip_ratio=1._2025-12-06_21-48-46\n", - "2025-12-06 21:48:51,241\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00017_17_line_tolerance=0.7000,min_box_score=0.6000,text_det_box_thresh=0.5799,text_det_unclip_ratio=1._2025-12-06_21-48-46\n", - "2025-12-06 21:48:51,245\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00017_17_line_tolerance=0.7000,min_box_score=0.6000,text_det_box_thresh=0.5799,text_det_unclip_ratio=1._2025-12-06_21-48-46\n", - "\u001b[36m(trainable_paddle_ocr pid=4760)\u001b[0m [2025-12-06 21:48:56,886 E 4760 14816] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\u001b[32m [repeated 2x across cluster]\u001b[0m\n", - "\u001b[36m(trainable_paddle_ocr pid=10784)\u001b[0m [2025-12-06 21:49:21,382 E 10784 20052] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", - "2025-12-06 21:54:33,574\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00016_16_line_tolerance=0.6000,min_box_score=0.5000,text_det_box_thresh=0.4647,text_det_unclip_ratio=1._2025-12-06_21-48-21\n", - "2025-12-06 21:54:33,590\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00018_18_line_tolerance=0.7000,min_box_score=0,text_det_box_thresh=0.6987,text_det_unclip_ratio=1.6401,_2025-12-06_21-54-33\n", - "2025-12-06 21:54:33,592\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00018_18_line_tolerance=0.7000,min_box_score=0,text_det_box_thresh=0.6987,text_det_unclip_ratio=1.6401,_2025-12-06_21-54-33\n", - "2025-12-06 21:54:38,335\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00018_18_line_tolerance=0.7000,min_box_score=0,text_det_box_thresh=0.6987,text_det_unclip_ratio=1.6401,_2025-12-06_21-54-33\n", - "2025-12-06 21:54:38,336\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00018_18_line_tolerance=0.7000,min_box_score=0,text_det_box_thresh=0.6987,text_det_unclip_ratio=1.6401,_2025-12-06_21-54-33\n", - "2025-12-06 21:55:00,634\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00017_17_line_tolerance=0.7000,min_box_score=0.6000,text_det_box_thresh=0.5799,text_det_unclip_ratio=1._2025-12-06_21-48-46\n", - "2025-12-06 21:55:00,660\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00019_19_line_tolerance=0.5000,min_box_score=0.5000,text_det_box_thresh=0.6517,text_det_unclip_ratio=1._2025-12-06_21-55-00\n", - "2025-12-06 21:55:00,665\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00019_19_line_tolerance=0.5000,min_box_score=0.5000,text_det_box_thresh=0.6517,text_det_unclip_ratio=1._2025-12-06_21-55-00\n", - "2025-12-06 21:55:05,476\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00019_19_line_tolerance=0.5000,min_box_score=0.5000,text_det_box_thresh=0.6517,text_det_unclip_ratio=1._2025-12-06_21-55-00\n", - "2025-12-06 21:55:05,478\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00019_19_line_tolerance=0.5000,min_box_score=0.5000,text_det_box_thresh=0.6517,text_det_unclip_ratio=1._2025-12-06_21-55-00\n", - "\u001b[36m(trainable_paddle_ocr pid=10972)\u001b[0m [2025-12-06 21:55:08,599 E 10972 6384] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", - "\u001b[36m(trainable_paddle_ocr pid=4780)\u001b[0m [2025-12-06 21:55:35,787 E 4780 4064] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", - "2025-12-06 22:00:30,830\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00018_18_line_tolerance=0.7000,min_box_score=0,text_det_box_thresh=0.6987,text_det_unclip_ratio=1.6401,_2025-12-06_21-54-33\n", - "2025-12-06 22:00:30,842\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00020_20_line_tolerance=0.5000,min_box_score=0.6000,text_det_box_thresh=0.5563,text_det_unclip_ratio=1._2025-12-06_22-00-30\n", - "2025-12-06 22:00:30,845\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00020_20_line_tolerance=0.5000,min_box_score=0.6000,text_det_box_thresh=0.5563,text_det_unclip_ratio=1._2025-12-06_22-00-30\n", - "2025-12-06 22:00:35,845\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00020_20_line_tolerance=0.5000,min_box_score=0.6000,text_det_box_thresh=0.5563,text_det_unclip_ratio=1._2025-12-06_22-00-30\n", - "2025-12-06 22:00:35,847\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00020_20_line_tolerance=0.5000,min_box_score=0.6000,text_det_box_thresh=0.5563,text_det_unclip_ratio=1._2025-12-06_22-00-30\n", - "\u001b[36m(trainable_paddle_ocr pid=20080)\u001b[0m [2025-12-06 22:01:06,051 E 20080 21004] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", - "2025-12-06 22:01:16,163\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00019_19_line_tolerance=0.5000,min_box_score=0.5000,text_det_box_thresh=0.6517,text_det_unclip_ratio=1._2025-12-06_21-55-00\n", - "2025-12-06 22:01:16,176\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00021_21_line_tolerance=0.6000,min_box_score=0.5000,text_det_box_thresh=0.5567,text_det_unclip_ratio=1._2025-12-06_22-01-16\n", - "2025-12-06 22:01:16,178\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00021_21_line_tolerance=0.6000,min_box_score=0.5000,text_det_box_thresh=0.5567,text_det_unclip_ratio=1._2025-12-06_22-01-16\n", - "2025-12-06 22:01:20,878\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00021_21_line_tolerance=0.6000,min_box_score=0.5000,text_det_box_thresh=0.5567,text_det_unclip_ratio=1._2025-12-06_22-01-16\n", - "2025-12-06 22:01:20,880\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00021_21_line_tolerance=0.6000,min_box_score=0.5000,text_det_box_thresh=0.5567,text_det_unclip_ratio=1._2025-12-06_22-01-16\n", - "\u001b[36m(trainable_paddle_ocr pid=1072)\u001b[0m [2025-12-06 22:01:51,143 E 1072 22252] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", - "2025-12-06 22:06:40,951\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00020_20_line_tolerance=0.5000,min_box_score=0.6000,text_det_box_thresh=0.5563,text_det_unclip_ratio=1._2025-12-06_22-00-30\n", - "2025-12-06 22:06:40,972\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00022_22_line_tolerance=0.7000,min_box_score=0,text_det_box_thresh=0.4255,text_det_unclip_ratio=1.3253,_2025-12-06_22-06-40\n", - "2025-12-06 22:06:40,972\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00022_22_line_tolerance=0.7000,min_box_score=0,text_det_box_thresh=0.4255,text_det_unclip_ratio=1.3253,_2025-12-06_22-06-40\n", - "2025-12-06 22:06:45,826\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00022_22_line_tolerance=0.7000,min_box_score=0,text_det_box_thresh=0.4255,text_det_unclip_ratio=1.3253,_2025-12-06_22-06-40\n", - "2025-12-06 22:06:45,826\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00022_22_line_tolerance=0.7000,min_box_score=0,text_det_box_thresh=0.4255,text_det_unclip_ratio=1.3253,_2025-12-06_22-06-40\n", - "\u001b[36m(trainable_paddle_ocr pid=19888)\u001b[0m [2025-12-06 22:07:16,150 E 19888 11400] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", - "2025-12-06 22:07:32,369\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00021_21_line_tolerance=0.6000,min_box_score=0.5000,text_det_box_thresh=0.5567,text_det_unclip_ratio=1._2025-12-06_22-01-16\n", - "2025-12-06 22:07:32,382\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00023_23_line_tolerance=0.6000,min_box_score=0,text_det_box_thresh=0.4971,text_det_unclip_ratio=1.7881,_2025-12-06_22-07-32\n", - "2025-12-06 22:07:32,384\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00023_23_line_tolerance=0.6000,min_box_score=0,text_det_box_thresh=0.4971,text_det_unclip_ratio=1.7881,_2025-12-06_22-07-32\n", - "2025-12-06 22:07:37,267\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00023_23_line_tolerance=0.6000,min_box_score=0,text_det_box_thresh=0.4971,text_det_unclip_ratio=1.7881,_2025-12-06_22-07-32\n", - "2025-12-06 22:07:37,269\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00023_23_line_tolerance=0.6000,min_box_score=0,text_det_box_thresh=0.4971,text_det_unclip_ratio=1.7881,_2025-12-06_22-07-32\n", - "\u001b[36m(trainable_paddle_ocr pid=18380)\u001b[0m [2025-12-06 22:08:07,587 E 18380 21300] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", - "2025-12-06 22:13:02,527\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00022_22_line_tolerance=0.7000,min_box_score=0,text_det_box_thresh=0.4255,text_det_unclip_ratio=1.3253,_2025-12-06_22-06-40\n", - "2025-12-06 22:13:02,557\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00024_24_line_tolerance=0.5000,min_box_score=0.5000,text_det_box_thresh=0.4561,text_det_unclip_ratio=1._2025-12-06_22-13-02\n", - "2025-12-06 22:13:02,560\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00024_24_line_tolerance=0.5000,min_box_score=0.5000,text_det_box_thresh=0.4561,text_det_unclip_ratio=1._2025-12-06_22-13-02\n", - "2025-12-06 22:13:07,568\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00024_24_line_tolerance=0.5000,min_box_score=0.5000,text_det_box_thresh=0.4561,text_det_unclip_ratio=1._2025-12-06_22-13-02\n", - "2025-12-06 22:13:07,569\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00024_24_line_tolerance=0.5000,min_box_score=0.5000,text_det_box_thresh=0.4561,text_det_unclip_ratio=1._2025-12-06_22-13-02\n", - "\u001b[36m(trainable_paddle_ocr pid=10164)\u001b[0m [2025-12-06 22:13:37,764 E 10164 21820] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", - "2025-12-06 22:13:45,715\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00023_23_line_tolerance=0.6000,min_box_score=0,text_det_box_thresh=0.4971,text_det_unclip_ratio=1.7881,_2025-12-06_22-07-32\n", - "2025-12-06 22:13:45,728\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00025_25_line_tolerance=0.6000,min_box_score=0.6000,text_det_box_thresh=0.6773,text_det_unclip_ratio=1._2025-12-06_22-13-45\n", - "2025-12-06 22:13:45,728\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00025_25_line_tolerance=0.6000,min_box_score=0.6000,text_det_box_thresh=0.6773,text_det_unclip_ratio=1._2025-12-06_22-13-45\n", - "2025-12-06 22:13:50,534\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00025_25_line_tolerance=0.6000,min_box_score=0.6000,text_det_box_thresh=0.6773,text_det_unclip_ratio=1._2025-12-06_22-13-45\n", - "2025-12-06 22:13:50,535\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00025_25_line_tolerance=0.6000,min_box_score=0.6000,text_det_box_thresh=0.6773,text_det_unclip_ratio=1._2025-12-06_22-13-45\n", - "\u001b[36m(trainable_paddle_ocr pid=10396)\u001b[0m [2025-12-06 22:14:21,005 E 10396 23176] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", - "2025-12-06 22:19:10,166\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00024_24_line_tolerance=0.5000,min_box_score=0.5000,text_det_box_thresh=0.4561,text_det_unclip_ratio=1._2025-12-06_22-13-02\n", - "2025-12-06 22:19:10,172\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00026_26_line_tolerance=0.5000,min_box_score=0,text_det_box_thresh=0.6926,text_det_unclip_ratio=1.2032,_2025-12-06_22-19-10\n", - "2025-12-06 22:19:10,177\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00026_26_line_tolerance=0.5000,min_box_score=0,text_det_box_thresh=0.6926,text_det_unclip_ratio=1.2032,_2025-12-06_22-19-10\n", - "2025-12-06 22:19:14,972\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00026_26_line_tolerance=0.5000,min_box_score=0,text_det_box_thresh=0.6926,text_det_unclip_ratio=1.2032,_2025-12-06_22-19-10\n", - "2025-12-06 22:19:14,972\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00026_26_line_tolerance=0.5000,min_box_score=0,text_det_box_thresh=0.6926,text_det_unclip_ratio=1.2032,_2025-12-06_22-19-10\n", - "\u001b[36m(trainable_paddle_ocr pid=1824)\u001b[0m [2025-12-06 22:19:45,228 E 1824 7268] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", - "2025-12-06 22:19:58,469\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00025_25_line_tolerance=0.6000,min_box_score=0.6000,text_det_box_thresh=0.6773,text_det_unclip_ratio=1._2025-12-06_22-13-45\n", - "2025-12-06 22:19:58,478\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00027_27_line_tolerance=0.7000,min_box_score=0.6000,text_det_box_thresh=0.6211,text_det_unclip_ratio=1._2025-12-06_22-19-58\n", - "2025-12-06 22:19:58,481\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00027_27_line_tolerance=0.7000,min_box_score=0.6000,text_det_box_thresh=0.6211,text_det_unclip_ratio=1._2025-12-06_22-19-58\n", - "2025-12-06 22:20:03,306\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00027_27_line_tolerance=0.7000,min_box_score=0.6000,text_det_box_thresh=0.6211,text_det_unclip_ratio=1._2025-12-06_22-19-58\n", - "2025-12-06 22:20:03,308\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00027_27_line_tolerance=0.7000,min_box_score=0.6000,text_det_box_thresh=0.6211,text_det_unclip_ratio=1._2025-12-06_22-19-58\n", - "\u001b[36m(trainable_paddle_ocr pid=21808)\u001b[0m [2025-12-06 22:20:33,554 E 21808 14068] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", - "2025-12-06 22:25:24,131\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00026_26_line_tolerance=0.5000,min_box_score=0,text_det_box_thresh=0.6926,text_det_unclip_ratio=1.2032,_2025-12-06_22-19-10\n", - "2025-12-06 22:25:24,145\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00028_28_line_tolerance=0.6000,min_box_score=0.6000,text_det_box_thresh=0.5298,text_det_unclip_ratio=1._2025-12-06_22-25-24\n", - "2025-12-06 22:25:24,152\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00028_28_line_tolerance=0.6000,min_box_score=0.6000,text_det_box_thresh=0.5298,text_det_unclip_ratio=1._2025-12-06_22-25-24\n", - "2025-12-06 22:25:28,966\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00028_28_line_tolerance=0.6000,min_box_score=0.6000,text_det_box_thresh=0.5298,text_det_unclip_ratio=1._2025-12-06_22-25-24\n", - "2025-12-06 22:25:28,969\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00028_28_line_tolerance=0.6000,min_box_score=0.6000,text_det_box_thresh=0.5298,text_det_unclip_ratio=1._2025-12-06_22-25-24\n", - "\u001b[36m(trainable_paddle_ocr pid=19872)\u001b[0m [2025-12-06 22:25:59,280 E 19872 19348] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", - "2025-12-06 22:26:05,219\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00027_27_line_tolerance=0.7000,min_box_score=0.6000,text_det_box_thresh=0.6211,text_det_unclip_ratio=1._2025-12-06_22-19-58\n", - "2025-12-06 22:26:05,241\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00029_29_line_tolerance=0.6000,min_box_score=0.6000,text_det_box_thresh=0.6075,text_det_unclip_ratio=1._2025-12-06_22-26-05\n", - "2025-12-06 22:26:05,243\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00029_29_line_tolerance=0.6000,min_box_score=0.6000,text_det_box_thresh=0.6075,text_det_unclip_ratio=1._2025-12-06_22-26-05\n", - "2025-12-06 22:26:09,991\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00029_29_line_tolerance=0.6000,min_box_score=0.6000,text_det_box_thresh=0.6075,text_det_unclip_ratio=1._2025-12-06_22-26-05\n", - "2025-12-06 22:26:09,992\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00029_29_line_tolerance=0.6000,min_box_score=0.6000,text_det_box_thresh=0.6075,text_det_unclip_ratio=1._2025-12-06_22-26-05\n", - "\u001b[36m(trainable_paddle_ocr pid=2816)\u001b[0m [2025-12-06 22:26:40,444 E 2816 12056] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", - "2025-12-06 22:31:46,277\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00028_28_line_tolerance=0.6000,min_box_score=0.6000,text_det_box_thresh=0.5298,text_det_unclip_ratio=1._2025-12-06_22-25-24\n", - "2025-12-06 22:31:46,294\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00030_30_line_tolerance=0.7000,min_box_score=0.6000,text_det_box_thresh=0.6545,text_det_unclip_ratio=1._2025-12-06_22-31-46\n", - "2025-12-06 22:31:46,297\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00030_30_line_tolerance=0.7000,min_box_score=0.6000,text_det_box_thresh=0.6545,text_det_unclip_ratio=1._2025-12-06_22-31-46\n", - "2025-12-06 22:31:51,273\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00030_30_line_tolerance=0.7000,min_box_score=0.6000,text_det_box_thresh=0.6545,text_det_unclip_ratio=1._2025-12-06_22-31-46\n", - "2025-12-06 22:31:51,277\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00030_30_line_tolerance=0.7000,min_box_score=0.6000,text_det_box_thresh=0.6545,text_det_unclip_ratio=1._2025-12-06_22-31-46\n", - "2025-12-06 22:32:18,349\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00029_29_line_tolerance=0.6000,min_box_score=0.6000,text_det_box_thresh=0.6075,text_det_unclip_ratio=1._2025-12-06_22-26-05\n", - "2025-12-06 22:32:18,370\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00031_31_line_tolerance=0.5000,min_box_score=0,text_det_box_thresh=0.4511,text_det_unclip_ratio=1.3534,_2025-12-06_22-32-18\n", - "2025-12-06 22:32:18,374\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00031_31_line_tolerance=0.5000,min_box_score=0,text_det_box_thresh=0.4511,text_det_unclip_ratio=1.3534,_2025-12-06_22-32-18\n", - "\u001b[36m(trainable_paddle_ocr pid=7328)\u001b[0m [2025-12-06 22:32:21,245 E 7328 10556] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", - "2025-12-06 22:32:23,134\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00031_31_line_tolerance=0.5000,min_box_score=0,text_det_box_thresh=0.4511,text_det_unclip_ratio=1.3534,_2025-12-06_22-32-18\n", - "2025-12-06 22:32:23,136\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00031_31_line_tolerance=0.5000,min_box_score=0,text_det_box_thresh=0.4511,text_det_unclip_ratio=1.3534,_2025-12-06_22-32-18\n", - "\u001b[36m(trainable_paddle_ocr pid=11640)\u001b[0m [2025-12-06 22:32:53,354 E 11640 20276] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", - "2025-12-06 22:37:58,564\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00030_30_line_tolerance=0.7000,min_box_score=0.6000,text_det_box_thresh=0.6545,text_det_unclip_ratio=1._2025-12-06_22-31-46\n", - "2025-12-06 22:38:36,893\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-06_20-08-28_976013_10020\\artifacts\\2025-12-06_20-56-49\\trainable_paddle_ocr_2025-12-06_20-56-49\\driver_artifacts\\trainable_paddle_ocr_b3bdc_00031_31_line_tolerance=0.5000,min_box_score=0,text_det_box_thresh=0.4511,text_det_unclip_ratio=1.3534,_2025-12-06_22-32-18\n", - "2025-12-06 22:38:36,952\tINFO tune.py:1009 -- Wrote the latest version of all result files and experiment state to 'C:/Users/Sergio/ray_results/trainable_paddle_ocr_2025-12-06_20-56-49' in 0.0464s.\n", - "2025-12-06 22:38:36,993\tINFO tune.py:1041 -- Total run time: 6107.63 seconds (6107.54 seconds for the tuning loop).\n" + "2025-12-07 16:10:15,969\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_d5238c33_1_text_det_box_thresh=0.6230,text_det_thresh=0.0888,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-03-56\n", + "2025-12-07 16:10:16,056\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_ebb12e5b_3_text_det_box_thresh=0.2357,text_det_thresh=0.4329,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-10-16\n", + "2025-12-07 16:10:16,063\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_ebb12e5b_3_text_det_box_thresh=0.2357,text_det_thresh=0.4329,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-10-16\n", + "2025-12-07 16:10:20,414\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_ea8a2f7a_2_text_det_box_thresh=0.6712,text_det_thresh=0.3932,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-04-01\n", + "2025-12-07 16:10:22,097\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_ebb12e5b_3_text_det_box_thresh=0.2357,text_det_thresh=0.4329,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-10-16\n", + "2025-12-07 16:10:22,097\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_ebb12e5b_3_text_det_box_thresh=0.2357,text_det_thresh=0.4329,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-10-16\n", + "2025-12-07 16:10:22,097\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_b3775034_4_text_det_box_thresh=0.3377,text_det_thresh=0.0641,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-10-22\n", + "2025-12-07 16:10:22,097\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_b3775034_4_text_det_box_thresh=0.3377,text_det_thresh=0.0641,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-10-22\n", + "2025-12-07 16:10:26,662\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_b3775034_4_text_det_box_thresh=0.3377,text_det_thresh=0.0641,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-10-22\n", + "2025-12-07 16:10:26,664\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_b3775034_4_text_det_box_thresh=0.3377,text_det_thresh=0.0641,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-10-22\n", + "\u001b[36m(trainable_paddle_ocr pid=21480)\u001b[0m [2025-12-07 16:10:51,593 E 21480 13444] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "\u001b[36m(trainable_paddle_ocr pid=23084)\u001b[0m [2025-12-07 16:10:56,943 E 23084 15580] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "2025-12-07 16:16:23,218\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_b3775034_4_text_det_box_thresh=0.3377,text_det_thresh=0.0641,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-10-22\n", + "2025-12-07 16:16:23,261\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_bf10d370_5_text_det_box_thresh=0.6902,text_det_thresh=0.6720,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-16-23\n", + "2025-12-07 16:16:23,263\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_bf10d370_5_text_det_box_thresh=0.6902,text_det_thresh=0.6720,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-16-23\n", + "2025-12-07 16:16:28,918\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_bf10d370_5_text_det_box_thresh=0.6902,text_det_thresh=0.6720,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-16-23\n", + "2025-12-07 16:16:28,918\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_bf10d370_5_text_det_box_thresh=0.6902,text_det_thresh=0.6720,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-16-23\n", + "2025-12-07 16:16:41,652\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_ebb12e5b_3_text_det_box_thresh=0.2357,text_det_thresh=0.4329,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-10-16\n", + "2025-12-07 16:16:41,663\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_111e5a9e_6_text_det_box_thresh=0.4833,text_det_thresh=0.0448,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-16-41\n", + "2025-12-07 16:16:41,665\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_111e5a9e_6_text_det_box_thresh=0.4833,text_det_thresh=0.0448,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-16-41\n", + "2025-12-07 16:16:46,207\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_111e5a9e_6_text_det_box_thresh=0.4833,text_det_thresh=0.0448,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-16-41\n", + "2025-12-07 16:16:46,207\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_111e5a9e_6_text_det_box_thresh=0.4833,text_det_thresh=0.0448,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-16-41\n", + "\u001b[36m(trainable_paddle_ocr pid=26140)\u001b[0m [2025-12-07 16:16:58,481 E 26140 16220] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "\u001b[36m(trainable_paddle_ocr pid=20664)\u001b[0m [2025-12-07 16:17:16,506 E 20664 20720] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "2025-12-07 16:22:27,297\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_111e5a9e_6_text_det_box_thresh=0.4833,text_det_thresh=0.0448,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-16-41\n", + "2025-12-07 16:22:27,312\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_415d7ba1_7_text_det_box_thresh=0.5234,text_det_thresh=0.0170,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-22-27\n", + "2025-12-07 16:22:27,316\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_415d7ba1_7_text_det_box_thresh=0.5234,text_det_thresh=0.0170,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-22-27\n", + "2025-12-07 16:22:32,726\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_415d7ba1_7_text_det_box_thresh=0.5234,text_det_thresh=0.0170,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-22-27\n", + "2025-12-07 16:22:32,728\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_415d7ba1_7_text_det_box_thresh=0.5234,text_det_thresh=0.0170,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-22-27\n", + "2025-12-07 16:22:39,838\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_bf10d370_5_text_det_box_thresh=0.6902,text_det_thresh=0.6720,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-16-23\n", + "2025-12-07 16:22:39,854\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_a58d8109_8_text_det_box_thresh=0.6706,text_det_thresh=0.0402,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-22-39\n", + "2025-12-07 16:22:39,854\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_a58d8109_8_text_det_box_thresh=0.6706,text_det_thresh=0.0402,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-22-39\n", + "2025-12-07 16:22:44,482\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_a58d8109_8_text_det_box_thresh=0.6706,text_det_thresh=0.0402,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-22-39\n", + "2025-12-07 16:22:44,484\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_a58d8109_8_text_det_box_thresh=0.6706,text_det_thresh=0.0402,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-22-39\n", + "\u001b[36m(trainable_paddle_ocr pid=23848)\u001b[0m [2025-12-07 16:23:02,571 E 23848 12908] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "\u001b[36m(trainable_paddle_ocr pid=25248)\u001b[0m [2025-12-07 16:23:14,789 E 25248 4036] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "2025-12-07 16:28:20,034\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_415d7ba1_7_text_det_box_thresh=0.5234,text_det_thresh=0.0170,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-22-27\n", + "2025-12-07 16:28:20,052\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_33bdf2a9_9_text_det_box_thresh=0.4900,text_det_thresh=0.4347,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-28-20\n", + "2025-12-07 16:28:20,055\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_33bdf2a9_9_text_det_box_thresh=0.4900,text_det_thresh=0.4347,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-28-20\n", + "2025-12-07 16:28:24,790\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_33bdf2a9_9_text_det_box_thresh=0.4900,text_det_thresh=0.4347,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-28-20\n", + "2025-12-07 16:28:24,790\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_33bdf2a9_9_text_det_box_thresh=0.4900,text_det_thresh=0.4347,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-28-20\n", + "2025-12-07 16:28:30,585\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_a58d8109_8_text_det_box_thresh=0.6706,text_det_thresh=0.0402,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-22-39\n", + "2025-12-07 16:28:30,605\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_d9df79f3_10_text_det_box_thresh=0.6262,text_det_thresh=0.1781,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-28-30\n", + "2025-12-07 16:28:30,607\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_d9df79f3_10_text_det_box_thresh=0.6262,text_det_thresh=0.1781,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-28-30\n", + "2025-12-07 16:28:35,143\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_d9df79f3_10_text_det_box_thresh=0.6262,text_det_thresh=0.1781,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-28-30\n", + "2025-12-07 16:28:35,143\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_d9df79f3_10_text_det_box_thresh=0.6262,text_det_thresh=0.1781,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-28-30\n", + "\u001b[36m(trainable_paddle_ocr pid=24024)\u001b[0m [2025-12-07 16:28:54,997 E 24024 23472] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "\u001b[36m(trainable_paddle_ocr pid=5368)\u001b[0m [2025-12-07 16:29:05,433 E 5368 24544] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "2025-12-07 16:34:52,986\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_33bdf2a9_9_text_det_box_thresh=0.4900,text_det_thresh=0.4347,text_det_unclip_ratio=0.0000,text_rec_score_thre_2025-12-07_16-28-20\n", + "2025-12-07 16:34:53,020\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_80ea65f2_11_text_det_box_thresh=0.2514,text_det_thresh=0.6011,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-34-53\n", + "2025-12-07 16:34:53,024\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_80ea65f2_11_text_det_box_thresh=0.2514,text_det_thresh=0.6011,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-34-53\n", + "2025-12-07 16:34:58,668\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_80ea65f2_11_text_det_box_thresh=0.2514,text_det_thresh=0.6011,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-34-53\n", + "2025-12-07 16:34:58,670\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_80ea65f2_11_text_det_box_thresh=0.2514,text_det_thresh=0.6011,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-34-53\n", + "2025-12-07 16:34:59,856\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_d9df79f3_10_text_det_box_thresh=0.6262,text_det_thresh=0.1781,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-28-30\n", + "2025-12-07 16:34:59,928\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_2e978bfa_12_text_det_box_thresh=0.0777,text_det_thresh=0.2349,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-34-59\n", + "2025-12-07 16:34:59,933\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_2e978bfa_12_text_det_box_thresh=0.0777,text_det_thresh=0.2349,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-34-59\n", + "2025-12-07 16:35:04,574\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_2e978bfa_12_text_det_box_thresh=0.0777,text_det_thresh=0.2349,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-34-59\n", + "2025-12-07 16:35:04,576\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_2e978bfa_12_text_det_box_thresh=0.0777,text_det_thresh=0.2349,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-34-59\n", + "\u001b[36m(trainable_paddle_ocr pid=14064)\u001b[0m [2025-12-07 16:35:28,312 E 14064 18904] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "\u001b[36m(trainable_paddle_ocr pid=11060)\u001b[0m [2025-12-07 16:35:34,907 E 11060 16108] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "2025-12-07 16:41:24,926\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_2e978bfa_12_text_det_box_thresh=0.0777,text_det_thresh=0.2349,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-34-59\n", + "2025-12-07 16:41:24,993\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_8518cc40_13_text_det_box_thresh=0.0002,text_det_thresh=0.2226,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-41-24\n", + "2025-12-07 16:41:24,996\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_8518cc40_13_text_det_box_thresh=0.0002,text_det_thresh=0.2226,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-41-24\n", + "2025-12-07 16:41:26,379\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_80ea65f2_11_text_det_box_thresh=0.2514,text_det_thresh=0.6011,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-34-53\n", + "2025-12-07 16:41:30,746\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_8518cc40_13_text_det_box_thresh=0.0002,text_det_thresh=0.2226,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-41-24\n", + "2025-12-07 16:41:30,746\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_8518cc40_13_text_det_box_thresh=0.0002,text_det_thresh=0.2226,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-41-24\n", + "2025-12-07 16:41:30,767\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_2c691aaa_14_text_det_box_thresh=0.0303,text_det_thresh=0.2247,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-41-30\n", + "2025-12-07 16:41:30,770\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_2c691aaa_14_text_det_box_thresh=0.0303,text_det_thresh=0.2247,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-41-30\n", + "2025-12-07 16:41:35,236\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_2c691aaa_14_text_det_box_thresh=0.0303,text_det_thresh=0.2247,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-41-30\n", + "2025-12-07 16:41:35,236\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_2c691aaa_14_text_det_box_thresh=0.0303,text_det_thresh=0.2247,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-41-30\n", + "\u001b[36m(trainable_paddle_ocr pid=21016)\u001b[0m [2025-12-07 16:42:00,269 E 21016 19044] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "\u001b[36m(trainable_paddle_ocr pid=21540)\u001b[0m [2025-12-07 16:42:06,593 E 21540 1744] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "2025-12-07 16:47:39,341\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_8518cc40_13_text_det_box_thresh=0.0002,text_det_thresh=0.2226,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-41-24\n", + "2025-12-07 16:47:39,378\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_31e60691_15_text_det_box_thresh=0.0020,text_det_thresh=0.2591,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-47-39\n", + "2025-12-07 16:47:39,378\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_31e60691_15_text_det_box_thresh=0.0020,text_det_thresh=0.2591,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-47-39\n", + "2025-12-07 16:47:41,612\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_2c691aaa_14_text_det_box_thresh=0.0303,text_det_thresh=0.2247,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-41-30\n", + "2025-12-07 16:47:44,526\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_31e60691_15_text_det_box_thresh=0.0020,text_det_thresh=0.2591,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-47-39\n", + "2025-12-07 16:47:44,526\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_31e60691_15_text_det_box_thresh=0.0020,text_det_thresh=0.2591,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-47-39\n", + "2025-12-07 16:47:44,541\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_d4d288c6_16_text_det_box_thresh=0.0034,text_det_thresh=0.2734,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-47-44\n", + "2025-12-07 16:47:44,544\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_d4d288c6_16_text_det_box_thresh=0.0034,text_det_thresh=0.2734,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-47-44\n", + "2025-12-07 16:47:49,055\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_d4d288c6_16_text_det_box_thresh=0.0034,text_det_thresh=0.2734,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-47-44\n", + "2025-12-07 16:47:49,057\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_d4d288c6_16_text_det_box_thresh=0.0034,text_det_thresh=0.2734,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-47-44\n", + "\u001b[36m(trainable_paddle_ocr pid=17532)\u001b[0m [2025-12-07 16:48:14,498 E 17532 10276] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "2025-12-07 16:53:52,583\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_31e60691_15_text_det_box_thresh=0.0020,text_det_thresh=0.2591,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-47-39\n", + "2025-12-07 16:53:52,603\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_7645b77c_17_text_det_box_thresh=0.1138,text_det_thresh=0.2792,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-53-52\n", + "2025-12-07 16:53:52,608\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_7645b77c_17_text_det_box_thresh=0.1138,text_det_thresh=0.2792,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-53-52\n", + "2025-12-07 16:53:57,961\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_d4d288c6_16_text_det_box_thresh=0.0034,text_det_thresh=0.2734,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-47-44\n", + "2025-12-07 16:53:57,971\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_7645b77c_17_text_det_box_thresh=0.1138,text_det_thresh=0.2792,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-53-52\n", + "2025-12-07 16:53:57,971\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_7645b77c_17_text_det_box_thresh=0.1138,text_det_thresh=0.2792,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-53-52\n", + "2025-12-07 16:53:57,993\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_3256ae36_18_text_det_box_thresh=0.1292,text_det_thresh=0.3099,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-53-57\n", + "2025-12-07 16:53:57,996\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_3256ae36_18_text_det_box_thresh=0.1292,text_det_thresh=0.3099,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-53-57\n", + "2025-12-07 16:54:02,522\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_3256ae36_18_text_det_box_thresh=0.1292,text_det_thresh=0.3099,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-53-57\n", + "2025-12-07 16:54:02,522\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_3256ae36_18_text_det_box_thresh=0.1292,text_det_thresh=0.3099,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-53-57\n", + "\u001b[36m(trainable_paddle_ocr pid=2272)\u001b[0m [2025-12-07 16:54:27,753 E 2272 2144] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\u001b[32m [repeated 2x across cluster]\u001b[0m\n", + "\u001b[36m(trainable_paddle_ocr pid=6604)\u001b[0m [2025-12-07 16:54:32,853 E 6604 7428] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "2025-12-07 17:00:05,436\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_7645b77c_17_text_det_box_thresh=0.1138,text_det_thresh=0.2792,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-53-52\n", + "2025-12-07 17:00:05,471\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_b0dda58b_19_text_det_box_thresh=0.1178,text_det_thresh=0.3150,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-00-05\n", + "2025-12-07 17:00:05,471\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_b0dda58b_19_text_det_box_thresh=0.1178,text_det_thresh=0.3150,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-00-05\n", + "2025-12-07 17:00:08,537\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_3256ae36_18_text_det_box_thresh=0.1292,text_det_thresh=0.3099,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_16-53-57\n", + "2025-12-07 17:00:11,016\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_b0dda58b_19_text_det_box_thresh=0.1178,text_det_thresh=0.3150,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-00-05\n", + "2025-12-07 17:00:11,017\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_b0dda58b_19_text_det_box_thresh=0.1178,text_det_thresh=0.3150,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-00-05\n", + "2025-12-07 17:00:11,026\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_e9d40333_20_text_det_box_thresh=0.1569,text_det_thresh=0.5303,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-00-11\n", + "2025-12-07 17:00:11,034\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_e9d40333_20_text_det_box_thresh=0.1569,text_det_thresh=0.5303,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-00-11\n", + "2025-12-07 17:00:15,508\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_e9d40333_20_text_det_box_thresh=0.1569,text_det_thresh=0.5303,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-00-11\n", + "2025-12-07 17:00:15,509\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_e9d40333_20_text_det_box_thresh=0.1569,text_det_thresh=0.5303,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-00-11\n", + "\u001b[36m(trainable_paddle_ocr pid=9732)\u001b[0m [2025-12-07 17:00:40,741 E 9732 14552] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "\u001b[36m(trainable_paddle_ocr pid=23416)\u001b[0m [2025-12-07 17:00:45,836 E 23416 4196] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "2025-12-07 17:06:15,896\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_b0dda58b_19_text_det_box_thresh=0.1178,text_det_thresh=0.3150,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-00-05\n", + "2025-12-07 17:06:15,950\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_aa89fe7a_21_text_det_box_thresh=0.1621,text_det_thresh=0.5040,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-06-15\n", + "2025-12-07 17:06:15,953\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_aa89fe7a_21_text_det_box_thresh=0.1621,text_det_thresh=0.5040,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-06-15\n", + "2025-12-07 17:06:21,172\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_e9d40333_20_text_det_box_thresh=0.1569,text_det_thresh=0.5303,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-00-11\n", + "2025-12-07 17:06:21,708\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_aa89fe7a_21_text_det_box_thresh=0.1621,text_det_thresh=0.5040,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-06-15\n", + "2025-12-07 17:06:21,709\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_aa89fe7a_21_text_det_box_thresh=0.1621,text_det_thresh=0.5040,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-06-15\n", + "2025-12-07 17:06:21,722\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_92c48d07_22_text_det_box_thresh=0.1864,text_det_thresh=0.3332,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-06-21\n", + "2025-12-07 17:06:21,724\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_92c48d07_22_text_det_box_thresh=0.1864,text_det_thresh=0.3332,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-06-21\n", + "2025-12-07 17:06:26,213\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_92c48d07_22_text_det_box_thresh=0.1864,text_det_thresh=0.3332,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-06-21\n", + "2025-12-07 17:06:26,213\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_92c48d07_22_text_det_box_thresh=0.1864,text_det_thresh=0.3332,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-06-21\n", + "\u001b[36m(trainable_paddle_ocr pid=16200)\u001b[0m [2025-12-07 17:06:51,279 E 16200 7620] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "\u001b[36m(trainable_paddle_ocr pid=15432)\u001b[0m [2025-12-07 17:06:56,512 E 15432 12008] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "2025-12-07 17:12:28,470\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_aa89fe7a_21_text_det_box_thresh=0.1621,text_det_thresh=0.5040,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-06-15\n", + "2025-12-07 17:12:28,508\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_187790d7_23_text_det_box_thresh=0.2353,text_det_thresh=0.3373,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-12-28\n", + "2025-12-07 17:12:28,513\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_187790d7_23_text_det_box_thresh=0.2353,text_det_thresh=0.3373,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-12-28\n", + "2025-12-07 17:12:31,317\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_92c48d07_22_text_det_box_thresh=0.1864,text_det_thresh=0.3332,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-06-21\n", + "2025-12-07 17:12:33,695\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_187790d7_23_text_det_box_thresh=0.2353,text_det_thresh=0.3373,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-12-28\n", + "2025-12-07 17:12:33,695\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_187790d7_23_text_det_box_thresh=0.2353,text_det_thresh=0.3373,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-12-28\n", + "2025-12-07 17:12:33,716\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_442a2439_24_text_det_box_thresh=0.2123,text_det_thresh=0.5098,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-12-33\n", + "2025-12-07 17:12:33,718\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_442a2439_24_text_det_box_thresh=0.2123,text_det_thresh=0.5098,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-12-33\n", + "2025-12-07 17:12:38,168\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_442a2439_24_text_det_box_thresh=0.2123,text_det_thresh=0.5098,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-12-33\n", + "2025-12-07 17:12:38,168\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_442a2439_24_text_det_box_thresh=0.2123,text_det_thresh=0.5098,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-12-33\n", + "\u001b[36m(trainable_paddle_ocr pid=24676)\u001b[0m [2025-12-07 17:13:03,575 E 24676 21816] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "2025-12-07 17:18:38,200\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_187790d7_23_text_det_box_thresh=0.2353,text_det_thresh=0.3373,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-12-28\n", + "2025-12-07 17:18:38,251\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_70862adc_25_text_det_box_thresh=0.2163,text_det_thresh=0.3964,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-18-38\n", + "2025-12-07 17:18:38,254\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_70862adc_25_text_det_box_thresh=0.2163,text_det_thresh=0.3964,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-18-38\n", + "2025-12-07 17:18:42,934\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_442a2439_24_text_det_box_thresh=0.2123,text_det_thresh=0.5098,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-12-33\n", + "2025-12-07 17:18:43,890\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_70862adc_25_text_det_box_thresh=0.2163,text_det_thresh=0.3964,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-18-38\n", + "2025-12-07 17:18:43,892\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_70862adc_25_text_det_box_thresh=0.2163,text_det_thresh=0.3964,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-18-38\n", + "2025-12-07 17:18:43,903\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_e6821f34_26_text_det_box_thresh=0.2408,text_det_thresh=0.3669,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-18-43\n", + "2025-12-07 17:18:43,904\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_e6821f34_26_text_det_box_thresh=0.2408,text_det_thresh=0.3669,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-18-43\n", + "2025-12-07 17:18:48,373\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_e6821f34_26_text_det_box_thresh=0.2408,text_det_thresh=0.3669,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-18-43\n", + "2025-12-07 17:18:48,373\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_e6821f34_26_text_det_box_thresh=0.2408,text_det_thresh=0.3669,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-18-43\n", + "\u001b[36m(trainable_paddle_ocr pid=15412)\u001b[0m [2025-12-07 17:19:13,443 E 15412 9512] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\u001b[32m [repeated 2x across cluster]\u001b[0m\n", + "\u001b[36m(trainable_paddle_ocr pid=26088)\u001b[0m [2025-12-07 17:19:18,671 E 26088 10400] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "2025-12-07 17:24:49,882\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_70862adc_25_text_det_box_thresh=0.2163,text_det_thresh=0.3964,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-18-38\n", + "2025-12-07 17:24:49,909\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_8b680875_27_text_det_box_thresh=0.3193,text_det_thresh=0.5312,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-24-49\n", + "2025-12-07 17:24:49,911\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_8b680875_27_text_det_box_thresh=0.3193,text_det_thresh=0.5312,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-24-49\n", + "2025-12-07 17:24:53,650\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_e6821f34_26_text_det_box_thresh=0.2408,text_det_thresh=0.3669,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-18-43\n", + "2025-12-07 17:24:55,137\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_8b680875_27_text_det_box_thresh=0.3193,text_det_thresh=0.5312,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-24-49\n", + "2025-12-07 17:24:55,137\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_8b680875_27_text_det_box_thresh=0.3193,text_det_thresh=0.5312,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-24-49\n", + "2025-12-07 17:24:55,153\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_fc54867b_28_text_det_box_thresh=0.3043,text_det_thresh=0.5034,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-24-55\n", + "2025-12-07 17:24:55,156\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_fc54867b_28_text_det_box_thresh=0.3043,text_det_thresh=0.5034,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-24-55\n", + "2025-12-07 17:24:59,622\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_fc54867b_28_text_det_box_thresh=0.3043,text_det_thresh=0.5034,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-24-55\n", + "2025-12-07 17:24:59,622\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_fc54867b_28_text_det_box_thresh=0.3043,text_det_thresh=0.5034,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-24-55\n", + "\u001b[36m(trainable_paddle_ocr pid=1720)\u001b[0m [2025-12-07 17:25:25,047 E 1720 25468] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "2025-12-07 17:31:02,389\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_8b680875_27_text_det_box_thresh=0.3193,text_det_thresh=0.5312,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-24-49\n", + "2025-12-07 17:31:02,469\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_c32d0d5e_29_text_det_box_thresh=0.3985,text_det_thresh=0.1530,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-31-02\n", + "2025-12-07 17:31:02,473\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_c32d0d5e_29_text_det_box_thresh=0.3985,text_det_thresh=0.1530,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-31-02\n", + "2025-12-07 17:31:08,377\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_fc54867b_28_text_det_box_thresh=0.3043,text_det_thresh=0.5034,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-24-55\n", + "2025-12-07 17:31:08,467\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_c32d0d5e_29_text_det_box_thresh=0.3985,text_det_thresh=0.1530,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-31-02\n", + "2025-12-07 17:31:08,467\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_c32d0d5e_29_text_det_box_thresh=0.3985,text_det_thresh=0.1530,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-31-02\n", + "2025-12-07 17:31:08,487\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_4762fbbb_30_text_det_box_thresh=0.4010,text_det_thresh=0.1334,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-31-08\n", + "2025-12-07 17:31:08,489\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_4762fbbb_30_text_det_box_thresh=0.4010,text_det_thresh=0.1334,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-31-08\n", + "2025-12-07 17:31:12,960\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_4762fbbb_30_text_det_box_thresh=0.4010,text_det_thresh=0.1334,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-31-08\n", + "2025-12-07 17:31:12,962\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_4762fbbb_30_text_det_box_thresh=0.4010,text_det_thresh=0.1334,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-31-08\n", + "\u001b[36m(trainable_paddle_ocr pid=25808)\u001b[0m [2025-12-07 17:31:37,810 E 25808 21612] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\u001b[32m [repeated 2x across cluster]\u001b[0m\n", + "\u001b[36m(trainable_paddle_ocr pid=20760)\u001b[0m [2025-12-07 17:31:43,311 E 20760 9512] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "2025-12-07 17:37:12,922\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_c32d0d5e_29_text_det_box_thresh=0.3985,text_det_thresh=0.1530,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-31-02\n", + "2025-12-07 17:37:12,971\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_522ac97c_31_text_det_box_thresh=0.4028,text_det_thresh=0.4490,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-37-12\n", + "2025-12-07 17:37:12,975\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_522ac97c_31_text_det_box_thresh=0.4028,text_det_thresh=0.4490,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-37-12\n", + "2025-12-07 17:37:16,310\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_4762fbbb_30_text_det_box_thresh=0.4010,text_det_thresh=0.1334,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-31-08\n", + "2025-12-07 17:37:18,530\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_522ac97c_31_text_det_box_thresh=0.4028,text_det_thresh=0.4490,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-37-12\n", + "2025-12-07 17:37:18,538\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_522ac97c_31_text_det_box_thresh=0.4028,text_det_thresh=0.4490,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-37-12\n", + "2025-12-07 17:37:18,551\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_5784f433_32_text_det_box_thresh=0.1928,text_det_thresh=0.4620,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-37-18\n", + "2025-12-07 17:37:18,553\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_5784f433_32_text_det_box_thresh=0.1928,text_det_thresh=0.4620,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-37-18\n", + "2025-12-07 17:37:23,024\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_5784f433_32_text_det_box_thresh=0.1928,text_det_thresh=0.4620,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-37-18\n", + "2025-12-07 17:37:23,030\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_5784f433_32_text_det_box_thresh=0.1928,text_det_thresh=0.4620,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-37-18\n", + "\u001b[36m(trainable_paddle_ocr pid=2372)\u001b[0m [2025-12-07 17:37:49,189 E 2372 11208] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "2025-12-07 17:43:23,269\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_522ac97c_31_text_det_box_thresh=0.4028,text_det_thresh=0.4490,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-37-12\n", + "2025-12-07 17:43:23,297\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_83af0528_33_text_det_box_thresh=0.1846,text_det_thresh=0.4663,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-43-23\n", + "2025-12-07 17:43:23,299\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_83af0528_33_text_det_box_thresh=0.1846,text_det_thresh=0.4663,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-43-23\n", + "2025-12-07 17:43:25,962\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_5784f433_32_text_det_box_thresh=0.1928,text_det_thresh=0.4620,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-37-18\n", + "2025-12-07 17:43:28,377\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_83af0528_33_text_det_box_thresh=0.1846,text_det_thresh=0.4663,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-43-23\n", + "2025-12-07 17:43:28,377\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_83af0528_33_text_det_box_thresh=0.1846,text_det_thresh=0.4663,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-43-23\n", + "2025-12-07 17:43:28,392\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_12cbaa22_34_text_det_box_thresh=0.4056,text_det_thresh=0.4728,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-43-28\n", + "2025-12-07 17:43:28,394\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_12cbaa22_34_text_det_box_thresh=0.4056,text_det_thresh=0.4728,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-43-28\n", + "2025-12-07 17:43:32,822\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_12cbaa22_34_text_det_box_thresh=0.4056,text_det_thresh=0.4728,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-43-28\n", + "2025-12-07 17:43:32,822\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_12cbaa22_34_text_det_box_thresh=0.4056,text_det_thresh=0.4728,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-43-28\n", + "\u001b[36m(trainable_paddle_ocr pid=9832)\u001b[0m [2025-12-07 17:43:58,320 E 9832 20188] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\u001b[32m [repeated 2x across cluster]\u001b[0m\n", + "2025-12-07 17:49:32,969\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_83af0528_33_text_det_box_thresh=0.1846,text_det_thresh=0.4663,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-43-23\n", + "2025-12-07 17:49:32,999\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_a3a87765_35_text_det_box_thresh=0.2856,text_det_thresh=0.4501,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-49-32\n", + "2025-12-07 17:49:33,002\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_a3a87765_35_text_det_box_thresh=0.2856,text_det_thresh=0.4501,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-49-32\n", + "2025-12-07 17:49:37,086\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_12cbaa22_34_text_det_box_thresh=0.4056,text_det_thresh=0.4728,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-43-28\n", + "2025-12-07 17:49:38,207\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_a3a87765_35_text_det_box_thresh=0.2856,text_det_thresh=0.4501,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-49-32\n", + "2025-12-07 17:49:38,207\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_a3a87765_35_text_det_box_thresh=0.2856,text_det_thresh=0.4501,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-49-32\n", + "2025-12-07 17:49:38,221\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_cf2bad0c_36_text_det_box_thresh=0.2837,text_det_thresh=0.5890,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-49-38\n", + "2025-12-07 17:49:38,224\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_cf2bad0c_36_text_det_box_thresh=0.2837,text_det_thresh=0.5890,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-49-38\n", + "2025-12-07 17:49:42,732\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_cf2bad0c_36_text_det_box_thresh=0.2837,text_det_thresh=0.5890,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-49-38\n", + "2025-12-07 17:49:42,734\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_cf2bad0c_36_text_det_box_thresh=0.2837,text_det_thresh=0.5890,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-49-38\n", + "\u001b[36m(trainable_paddle_ocr pid=24372)\u001b[0m [2025-12-07 17:50:08,047 E 24372 25404] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\u001b[32m [repeated 2x across cluster]\u001b[0m\n", + "\u001b[36m(trainable_paddle_ocr pid=3272)\u001b[0m [2025-12-07 17:50:14,041 E 3272 25236] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "2025-12-07 17:55:47,492\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_a3a87765_35_text_det_box_thresh=0.2856,text_det_thresh=0.4501,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-49-32\n", + "2025-12-07 17:55:47,513\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_9a9b91e7_37_text_det_box_thresh=0.3646,text_det_thresh=0.6090,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-55-47\n", + "2025-12-07 17:55:47,515\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_9a9b91e7_37_text_det_box_thresh=0.3646,text_det_thresh=0.6090,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-55-47\n", + "2025-12-07 17:55:48,925\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_cf2bad0c_36_text_det_box_thresh=0.2837,text_det_thresh=0.5890,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-49-38\n", + "2025-12-07 17:55:52,512\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_9a9b91e7_37_text_det_box_thresh=0.3646,text_det_thresh=0.6090,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-55-47\n", + "2025-12-07 17:55:52,520\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_9a9b91e7_37_text_det_box_thresh=0.3646,text_det_thresh=0.6090,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-55-47\n", + "2025-12-07 17:55:52,532\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_e326d901_38_text_det_box_thresh=0.3735,text_det_thresh=0.5932,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-55-52\n", + "2025-12-07 17:55:52,532\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_e326d901_38_text_det_box_thresh=0.3735,text_det_thresh=0.5932,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-55-52\n", + "2025-12-07 17:55:56,990\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_e326d901_38_text_det_box_thresh=0.3735,text_det_thresh=0.5932,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-55-52\n", + "2025-12-07 17:55:56,990\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_e326d901_38_text_det_box_thresh=0.3735,text_det_thresh=0.5932,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-55-52\n", + "\u001b[36m(trainable_paddle_ocr pid=2272)\u001b[0m [2025-12-07 17:56:22,469 E 2272 9344] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "2025-12-07 18:01:56,576\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_9a9b91e7_37_text_det_box_thresh=0.3646,text_det_thresh=0.6090,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-55-47\n", + "2025-12-07 18:01:56,635\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_ccb3f19a_39_text_det_box_thresh=0.4538,text_det_thresh=0.6866,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-01-56\n", + "2025-12-07 18:01:56,637\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_ccb3f19a_39_text_det_box_thresh=0.4538,text_det_thresh=0.6866,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-01-56\n", + "2025-12-07 18:02:02,426\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_ccb3f19a_39_text_det_box_thresh=0.4538,text_det_thresh=0.6866,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-01-56\n", + "2025-12-07 18:02:02,426\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_ccb3f19a_39_text_det_box_thresh=0.4538,text_det_thresh=0.6866,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-01-56\n", + "2025-12-07 18:02:02,442\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_e326d901_38_text_det_box_thresh=0.3735,text_det_thresh=0.5932,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_17-55-52\n", + "2025-12-07 18:02:02,471\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_8c12c55f_40_text_det_box_thresh=0.4444,text_det_thresh=0.6710,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-02-02\n", + "2025-12-07 18:02:02,472\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_8c12c55f_40_text_det_box_thresh=0.4444,text_det_thresh=0.6710,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-02-02\n", + "2025-12-07 18:02:06,950\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_8c12c55f_40_text_det_box_thresh=0.4444,text_det_thresh=0.6710,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-02-02\n", + "2025-12-07 18:02:06,950\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_8c12c55f_40_text_det_box_thresh=0.4444,text_det_thresh=0.6710,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-02-02\n", + "\u001b[36m(trainable_paddle_ocr pid=1104)\u001b[0m [2025-12-07 18:02:31,870 E 1104 11720] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\u001b[32m [repeated 2x across cluster]\u001b[0m\n", + "\u001b[36m(trainable_paddle_ocr pid=19700)\u001b[0m [2025-12-07 18:02:38,333 E 19700 6824] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "2025-12-07 18:08:07,593\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_ccb3f19a_39_text_det_box_thresh=0.4538,text_det_thresh=0.6866,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-01-56\n", + "2025-12-07 18:08:07,628\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_5a62d5b6_41_text_det_box_thresh=0.2010,text_det_thresh=0.4041,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-08-07\n", + "2025-12-07 18:08:07,630\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_5a62d5b6_41_text_det_box_thresh=0.2010,text_det_thresh=0.4041,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-08-07\n", + "2025-12-07 18:08:10,260\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_8c12c55f_40_text_det_box_thresh=0.4444,text_det_thresh=0.6710,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-02-02\n", + "2025-12-07 18:08:12,660\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_5a62d5b6_41_text_det_box_thresh=0.2010,text_det_thresh=0.4041,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-08-07\n", + "2025-12-07 18:08:12,664\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_5a62d5b6_41_text_det_box_thresh=0.2010,text_det_thresh=0.4041,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-08-07\n", + "2025-12-07 18:08:12,675\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_bb4495b7_42_text_det_box_thresh=0.5764,text_det_thresh=0.3907,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-08-12\n", + "2025-12-07 18:08:12,684\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_bb4495b7_42_text_det_box_thresh=0.5764,text_det_thresh=0.3907,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-08-12\n", + "2025-12-07 18:08:17,160\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_bb4495b7_42_text_det_box_thresh=0.5764,text_det_thresh=0.3907,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-08-12\n", + "2025-12-07 18:08:17,164\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_bb4495b7_42_text_det_box_thresh=0.5764,text_det_thresh=0.3907,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-08-12\n", + "\u001b[36m(trainable_paddle_ocr pid=26528)\u001b[0m [2025-12-07 18:08:42,646 E 26528 5412] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "\u001b[36m(trainable_paddle_ocr pid=21772)\u001b[0m [2025-12-07 18:08:48,607 E 21772 12564] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "2025-12-07 18:14:33,027\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_5a62d5b6_41_text_det_box_thresh=0.2010,text_det_thresh=0.4041,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-08-07\n", + "2025-12-07 18:14:33,082\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_9d90711d_43_text_det_box_thresh=0.5412,text_det_thresh=0.4690,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-14-33\n", + "2025-12-07 18:14:33,085\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_9d90711d_43_text_det_box_thresh=0.5412,text_det_thresh=0.4690,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-14-33\n", + "2025-12-07 18:14:33,144\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_bb4495b7_42_text_det_box_thresh=0.5764,text_det_thresh=0.3907,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-08-12\n", + "2025-12-07 18:14:38,712\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_9d90711d_43_text_det_box_thresh=0.5412,text_det_thresh=0.4690,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-14-33\n", + "2025-12-07 18:14:38,714\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_9d90711d_43_text_det_box_thresh=0.5412,text_det_thresh=0.4690,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-14-33\n", + "2025-12-07 18:14:38,727\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_daaec3f8_44_text_det_box_thresh=0.5213,text_det_thresh=0.4744,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-14-38\n", + "2025-12-07 18:14:38,731\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_daaec3f8_44_text_det_box_thresh=0.5213,text_det_thresh=0.4744,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-14-38\n", + "2025-12-07 18:14:43,202\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_daaec3f8_44_text_det_box_thresh=0.5213,text_det_thresh=0.4744,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-14-38\n", + "2025-12-07 18:14:43,206\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_daaec3f8_44_text_det_box_thresh=0.5213,text_det_thresh=0.4744,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-14-38\n", + "\u001b[36m(trainable_paddle_ocr pid=17592)\u001b[0m [2025-12-07 18:15:08,237 E 17592 11980] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "\u001b[36m(trainable_paddle_ocr pid=21292)\u001b[0m [2025-12-07 18:15:13,513 E 21292 10368] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "2025-12-07 18:20:44,494\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_9d90711d_43_text_det_box_thresh=0.5412,text_det_thresh=0.4690,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-14-33\n", + "2025-12-07 18:20:44,525\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_51fb5915_45_text_det_box_thresh=0.5811,text_det_thresh=0.4854,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-20-44\n", + "2025-12-07 18:20:44,528\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_51fb5915_45_text_det_box_thresh=0.5811,text_det_thresh=0.4854,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-20-44\n", + "2025-12-07 18:20:46,235\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_daaec3f8_44_text_det_box_thresh=0.5213,text_det_thresh=0.4744,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-14-38\n", + "2025-12-07 18:20:49,638\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_51fb5915_45_text_det_box_thresh=0.5811,text_det_thresh=0.4854,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-20-44\n", + "2025-12-07 18:20:49,639\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_51fb5915_45_text_det_box_thresh=0.5811,text_det_thresh=0.4854,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-20-44\n", + "2025-12-07 18:20:49,649\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_18966a33_46_text_det_box_thresh=0.5133,text_det_thresh=0.5502,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-20-49\n", + "2025-12-07 18:20:49,649\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_18966a33_46_text_det_box_thresh=0.5133,text_det_thresh=0.5502,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-20-49\n", + "2025-12-07 18:20:54,162\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_18966a33_46_text_det_box_thresh=0.5133,text_det_thresh=0.5502,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-20-49\n", + "2025-12-07 18:20:54,162\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_18966a33_46_text_det_box_thresh=0.5133,text_det_thresh=0.5502,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-20-49\n", + "\u001b[36m(trainable_paddle_ocr pid=21772)\u001b[0m [2025-12-07 18:21:19,532 E 21772 9096] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "2025-12-07 18:26:53,700\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_51fb5915_45_text_det_box_thresh=0.5811,text_det_thresh=0.4854,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-20-44\n", + "2025-12-07 18:26:53,763\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_b67080f9_47_text_det_box_thresh=0.5761,text_det_thresh=0.5534,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-26-53\n", + "2025-12-07 18:26:53,766\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_b67080f9_47_text_det_box_thresh=0.5761,text_det_thresh=0.5534,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-26-53\n", + "2025-12-07 18:26:57,513\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_18966a33_46_text_det_box_thresh=0.5133,text_det_thresh=0.5502,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-20-49\n", + "2025-12-07 18:26:59,363\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_b67080f9_47_text_det_box_thresh=0.5761,text_det_thresh=0.5534,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-26-53\n", + "2025-12-07 18:26:59,363\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_b67080f9_47_text_det_box_thresh=0.5761,text_det_thresh=0.5534,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-26-53\n", + "2025-12-07 18:26:59,379\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_2533f368_48_text_det_box_thresh=0.5246,text_det_thresh=0.5572,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-26-59\n", + "2025-12-07 18:26:59,382\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_2533f368_48_text_det_box_thresh=0.5246,text_det_thresh=0.5572,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-26-59\n", + "2025-12-07 18:27:03,913\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_2533f368_48_text_det_box_thresh=0.5246,text_det_thresh=0.5572,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-26-59\n", + "2025-12-07 18:27:03,913\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_2533f368_48_text_det_box_thresh=0.5246,text_det_thresh=0.5572,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-26-59\n", + "\u001b[36m(trainable_paddle_ocr pid=20948)\u001b[0m [2025-12-07 18:27:29,044 E 20948 19656] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\u001b[32m [repeated 2x across cluster]\u001b[0m\n", + "\u001b[36m(trainable_paddle_ocr pid=11208)\u001b[0m [2025-12-07 18:27:34,203 E 11208 2320] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "2025-12-07 18:33:05,400\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_b67080f9_47_text_det_box_thresh=0.5761,text_det_thresh=0.5534,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-26-53\n", + "2025-12-07 18:33:05,427\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_451d018d_49_text_det_box_thresh=0.5495,text_det_thresh=0.6340,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-33-05\n", + "2025-12-07 18:33:05,428\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_451d018d_49_text_det_box_thresh=0.5495,text_det_thresh=0.6340,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-33-05\n", + "2025-12-07 18:33:10,740\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_451d018d_49_text_det_box_thresh=0.5495,text_det_thresh=0.6340,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-33-05\n", + "2025-12-07 18:33:10,743\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_451d018d_49_text_det_box_thresh=0.5495,text_det_thresh=0.6340,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-33-05\n", + "2025-12-07 18:33:15,130\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_2533f368_48_text_det_box_thresh=0.5246,text_det_thresh=0.5572,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-26-59\n", + "2025-12-07 18:33:15,154\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_2256e752_50_text_det_box_thresh=0.6229,text_det_thresh=0.6478,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-33-15\n", + "2025-12-07 18:33:15,156\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_2256e752_50_text_det_box_thresh=0.6229,text_det_thresh=0.6478,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-33-15\n", + "2025-12-07 18:33:19,685\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_2256e752_50_text_det_box_thresh=0.6229,text_det_thresh=0.6478,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-33-15\n", + "2025-12-07 18:33:19,685\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_2256e752_50_text_det_box_thresh=0.6229,text_det_thresh=0.6478,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-33-15\n", + "\u001b[36m(trainable_paddle_ocr pid=3616)\u001b[0m [2025-12-07 18:33:40,534 E 3616 22824] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "\u001b[36m(trainable_paddle_ocr pid=25468)\u001b[0m [2025-12-07 18:33:49,934 E 25468 7192] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "2025-12-07 18:39:29,627\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_2256e752_50_text_det_box_thresh=0.6229,text_det_thresh=0.6478,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-33-15\n", + "2025-12-07 18:39:29,649\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_451d018d_49_text_det_box_thresh=0.5495,text_det_thresh=0.6340,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-33-05\n", + "2025-12-07 18:39:29,687\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_0a892729_51_text_det_box_thresh=0.5429,text_det_thresh=0.4217,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-39-29\n", + "2025-12-07 18:39:29,690\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_0a892729_51_text_det_box_thresh=0.5429,text_det_thresh=0.4217,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-39-29\n", + "2025-12-07 18:39:35,040\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_0a892729_51_text_det_box_thresh=0.5429,text_det_thresh=0.4217,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-39-29\n", + "2025-12-07 18:39:35,040\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_0a892729_51_text_det_box_thresh=0.5429,text_det_thresh=0.4217,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-39-29\n", + "2025-12-07 18:39:35,057\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_495075f5_52_text_det_box_thresh=0.6319,text_det_thresh=0.4187,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-39-35\n", + "2025-12-07 18:39:35,059\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_495075f5_52_text_det_box_thresh=0.6319,text_det_thresh=0.4187,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-39-35\n", + "2025-12-07 18:39:39,597\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_495075f5_52_text_det_box_thresh=0.6319,text_det_thresh=0.4187,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-39-35\n", + "2025-12-07 18:39:39,598\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_495075f5_52_text_det_box_thresh=0.6319,text_det_thresh=0.4187,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-39-35\n", + "\u001b[36m(trainable_paddle_ocr pid=26212)\u001b[0m [2025-12-07 18:40:04,811 E 26212 22100] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "\u001b[36m(trainable_paddle_ocr pid=23604)\u001b[0m [2025-12-07 18:40:10,081 E 23604 16924] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "2025-12-07 18:45:42,301\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_0a892729_51_text_det_box_thresh=0.5429,text_det_thresh=0.4217,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-39-29\n", + "2025-12-07 18:45:42,331\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_54c45552_53_text_det_box_thresh=0.6197,text_det_thresh=0.4638,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-45-42\n", + "2025-12-07 18:45:42,335\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_54c45552_53_text_det_box_thresh=0.6197,text_det_thresh=0.4638,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-45-42\n", + "2025-12-07 18:45:45,144\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_495075f5_52_text_det_box_thresh=0.6319,text_det_thresh=0.4187,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-39-35\n", + "2025-12-07 18:45:47,422\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_54c45552_53_text_det_box_thresh=0.6197,text_det_thresh=0.4638,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-45-42\n", + "2025-12-07 18:45:47,422\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_54c45552_53_text_det_box_thresh=0.6197,text_det_thresh=0.4638,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-45-42\n", + "2025-12-07 18:45:47,436\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_6b2e9b93_54_text_det_box_thresh=0.4893,text_det_thresh=0.4752,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-45-47\n", + "2025-12-07 18:45:47,436\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_6b2e9b93_54_text_det_box_thresh=0.4893,text_det_thresh=0.4752,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-45-47\n", + "2025-12-07 18:45:51,980\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_6b2e9b93_54_text_det_box_thresh=0.4893,text_det_thresh=0.4752,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-45-47\n", + "2025-12-07 18:45:51,980\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_6b2e9b93_54_text_det_box_thresh=0.4893,text_det_thresh=0.4752,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-45-47\n", + "\u001b[36m(trainable_paddle_ocr pid=25352)\u001b[0m [2025-12-07 18:46:17,386 E 25352 26068] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "2025-12-07 18:51:55,425\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_54c45552_53_text_det_box_thresh=0.6197,text_det_thresh=0.4638,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-45-42\n", + "2025-12-07 18:51:55,497\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_e9a6b81f_55_text_det_box_thresh=0.4926,text_det_thresh=0.4879,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-51-55\n", + "2025-12-07 18:51:55,501\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_e9a6b81f_55_text_det_box_thresh=0.4926,text_det_thresh=0.4879,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-51-55\n", + "2025-12-07 18:51:57,995\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_6b2e9b93_54_text_det_box_thresh=0.4893,text_det_thresh=0.4752,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-45-47\n", + "2025-12-07 18:52:01,238\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_e9a6b81f_55_text_det_box_thresh=0.4926,text_det_thresh=0.4879,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-51-55\n", + "2025-12-07 18:52:01,239\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_e9a6b81f_55_text_det_box_thresh=0.4926,text_det_thresh=0.4879,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-51-55\n", + "2025-12-07 18:52:01,255\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_076c5450_56_text_det_box_thresh=0.5881,text_det_thresh=0.4884,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-52-01\n", + "2025-12-07 18:52:01,258\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_076c5450_56_text_det_box_thresh=0.5881,text_det_thresh=0.4884,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-52-01\n", + "2025-12-07 18:52:05,685\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_076c5450_56_text_det_box_thresh=0.5881,text_det_thresh=0.4884,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-52-01\n", + "2025-12-07 18:52:05,685\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_076c5450_56_text_det_box_thresh=0.5881,text_det_thresh=0.4884,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-52-01\n", + "\u001b[36m(trainable_paddle_ocr pid=4036)\u001b[0m [2025-12-07 18:52:30,776 E 4036 16404] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\u001b[32m [repeated 2x across cluster]\u001b[0m\n", + "\u001b[36m(trainable_paddle_ocr pid=4832)\u001b[0m [2025-12-07 18:52:36,982 E 4832 22740] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "2025-12-07 18:58:08,591\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_e9a6b81f_55_text_det_box_thresh=0.4926,text_det_thresh=0.4879,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-51-55\n", + "2025-12-07 18:58:08,621\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_4a42a3ea_57_text_det_box_thresh=0.5940,text_det_thresh=0.5590,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-58-08\n", + "2025-12-07 18:58:08,624\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_4a42a3ea_57_text_det_box_thresh=0.5940,text_det_thresh=0.5590,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-58-08\n", + "2025-12-07 18:58:10,886\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_076c5450_56_text_det_box_thresh=0.5881,text_det_thresh=0.4884,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-52-01\n", + "2025-12-07 18:58:13,816\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_4a42a3ea_57_text_det_box_thresh=0.5940,text_det_thresh=0.5590,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-58-08\n", + "2025-12-07 18:58:13,816\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_4a42a3ea_57_text_det_box_thresh=0.5940,text_det_thresh=0.5590,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-58-08\n", + "2025-12-07 18:58:13,830\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_041795f1_58_text_det_box_thresh=0.6617,text_det_thresh=0.5650,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-58-13\n", + "2025-12-07 18:58:13,833\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_041795f1_58_text_det_box_thresh=0.6617,text_det_thresh=0.5650,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-58-13\n", + "2025-12-07 18:58:18,273\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_041795f1_58_text_det_box_thresh=0.6617,text_det_thresh=0.5650,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-58-13\n", + "2025-12-07 18:58:18,280\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_041795f1_58_text_det_box_thresh=0.6617,text_det_thresh=0.5650,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-58-13\n", + "\u001b[36m(trainable_paddle_ocr pid=14912)\u001b[0m [2025-12-07 18:58:43,671 E 14912 9648] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "2025-12-07 19:04:24,842\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_4a42a3ea_57_text_det_box_thresh=0.5940,text_det_thresh=0.5590,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-58-08\n", + "2025-12-07 19:04:24,907\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_8abb3f37_59_text_det_box_thresh=0.4637,text_det_thresh=0.4898,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_19-04-24\n", + "2025-12-07 19:04:24,910\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_8abb3f37_59_text_det_box_thresh=0.4637,text_det_thresh=0.4898,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_19-04-24\n", + "2025-12-07 19:04:29,252\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_041795f1_58_text_det_box_thresh=0.6617,text_det_thresh=0.5650,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_18-58-13\n", + "2025-12-07 19:04:30,602\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_8abb3f37_59_text_det_box_thresh=0.4637,text_det_thresh=0.4898,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_19-04-24\n", + "2025-12-07 19:04:30,603\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_8abb3f37_59_text_det_box_thresh=0.4637,text_det_thresh=0.4898,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_19-04-24\n", + "2025-12-07 19:04:30,613\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_f2cb682e_60_text_det_box_thresh=0.4522,text_det_thresh=0.4918,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_19-04-30\n", + "2025-12-07 19:04:30,619\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_f2cb682e_60_text_det_box_thresh=0.4522,text_det_thresh=0.4918,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_19-04-30\n", + "2025-12-07 19:04:35,119\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_f2cb682e_60_text_det_box_thresh=0.4522,text_det_thresh=0.4918,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_19-04-30\n", + "2025-12-07 19:04:35,119\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_f2cb682e_60_text_det_box_thresh=0.4522,text_det_thresh=0.4918,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_19-04-30\n", + "\u001b[36m(trainable_paddle_ocr pid=22012)\u001b[0m [2025-12-07 19:05:01,269 E 22012 4372] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\u001b[32m [repeated 2x across cluster]\u001b[0m\n", + "2025-12-07 19:10:35,351\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_8abb3f37_59_text_det_box_thresh=0.4637,text_det_thresh=0.4898,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_19-04-24\n", + "2025-12-07 19:10:35,442\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_463fe5e7_61_text_det_box_thresh=0.5202,text_det_thresh=0.5373,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_19-10-35\n", + "2025-12-07 19:10:35,445\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_463fe5e7_61_text_det_box_thresh=0.5202,text_det_thresh=0.5373,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_19-10-35\n", + "2025-12-07 19:10:40,065\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_f2cb682e_60_text_det_box_thresh=0.4522,text_det_thresh=0.4918,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_19-04-30\n", + "2025-12-07 19:10:41,249\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_463fe5e7_61_text_det_box_thresh=0.5202,text_det_thresh=0.5373,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_19-10-35\n", + "2025-12-07 19:10:41,249\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_463fe5e7_61_text_det_box_thresh=0.5202,text_det_thresh=0.5373,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_19-10-35\n", + "2025-12-07 19:10:41,261\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_88bbe87d_62_text_det_box_thresh=0.5111,text_det_thresh=0.5275,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_19-10-41\n", + "2025-12-07 19:10:41,261\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_88bbe87d_62_text_det_box_thresh=0.5111,text_det_thresh=0.5275,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_19-10-41\n", + "2025-12-07 19:10:45,749\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_88bbe87d_62_text_det_box_thresh=0.5111,text_det_thresh=0.5275,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_19-10-41\n", + "2025-12-07 19:10:45,750\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_88bbe87d_62_text_det_box_thresh=0.5111,text_det_thresh=0.5275,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_19-10-41\n", + "\u001b[36m(trainable_paddle_ocr pid=16524)\u001b[0m [2025-12-07 19:11:10,747 E 16524 6148] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\u001b[32m [repeated 2x across cluster]\u001b[0m\n", + "\u001b[36m(trainable_paddle_ocr pid=15084)\u001b[0m [2025-12-07 19:11:16,039 E 15084 20216] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "2025-12-07 19:16:51,841\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_463fe5e7_61_text_det_box_thresh=0.5202,text_det_thresh=0.5373,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_19-10-35\n", + "2025-12-07 19:16:51,883\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_33ea1cc6_63_text_det_box_thresh=0.5158,text_det_thresh=0.5230,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_19-16-51\n", + "2025-12-07 19:16:51,884\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_33ea1cc6_63_text_det_box_thresh=0.5158,text_det_thresh=0.5230,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_19-16-51\n", + "2025-12-07 19:16:55,313\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_88bbe87d_62_text_det_box_thresh=0.5111,text_det_thresh=0.5275,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_19-10-41\n", + "2025-12-07 19:16:57,623\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_33ea1cc6_63_text_det_box_thresh=0.5158,text_det_thresh=0.5230,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_19-16-51\n", + "2025-12-07 19:16:57,623\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_33ea1cc6_63_text_det_box_thresh=0.5158,text_det_thresh=0.5230,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_19-16-51\n", + "2025-12-07 19:16:57,638\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_1243723e_64_text_det_box_thresh=0.5573,text_det_thresh=0.3727,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_19-16-57\n", + "2025-12-07 19:16:57,639\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_1243723e_64_text_det_box_thresh=0.5573,text_det_thresh=0.3727,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_19-16-57\n", + "2025-12-07 19:17:02,358\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_1243723e_64_text_det_box_thresh=0.5573,text_det_thresh=0.3727,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_19-16-57\n", + "2025-12-07 19:17:02,362\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_1243723e_64_text_det_box_thresh=0.5573,text_det_thresh=0.3727,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_19-16-57\n", + "\u001b[36m(trainable_paddle_ocr pid=17380)\u001b[0m [2025-12-07 19:17:27,300 E 17380 17224] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "\u001b[36m(trainable_paddle_ocr pid=11232)\u001b[0m [2025-12-07 19:17:32,685 E 11232 7916] core_worker_process.cc:837: Failed to establish connection to the metrics exporter agent. Metrics will not be exported. Exporter agent status: RpcError: Running out of retries to initialize the metrics agent. rpc_code: 14\n", + "2025-12-07 19:23:14,420\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_33ea1cc6_63_text_det_box_thresh=0.5158,text_det_thresh=0.5230,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_19-16-51\n", + "2025-12-07 19:23:17,826\tWARNING trial.py:647 -- The path to the trial log directory is too long (max length: 260. Consider using `trial_dirname_creator` to shorten the path. Path: C:\\Users\\Sergio\\AppData\\Local\\Temp\\ray\\session_2025-12-07_15-57-58_291425_24012\\artifacts\\2025-12-07_16-03-56\\trainable_paddle_ocr_2025-12-07_16-03-56\\driver_artifacts\\trainable_paddle_ocr_1243723e_64_text_det_box_thresh=0.5573,text_det_thresh=0.3727,text_det_unclip_ratio=0.0000,text_rec_score_thr_2025-12-07_19-16-57\n", + "2025-12-07 19:23:17,928\tINFO tune.py:1009 -- Wrote the latest version of all result files and experiment state to 'C:/Users/Sergio/ray_results/trainable_paddle_ocr_2025-12-07_16-03-56' in 0.0859s.\n", + "2025-12-07 19:23:17,957\tINFO tune.py:1041 -- Total run time: 11961.30 seconds (11961.14 seconds for the tuning loop).\n" ] } ], @@ -1930,9 +1992,9 @@ " proc = subprocess.run(args, capture_output=True, text=True, cwd=SCRIPT_DIR)\n", "\n", " if proc.returncode != 0:\n", - " tune.report({\"CER\": 1.0, \"WER\": 1.0, \"TIME\": 0.0, \"ERROR\": proc.stderr[:500]})\n", + " tune.report({\"CER\": 1.0, \"WER\": 1.0, \"TIME\": 0.0, 'PAGES': 0, 'TIME_PER_PAGE': 0, \"ERROR\": proc.stderr[:500]})\n", " return\n", - " # última línea = JSON con métricas\n", + " # last line contains the metrics in json format\n", " last = proc.stdout.strip().splitlines()[-1]\n", " \n", " metrics = json.loads(last)\n", @@ -1943,19 +2005,18 @@ " tune_config=tune.TuneConfig(metric=\"CER\", \n", " mode=\"min\", \n", " search_alg=OptunaSearch(),\n", - " num_samples=128, \n", - " max_concurrent_trials=4),\n", + " num_samples=64, \n", + " max_concurrent_trials=2),\n", " run_config=air.RunConfig(verbose=2, log_to_file=False),\n", " param_space=search_space\n", ")\n", "\n", - "results = tuner.fit()\n", - "\n" + "results = tuner.fit()" ] }, { "cell_type": "code", - "execution_count": 74, + "execution_count": null, "id": "710a67ce", "metadata": {}, "outputs": [], @@ -1965,22 +2026,16 @@ }, { "cell_type": "code", - "execution_count": 75, + "execution_count": null, "id": "1ab345a3", "metadata": {}, "outputs": [ { - "data": { - "text/html": [ - "
Guardado: raytune_paddle_subproc_results_20251207_082539.csv\n",
-       "
\n" - ], - "text/plain": [ - "Guardado: raytune_paddle_subproc_results_20251207_082539.csv\n" - ] - }, - "metadata": {}, - "output_type": "display_data" + "name": "stdout", + "output_type": "stream", + "text": [ + "Guardado: raytune_paddle_subproc_results_20251207_192320.csv\n" + ] } ], "source": [ @@ -1996,7 +2051,7 @@ }, { "cell_type": "code", - "execution_count": 76, + "execution_count": null, "id": "3e3a34e4", "metadata": {}, "outputs": [ @@ -2027,179 +2082,179 @@ " PAGES\n", " TIME_PER_PAGE\n", " timestamp\n", + " checkpoint_dir_name\n", " training_iteration\n", " time_this_iter_s\n", " time_total_s\n", " pid\n", " time_since_restore\n", " iterations_since_restore\n", + " config/text_det_thresh\n", " config/text_det_box_thresh\n", " config/text_det_unclip_ratio\n", " config/text_rec_score_thresh\n", - " config/line_tolerance\n", - " config/min_box_score\n", " \n", " \n", " \n", " \n", " count\n", - " 32.000000\n", - " 32.000000\n", - " 32.000000\n", - " 32.0\n", - " 32.000000\n", - " 3.200000e+01\n", - " 32.0\n", - " 32.000000\n", - " 32.000000\n", - " 32.000000\n", - " 32.000000\n", - " 32.0\n", - " 32.000000\n", - " 32.000000\n", - " 32.000000\n", - " 32.000000\n", - " 32.000000\n", + " 64.000000\n", + " 64.000000\n", + " 64.000000\n", + " 64.0\n", + " 64.000000\n", + " 6.400000e+01\n", + " 0.0\n", + " 64.0\n", + " 64.000000\n", + " 64.000000\n", + " 64.000000\n", + " 64.000000\n", + " 64.0\n", + " 64.000000\n", + " 64.000000\n", + " 64.0\n", + " 64.000000\n", " \n", " \n", " mean\n", - " 0.115214\n", - " 0.244518\n", - " 352.898464\n", + " 0.052482\n", + " 0.142770\n", + " 347.605870\n", " 5.0\n", - " 70.476907\n", - " 1.765054e+09\n", + " 69.423734\n", + " 1.765126e+09\n", + " NaN\n", " 1.0\n", - " 375.418998\n", - " 375.418998\n", - " 13340.500000\n", - " 375.418998\n", + " 367.715945\n", + " 367.715945\n", + " 16306.750000\n", + " 367.715945\n", " 1.0\n", - " 0.568591\n", - " 1.568133\n", - " 0.225000\n", - " 0.621875\n", - " 0.378125\n", + " 0.419091\n", + " 0.392965\n", + " 0.0\n", + " 0.470584\n", " \n", " \n", " std\n", - " 0.047797\n", - " 0.071960\n", - " 10.463174\n", + " 0.110269\n", + " 0.107515\n", + " 7.876539\n", " 0.0\n", - " 2.088799\n", - " 1.775117e+03\n", + " 1.574470\n", + " 3.473487e+03\n", + " NaN\n", " 0.0\n", - " 11.087853\n", - " 11.087853\n", - " 6600.340148\n", - " 11.087853\n", + " 8.011554\n", + " 8.011554\n", + " 8179.917114\n", + " 8.011554\n", " 0.0\n", - " 0.084085\n", - " 0.234027\n", - " 0.166559\n", - " 0.075067\n", - " 0.262414\n", + " 0.167178\n", + " 0.195419\n", + " 0.0\n", + " 0.219216\n", " \n", " \n", " min\n", - " 0.062982\n", - " 0.148775\n", - " 331.439532\n", + " 0.011535\n", + " 0.098902\n", + " 320.966205\n", " 5.0\n", - " 66.194626\n", - " 1.765051e+09\n", + " 64.095210\n", + " 1.765120e+09\n", + " NaN\n", " 1.0\n", - " 352.481225\n", - " 352.481225\n", - " 1072.000000\n", - " 352.481225\n", + " 341.071264\n", + " 341.071264\n", + " 1104.000000\n", + " 341.071264\n", " 1.0\n", - " 0.425531\n", - " 1.203175\n", - " 0.000000\n", - " 0.500000\n", - " 0.000000\n", + " 0.016997\n", + " 0.000242\n", + " 0.0\n", + " 0.002891\n", " \n", " \n", " 25%\n", - " 0.067274\n", - " 0.163547\n", - " 346.648190\n", + " 0.011968\n", + " 0.100441\n", + " 344.239116\n", " 5.0\n", - " 69.230920\n", - " 1.765053e+09\n", + " 68.755118\n", + " 1.765123e+09\n", + " NaN\n", " 1.0\n", - " 368.239074\n", - " 368.239074\n", - " 9455.000000\n", - " 368.239074\n", + " 364.708660\n", + " 364.708660\n", + " 9272.000000\n", + " 364.708660\n", " 1.0\n", - " 0.497180\n", - " 1.346349\n", - " 0.000000\n", - " 0.600000\n", - " 0.000000\n", + " 0.328652\n", + " 0.230515\n", + " 0.0\n", + " 0.311325\n", " \n", " \n", " 50%\n", - " 0.112058\n", - " 0.243838\n", - " 352.241485\n", + " 0.012314\n", + " 0.102033\n", + " 346.419682\n", " 5.0\n", - " 70.353191\n", - " 1.765054e+09\n", + " 69.188875\n", + " 1.765126e+09\n", + " NaN\n", " 1.0\n", - " 374.715855\n", - " 374.715855\n", - " 12292.000000\n", - " 374.715855\n", + " 366.103412\n", + " 366.103412\n", + " 18522.000000\n", + " 366.103412\n", " 1.0\n", - " 0.572609\n", - " 1.635590\n", - " 0.200000\n", - " 0.600000\n", - " 0.500000\n", + " 0.465068\n", + " 0.448332\n", + " 0.0\n", + " 0.559640\n", " \n", " \n", " 75%\n", - " 0.142252\n", - " 0.301922\n", - " 359.483947\n", + " 0.040339\n", + " 0.132047\n", + " 350.144563\n", " 5.0\n", - " 71.787356\n", - " 1.765056e+09\n", + " 69.930173\n", + " 1.765129e+09\n", + " NaN\n", " 1.0\n", - " 381.121178\n", - " 381.121178\n", - " 19556.000000\n", - " 381.121178\n", + " 370.648662\n", + " 370.648662\n", + " 23167.000000\n", + " 370.648662\n", " 1.0\n", - " 0.649900\n", - " 1.788165\n", - " 0.400000\n", - " 0.700000\n", - " 0.600000\n", + " 0.530501\n", + " 0.544563\n", + " 0.0\n", + " 0.645015\n", " \n", " \n", " max\n", - " 0.212477\n", - " 0.371172\n", - " 376.277248\n", + " 0.516069\n", + " 0.594530\n", + " 368.571180\n", " 5.0\n", - " 75.148484\n", - " 1.765057e+09\n", + " 73.625040\n", + " 1.765132e+09\n", + " NaN\n", " 1.0\n", - " 399.524998\n", - " 399.524998\n", - " 23532.000000\n", - " 399.524998\n", + " 388.150608\n", + " 388.150608\n", + " 26528.000000\n", + " 388.150608\n", " 1.0\n", - " 0.698742\n", - " 1.928521\n", - " 0.400000\n", - " 0.700000\n", - " 0.600000\n", + " 0.686641\n", + " 0.690232\n", + " 0.0\n", + " 0.699247\n", " \n", " \n", "\n", @@ -2207,148 +2262,109 @@ ], "text/plain": [ " CER WER TIME PAGES TIME_PER_PAGE timestamp \\\n", - "count 32.000000 32.000000 32.000000 32.0 32.000000 3.200000e+01 \n", - "mean 0.115214 0.244518 352.898464 5.0 70.476907 1.765054e+09 \n", - "std 0.047797 0.071960 10.463174 0.0 2.088799 1.775117e+03 \n", - "min 0.062982 0.148775 331.439532 5.0 66.194626 1.765051e+09 \n", - "25% 0.067274 0.163547 346.648190 5.0 69.230920 1.765053e+09 \n", - "50% 0.112058 0.243838 352.241485 5.0 70.353191 1.765054e+09 \n", - "75% 0.142252 0.301922 359.483947 5.0 71.787356 1.765056e+09 \n", - "max 0.212477 0.371172 376.277248 5.0 75.148484 1.765057e+09 \n", + "count 64.000000 64.000000 64.000000 64.0 64.000000 6.400000e+01 \n", + "mean 0.052482 0.142770 347.605870 5.0 69.423734 1.765126e+09 \n", + "std 0.110269 0.107515 7.876539 0.0 1.574470 3.473487e+03 \n", + "min 0.011535 0.098902 320.966205 5.0 64.095210 1.765120e+09 \n", + "25% 0.011968 0.100441 344.239116 5.0 68.755118 1.765123e+09 \n", + "50% 0.012314 0.102033 346.419682 5.0 69.188875 1.765126e+09 \n", + "75% 0.040339 0.132047 350.144563 5.0 69.930173 1.765129e+09 \n", + "max 0.516069 0.594530 368.571180 5.0 73.625040 1.765132e+09 \n", "\n", - " training_iteration time_this_iter_s time_total_s pid \\\n", - "count 32.0 32.000000 32.000000 32.000000 \n", - "mean 1.0 375.418998 375.418998 13340.500000 \n", - "std 0.0 11.087853 11.087853 6600.340148 \n", - "min 1.0 352.481225 352.481225 1072.000000 \n", - "25% 1.0 368.239074 368.239074 9455.000000 \n", - "50% 1.0 374.715855 374.715855 12292.000000 \n", - "75% 1.0 381.121178 381.121178 19556.000000 \n", - "max 1.0 399.524998 399.524998 23532.000000 \n", + " checkpoint_dir_name training_iteration time_this_iter_s \\\n", + "count 0.0 64.0 64.000000 \n", + "mean NaN 1.0 367.715945 \n", + "std NaN 0.0 8.011554 \n", + "min NaN 1.0 341.071264 \n", + "25% NaN 1.0 364.708660 \n", + "50% NaN 1.0 366.103412 \n", + "75% NaN 1.0 370.648662 \n", + "max NaN 1.0 388.150608 \n", "\n", - " time_since_restore iterations_since_restore \\\n", - "count 32.000000 32.0 \n", - "mean 375.418998 1.0 \n", - "std 11.087853 0.0 \n", - "min 352.481225 1.0 \n", - "25% 368.239074 1.0 \n", - "50% 374.715855 1.0 \n", - "75% 381.121178 1.0 \n", - "max 399.524998 1.0 \n", + " time_total_s pid time_since_restore \\\n", + "count 64.000000 64.000000 64.000000 \n", + "mean 367.715945 16306.750000 367.715945 \n", + "std 8.011554 8179.917114 8.011554 \n", + "min 341.071264 1104.000000 341.071264 \n", + "25% 364.708660 9272.000000 364.708660 \n", + "50% 366.103412 18522.000000 366.103412 \n", + "75% 370.648662 23167.000000 370.648662 \n", + "max 388.150608 26528.000000 388.150608 \n", + "\n", + " iterations_since_restore config/text_det_thresh \\\n", + "count 64.0 64.000000 \n", + "mean 1.0 0.419091 \n", + "std 0.0 0.167178 \n", + "min 1.0 0.016997 \n", + "25% 1.0 0.328652 \n", + "50% 1.0 0.465068 \n", + "75% 1.0 0.530501 \n", + "max 1.0 0.686641 \n", "\n", " config/text_det_box_thresh config/text_det_unclip_ratio \\\n", - "count 32.000000 32.000000 \n", - "mean 0.568591 1.568133 \n", - "std 0.084085 0.234027 \n", - "min 0.425531 1.203175 \n", - "25% 0.497180 1.346349 \n", - "50% 0.572609 1.635590 \n", - "75% 0.649900 1.788165 \n", - "max 0.698742 1.928521 \n", + "count 64.000000 64.0 \n", + "mean 0.392965 0.0 \n", + "std 0.195419 0.0 \n", + "min 0.000242 0.0 \n", + "25% 0.230515 0.0 \n", + "50% 0.448332 0.0 \n", + "75% 0.544563 0.0 \n", + "max 0.690232 0.0 \n", "\n", - " config/text_rec_score_thresh config/line_tolerance \\\n", - "count 32.000000 32.000000 \n", - "mean 0.225000 0.621875 \n", - "std 0.166559 0.075067 \n", - "min 0.000000 0.500000 \n", - "25% 0.000000 0.600000 \n", - "50% 0.200000 0.600000 \n", - "75% 0.400000 0.700000 \n", - "max 0.400000 0.700000 \n", - "\n", - " config/min_box_score \n", - "count 32.000000 \n", - "mean 0.378125 \n", - "std 0.262414 \n", - "min 0.000000 \n", - "25% 0.000000 \n", - "50% 0.500000 \n", - "75% 0.600000 \n", - "max 0.600000 " + " config/text_rec_score_thresh \n", + "count 64.000000 \n", + "mean 0.470584 \n", + "std 0.219216 \n", + "min 0.002891 \n", + "25% 0.311325 \n", + "50% 0.559640 \n", + "75% 0.645015 \n", + "max 0.699247 " ] }, - "execution_count": 76, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ + "#df = pd.read_csv(\"raytune_paddle_subproc_results_20251207_192320.csv\")\n", "df.describe()" ] }, { "cell_type": "code", - "execution_count": 90, + "execution_count": 9, "id": "50fa5b59", "metadata": {}, "outputs": [ { - "data": { - "text/html": [ - "
Correlación con CER:\n",
-       " CER                             1.000000\n",
-       "config/text_det_box_thresh      0.758837\n",
-       "config/text_det_unclip_ratio    0.387201\n",
-       "config/text_rec_score_thresh    0.193323\n",
-       "config/line_tolerance           0.141715\n",
-       "config/textline_orientation     0.035649\n",
-       "config/min_box_score           -0.185718\n",
-       "Name: CER, dtype: float64\n",
-       "
\n" - ], - "text/plain": [ - "Correlación con CER:\n", - " CER \u001b[1;36m1.000000\u001b[0m\n", - "config/text_det_box_thresh \u001b[1;36m0.758837\u001b[0m\n", - "config/text_det_unclip_ratio \u001b[1;36m0.387201\u001b[0m\n", - "config/text_rec_score_thresh \u001b[1;36m0.193323\u001b[0m\n", - "config/line_tolerance \u001b[1;36m0.141715\u001b[0m\n", - "config/textline_orientation \u001b[1;36m0.035649\u001b[0m\n", - "config/min_box_score \u001b[1;36m-0.185718\u001b[0m\n", - "Name: CER, dtype: float64\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
Correlación con WER:\n",
-       " WER                             1.000000\n",
-       "config/text_det_unclip_ratio    0.804665\n",
-       "config/text_det_box_thresh      0.394131\n",
-       "config/text_rec_score_thresh    0.316860\n",
-       "config/line_tolerance           0.032678\n",
-       "config/textline_orientation    -0.187603\n",
-       "config/min_box_score           -0.243325\n",
-       "Name: WER, dtype: float64\n",
-       "
\n" - ], - "text/plain": [ - "Correlación con WER:\n", - " WER \u001b[1;36m1.000000\u001b[0m\n", - "config/text_det_unclip_ratio \u001b[1;36m0.804665\u001b[0m\n", - "config/text_det_box_thresh \u001b[1;36m0.394131\u001b[0m\n", - "config/text_rec_score_thresh \u001b[1;36m0.316860\u001b[0m\n", - "config/line_tolerance \u001b[1;36m0.032678\u001b[0m\n", - "config/textline_orientation \u001b[1;36m-0.187603\u001b[0m\n", - "config/min_box_score \u001b[1;36m-0.243325\u001b[0m\n", - "Name: WER, dtype: float64\n" - ] - }, - "metadata": {}, - "output_type": "display_data" + "name": "stdout", + "output_type": "stream", + "text": [ + "Correlación con CER:\n", + " CER 1.000000\n", + "config/text_det_box_thresh 0.226375\n", + "config/text_rec_score_thresh -0.160833\n", + "config/text_det_thresh -0.522705\n", + "config/text_det_unclip_ratio NaN\n", + "Name: CER, dtype: float64\n", + "Correlación con WER:\n", + " WER 1.000000\n", + "config/text_det_box_thresh 0.226714\n", + "config/text_rec_score_thresh -0.172597\n", + "config/text_det_thresh -0.521391\n", + "config/text_det_unclip_ratio NaN\n", + "Name: WER, dtype: float64\n" + ] } ], "source": [ "param_cols = [\n", + " \"config/text_det_thresh\",\n", " \"config/text_det_box_thresh\",\n", " \"config/text_det_unclip_ratio\",\n", " \"config/text_rec_score_thresh\",\n", - " \"config/line_tolerance\",\n", - " \"config/min_box_score\",\n", - " \"config/textline_orientation\"\n", "]\n", "# Correlación de Pearson con CER y WER\n", "corr_cer = df[param_cols + [\"CER\"]].corr()[\"CER\"].sort_values(ascending=False)\n", @@ -2360,95 +2376,36 @@ }, { "cell_type": "code", - "execution_count": 91, + "execution_count": 10, "id": "9462b7a2", "metadata": {}, "outputs": [ { - "data": { - "text/html": [ - "
textline_orientation=True:\n",
-       "
\n" - ], - "text/plain": [ - "\u001b[33mtextline_orientation\u001b[0m=\u001b[3;92mTrue\u001b[0m:\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
             CER        WER\n",
-       "count  14.000000  14.000000\n",
-       "mean    0.117115   0.229452\n",
-       "std     0.051623   0.064449\n",
-       "min     0.063913   0.148775\n",
-       "25%     0.065857   0.162757\n",
-       "50%     0.111765   0.236537\n",
-       "75%     0.152931   0.287554\n",
-       "max     0.198069   0.331298\n",
-       "
\n" - ], - "text/plain": [ - " CER WER\n", - "count \u001b[1;36m14.000000\u001b[0m \u001b[1;36m14.000000\u001b[0m\n", - "mean \u001b[1;36m0.117115\u001b[0m \u001b[1;36m0.229452\u001b[0m\n", - "std \u001b[1;36m0.051623\u001b[0m \u001b[1;36m0.064449\u001b[0m\n", - "min \u001b[1;36m0.063913\u001b[0m \u001b[1;36m0.148775\u001b[0m\n", - "\u001b[1;36m25\u001b[0m% \u001b[1;36m0.065857\u001b[0m \u001b[1;36m0.162757\u001b[0m\n", - "\u001b[1;36m50\u001b[0m% \u001b[1;36m0.111765\u001b[0m \u001b[1;36m0.236537\u001b[0m\n", - "\u001b[1;36m75\u001b[0m% \u001b[1;36m0.152931\u001b[0m \u001b[1;36m0.287554\u001b[0m\n", - "max \u001b[1;36m0.198069\u001b[0m \u001b[1;36m0.331298\u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n",
-       "textline_orientation=False:\n",
-       "
\n" - ], - "text/plain": [ - "\n", - "\u001b[33mtextline_orientation\u001b[0m=\u001b[3;91mFalse\u001b[0m:\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
             CER        WER\n",
-       "count  18.000000  18.000000\n",
-       "mean    0.113735   0.256237\n",
-       "std     0.046073   0.077033\n",
-       "min     0.062982   0.149490\n",
-       "25%     0.075005   0.212741\n",
-       "50%     0.112058   0.255814\n",
-       "75%     0.135998   0.318958\n",
-       "max     0.212477   0.371172\n",
-       "
\n" - ], - "text/plain": [ - " CER WER\n", - "count \u001b[1;36m18.000000\u001b[0m \u001b[1;36m18.000000\u001b[0m\n", - "mean \u001b[1;36m0.113735\u001b[0m \u001b[1;36m0.256237\u001b[0m\n", - "std \u001b[1;36m0.046073\u001b[0m \u001b[1;36m0.077033\u001b[0m\n", - "min \u001b[1;36m0.062982\u001b[0m \u001b[1;36m0.149490\u001b[0m\n", - "\u001b[1;36m25\u001b[0m% \u001b[1;36m0.075005\u001b[0m \u001b[1;36m0.212741\u001b[0m\n", - "\u001b[1;36m50\u001b[0m% \u001b[1;36m0.112058\u001b[0m \u001b[1;36m0.255814\u001b[0m\n", - "\u001b[1;36m75\u001b[0m% \u001b[1;36m0.135998\u001b[0m \u001b[1;36m0.318958\u001b[0m\n", - "max \u001b[1;36m0.212477\u001b[0m \u001b[1;36m0.371172\u001b[0m\n" - ] - }, - "metadata": {}, - "output_type": "display_data" + "name": "stdout", + "output_type": "stream", + "text": [ + "textline_orientation=True:\n", + " CER WER\n", + "count 53.000000 53.000000\n", + "mean 0.037637 0.127337\n", + "std 0.098417 0.095844\n", + "min 0.011535 0.098902\n", + "25% 0.011875 0.100441\n", + "50% 0.012199 0.101228\n", + "75% 0.012583 0.103280\n", + "max 0.516069 0.594530\n", + "\n", + "textline_orientation=False:\n", + " CER WER\n", + "count 11.000000 11.000000\n", + "mean 0.124009 0.217126\n", + "std 0.139431 0.133092\n", + "min 0.039052 0.132047\n", + "25% 0.044246 0.132462\n", + "50% 0.064799 0.164937\n", + "75% 0.093873 0.198020\n", + "max 0.418109 0.503710\n" + ] }, { "data": { @@ -2456,13 +2413,13 @@ "" ] }, - "execution_count": 91, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAFzCAYAAADSYPP5AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPlFJREFUeJzt3Qd4VFX+//FvAqTQAhipAqH3Jm1B6kpVFBQQWDSACgqilF0p0oVIFZEiiP7oIOiuoCuKClJEUAREpBchYem4mtCSAJn/8z3/nTFDJiGBm2l5v57nPsnM3Ny5c2fgzOeec743wGaz2QQAAAAAcE8C7+3PAQAAAACEKwAAAACwCD1XAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFgguxUb8TdJSUly5swZyZMnjwQEBHh6dwAgy9Dr2l++fFmKFi0qgYGc/0uOtgkAvL9tIly5oMGqePHimfX+AADu4NSpU/LAAw9wnJKhbQIA72+bCFcuaI+V/QDmzZs3c94dAEAKcXFx5uSW/f9h0DYBgC+1TYQrF+xDATVYEa4AwP0Ykp36MaFtAgDvbZsY0A4AAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAWyW7EReL/4+HiJiYnx9G54rRIlSkhISIindwMAshTaprTRNgG+h3CVRWiw6tOnj6d3w2vNnz9fypcv7+ndAIAshbYpbbRNgO8hXGWhs1/6n7Q3iI6OlqioKBkxYoSULFlSvOX4AADc/38vbVPaxweAbyFcZRE65M3bemY0WHnbPgEA3Ie2CYC/oaAFAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAA4C/has6cORIRESEhISFSv3592bFjR6rrvvfee9K4cWPJnz+/WVq0aJFifZvNJqNHj5YiRYpIaGioWefo0aNueCUAAAAAsiqPh6tVq1bJ4MGDZcyYMbJ7926pUaOGtG7dWi5cuOBy/U2bNkm3bt1k48aNsn37dilevLi0atVKTp8+7VhnypQpMnPmTJk3b5788MMPkitXLrPN+Ph4N74yAAAAAFmJx8PV9OnTpXfv3tKrVy+pXLmyCUQ5c+aUBQsWuFx/+fLl0q9fP6lZs6ZUrFhR3n//fUlKSpINGzY4eq1mzJghI0eOlPbt20v16tVlyZIlcubMGVmzZo2bXx0AAACArMKj4SoxMVF27dplhu05digw0NzWXqn0uHbtmty4cUMKFChgbp84cULOnTvntM2wsDAz3DC1bSYkJEhcXJzTAgDIujIyXP3jjz+WOnXqSL58+cxICT35t3TpUqd1evbsKQEBAU5LmzZt3PBKAABZJlxdunRJbt26JYUKFXK6X29rQEqPoUOHStGiRR1hyv53GdnmxIkTTQCzLzrUEACQNWV0uLqe3BsxYoQ5gbd3714zEkOXL7/80mk9DVNnz551LB988IGbXhEAIMsMC7wXkyZNkpUrV8rq1avN2cW7NXz4cImNjXUsp06dsnQ/AQC+I6PD1Zs1ayZPPPGEVKpUScqUKSMDBgwwQ9K3bt3qtF5wcLAULlzYsWhRJgCAf/FouAoPD5ds2bLJ+fPnne7X29rwpGXatGkmXH311VemEbOz/11GtqkNXt68eZ0WAEDWc6/D1XXer84BPnz4sDRp0iRFQaaCBQtKhQoVpG/fvvLbb7+luS2GrAOA78nuyScPCgqS2rVrm4aoQ4cO5j57cYr+/fun+ndaDTAqKsoMudBx7smVKlXKhCjdho57VzqHSqsGamMGwPdopc+YmBhP74ZXK1GixD314OPOw9UPHTqU6mHSUQ/FihUzgUhPGr7zzjvSsmVLpyGBTz75pGmjjh8/Lq+99pq0bdvWBDZdP7Uh6+PGjeOtAQAf4tFwpXRce48ePUxIqlevnqn0d/XqVTMcQ0VGRpoGSxsZNXnyZHMNqxUrVpjJxvZ5VLlz5zaLThIeOHCgTJgwQcqVK2caslGjRpl5WfYAB8C3aLDq06ePp3fDq82fP1/Kly/v6d3IsvLkySN79uyRK1eumJN72raVLl3aDBlUXbt2daxbrVo1M+JChxBqb9bDDz+c6pB13Y6dnihkTjAAeDePh6suXbrIxYsXTWDSoKS9TevWrXOcNdQvVTokw27u3Llm2EanTp2ctqMTj8eOHWt+HzJkiAlo+mXsjz/+kEaNGpltclYX8N1eGQ0P3iA6Otr0nGsBg5IlS4o3HSN4bri6tlNly5Y1v2s7dvDgQXNS0B6ubqfBS5/r2LFjqYYrHbKuCwDAd3g8XCkdApjaMEA9q5fcyZMn77g97b16/fXXzQLA9+mJEW/rldFg5W37BM8NV7+d/o0OEUzNf/7zHzPnqkiRIrxtAOBHvCJcAQDgLTI6XF1/6ro6zE8D1eeff26uc6UjLZQOFdS5Ux07djS9XzrnSkdYaE+XlngHAPgPwhUAAPcwXF2DV79+/UxvVGhoqFSsWFGWLVtmtqN0mKFe/2rx4sVmqLrOAW7VqpWMHz+eYX8A4GcIVwAA3MNwdS2gpEtqNHDdfkFhAIB/8umLCAMAAACAtyBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAAOEKAAAAALwDPVcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGCB7FZsBAAAAMhK4uPjJSYmxtO74bVKlCghISEhktUQrgAAAIAM0mDVp08fjlsq5s+fL+XLl89yx4dwBQAAANxFz4wGCG8QHR0tUVFRMmLECClZsqR4y/HJighXAAAAQAbpkDdv65nRYOVt+5TVUNACAAAAACxAuAIAAAAACxCuAAAAAMAfwtWcOXMkIiLCjFutX7++7NixI9V19+/fLx07djTrBwQEyIwZM1Ksc+vWLRk1apSUKlVKQkNDpUyZMjJ+/Hix2WyZ/EoAAAAAZGUeDVerVq2SwYMHy5gxY2T37t1So0YNad26tVy4cMHl+teuXZPSpUvLpEmTpHDhwi7XmTx5ssydO1dmz54tBw8eNLenTJkis2bNyuRXAwAAACAr82i4mj59uvTu3Vt69eollStXlnnz5knOnDllwYIFLtevW7euTJ06Vbp27SrBwcEu19m2bZu0b99eHn30UdPD1alTJ2nVqlWaPWIAAAAA4LPhKjExUXbt2iUtWrT4c2cCA83t7du33/V2GzZsKBs2bJAjR46Y2z///LNs3bpV2rZtm+rfJCQkSFxcnNMCAAAAAD5xnatLly6Z+VGFChVyul9vHzp06K63O2zYMBOOKlasKNmyZTPPoRdV6969e6p/M3HiRBk3btxdPycAAAAAeLyghdU+/PBDWb58uaxYscLM41q8eLFMmzbN/EzN8OHDJTY21rGcOnXKrfsMAAAAwPd5rOcqPDzc9CydP3/e6X69nVqxivR49dVXTe+VzstS1apVk+joaNM71aNHD5d/o/O3UpvDBQAAAABe3XMVFBQktWvXNvOj7JKSksztBg0a3PV2taKgzt1KTkOcbhsAAAAA/K7nSmkZdu1NqlOnjtSrV89ct+rq1aumeqCKjIyUYsWKmV4nexGMAwcOOH4/ffq07NmzR3Lnzi1ly5Y19z/22GNmjlWJEiWkSpUq8tNPP5mqhM8++6wHXykAAN5BR4joEHg401EuyX/iT2FhYSnmyAPwwnDVpUsXuXjxoowePVrOnTsnNWvWlHXr1jn+AcfExDj1Qp05c0Zq1arluK1zqXRp2rSpbNq0ydyn17PSiwj369fPXC+raNGi8sILL5jnAAAgqwerp5+JlBuJCZ7eFa+lJ2jhLEdQsCxbuoSABXh7uFL9+/c3iyv2wGSn162y2Wxpbi9PnjymB0wXAADwJ+2x0mB1vXRTSQoJ49DgjgLjY0V+3Ww+O/ReAT4QrgAAgHtpsErKFc5hBwCL+V0pdgAAAADwBMIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAAAAYAHCFQAAt5kzZ45ERERISEiI1K9fX3bs2JHqMfr444+lTp06ki9fPsmVK5fUrFlTli5d6rSOzWaT0aNHS5EiRSQ0NFRatGghR48e5bgDgJ8hXAEAkMyqVatk8ODBMmbMGNm9e7fUqFFDWrduLRcuXHB5nAoUKCAjRoyQ7du3y969e6VXr15m+fLLLx3rTJkyRWbOnCnz5s2TH374wYQw3WZ8fDzHHgD8COEKAIBkpk+fLr179zYBqXLlyiYQ5cyZUxYsWODyODVr1kyeeOIJqVSpkpQpU0YGDBgg1atXl61btzp6rWbMmCEjR46U9u3bm8eWLFkiZ86ckTVr1nDsAcCPEK4AAPifxMRE2bVrlxm252goAwPNbe2ZuhMNUhs2bJDDhw9LkyZNzH0nTpyQc+fOOW0zLCzMDDdMa5sJCQkSFxfntAAAvBvhCgCA/7l06ZLcunVLChUq5HRM9LYGpNTExsZK7ty5JSgoSB599FGZNWuWtGzZ0jxm/7uMbnPixIkmhNmX4sWL8z4BgJcjXAEAcI/y5Mkje/bskR9//FGioqLMnK1Nmzbd0zaHDx9uQpt9OXXqFO8TAHi57J7eAQAAvEV4eLhky5ZNzp8/73S/3i5cuHCqf6dDB8uWLWt+12qBBw8eND1POh/L/ne6Da0WmHybum5qgoODzQIA8B30XAEA8D86rK927dpm3pRdUlKSud2gQYN0Hyf9G50zpUqVKmUCVvJt6vwprRqYkW0CALwfPVcAACSjQ/p69Ohhrl1Vr149U+nv6tWrpnqgioyMlGLFipmeKaU/dV2tFKiB6vPPPzfXuZo7d655PCAgQAYOHCgTJkyQcuXKmbA1atQoKVq0qHTo0IFjDwB+JNCXLtS4f/9+6dixo1lfGytt8Fw5ffq0PP3003LfffeZizVWq1ZNdu7cmYmvAgDgL7p06SLTpk0zF/3VYXs6l2rdunWOghQxMTFy9uxZx/oavPr16ydVqlSRhx56SP71r3/JsmXL5Pnnn3esM2TIEHn55ZelT58+UrduXbly5YrZprZ9AAD/kd0bLtSo1xDRYKVhSS+qqCVsCxYsmGL9a9euSenSpaVz584yaNAgl9v8/fffTePWvHlz+eKLL+T++++Xo0ePSv78+d3wigAA/qB///5mceX2QhXaI6VLWvSE4Ouvv24WAID/yu4tF2pUGrLWrl1rLtQ4bNiwFOvr2T5dlKvH1eTJk0252oULFzru0yEYAAAAAOCXwwLv9UKNqfn000/N2Hft3dLer1q1asl7772X5t9woUYAAAAAPhuu7vZCjXfy66+/mknEOmn4yy+/lL59+8orr7wiixcvTvVvuFAjAAAAAJ8vaGE1LX/74IMPyhtvvGF6rXTysA491CGHqeFCjQAAAAB8Nlzd7YUa70Qv0Fi5cmWn+ypVqmSqO6VGL9KYN29epwUAAAAAfCJcWXWhxttppUCtNpjckSNHpGTJkve0vwAAAADgtdUCM3qhRi2CceDAAcfvej0rvf5I7ty5pWzZsuZ+LdHesGFDMyzwqaeeMtfNmj9/vlkAAAAAwC/DlV6o8eLFi+ZCjVrEQi/WePuFGrWCoN2ZM2fMPCo7vcijLk2bNnVcd0RLta9evdrMo9LriWgZdg1t3bt398ArBAAAAJBVeDRcZfRCjREREWKz2e64zXbt2pkFAAAA/kXn58fGxnp6N7xKdHS00084CwsLS1Gh3G/DFQAAAJDeYPX0M5FyIzGBA+ZCVFQUx8WFHEHBsmzpErcELMIVAAAAfIL2WGmwul66qSSFhHl6d+ADAuNjRX7dbD47hCsAAADgNhqsknKFc1zgdfzuIsIAAAAA4AmEKwAAAACwAHOuAKSKikwpUZHJeyoyAQDgbQhXAFyiIlPaqMjk+YpMAAB4G8IVAJeoyARvr8gEAIC3IVwBSBMVmQAAANKHghYAAAAAYAHCFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIVwAAAABgAcIVAAAAAFiAcAUAAAAAFiBcAQAAAIAFCFcAAL8VHx8v06ZN8/RuAACyCMIVAMCnXbx4UT777DP56quv5NatW+a+GzduyNtvvy0REREyadIkT+8iACCLsDRccYYQAOBOW7dulXLlysnjjz8ubdu2lYYNG8qBAwekSpUq8u6778rYsWPl1KlTvCkAAO8MV5whBAB4i5EjR8ojjzwie/fulcGDB8uPP/4oTzzxhLzxxhsmZL344osSGhrq6d0EAGQRGQpXnCEEAHiTX375xQSsqlWryuuvvy4BAQEyZcoU6dSpk6d3DQCQBQV6wxnCOXPmmHHxISEhUr9+fdmxY0eq6+7fv186duxo1tdGdMaMGWluW8fa63oDBw7M8H4BALzb77//LuHh4eZ3bX9y5sxpghYAAF4frjLjDOGqVatMUBszZozs3r1batSoIa1bt5YLFy64XP/atWtSunRpE5oKFy6c5rY1/OmY++rVq9/1/gEAvJue3NOTfrrYbDY5fPiw47Z9AQDAHbJ7+gzh9OnTpXfv3tKrVy9ze968ebJ27VpZsGCBDBs2LMX6devWNYty9bjdlStXpHv37vLee+/JhAkT7mkfAQDe6+GHHzahyq5du3bmp54A1Pv1p72KIAAAXhOu7GcIz507Z363nyG8evWq0zrp7SlKTEyUXbt2yfDhwx33BQYGSosWLWT79u1yL1566SV59NFHzbbuFK4SEhLMYhcXF3dPzw0AcI8TJ05wqAEAvhuurDxDeOnSJbNuoUKFnO7X24cOHZK7tXLlSjPEUIcFpsfEiRNl3Lhxd/18AADPKFmyJIceAOCbc670DOGvv/5qft6+2O/Xn56k1zMZMGCALF++3BTISA/tOYuNjXUsXBMFAHyDzvu9fv264/Z3333nNBLh8uXL0q9fPw/tHQAgq8nuyTOEOn8rW7Zscv78eaf79fadilWkRocZajGMBx980HGf9o5t2bJFZs+ebRpdfc7kgoODzQIA8C16cqxnz56OSrV6IeE9e/aYwkf2Ikha2Oidd97x8J4CALKCQE+eIQwKCpLatWvLhg0bHPclJSWZ2w0aNJC7ocMWtaqhNq72pU6dOqa4hf5+e7ACAPiu5MPUXd0GAMBrw5WeIdQAZadnCE+fPu24bT9DmBFahl0r+i1evFgOHjwoffv2NQUy7NUDIyMjnQpeaBEMe2jS3/X59fdjx46Zx/PkyWMqGCZfcuXKJffddx/XPgEAAADgHcMCM+MMYZcuXeTixYsyevRoU4WwZs2asm7dOkeRi5iYGFNB0O7MmTNSq1Ytx+1p06aZpWnTprJp06Z73h8AAAAAcEu1wMzQv39/s7hye2CKiIjIcKgjdAGA/3r//fcld+7c5vebN2/KokWLHNdkTD7aAgCALBGu/JkW59AKhPhTdHS00084CwsLS3F5AgCulShRwgwtt9NiSEuXLk2xDgAAXhmuOEOYsWD19DORciPxz6If+FNUVBSHw4UcQcGybOkSAhaQDhs3bpRSpUpxrAAAvheuOEOYMdpjpcHqeummkhQSlsG/RlYUGB8r8utm89mh9wq4szJlypjLhDRv3lz++te/mp/FihXj0N3p/5rrf3CMkL52ic8KkHnh6uTJkxnbOgwNVkm5/v/4fwCAdb755hszr1aXDz74wFSR1Wtc2YOWLpyoSCn0xBY+hgDg6XCljZgWnvj+++8lb968To/pmfaGDRvKvHnzpHHjxlbvJwAAKTRr1swsKj4+XrZt2+YIW3qJjxs3bkjFihVl//79HL1krpdqIkmh+TgmSFfPFWEcyKRwNWPGDOndu3eKYGWfhP/CCy/I9OnTCVcAALcLCQkxPVaNGjUyPVZffPGFufbioUOHeDduo8GKERUA4OGLCP/888/Spk2bVB9v1aqV7Nq1y4r9AgAgXXQo4JYtW2TcuHEmVOXLl09efPFF+f3332X27Nly4sSJDB/JOXPmmEt/aGCrX7++7NixI9V1tVqhjtjInz+/WVq0aJFi/Z49e0pAQIDTklZ7CgDIAj1XWv0uR44cqW8se3ZzQWAAANxBe6p++OEHUzFQLyavIyhWrFghRYoUuettrlq1SgYPHmyGuWuw0lEbrVu3lsOHD0vBggVTrK9DELt162aGxmsYmzx5sjnZqEMRkxfX0DC1cOFCx+3g4OC73kcAgB/0XGkjsW/fvlQf37t37z01aAAAZMS3334r9913nwlZDz/8sLRs2fKe2yEd3q5D4Hv16iWVK1c2IStnzpyyYMECl+svX75c+vXrJzVr1jTzu/SSJUlJSbJhwwan9TRM6XW47Iv2cgEAsnC4euSRR2TUqFFm0vDtrl+/LmPGjJF27dpZuX8AAKTqjz/+kPnz55vwoz1GRYsWlWrVqpniS//85z8zPJpChxjq8HYd2mcXGBhobm/fvj1d27h27ZoppFGgQIEUPVza81WhQgXp27ev/Pbbb2luJyEhQeLi4pwWAIAfDQscOXKkfPzxx1K+fHnTcGkDoXSysI5Pv3XrlowYMSKz9hUAACe5cuUyw+3s85cuX74sW7duNRcXnjJlinTv3l3KlSuX5qiL5C5dumTastvLt+vt9BbGGDp0qAl5yQOa7t+TTz5phi8eP35cXnvtNWnbtq0JbNmyZXO5nYkTJ5p5ZAAAPw1X2rhomVs94zZ8+HCx2Wzmfp2Yq+PRNWBxPREAgCfDlvYY6aLD7nQu8MGDB932/JMmTZKVK1eaXiqdf2XXtWtXx+/as1a9enVzAWRdT4czuqLtrM79stOeq+LFi2fyKwAAuC1cqZIlS8rnn39uqjAdO3bMBCw9K8jYcQCAu+ncpp07d5qQor1V3333nVy9etXMEdbKgXrST3+mV3h4uOlJ0gJOyeltnSeVlmnTpplwtX79ehOe0qIXOtbn0nY0tXClc7QoegEAfh6u7DRM1a1b19q9AQAgA7TsuoYpDT4aot566y1zUWHtFbobQUFBUrt2bVOMokOHDuY+e3EKHQ6fGh2CGBUVJV9++aXUqVPnjs/zn//8x8y5oggUAPiXuw5XAAB42tSpU02o0rnAVtGheD169DAhqV69eqYUuwY4rR6oIiMjTc+YzolSWkhj9OjRpgS8Xhvr3Llz5v7cuXOb5cqVK2buVMeOHU0I1DlXQ4YMkbJly5oh9QAA/0G4AgD4LL2uldW6dOliqgxqYNKgpCXW161b55hTHBMTYyoI2s2dO9dUGezUqZPTdrSC7tixY80wQ71UyeLFi011Qy12odfBGj9+PMP+AMDPEK4AALiNDgFMbRigzu9K7uTJk2kev9DQUDNcEADg/zJ0nSsAAAAAgGuEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAtmt2AgAAADgLoHX/+Bgwys/K14RrubMmSNTp06Vc+fOSY0aNWTWrFlSr149l+vu379fRo8eLbt27ZLo6Gh56623ZODAgU7rTJw4UT7++GM5dOiQhIaGSsOGDWXy5MlSoUIFN70iAAAAZJbQE1s4uPBKHg9Xq1atksGDB8u8efOkfv36MmPGDGndurUcPnxYChYsmGL9a9euSenSpaVz584yaNAgl9vcvHmzvPTSS1K3bl25efOmvPbaa9KqVSs5cOCA5MqVyw2vCgAAAJnleqkmkhSajwOMdPVcuTOMezxcTZ8+XXr37i29evUytzVkrV27VhYsWCDDhg1Lsb4GJl2Uq8fVunXrnG4vWrTIBDXt7WrSpEmmvA4AAAC4hwarpFzhHG54HY8WtEhMTDSBp0WLFn/uUGCgub19+3bLnic2Ntb8LFCggMvHExISJC4uzmkBAAAAAJ8JV5cuXZJbt25JoUKFnO7X2zr/ygpJSUlmTtZDDz0kVatWdbmOztEKCwtzLMWLF7fkuQEAAABkHX5fil3nXu3bt09WrlyZ6jrDhw83vVv25dSpU27dRwAAAAC+z6NzrsLDwyVbtmxy/vx5p/v1duHChe95+/3795fPPvtMtmzZIg888ECq6wUHB5sFAAAAAHyy5yooKEhq164tGzZscBrGp7cbNGhw19u12WwmWK1evVq++eYbKVWqlEV7DAAAAABeWi1Qy7D36NFD6tSpY65tpaXYr1696qgeGBkZKcWKFTPzouxFMLSkuv3306dPy549eyR37txStmxZx1DAFStWyCeffCJ58uRxzN/S+VR63SsAAAAA8Ltw1aVLF7l48aK5MLCGoJo1a5pS6vYiFzExMaaCoN2ZM2ekVq1ajtvTpk0zS9OmTWXTpk3mvrlz55qfzZo1c3quhQsXSs+ePd30ygAAAABkJR4PV0qH8Oniij0w2UVERJhhf2m50+MAAAAAYDW/rxYIAAAAAO5AuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAX65z5e8Cr//h6V2Aj/DGz4o37hO8E58VAEBWR7hyg9ATW9zxNECm4PMLAACQPoQrN7heqokkheZzx1PBD878e1uY4fMLX/78AgDgToQrN9BglZQr3B1PBViOzy8AAED6UNACAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAlznCgCALCYwPtbTuwAfwWcFyBjCFQAAWURYWJjkCAoW+XWzp3cFPkQ/M/rZAXBnhCsAALKIQoUKybKlSyQ2lp6r20VHR0tUVJSMGDFCSpYs6ZH3x1tpsNLPDoA7I1wBAJCF6JdkviinToNV+fLl3fiOAPAnFLQAAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAA/CVczZkzRyIiIiQkJETq168vO3bsSHXd/fv3S8eOHc36AQEBMmPGjHveJgAAAAD4fLhatWqVDB48WMaMGSO7d++WGjVqSOvWreXChQsu17927ZqULl1aJk2aJIULF7ZkmwAAAADg8+Fq+vTp0rt3b+nVq5dUrlxZ5s2bJzlz5pQFCxa4XL9u3boydepU6dq1qwQHB1uyTQAAAADw6XCVmJgou3btkhYtWvy5Q4GB5vb27dvdts2EhASJi4tzWgAAAADAZ8LVpUuX5NatWykuZqi3z50757ZtTpw40Vx93L4UL178rp4bAAAAQNbl8WGB3mD48OESGxvrWE6dOuXpXQIAeFBGiiK999570rhxY8mfP79ZdKTE7evbbDYZPXq0FClSREJDQ806R48edcMrAQBkmXAVHh4u2bJlk/Pnzzvdr7dTK1aRGdvUuVt58+Z1WgAAWVNGiyJt2rRJunXrJhs3bjTDz3X0Q6tWreT06dOOdaZMmSIzZ840c4B/+OEHyZUrl9lmfHy8G18ZAMCvw1VQUJDUrl1bNmzY4LgvKSnJ3G7QoIHXbBMAkHVktCjS8uXLpV+/flKzZk2pWLGivP/++452x95rpZcNGTlypLRv316qV68uS5YskTNnzsiaNWvc/OoAAH49LFDPDuqQisWLF8vBgwelb9++cvXqVdOoqcjISDNsL3nBij179phFf9czg/r7sWPH0r1NAAAyq9CSXjLkxo0bUqBAAXP7xIkTZs5v8m3q/F4dbpjWNim2BAC+J7und6BLly5y8eJFMxZdGx8987du3TpHQYqYmBjTsNnpmb5atWo5bk+bNs0sTZs2NUMz0rNNAAAyWhTp0KFD6TpoQ4cOlaJFizrClL2YUkaLN2mxpXHjxvFGAYAP8Xi4Uv379zeLK/bAZKcTjHWIxb1sEwCAzKAXuF+5cqVpu7QYxr3QURs6EsNOLxNCNVsA8G5eEa4AAPAG91JoSUdRaLhav369mVdlZ/873YZWC0y+TR1ZkRottqQLAMB3eHzOFQAA3uJuiyJpNcDx48ebIeh16tRxeqxUqVImYCXfpvZCadVACi0BgH+h5woAgGR0KF6PHj1MSKpXr56p9Hd7oaVixYqZOVFq8uTJZo7vihUrzNB1+zyq3LlzmyUgIEAGDhwoEyZMkHLlypmwNWrUKDMvq0OHDhx7APAjhCsAAO6h0NLcuXNNlcFOnTo5HUe9TtbYsWPN70OGDDEBrU+fPvLHH39Io0aNzDbvdV4WAMC7EK4AALiHQksnT5684/HT3qvXX3/dLAAA/8WcKwAAAACwAOEKAAAAACxAuAIAAAAAwhUAAAAAeAd6rgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACwAOEKAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAADwl3A1Z84ciYiIkJCQEKlfv77s2LEjzfU/+ugjqVixolm/WrVq8vnnnzs9fuXKFenfv7888MADEhoaKpUrV5Z58+Zl8qsAAAAAkJV5PFytWrVKBg8eLGPGjJHdu3dLjRo1pHXr1nLhwgWX62/btk26desmzz33nPz000/SoUMHs+zbt8+xjm5v3bp1smzZMjl48KAMHDjQhK1PP/3Uja8MAAAAQFbi8XA1ffp06d27t/Tq1cvRw5QzZ05ZsGCBy/XffvttadOmjbz66qtSqVIlGT9+vDz44IMye/ZspwDWo0cPadasmekR69Onjwltd+oRAwAAAACfDFeJiYmya9cuadGixZ87FBhobm/fvt3l3+j9yddX2tOVfP2GDRuaXqrTp0+LzWaTjRs3ypEjR6RVq1Yut5mQkCBxcXFOCwAAAAD4TLi6dOmS3Lp1SwoVKuR0v94+d+6cy7/R+++0/qxZs0wvmM65CgoKMj1dOq+rSZMmLrc5ceJECQsLcyzFixe35PUBAAAAyDo8PiwwM2i4+v77703vlfaMvfnmm/LSSy/J+vXrXa4/fPhwiY2NdSynTp1y+z4DAAAA8G3ZPfnk4eHhki1bNjl//rzT/Xq7cOHCLv9G709r/evXr8trr70mq1evlkcffdTcV716ddmzZ49MmzYtxZBCFRwcbBYAAAAA8MmeKx2yV7t2bdmwYYPjvqSkJHO7QYMGLv9G70++vvr6668d69+4ccMsOncrOQ1xum0AAAAA8LueK3vZdK3sV6dOHalXr57MmDFDrl69aqoHqsjISClWrJiZF6UGDBggTZs2NUP9tGdq5cqVsnPnTpk/f755PG/evOZxrSao17gqWbKkbN68WZYsWWIqEwIAAACAX4arLl26yMWLF2X06NGmKEXNmjXNNarsRStiYmKceqG0EuCKFStk5MiRZvhfuXLlZM2aNVK1alXHOhq4dB5V9+7d5b///a8JWFFRUfLiiy965DUCAAAA8H8eD1dKL/CriyubNm1KcV/nzp3Nkhqdf7Vw4UJL9xEAAAAAsly1QAAAAADIkj1X/i4wPtbTuwAfwWcFAADAdxGuMpFekDhHULDIr5sz82ngZ/Qzo58dAAAA+BbCVSbSohzLli4xFybGn6Kjo02BkREjRphiI3Cmwcpe0AUAAAC+g3CVyfRLMl+UXdNgVb58+cx+CwAAAAC3oKAFAAAAAFiAnisAAAD4FApAwVs/K4QrAAAA+ASKhcHbi4URrgAAAOATKBbmGsXCvKdYGOEKAAAAPoNiYamjWJjnUdACAAAAACxAuAIAAAAACxCuAAAAAMAChCsAAAAAsADhCgAAAAAsQLgCAAAAAAsQrgAAAADAAoQrAAAAALAAFxEGkKbA+FiOENKFzwoAIKsjXAFwKSwsTHIEBYv8upkjhHTTz4x+dnzdnDlzZOrUqXLu3DmpUaOGzJo1S+rVq+dy3f3798vo0aNl165dEh0dLW+99ZYMHDjQaZ2xY8fKuHHjnO6rUKGCHDp0KFNfBwDAvQhXAFwqVKiQLFu6RGJj6blKTr88R0VFyYgRI6RkyZJ8em6jwUo/O75s1apVMnjwYJk3b57Ur19fZsyYIa1bt5bDhw9LwYIFU6x/7do1KV26tHTu3FkGDRqU6narVKki69evd9zOnp0mGAD8Df+zA0iVfkn29S/KmUWDVfny5T29G8gE06dPl969e0uvXr3MbQ1Za9eulQULFsiwYcNSrF+3bl2zKFePJw9ThQsX5j0DAD9GuALg9eLj4yUmJka8pecq+U9vUaJECQkJCfH0bvi8xMREM7xv+PDhjvsCAwOlRYsWsn379nva9tGjR6Vo0aLmfWrQoIFMnDjRvG+pSUhIMItdXFzcPT0/ACDzEa4AeD0NVn369BFvokMDvcn8+fPpSbPApUuX5NatWyl6bPX2vcyP0uGFixYtMvOszp49a+ZfNW7cWPbt2yd58uRx+Tcavm6fp+VvOHGSNk6aAL6HcJVF0ICljQbMu+n7o+EBaR8jeK+2bds6fq9evboJWzq09MMPP5TnnnvO5d9o75nO/Urec1W8eHHxJ5w4SRsnTbwb363SViKLjqggXGURNGBpowHzbvqfM/Ob4A7h4eGSLVs2OX/+vNP9etvK+VL58uUzn+ljx46luk5wcLBZ/BknTu58fOC9+G6VtvlZdERFdl8reas++ugjGTVqlJw8eVLKlSsnkydPlkceecRpnYMHD8rQoUNl8+bNcvPmTalcubL861//yrL/UdGA3fn4AEBQUJDUrl1bNmzYIB06dDAHJCkpydzu37+/ZQfoypUrcvz4cXnmmWey9EHnxAl8Gd+t7nx8sqLsvlbydtu2bdKtWzczFr1du3ayYsUK0wDu3r1bqlatatbRBqtRo0ZmqIWOV8+bN6+5DklW7Jq0owEDgPTRNqlHjx5Sp04dc6JP26WrV686qgdGRkZKsWLFTDtkL4Jx4MABx++nT5+WPXv2SO7cuaVs2bLm/n/84x/y2GOPmaGAZ86ckTFjxpgeMm3PAPgmvlvBlQCbzWYTD9JApSVsZ8+e7ThDqGPKX375ZZclbbt06WIauc8++8xx31/+8hepWbOmCWiqa9eukiNHDlm6dOld7ZOOa9drtej1fTSYAQDcw1v+/9U2yT6iQtuXmTNnmvZKNWvWTCIiIkyBCqWjKEqVKpViG02bNpVNmzY52qUtW7bIb7/9Jvfff785AahFUcqUKeNzxwYAspq4DPz/m93XSt7q/ckn+Crt6VqzZo0jnOn1SIYMGWLu/+mnn0yjp89hH+JxO8rdAgCS0yGAqQ0DtAcmOw1adzpPuXLlSg4wAGQBgd5a8lbPFrqi96e1/oULF8xY9kmTJkmbNm3kq6++kieeeEKefPJJM//KFR3aoWnUvvhbNSYAAAAAfh6uMoP2XKn27dvLoEGDzHAOHV6o87PswwZvp71a2s1nX06dOuXmvQYAAADg67L7WslbvT+t9XWb2bNnN9UBk6tUqZJs3bo1y5a7BQAAAODHPVfJS97a2UveNmjQwOXf6P3J11dff/21Y33dphbI0GqDyR05csRUaQIAAAAAvyzFntGStwMGDDAVmN5880159NFHzSThnTt3mguV2b366qumqmCTJk2kefPmsm7dOvn3v/+dYhIyAAAAAPhNuNIQdPHiRRk9erSj5K2GIXvRCr36tVYQtGvYsKG5ttXIkSPltddeMxcR1kqB9mtcKS1gofOrNJC98sorUqFCBXMBYS19CwAAAAB+eZ0rb8S1RACA/3+9DW0TAHj//79+Vy0QAAAAALLksEBvZO/M05QKAHAf+/+7DKpIibYJALy/bSJcuXD58mXzk4sJA4Dn/h/WIRhwPiaKtgkAvLdtYs6VC1oO/syZM5InTx4JCAjIrPcnS6d//XKgF2u+07hVwNvw+c1celZQG6+iRYs6FTMCbVNm4982fBmfX+9pm+i5ckEP2gMPPJBZ7w/+R4MV4Qq+is9v5qHHyjXaJvfg3zZ8GZ9fz7dNnBYEAAAAAAsQrgAAAADAAoQruF1wcLCMGTPG/AR8DZ9fwD/xbxu+jM+v96CgBQAAAABYgJ4rAAAAALAA4QoAAAAALEC4AgAAAAALEK7gVosWLZJ8+fJx1AEAXoO2CYBVCFe4Kz179pSAgIAUy7Fjxzii8BmuPsPJl7Fjx3p6FwFkAG0TfB3tku/L7ukdgO9q06aNLFy40Om++++/32P7A2TU2bNnHb+vWrVKRo8eLYcPH3bclzt3bsfvNptNbt26Jdmz898m4M1om+DLaJd8Hz1XuKdrKhQuXNhpefvtt6VatWqSK1cuKV68uPTr10+uXLmS6jZ+/vlnad68ueTJk0fy5s0rtWvXlp07dzoe37p1qzRu3FhCQ0PN9l555RW5evUq7xoskfyzGxYWZs4Y2m8fOnTIfC6/+OIL87nUz7t+HvXMeIcOHZy2M3DgQGnWrJnjdlJSkkycOFFKlSplPrs1atSQf/7zn7xrgBvQNsGX0S75PsIVrP1ABQbKzJkzZf/+/bJ48WL55ptvZMiQIamu3717d3nggQfkxx9/lF27dsmwYcMkR44c5rHjx4+bM5AdO3aUvXv3mp4F/XLbv39/3jW4jX4mJ02aJAcPHpTq1aun6280WC1ZskTmzZtn/i0MGjRInn76adm8eXOm7y+AlGib4E9ol7wb41tw1z777DOnYVNt27aVjz76yHE7IiJCJkyYIC+++KK88847LrcRExMjr776qlSsWNHcLleunNMXVA1f2itgf0yDW9OmTWXu3LkSEhLCu4dM9/rrr0vLli3TvX5CQoK88cYbsn79emnQoIG5r3Tp0ubEwLvvvms+vwAyD20T/B3tkncjXOGu6XA+DTl2OhRQv1BqKNIhVXFxcXLz5k2Jj4+Xa9euSc6cOVNsY/DgwfL888/L0qVLpUWLFtK5c2cpU6aMY8ig9lgtX77cad6LDrk6ceKEVKpUiXcPma5OnToZWl+Luujn/fZAlpiYKLVq1bJ47wDcjrYJ/o52ybsRrnDXNEyVLVvWcfvkyZPSrl076du3r0RFRUmBAgXM2frnnnvOfLF0Fa60Gtvf/vY3Wbt2rZnbMmbMGFm5cqU88cQTZq7WCy+8YOZZ3a5EiRK8c3Db5/z24UUa8pO7ceOG43f7HEP9TBcrVizFXBAAmYu2Cf6Odsm7Ea5gGZ0zpb1Kb775pvkCqj788MM7/l358uXNovNSunXrZioQarh68MEH5cCBA04BDvA0rYi5b98+p/v27NnjmCtYuXJlE6J0yCtDAAHPo22Cv6Nd8i4UtIBlNATpGfxZs2bJr7/+aob66YT+1Fy/ft0Up9i0aZNER0fLd999Zwpb2If7DR06VLZt22bW0S+vR48elU8++YSCFvCov/71r6aipRas0M+k9rYmD1taYfAf//iHOVmgRV20MMvu3bvNvwu9DcC9aJvg72iXvAvhCpbRctPTp0+XyZMnS9WqVc1cKZ1/lZps2bLJb7/9JpGRkabn6qmnnjJFMcaNG2ce18psWl3tyJEjphy7zlfR6xAVLVqUdw0e07p1axk1apSpglm3bl25fPmy+QwnN378eLOOfv71ZIFWvdRhglqaHYB70TbB39EueZcA2+2TBwAAAAAAGUbPFQAAAABYgHAFAAAAABYgXAEAAACABQhXAAAAAGABwhUAAAAAWIBwBQAAAAAWIFwBAAAAgAUIV/A7165dk44dO0revHklICBA/vjjD4mIiJAZM2aIL9F9X7Nmjfn95MmT5vaePXvE2zVr1kwGDhwovnJsASCz0S55Fu0S3Cm7W58NcIPFixfLt99+K9u2bZPw8HAJCwuTH3/8UXLlypXhbV2/ft1s4+eff5Zly5aZL+RWB5yxY8fecbvFixeXs2fPmn3xdh9//LHkyJHD0m327NnThOSMBqLUjq0ey/z581u6jwCQGtolz6JdgjsRruB3jh8/LpUqVZKqVas67rv//vvvaltff/21lCxZUsqWLSuelC1bNilcuLB4s8TERAkKCpICBQqIt/P2YwnAv9AueQbtEjzCBrjZrVu3bJMnT7aVKVPGFhQUZCtevLhtwoQJ5rG9e/famjdvbgsJCbEVKFDA1rt3b9vly5cdf9ujRw9b+/btbVOnTrUVLlzYrNOvXz9bYmKiebxp06Y2/VjbF72tSpYsaXvrrbcc2zl48KDtoYcesgUHB9sqVapk+/rrr836q1evdtrXZ5991jZ06FDbwoULnbari96nfv/9d9tzzz1nCw8Pt+XJk8fs/549e8xjFy5csBUqVMgWFRXl2OZ3331ny5Ejh239+vVpbjf5/pw4ccLc/umnn8ztjRs3mtu6jdq1a9tCQ0NtDRo0sB06dMhp/9esWWOrVauWeZ2lSpWyjR071nbjxo10vU/R0dG2xx9/3JYrVy7zujp37mw7d+6c4/ExY8bYatSoYXvvvfdsERERtoCAAMd7MGDAAMd68fHxtr///e+2okWL2nLmzGmrV6+e2X87fb1hYWG2devW2SpWrGier3Xr1rYzZ844nuf2Y2T/+yFDhtjKlStnXr++vpEjRzo+C+k9tlZ87gD4Ntol2iXaJViFcAW30y/E+fPnty1atMh27Ngx27fffmu+oF+5csVWpEgR25NPPmn75ZdfbBs2bDBfmPWLrZ3+njdvXtuLL75oAtK///1v84V9/vz55vHffvvNfDHWoHH27Flz+/ZwdfPmTVuFChVsLVu2NCFIn1+/8N/+hVsb24IFC9q2bdtmu3btmgkIVapUMdvVRe9TLVq0sD322GO2H3/80XbkyBGz3n333ed47rVr15owpY/HxcXZSpcubRs0aJB5LK3tpidc1a9f37Zp0ybb/v37bY0bN7Y1bNjQsf9btmwxx0qP8/Hjx21fffWVCUEasO5EX3vNmjVtjRo1su3cudP2/fffmxBnD6v20KNBqE2bNrbdu3fbfv75Z5fh6vnnnzf7pfuj77cGFA17eqyUBh49Pnoc9Rjt2rXLBN6//e1v5nENOU899ZR5HvsxSkhIMI+NHz/ehFU9Pp9++qkJshrcM3JsrfjcAfBttEu0S7RLsArhCm6l4UL/A9MwdTv9oqqhS7/s2mkwCQwMdPSY6JdcDUoakOy0R6VLly6O2/rFPnkIuD1cffHFF7bs2bObL9t2rnqu9Eu7hisNGsl7apLTYKZfurV3JjntlXv33Xcdt7WXo3z58iYwVKtWzWl9V9vNSM9V8mOl912/ft3cfvjhh21vvPGG0zaXLl1qgsSdaBDLli2bLSYmxnGfBjjd/o4dOxz7raFIe+eSSx6utPdLt3P69GmndXTfhg8f7tTDpMHLbs6cOSYo3d5zdCca3DQEZuTYWvW5A+CbaJdolxTtEqzCnCu41cGDByUhIUEefvhhl4/VqFHDqfDEQw89JElJSXL48GEpVKiQua9KlSpmDpJdkSJF5Jdffkn3Pui2tEBE8nk39erVS7HeJ598Iu3atZPAwNSLamqhiytXrsh9992XohCGjrG3mzZtmpkD9tFHH8muXbskODhYrFC9enWn46AuXLggJUqUMPv23XffSVRUlGOdW7duSXx8vKlclTNnzlS3q++FHiNd7CpXriz58uUzj9WtW9fcp/PR0prPpu+LPmf58uWd7tfPQPJjpvtSpkwZp9eir+NOVq1aJTNnzjTHWt+HmzdvmiqRGeGuzx0A70S7RLukaJdgFcIV3Co0NPSet3F7JTotq61fhK326aefyqRJk9JcR7/Q65fsTZs2pXhMg4idfvk/c+aM2U8tq16tWjVL9jH5sdDjoOzHQvdt3Lhx8uSTT6b4u5CQEEue/04VGHUfNJBooEweTFTu3LnTfE//fwdT6rZv3y7du3c3r7F169amKuTKlSvlzTfflMzgrs8dAPeiXaJdsqNdghUIV3CrcuXKmYZsw4YN8vzzzzs9phX+Fi1aJFevXnV8adeeF+05qlChgmX7oNs6deqUnD9/3tEroaXakzt69KhER0dLy5YtHfdpJTzthUnuwQcflHPnzkn27NnNtbRSq1b09NNPS5cuXcxz6+vWHo+CBQumul0r6L5pz8vdVDrU90KPkS723qsDBw6Ycujag5VetWrVMq9Ne6EaN24sd8vVMdJS+9pzNmLECMd9+p7d6e9u567PHQDvRLtEu3Q3aJeQGi4iDLfSHpOhQ4fKkCFDZMmSJaZH5/vvv5f/+7//M70Q+niPHj1k3759snHjRnn55ZflmWeecYQgK2hg0iFo+jx79+41X6RHjhzp1PujQwJbtGjhNHROw9OJEyfMNZMuXbpkhhDoOg0aNJAOHTrIV199ZXql9Eu/fuHfuXOn+Tv9PTY21gxf09euQ+SeffbZNLdrhdGjR5tjrD07+/fvN0NftGfH/lrToq9Le9f0Pdm9e7fs2LFDIiMjpWnTplKnTp1074O+Vt2G/q1eZ0Rfp25r4sSJsnbt2nRvR4+RvlcaFvUY3bhxw3whiomJMa9JP0d6fFevXp3i7+50bN31uQPgnWiXaJdol2AlwhXcbtSoUfL3v//dfPnXXgPt0dGeDQ0yX375pfz3v/81c3o6depk5mbNnj3b0ufX4Wl6YVkdsqbPoz1J9t4P+3A5DVePP/6409917NhR2rRpI82bNzfzjD744AMTxj7//HNp0qSJ9OrVy4SJrl27mh4U/WKuwwVnzJghS5cuNXOBtDdEf9eLHM+dOzfV7VpBh8p99tlnJvTp6/zLX/4ib731luntuRN9XXoM9EK7+to0bJUuXdrMccqohQsXmnCl77n2BGkQ1Z5CnReWXr179zZ/q8FOj5EGYn1/Bg0aJP3795eaNWuaUKufreTSc2zd9bkD4L1ol2iXaJdgFXNhGsu2Bvgo/bLeqFEjOXbsmJm7o/Oo/vOf/9BzAQCgXQKQbsy5Qpakw8d04qoOLdNANWDAAFMhTocLHjlyRKZPn06wAgDQLgHIEMIVsqTLly+b+U86Zyc8PNwMe7NXmdOhfbeXDvc3y5cvlxdeeMHlYzpsUOdoAQDch3aJdgn+gWGBQBZtxLVaYmolx9MzLwsAAKvQLsFfEK4AAAAAwAJUCwQAAAAAwhUAAAAAeAd6rgAAAADAAoQrAAAAALAA4QoAAAAALEC4AgAAAAALEK4AAAAAwAKEKwAAAACQe/f/ANYpESqDy+6/AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAFzCAYAAAAJ21nbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPlxJREFUeJzt3Ql0FFX2+PGbEJIYIIEYIYCBEBYRkEU2AdkGmCii4LhkHEYQAQXEBXQE/kAiCCKiEBf2EXEAB0YHxVHEBWUQQdEAgixxUCAoEGDYtwRI/899P7unOwuVkKbX7+ecOk1VV3eqXxf96tZ7774Qm81mEwAAAABAkUKLfgoAAAAAQOAEAAAAAMVAixMAAAAAWCBwAgAAAAALBE4AAAAAYIHACQAAAAAsEDgBAAAAgAUCJwAAAACwECZBJi8vT/bt2ycVKlSQkJAQbx8OAAQVnXP95MmTUq1aNQkN5d6dHXUTAPh+vRR0gZMGTQkJCd4+DAAIanv37pVrr73W24fhM6ibAMD366WgC5y0pcleONHR0d4+HAAIKidOnDA3r+y/xfg/1E0A4Pv1UtAFTvbueRo0ETgBgHd/i+FaHtRNAOC79RIdzAEAAADAAoETAAAAAFggcAIAAAAACwROAADkM336dElMTJTIyEhp3bq1rF+//pJldOzYMXnkkUekatWqEhERIfXq1ZPly5dTrgAQQIIuOQQAAJeyZMkSGT58uMyaNcsETenp6ZKcnCyZmZlSuXLlAvvn5uZKt27dzHPvvPOOVK9eXfbs2SMVK1akoAEggBA4AQDgZOrUqTJw4EDp16+fWdcA6sMPP5R58+bJyJEjC5SVbj9y5IisXbtWypYta7ZpaxUAILDQVQ8AROTixYuyceNGWblypXnUdQQfbT3KyMiQrl27OrbpTPK6vm7dukJf8/7770ubNm1MV70qVapIo0aN5LnnnrvkOZSTk2PmDnFeACA/6ibfQosTgKC3evVqmTFjhhw4cMBRFvHx8TJkyBDp0KFD0JdPMDl8+LC5UNEAyJmu79ixo9DX/Pzzz/L5559L7969zbimnTt3mnPn/PnzkpaWVuhrJk2aJOPGjbsinwFAYKBu8j20OAGQYK+Y9OI2KSnJJATQC1991HXdrs8Dl5KXl2fGN82ZM0eaN28uKSkpMnr0aNPFryijRo2S48ePO5a9e/dSyACom3wcgROAoKUtC9rSpN2sJkyYIA0bNpSoqCjzqOu6febMmXTbCyJxcXFSpkwZyc7Odtmu69oKWRjNpKdZ9PR1dtdff71pwdSuf4XRzHvR0dEuCwAo6ibfReAEIGht3rzZXNxqFysdx+JM13X7/v37zX4IDuHh4abVSMe6Obco6boG0oVp166d6Z6n+9n9+OOPJqDS9wOAkqBu8l0ETgCClmZCU7Vq1Sr0eft2+34IDpqKfO7cufLmm2/K9u3bZfDgwXL69GlHlr0+ffqYrnZ2+ryeI48//rgJmDQDnyaH0GQRAFBS1E2+i+QQAIJWbGysedy1a5fpnpefbnfeD8FBxygdOnRIUlNTTYtk06ZNZcWKFY6EEVlZWS4tlAkJCfLxxx/LsGHDpHHjxmYeJw2iRowY4cVPAcBfUTf5rhCbzWaTIKIpX2NiYsxgXPqUA8FN+5FrdzxNBKEZzn744Qdzp08rLU0prckhNHhauHChy/gVXD5+gykXAMWvm3S8rfONGu0SPGbMGOomL9VLtDgBCFoaDGnaaG1Z6NGjh5lbx3nwvq6PHz+eoAkA4PG6SW/eaZCkQZR2HdcbeYsWLTJzyunNPm7oBekYJ039q7OsR0ZGSuvWrWX9+vVF7jt//nwJCQlxWfR1AHC59HekJNsBALiSdA5BDY50njgdL9m9e3fzqMGTbmeOQe/weovTkiVLzEBcne9Cg6b09HRJTk6WzMxMMy9GYbQZTZ+34+IGQGlTvhbVVU/TkWvWNO7sAQA8SYMjrX80y569btJxlNRHQRw4TZ06VQYOHOjIVqQBlGYkmjdvnowcObLQ12igVNR8GgBQ0pSvY8eOlbJly0qzZs1cntfuEXqHT/fL/xwAAFeaBknUP77Dq131dGLAjIwM6dq16/8OKDTUrGv/zaKcOnVKatasaTIZ9ezZU7Zu3VrkvjpGQQd9OS8AoEj5CgAA/CJwOnz4sOkqY0/xaqfrehe4MNddd51pjVq2bJnJdKXZRdq2bSu//PJLoftPmjTJZMqwLxpsAUD+lK+FIR05AADwqeQQJaFjEXTyQZ1Xo2PHjrJ06VK55pprZPbs2YXur5MUanpB+7J3716PHzMA36R9xbXbr2Yp0pswznRdt1etWtXsBwAAgptXA6e4uDjTdzM7O9tlu64XdwyTfVzCzp07C31eUwprMgnnBQCcU75q12BN+ardfs+cOWMedV23Dx48mIG4AACv0J5ZGzdulJUrV5pHXUeQJocIDw+X5s2bm5OhV69ejru8uj506NBivYeeQFu2bDFpGgHgclO+anY9TQRhpy1NpHwFAHjL6tWrTd3kPHxFGxb0hh/pyIM0q56mIu/bt6+0aNFCWrVqZdKRnz592pFlT7vlVa9e3YxVUjoZ5U033SR16tSRY8eOyZQpU2TPnj0yYMAAL38SAP6KlK8AAF8LmnRKDB2ioplfnSfA1e3c2AvSwCklJUUOHTokqampJqLWsUsrVqxwJIzIysoymfbsjh49atKX676VKlUyLVZr166VBg0aePFTAPB3pHwFAPjaHIMTJkxwXAc3bNjQrGtXcuYY9I4Qm81mkyCi6cg1u54mimC8EwDwG+wLqJsA2OlYpmHDhsn06dNNsJSfjsPVruXTpk1jjicP//76XVY9AAAAIFAxx6DvInACAAAAfARzDPouAicAAADARzDHoO8icAIAAAB8BHMM+i6vZ9UDAAAA8D/MMeibCJwAAAAAH8Mcg76HwAkAAADwQcwx6FsY4wQAAAAAFgicAAAAAMACgRMAAAAAWCBwAgAAAAALBE4AAAAAYIHACQAAAAAsEDgBAAAAgAUCJwAAAACwQOAEAAAAABYInAAAAADAAoETAAAAAFggcAIAAAAACwROAAAAAGCBwAkAAAAALBA4AQAAAIAFAicAAAAAsEDgBAAAAAAWCJwAAAAAwAKBEwAAAABYIHACAAAAAAsETgAAAABggcAJAAAAACwQOAEAAACABQInAAAAALAQZrUDAACAv7p48aJs3rxZjhw5IrGxsdK4cWMpU6aMtw8LgB8icAIAAAFp9erVMmPGDDlw4IBjW3x8vAwZMkQ6dOjg1WMD4H/oqgcAAAIyaEpLS5OkpCSZPn26LF++3Dzqum7X5wGgJAic4NbuEBs3bpSVK1eaR10HAH+kF9iJiYkSGRkprVu3lvXr1xe57/z58yUkJMRl0dfBe7T+0ZamNm3ayIQJE6Rhw4YSFRVlHnVdt8+cOZN6CkCJ0FUPbkF3CACBYsmSJTJ8+HCZNWuWCZrS09MlOTlZMjMzpXLlyoW+Jjo62jxvp8ETvEfHNGn3vLFjx0poqOs9Yl3v3bu3PPLII2a/Zs2aee04AfgXWpxQanSHABBIpk6dKgMHDpR+/fpJgwYNTAClrRXz5s0r8jUaKOnYGftSpUoVjx4zXGkiCFWrVq1Ci8a+3b4fABQHgRNKhe4QAAJJbm6uZGRkSNeuXV1aKHR93bp1Rb7u1KlTUrNmTUlISJCePXvK1q1bL/l3cnJy5MSJEy4L3Eez56ldu3YV+rx9u30/ACgOAie4pTuEdnsoqjvE/v37zX4A4OsOHz5sbgjlbzHSdefMbM6uu+460xq1bNkyWbhwoeTl5Unbtm3ll19+KfLvTJo0SWJiYhyLBlxwH005ri1/ixYtMt+HM13X7VWrVjX7AUBxETihVOgOASDYaaKBPn36SNOmTaVjx46ydOlSueaaa2T27NlFvmbUqFFy/Phxx7J3716PHnOg03maNOW4thKOGTPGtACeOXPGPOq6bh88eDDzOQEoEZJDwG3dITRbUX50hwDgT+Li4szFdHZ2tst2XdcWjOIoW7asSTiwc+fOIveJiIgwC64cnadp3LhxJrueJoKw05Ym3c48TgBKisAJbusOoSlenbvr0R0CgL8JDw+X5s2bm2kVevXq5fgt0/WhQ4cW6z20q9+WLVuke/fuV/hoYUWDo3bt2pnu4tpDQm/2ab2lwTEAlBSBE9zSHUInE9TuDzqmSbMVaUuTBlPaHULv7FFJAfAXmoq8b9++0qJFC2nVqpVJR3769GmTZU9pt7zq1aubcUpq/PjxctNNN0mdOnXk2LFjMmXKFNmzZ48MGDDAy58ESusfUo4DcAcCJ5Qa3SEABJKUlBQ5dOiQpKammoQQOnZpxYoVjoQRWVlZLq3rR48eNenLdd9KlSqZFqu1a9eaVOYAgMARYrPZbBJENOWrZjDSwbg6YSHcR7un0B0CAL/BJUfdBAC+//vrE1n1pk+fLomJiRIZGWlmaV+/fn2xXrd48WIz6aC9Hzp8oztEly5dzCPd8wAAABAovB44LVmyxPQn1zEyGzZskCZNmkhycrIcPHjwkq/bvXu3PPXUU9K+fXuPHSsAAACA4OT1wGnq1Kmmb7gOutX+4LNmzZKoqCgzmeCluoRpEgJNOpCUlOTR4wUAAAAQfLwaOOXm5kpGRoZ07dr1fwcUGmrWNRtbUTSDUeXKlaV///6WfyMnJ8f0XXReAAAAAMBvAqfDhw+b1iN7piI7XdfsRIVZs2aNvP766zJ37txi/Q1NF6sDvuxLQkKCW44dAAAAQPDwele9kjh58qTcf//9JmjS2d2LY9SoUSZLhn3Zu3fvFT9OAAAAAIHFq/M4afCjmdeys7Ndtut6fHx8gf1/+uknkxTi9ttvd2zTGd1VWFiYZGZmSu3atV1eExERYRYAAAAA8MsWp/DwcDNR4MqVK10CIV1v06ZNgf3r168vW7ZskU2bNjmWO+64Qzp37mz+TTc879Julxs3bjTfnz7qOgAAABAIvNripDQVed++faVFixbSqlUrSU9Pl9OnT5sse6pPnz5SvXp1M1ZJ53lq1KiRy+srVqxoHvNvh2etXr1aZsyY4TI2TVsNhwwZIh06dODrAAAAgF/zeuCUkpIihw4dktTUVHPR3bRpU1mxYoUjYURWVpbJtAffDpp0Hi5tJRw7dqzUqlVLdu3aJYsWLTLbNW08wRMAAAD8WYjNZrNJENF05JpdTxNFREdHe/tw/J59Ti2dT2vChAkuQa52uxwzZowJohYuXGjGswEIbvwGUy4A4K/1Ek05KJXNmzeblkINnvK3DOq6bt+/f7/ZDwAAAPBXBE4olSNHjphH7Z5XGPt2+34AAACAPyJwQqnExsaaR+2OVxj7dvt+AAB4EhlfAQRMcgj4t8aNG5vseZoIorAxTrq9atWqZj8AADyJjK8A3IkWJ5SKJnzQlOPr1q0ziSC2bt0qZ86cMY+6rtsHDx5MYggAgFcyvmryounTp8vy5cvNo67rdn0eAEqCrHq4Ynf1tKVJgyZSkQOwI6te4SgX9yLjK4Ar8ftLVz24hQZH7dq1M9nzNBGEjmnS7nmkIAcAeCvjq84tWFTG10ceecTs16xZM74gAMVC4AS30SCJCggA4G1kfAVwJTDGCQAABBQyvgK4EgicAABAwGZ81Qyvzsj4CuByETgBAICAQsZXAFcCY5wAAEBAJi0aN26cyfiqiSCcM77qdjK+AigpAicAABCQyPgKwJ0InAAAQMAi4ysAd2GMEwAAAABYIHACAAAAAAsETgAAAABggcAJAAAAACwQOAEAAACABQInAAAAALBA4AQAAAAAFgicAAAAAMACgRMAAAAAWCBwAgAAAAALBE4AAAAAYIHACQAAAAAsEDgBAAAAgAUCJwAAAACwQOAEAAAAABYInAAAAADAAoETAAAAAFggcAIAAAAACwROAAAAAGCBwAkAAAAALBA4AQCQz/Tp0yUxMVEiIyOldevWsn79+mKV0eLFiyUkJER69epFmQJAgCFwAgDAyZIlS2T48OGSlpYmGzZskCZNmkhycrIcPHjwkuW0e/dueeqpp6R9+/aUJwAEIAInAACcTJ06VQYOHCj9+vWTBg0ayKxZsyQqKkrmzZtXZDldvHhRevfuLePGjZOkpCTKEwACEIETAAC/yc3NlYyMDOnatev/KsrQULO+bt26Istp/PjxUrlyZenfv3+xyjInJ0dOnDjhsgAAfBuBEwAAvzl8+LBpPapSpYpLmej6gQMHCi2nNWvWyOuvvy5z584tdjlOmjRJYmJiHEtCQgLfAQD4OAInAAAu08mTJ+X+++83QVNcXFyxXzdq1Cg5fvy4Y9m7dy/fAQD4uDBvHwAAAL5Cg58yZcpIdna2y3Zdj4+PL7D/Tz/9ZJJC3H777Y5teXl55jEsLEwyMzOldu3aBV4XERFhFgCA/6DFCQCA34SHh0vz5s1l5cqVLoGQrrdp06ZAOdWvX1+2bNkimzZtcix33HGHdO7c2fybLngAEDhocQIAwImmIu/bt6+0aNFCWrVqJenp6XL69GmTZU/16dNHqlevbsYp6TxPjRo1cim/ihUrmsf82wEA/o3ACQAAJykpKXLo0CFJTU01CSGaNm0qK1ascCSMyMrKMpn2AADBJdTfZmhfunSpuQuod/TKlStnKrQFCxZ49HgBAIFt6NChsmfPHpM2/JtvvjF1k92qVatk/vz5Rb5Wn3vvvfc8dKQAgKAJnEo6Q3tsbKyMHj3azKexefNm03VCl48//tjjxw4AAAAgOITYbDabNw9A7+K1bNlSXnvtNccgXB1M++ijj8rIkSOL9R433nij3HbbbfLss89a7quTDOqcGZr+NTo6utTHDwAoPn6DKRcA8Nd6KdQfZ2i305hPMx1putcOHToUug+zswMAAAAorVB/m6FdaURYvnx5kzZWW5peffVV6datW6H7Mjs7AAAAAL8f43Q5KlSoYObH+Pbbb2XixIlmjJQO1i0Ms7MDAAAA8Ot05CWdod25O1+dOnXMvzWr3vbt203LUqdOnQrsy+zsAAAAAPy6xamkM7QXRV+jY5kAAAAAICAnwC3JDO1KH3Xf2rVrm2Bp+fLlZh6nmTNnevmTAAAAAAhUYf42Q7sGVUOGDJFffvlFrrrqKqlfv74sXLjQvA8AAAAABOQ8Tp7GHCIAwG+wr6FuAgDv8Jt5nAAAuJLOnTsnL774IoUMACg1AicAgF/T7t4ffPCBfPLJJ2ZuQHX+/Hl5+eWXJTExUZ5//nlvHyIAIAC4NXDizh4AwJPWrFkjdevWlTvuuENuvfVWadu2rWzbtk0aNmwos2fPlmeeeUb27t3LlwIA8HzgxJ09AICvGDNmjHTv3l02b95ssrTqxOh33nmnPPfccyaAGjRokEkkBACAR5ND6J29Hj16mEFUISEhJi34G2+8Ib169ZKwsDB57LHHTGpxX66kGIALAIHzG3z11VfLl19+KQ0aNJCzZ89K+fLlZenSpdKzZ0/xJ9RNABBgySG4swcA8CVHjx6VuLg482+9aRcVFSWNGjXy9mEBAIJ9HqctW7bIjBkzzJ298ePHy9SpU+WFF17wuzt7AIDAoV3ydB5ApZ0oMjMzzZx/zho3buylowMABGXgxJ09AICv6dKliwmY7LRLudIu5bpdH+3Z9gAA8EjgpLizBwDwFbt27fL2IQAAgkSJAyfu7AEAfEXNmjW9fQgAgCBRosCJO3sAAF+i42wfffRRRzbXr776ymR8jYiIMOsnT56UESNGmPG5AAB4LB15ICDlKwAEzm9wmTJlZP/+/VK5cmWzru+5adMmSUpKMuvZ2dlSrVo1nx/jRN0EAAGWjlzv7Ok8GXZ6Zy8nJ8exrnf2hgwZcjnHDABAieW/9xdk9wIBAB5UosBp1KhRJjiyu/XWW+XXX391rJ85c0Zmz57t3iMEAAAAAH8KnLizBwAAACAYlTirHgAAvuSvf/2rlC9f3vz7woULMn/+fImLizPrzr0kAAAoDQInAIDfqlGjhsydO9exHh8fLwsWLCiwDwAAHg+cuLMHAPAVX3zxhdSqVcvbhwEACAIlSkeemJgoISEhfj3fEylfASBwfoNDQ0PNJLidO3eW3/3ud+axevXq4m+omwDA939/S9TitHv37tIeGwAAbvP555/LqlWrzPL3v/9dcnNzzRxO9iBKlypVqlDiAADPZtXTCqpBgwYmMstPo7SGDRvKl19+WfqjAgCgGDp16iTPPPOMCZyOHj0qn376qdx3332yfft2eeCBB8zkt1o3AQBQWiVqcUpPT5eBAwcW2oylTVwPP/ywTJ06Vdq3b1/qAwMAoCQiIyNNS9PNN99sWpo++ugjM7fgjh07KEgAgGdbnL7//nu55ZZbinz+97//vWRkZJT+qAAAKCbtnrd69WoZN26cCZgqVqwogwYNMi1Qr732mk+PuwUABGiLU3Z2tpQtW7boNwsLk0OHDrnjuAAAsKQtTN98843JrNexY0fT8+Gtt96SqlWrUnoAAO+1OGmmoh9++KHI5zdv3kxlBQDwGB1Xe/XVV5sAqkuXLtKtWzfqIQCA9wOn7t27y9ixY+XcuXMFnjt79qykpaVJjx493Hl8AAAU6dixYzJnzhyJioqSyZMnm2QQN9xwgwwdOlTeeecdekEAALwzj5N21bvxxhulTJkyplK67rrrzHYdeDt9+nS5ePGibNiwwadTvzJXBgAE7m/wyZMnZc2aNWZiXM20p2Nz69ate8neEr6AugkAAmweJw2I1q5dK4MHD5ZRo0aJPebSSXGTk5NN8OTLQRMAILCVK1dOYmNjzVKpUiUz9lZTkwMAUFolCpyUztC+fPlyk61o586dJnjSu3laQQEA4El5eXny3XffmdYlbWX66quv5PTp02ZMrmbY0xt6+ggAgMcDJzsNlFq2bFnqAwAA4HJp6nENlOLj402ANG3aNDMpbu3atSlUAIBvBE4AAHjblClTTMBUr149bx8KACDAETgBAPyWztsEAIDPpSMHAAAAgGBE4AQAAAAAFgicAAAAAMACgRMAAAAAWCBwAgAgH53/KTExUSIjI6V169ayfv36Isto6dKl0qJFC5MaXSfgbdq0qSxYsIAyBYAAQ+AEAICTJUuWyPDhwyUtLU02bNggTZo0keTkZDl48GCh5RQbGyujR4+WdevWyebNm6Vfv35m+fjjjylXAAggITabzSZB5MSJExITEyPHjx+X6Ohobx8OAAQVf/gN1hYmneD9tddeM+t5eXmSkJAgjz76qIwcObJY73HjjTfKbbfdJs8++2zAlAsAz7t48aK5IXPkyBFzk6Zx48ZSpkwZvgo3KsnvL/M4AQDwm9zcXMnIyJBRo0Y5yiQ0NFS6du1qWpSs6L3Izz//XDIzM2Xy5MlF7peTk2MW54obAJytXr1aZsyYIQcOHHBsi4+PlyFDhkiHDh0oLC+gqx4AAL85fPiwucNbpUoVlzLRdeeLl/z0TmX58uUlPDzctDS9+uqr0q1btyL3nzRpkrnDaV+0RQsAnIMm7S6clJRkxlwuX77cPOq6btfn4XkETgAAlFKFChVk06ZN8u2338rEiRPNGKlVq1YVub+2aGmwZV/27t3LdwDA0Js32tLUpk0bmTBhgjRs2FCioqLMo67r9pkzZ5r94FkETgAA/CYuLs6MH8jOznYpE13XLjJFVqahoVKnTh2TUe/JJ5+Uu+++27QqFSUiIsL0pXdeAEDpmCZt4e7du7f5bcn/W6Pb9+/fb/aDZxE4AQDwG+1q17x5c1m5cqWjTDQ5hK7rXd7i0tc4j2ECgOLSRBCqVq1ahT5v327fD55DcggAAJxoN7u+ffuauZlatWol6enpcvr0aZNiXPXp00eqV6/uaFHSR923du3aJljSsQg6j5N2pQGAktLseWrXrl2me15+ut15PwRZi1NJJhqcO3eutG/fXipVqmQWzXR0qf0BACiJlJQUefHFFyU1NdV0vdOxSytWrHAkjMjKyjLdZOw0qNIsV3qB065dO/nnP/8pCxculAEDBlDwAEpMU45r1+BFixaZ1mtnuq7bq1atavZDkM3jpBMN6t27WbNmmaBJ7+y9/fbbJpVr5cqVC+yv/Tq1Ymrbtq0JtDTd67vvvitbt241dwCtMFcGgMIwV4Zn8BtMuQAoflY97SKs177aPU9bmjRo0qkRxo0bR0pyL9RLXg+cSjvRoF7saMuTvl4DMCtU2gDyY64Mz+E3mHIBcPl1k7Y0DR48mKApGCfALe1Eg+rMmTNy/vz5Ivt5MskggOLe1Rs7dqzLXT3dzl09AIA36CS32stKs+dpIgi91tXueZr5E0E4xulyJxp0NmLECKlWrZoJtgrDJIMAisJcGQAAX6ZBUrNmzaRLly7mkaDJu3wiOcTlev7552Xx4sVmjJOOdyoMkwwCKApzZQAAgOIK88eJBpVmPNLA6bPPPrtkVhGdZFAXAMiPuTIAAIBftDhd7kSDL7zwgjz77LMmPazOnQEApZ0rozDMlQEAAHymq55ONKhzM7355puyfft2kykk/0SDzskjNP24DuCeN2+emftJx0LpcurUKS9+CgD+iLkyAACA3wROJZ1oUGdi12x8d999t0nJaF/0PQCgJLSrsE5cqlk8x4wZY+aD00yd+qjrul1v5jAYFwAAeH0eJ09jDhEA+TFXBr/B3kbdBADe4TfzOAGAL2CuDAAAYIXACQCc5soAAADwyTFOAAAAAODrCJwAAAAAwAKBEwAAAABYIHACAAAAAAsETgAAAABggcAJAAAAACwQOAEAAACABQInAAAAALBA4AQAAAAAFgicAAAAAMACgRMAAAAAWCBwAgAAAAALBE4AAAAAYIHACQAAAAAsEDgBAAAAgAUCJwAAAACwQOAEAAAAABYInAAAAADAAoETAAAAAFggcAIAAAAACwROAAAAAGCBwAkAAAAALBA4AQAAAIAFAicAAAAAsEDgBAAAAAAWwqx2AAAAKKlz585JVlYWBVeEGjVqSGRkJOUD+BECJwAA4HYaND300EOUbBHmzJkj9erVo3wAP0LgBAAArkiLigYHvmDPnj0yceJEGT16tNSsWVN8pXwA+BcCJwAA4HbaDc3XWlQ0aPK1YwLgP0gOAQAAAAAWCJwAAAAAwAKBEwAAAABYIHACAAAAAAsETgAAAABA4AQAQMlMnz5dEhMTTWa41q1by/r164vcd+7cudK+fXupVKmSWbp27XrJ/QEA/okWJwAAnCxZskSGDx8uaWlpsmHDBmnSpIkkJyfLwYMHCy2nVatWyX333SdffPGFrFu3ThISEuT3v/+9/Prrr5QrAAQQ5nEKAOfOnTMztOPSEw3qnWMAsDJ16lQZOHCg9OvXz6zPmjVLPvzwQ5k3b56MHDmywP6LFi1yWf/rX/8q//znP2XlypXSp08fChwAAgSBUwDQoOmhhx7y9mH4NJ29nkkPAVjJzc2VjIwMGTVqlGNbaGio6X6nrUnFcebMGTl//rzExsYWuU9OTo5Z7E6cOMGXAwA+jsApQFpTNDDwBXv27JGJEyfK6NGjzQztvlRGAGDl8OHDcvHiRalSpYrLdl3fsWNHsQpwxIgRUq1aNRNsFWXSpEkybtw4vhAA8CMETgFAu6D5WmuKBk2+dkwAcKU9//zzsnjxYjPu6VLdg7VFS8dRObc46dgod8jOzpbjx4+75b0Chd7Uc36Eq5iYmAI3CwAUROAEAMBv4uLipEyZMib4cKbr8fHxlyynF1980QROn332mTRu3PiS+0ZERJjF3fQ4/3x/Hzmf+79ugPgf7RGBgsqGR8jCBX8jeAIsEDgBAPCb8PBwad68uUns0KtXL7MtLy/PrA8dOrTIcnrhhRfMRfnHH38sLVq08Fp5akuTBk1nkzpKXmSM144D/iP03HGRn/9tzh1anQAfD5x0rowpU6bIgQMHTMrXV199VVq1alXovlu3bpXU1FQzcFeb26dNmyZPPPGEx48ZABC4tAtd3759TQCk9VF6erqcPn3akWVPM+VVr17djFNSkydPNnXTW2+9ZeZ+0vpMlS9f3izeoEFTXrk4r/xtAAhUof40V4ZmKkpKSjJdIay6TAAAcDlSUlJMtzsNhpo2bSqbNm2SFStWOO7GaybT/fv3O/afOXOmycZ39913S9WqVR2LvgcAIHCE+dNcGS1btjSLKux5AADcQbvlFdU1TxM/ONu9ezeFDgBBIMyf58ooDubKAAAAgD/S6RE2b94sR44cMXPDaeIZTWCDIAuc3DFXRnEwVwYAAAD8zerVq2XGjBmOcZNKh6oMGTJEOnTo4NVjC1ZeHePkCdqipZli7MvevXu9fUgAAADAJYMmzQGgY/s1kdry5cvNo67rdn0eQRQ4lWaujJLQeTKio6NdFgAAAMAXaY8sbWlq06aNTJgwQRo2bChRUVHmUdd1uyal0f0QJF31LneuDF/C7OwFMTv7pTE7OwAAuBQd06Td88aOHWvG/zvT9d69e8sjjzxi9mvWrBmFGSxZ9Uo6V4YmlNi2bZvj37/++qtJE6vzZNSpU8ejx87s7JfG7OyFY3Z2AABwKZoIQtWqVavQ5+3b7fshSAInnSvj0KFDZq4Mjax1voz8c2U4R9r79u1ziax1jgxdOnbsWCA97JXG7OwoKWZnBwAAVjR7ntq1a5fUr1+/QFY93e68H4IkcCrpXBk6I7vNZhNfwuzsAAAAcBcNjnS8/yuvvCLHjh1zyQegjQsVK1Y0k2zrfvCsgM+qBwAAAPgLTZ7WqVMnyczMNENT7r33XnniiSfMo67rdu1txXxOQdjiBAAAAOD/aLY87XVVrVo1M5TlH//4h6NoNFjS7f/+979l4MCBBE8eRuAEAAAA+FhWPaWpxzWBmk6vk5OTI+vXr5d169Y59iOrnmcROAEAAAA+4vDhw+axdevWJkuxc6K0nj17yqhRo+Sbb75x7AfPIXACgN+6RuTPXET/cfir0LPHvH0I8BOcK75HE0Ko9u3bFzqP080332wCJ/t+8BwCJwBBb/Xq1WaWdnvXCKUZjYYMGSIdOnQI+vKB/7lq12pvHwKAy6RZ89SXX34p3bt3dwme8vLyZM2aNS77wXMInABIsAdNaWlpph+5ztKuEwvqHBmLFi0y28eNG0fwBL9ztlYHybuKiyoUr8WJQNu3xMXFmUcdzzRmzBjp3bu3S92k2533g+cQOAEI6u552tKkQZNOxP2vf/1LPvvsM5OxSNfHjx8vM2fOlHbt2tFtD35Fg6a8clxUAf48j1NMTIz8/PPP8sgjjzie0/mb6tWrJydOnGAeJy8gcAIgwZ65qFGjRnLbbbeZQMpu1qxZ0rlzZ9m/fz+ZiwAAHqPja7WruPZ6uOmmmyQlJcUlq97XX39tekMwDtfzCJwABC1NBKG0lalSpUrSv39/0/qkqV5ff/11s915PwAAPEHH12pwpL0i7OnH7S1OdCH3HgInAEErOjraPFaoUEHefvttCQv7v5/EHj16yC233CJ33nmnnDx50rEfAACeDJ60qzgZX30HgROAoKV9x1XlypULTfl6zTXXmMBJ92vZsqWXjhIAEKy0Ox6T3PoOAqdSYv4DcK74L3v6cQ2MCstcpI/O+wEAgOBF4FRKpPAE/Jdmz1O33367GXCbP3ORbn///fcd+wEAgOBF4FRKzJWB4mKuDN/Ts2dPkz1PJxlcvHixbNu2zSSCiI2NlQYNGsgf//hH001C9wMAAMGNwKmUmCsD8F/h4eFyzz33mKBJg6QHH3zQkVVP53A6evSo2a77AQCA4EbgBCCoDRo0yDxqVr2XXnrJsV1bmjRosj8PAACCG4ETgKCnwZG2Ni1btkz27dtnxjRp9zxamgAAgB2BEwA4ddsDAAAojOvEJQAAAACAAgicAAAAAMACgRMAAAAAWCBwAgAAAAALJIcopdBzx0v7FggSnCsAgur3Ju+ChOac8vZR+Ky8iPIiod6/DPOJcwXwE97/H+unYmJipGx4hMjP//b2ocCP6Dmj5w4AXAnUTbgc1E1A8RA4XaYqVarIwgV/k+PHuVPjbM+ePTJx4kQZPXq01KxZ83KLN6AvavTcAYBAr5tycnLkwIED3j4MnxUfHy8RERHiC6ibgOIhcCplBeULF8Hnzp2TrKwsbx+GT6tRo4ZERkZ6+zAAIGjqJnXDDTd4+xAAwG0InAKABk0PPfSQ+BJtdfIlc+bMkXr16nn7MAAAAOCnCJwCpDVFAwNcuowAAACAy0XgFAC0CxqtKQAAAMCVwzxOAAAAAGCBwAkAAAAALNBVDwAAAPBBubm5smzZMtm3b59Uq1ZNevbsKeHh4d4+rKBF4AQAAAD4mFmzZsnbb78tFy9edNl2zz33yKBBg7x6bMGKwAkAAADwIRogLV68WCpVqiT9+/eXNm3ayLp16+T111832xXBk+cxxgkAAADwoe552tKkQZM+9ujRQ66++mrz6Lxd94NnETgBAAAAPkLHNGn3PG1pCgtz7Rym6w8++KB5XveDZ9FVDwAAAHBy7tw5ycrK8kqZbNu2zTxWqVJFfvzxxwLP63b7foU97wk1atQw84gGmxCbzWaTIHLixAmJiYmR48ePS3R0tLcPBwCCir/8Bk+fPl2mTJkiBw4ckCZNmsirr74qrVq1KnTfrVu3SmpqqmRkZMiePXtk2rRp8sQTTwRkuQDBQgOShx56yNuH4bPmzJkj9erVk0BQkt9fWpwAAHCyZMkSGT58uBmc3bp1a0lPT5fk5GTJzMyUypUrFyirM2fOSFJSksl0NWzYMMoSKIXs7GxzAettOTk5Mnr0aK/87QsXLsgLL7wgUVFR8thjj5kymTdvnumip61Nr7zyipw9e1b+8pe/FOjK58ny+dFLrV35adBjb4W70mhxAhC03SH8RSB1ifCHlhUNllq2bCmvvfaaWc/Ly5OEhAR59NFHZeTIkZd8bWJiomltosUJKDkNEHr/+X65cJ6kByi+sLLhsmjhgssOnmhxAmBp586dsmvXLq+X1P79+82dNBRN7zJWrVrV60VUq1YtqVOnjgQyzVKlXe5GjRrl2BYaGipdu3Y1qYDdebdWF+eKGwh2ekOFoAklpeeMnjueaHWiqx4QpHTMxvfff+/tw0Ax+EpgqWN9Xn75ZQlkhw8fNtmq8lfAur5jxw63/Z1JkybJuHHj3PZ+QCDQ1mhtPSB4QknoOaPnjicQOAFBSrsd0eLkH3ypxQnuoS1aOo7KucVJuwMCwUxvUGiXK18Y46SJXiZOnOjtw/BZo0ePlpo1a0qwjXEicAKClHa58oVuVzrG6aabbvL2Yfi0QBrj5Ovi4uKkTJkyZqyFM12Pj49329+JiIgwCwBXegHsqYtgq99dzRyHossnMgjrpTB/S/uqdLbksWPHyu7du6Vu3boyefJk6d69u0ePGYB76A9voKQ0hf8LDw+X5s2by8qVK6VXr16O5BC6PnToUG8fHgAPoW5CYULFR9K+pqWlyYYNG0zgpGlfDx48WOj+a9eulfvuu8/Mprxx40ZTsenyww8/ePzYAQCBR+ukuXPnyptvvinbt2+XwYMHy+nTp6Vfv37m+T59+rgkj9CEEps2bTKL/vvXX381/9YELACAwOH1dOQlTfuakpJiKrAPPvjAsU27+TRt2tTMuREIqXABIFD5y2+w1kn2nhBav+i8KVpfqU6dOpm04/Pnzzfr2vuhsPFfHTt2lFWrVgVUuQBAoPGbdOSXk/ZVtzsPqFXaQvXee+8Vuj8pXwEAJaXd8orqmpc/GNIgysv3IAEAgd5V71JpX/UuX2F0e0n215SvGkXaF7IWAQAAAPC7MU5XmrZmadObfdm7d6+3DwkAAACAnwnzt7Svur0k+5PyFQAAAIBftzg5p321s6d9bdOmTaGv0e3O+6tPP/20yP0BAAAAwO/ncdJED3379pUWLVqYuZvS09MLpH2tXr26GaukHn/8cZOp6KWXXpLbbrtNFi9eLN999x2TlAEAAAAI3MBJ04sfOnRIUlNTHWlfV6xY4UgAkZWVZTLt2bVt21beeustGTNmjPy///f/zAS4mlGvUaNGXvwUAAAAAAKZ1+dx8jTmygAAfoN9DXUTAHiH38zj5A32OFELCQDgWfbf3iC7Z2eJugkAfL9eCrrA6eTJk+aR+ZwAwLu/xXqHD/8rD0XdBAC+Wy8FXVc9zdq3b98+qVChgoSEhHj7cAIyateKX+fLsmruBHwN5++Vp1WOVk7VqlVzGb8a7Kibriz+b8Ofcf76Tr0UdC1OWiDXXnuttw8j4GnQROAEf8X5e2XR0lQQdZNn8H8b/ozz1/v1Erf7AAAAAMACgRMAAAAAWCBwgltFRERIWlqaeQT8DecvEJj4vw1/xvnrO4IuOQQAAAAAlBQtTgAAAABggcAJAAAAACwQOAEAAACABQInuM38+fOlYsWKlCgAwGdQNwFwFwInFPDAAw9ISEhIgWXnzp2UFvxGYeew8/LMM894+xABlAB1E/wd9ZL/C/P2AcA33XLLLfLGG2+4bLvmmmu8djxASe3fv9/x7yVLlkhqaqpkZmY6tpUvX97xb00uevHiRQkL4ycR8GXUTfBn1Ev+jxYnFDlnQHx8vMvy8ssvyw033CDlypWThIQEGTJkiJw6darIEvz++++lc+fOUqFCBYmOjpbmzZvLd99953h+zZo10r59e7nqqqvM+z322GNy+vRpvhG4hfO5GxMTY+702dd37NhhzsuPPvrInJd6vuv5qHe0e/Xq5fI+TzzxhHTq1MmxnpeXJ5MmTZJatWqZc7dJkybyzjvv8K0BHkDdBH9GveT/CJxQ/JMlNFReeeUV2bp1q7z55pvy+eefy9NPP13k/r1795Zrr71Wvv32W8nIyJCRI0dK2bJlzXM//fSTuXN41113yebNm02LgF64Dh06lG8EHqPn5PPPPy/bt2+Xxo0bF+s1GjT97W9/k1mzZpn/C8OGDZM///nP8u9///uKHy+AgqibEEiol3wb/VJQqA8++MClK9Ott94qb7/9tmM9MTFRJkyYIIMGDZIZM2YU+h5ZWVnyl7/8RerXr2/W69at63LxqYGV3s23P6dBWceOHWXmzJkSGRnJN4Mrbvz48dKtW7di75+TkyPPPfecfPbZZ9KmTRuzLSkpyQT9s2fPNucvgCuHugmBjnrJtxE4oVDaxU4DGDvtnqcXixrwaDenEydOyIULF+TcuXNy5swZiYqKKvAew4cPlwEDBsiCBQuka9eucs8990jt2rUd3fi0pWnRokUu40y0G9SuXbvk+uuv55vBFdeiRYsS7a8JUvR8zx9s5ebmSrNmzdx8dADyo25CoKNe8m0ETiiUBkp16tRxrO/evVt69OghgwcPlokTJ0psbKy5y96/f39z0VhY4KRZy/70pz/Jhx9+aMaSpKWlyeLFi+XOO+80Y6MefvhhM64pvxo1avCtwGPnef4uPxrAOzt//rzj3/YxfXpOV69evcDYCwBXFnUTAh31km8jcEKx6BglbQ166aWXzMWl+sc//mH5unr16plFx4Hcd999JlOfBk433nijbNu2zSU4A7xNM0f+8MMPLts2bdrkGJvXoEEDEyBpN1S65QHeR92EQEe95FtIDoFi0QBH77y/+uqr8vPPP5vudzo4vihnz541iR5WrVole/bska+++sokibB3wRsxYoSsXbvW7KMXpv/5z39k2bJlJIeAV/3ud78zmR81+YOek9pK6hxIaSa+p556ytwI0AQpmuRkw4YN5v+FrgPwLOomBDrqJd9C4IRi0ZTLU6dOlcmTJ0ujRo3M2CQd71SUMmXKyH//+1/p06ePaXG69957TYKJcePGmec1g5lmIfvxxx9NSnIdH6Lz7FSrVo1vBF6TnJwsY8eONdkiW7ZsKSdPnjTnsLNnn33W7KPnv94I0OyQ2nVP05MD8CzqJgQ66iXfEmLL36EfAAAAAOCCFicAAAAAsEDgBAAAAAAWCJwAAAAAwAKBEwAAAABYIHACAAAAAAsETgAAAABggcAJAAAAACwQOMGvnDlzRu666y6Jjo6WkJAQOXbsmCQmJkp6err4Ez329957z/x79+7dZn3Tpk3i6zp16iRPPPGE+EvZAsCVRr3kXdRL8KQwj/41oJTefPNN+fLLL2Xt2rUSFxcnMTEx8u2330q5cuVK/F5nz5417/H999/LwoULzcW2u4OXZ555xvJ9ExISZP/+/eZYfN3SpUulbNmybn3PBx54wATAJQ12iipbLctKlSq59RgBoCjUS95FvQRPInCCX/npp5/k+uuvl0aNGjm2XXPNNZf1Xp9++qnUrFlT6tSpI95UpkwZiY+PF1+Wm5sr4eHhEhsbK77O18sSQGChXvIO6iV4hQ1wo4sXL9omT55sq127ti08PNyWkJBgmzBhgnlu8+bNts6dO9siIyNtsbGxtoEDB9pOnjzpeG3fvn1tPXv2tE2ZMsUWHx9v9hkyZIgtNzfXPN+xY0ebnrL2RddVzZo1bdOmTXO8z/bt223t2rWzRURE2K6//nrbp59+avZ/9913XY71wQcftI0YMcL2xhtvuLyvLrpNHT161Na/f39bXFycrUKFCub4N23aZJ47ePCgrUqVKraJEyc63vOrr76ylS1b1vbZZ59d8n2dj2fXrl1mfePGjWb9iy++MOv6Hs2bN7ddddVVtjZt2th27NjhcvzvvfeerVmzZuZz1qpVy/bMM8/Yzp8/X6zvac+ePbY77rjDVq5cOfO57rnnHtuBAwccz6elpdmaNGlimzt3ri0xMdEWEhLi+A4ef/xxx37nzp2zPfnkk7Zq1arZoqKibK1atTLHb6efNyYmxrZixQpb/fr1zd9LTk627du3z/F38peR/fVPP/20rW7duubz6+cbM2aM41wobtm647wD4N+ol6iXqJfgLgROcCu92K1UqZJt/vz5tp07d9q+/PJLc/F96tQpW9WqVW1/+MMfbFu2bLGtXLnSXAzrRaud/js6Oto2aNAgE/z861//Mhfjc+bMMc//97//NRe9GkTs37/frOcPnC5cuGC77rrrbN26dTMBjv59vZjPfzGtFWnlypVta9eutZ05c8Zc/Dds2NC8ry66TXXt2tV2++2327799lvbjz/+aPa7+uqrHX/7ww8/NIGSPn/ixAlbUlKSbdiwYea5S71vcQKn1q1b21atWmXbunWrrX379ra2bds6jn/16tWmrLScf/rpJ9snn3xiAhwNnqzoZ2/atKnt5ptvtn333Xe2r7/+2gRo9kDUHtBokHPLLbfYNmzYYPv+++8LDZwGDBhgjkuPR79vDT40kNOyUhrMaPloOWoZZWRkmGD2T3/6k3leA5h7773X/B17GeXk5Jjnnn32WROIavm8//77JkjVoLwkZeuO8w6Af6Neol6iXoK7EDjBbTRw0B8nDZTy04tQDaj0QtZOg47Q0FBHS4dewGoQpMGPnbaEpKSkONb1ot35Aj9/4PTRRx/ZwsLCzIW0XWEtTnpBroGTBhHOLSzONOjSC2ptVXGmrWmzZ892rGvrRL169UwwcMMNN7jsX9j7lqTFybmsdNvZs2fNepcuXWzPPfecy3suWLDABAlWNMgqU6aMLSsry7FNgzN9//Xr1zuOWwMebVVz5hw4aauVvs+vv/7qso8e26hRo1xahjSosps+fboJgvK3+FjRoEwDvJKUrbvOOwD+iXqJeklRL8FdGOMEt9m+fbvk5ORIly5dCn2uSZMmLkkc2rVrJ3l5eZKZmSlVqlQx2xo2bGjG/NhVrVpVtmzZUuxj0PfSZAvO41xatWpVYL9ly5ZJjx49JDS06MSSmjTi1KlTcvXVVxdIKqF92u1efPFFM+bq7bffloyMDImIiBB3aNy4sUs5qIMHD0qNGjXMsX311VcyceJExz4XL16Uc+fOmQxPUVFRRb6vfhdaRrrYNWjQQCpWrGiea9mypdmm478uNX5Mvxf9m/Xq1XPZrueAc5npsdSuXdvls+jnsLJkyRJ55ZVXTFnr93DhwgWTTbEkPHXeAfBN1EvUS4p6Ce5C4AS3ueqqq0r9Hvkztmlqab3Idbf3339fnn/++UvuoxfregG9atWqAs9pkGGnF/b79u0zx6mpxW+44Qa3HKNzWWg5KHtZ6LGNGzdO/vCHPxR4XWRkpFv+vlWmQj0GDTY0WHQOOlT58uUv+Z3+X8NQ0datWye9e/c2nzE5OdlkT1y8eLG89NJLciV46rwD4FnUS9RLdtRLcAcCJ7hN3bp1TSW1cuVKGTBggMtzmglv/vz5cvr0accFubaYaIvPdddd57Zj0Pfau3evZGdnO1oTNF25s//85z+yZ88e6datm2ObZozT1hNnN954oxw4cEDCwsLMXFFFZfX585//LCkpKeZv6+fWlorKlSsX+b7uoMemLSaXkxFQvwstI13srU7btm0zKcG15am4mjVrZj6bth61b99eLldhZaTp5rXFa/To0Y5t+p1ZvS4/T513AHwT9RL10uWgXkJRmAAXbqMtHSNGjJCnn35a/va3v5mWmK+//lpef/1103qgz/ft21d++OEH+eKLL+TRRx+V+++/3xHguIMGQ9otTP/O5s2bzUXymDFjXFpttJte165dXbqzaWC0a9cuMyfQ4cOHTbO+7tOmTRvp1auXfPLJJ6Y1SS/o9WL+u+++M6/Tfx8/ftx0KdPPrt3WHnzwwUu+rzukpqaaMtYWma1bt5ruKNoiY/+sl6KfS1vF9DvZsGGDrF+/Xvr06SMdO3aUFi1aFPsY9LPqe+hrdR4N/Zz6XpMmTZIPP/yw2O+jZaTflQaCWkbnz583FztZWVnmM+l5pOX77rvvFnidVdl66rwD4Juol6iXqJfgTgROcKuxY8fKk08+aS7s9W6/tsRoi4QGKR9//LEcOXLEjKG5++67zVio1157za1/X7uM6aSo2o1M/462ANlbLexd2DRwuuOOO1xed9ddd8ktt9winTt3NuN6/v73v5tAa/ny5dKhQwfp16+fCRT++Mc/mpYPvejWLnzp6emyYMECM/ZGWzH03zpB78yZM4t8X3fQ7msffPCBCej0c950000ybdo000pjRT+XloFOEqufTQOppKQkM6aopN544w0TOOl3ri04GmRqC5+OwyqugQMHmtdq0KZlpMGufj/Dhg2ToUOHStOmTU3AqueWs+KUrafOOwC+i3qJeol6Ce5iJmdx27sBPkgvxG+++WbZuXOnGSuj45Z++eUXWhwAANRLAIqNMU4IONqlSweBancvDZYef/xxk0lNu/D9+OOPMnXqVIImAAD1EoASIXBCwDl58qQZb6RjZOLi4kxXNHs2Nu1ulz99dqBZtGiRPPzww4U+p135dEwUAMBzqJeolxAY6KoHBGAFrVkFi0q7XZxxUAAAuAv1EgIFgRMAAAAAWCCrHgAAAABYIHACAAAAAAsETgAAAABggcAJAAAAACwQOAEAAACABQInAAAAALBA4AQAAAAAFgicAAAAAEAu7f8D9H+MMhUUzaUAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -2495,21 +2452,20 @@ "source": [ "## Interpretation:\n", "\n", - "CER: Essentially identical — orientation detection doesn't help at the character level\n", - "WER: True is meaningfully better (~2.7 percentage points lower mean, tighter distribution)\n", - "\n", - "This makes sense: orientation detection helps keep words intact by properly aligning text boxes, which reduces word-level errors even when individual characters are recognized correctly." + "7x better CER with textline_orientation=True. And the variance is much tighter — more reliable results.\n", + "For Spanish business documents with mixed layouts (tables, headers, addresses), orientation classification helps PaddleOCR correctly order text lines. Makes sense.\n", + "This is thesis-worthy: a single boolean flag accounts for more improvement than all the continuous hyperparameters combined. You could argue that for document OCR pipelines, architectural choices (orientation classification) matter more than threshold tuning." ] }, { "cell_type": "code", - "execution_count": 85, + "execution_count": 12, "id": "02fc0a87", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAATT5JREFUeJzt3Qm8VfP+//HP6aROGg5KnUqaZGhQGhVXXJF5CnFRum7uTSKZyo+SqShXKJmFrlsX1xQyRK6I6AiVZIiSToPhlFJxWv/H+3v/a9+9z9lnbM/r9Xw8dp211nevvdZ3rb3WZ3+nleV5nmcAAAABUi3ZGwAAAJBoBEAAACBwCIAAAEDgEAABAIDAIQACAACBQwAEAAAChwAIAAAEDgEQAAAIHAIgAAAQOARAaeaXX36xv/zlL5aXl2dZWVk2fPhwN3/t2rV2+umnW/369d38SZMmWbrvU9BMmzbN7f8333xjqerwww+39u3bWyZvj47B9ddfX246pVHadD7XPvzww2RvCpA0BEApdDEq7fXee++F0t5yyy0u/ZAhQ+zxxx+38847z82/7LLL7JVXXrFRo0a5+cccc0zMt1Of/eyzz8ZlvdH2KZoWLVqE8qVatWq22267WYcOHezCCy+0999/f6e245577nHbEW/xyseq8G/i5b0UaCA9PPPMM3bsscdagwYNrEaNGtakSRM788wz7Y033rBM8NJLL1UoQI2l888/v9TvRk5OjqWq8OulXrVr17bu3bvbY489llb5Hy/Vk70B+J8bbrjBWrZsWSJL9tlnn9DfuogdfPDBNmbMmIg0mn/yySfbFVdcEdcbt0qZTjnllJiut7R9Kk2nTp3s8ssvd39v2rTJPvvsM3vyySftgQcecIHg3//+9yoHQLpp6GIXT6XlowK/s846y2rWrGmJctppp0WcXyqNUyB66qmnumW+Ro0aJWybUDV6rOOf//xnF8QfdNBBNmLECFequmbNGhcUHXnkkfbOO+9Yr1690jqLdQOeMmVKwm/C+l4++OCDJeZnZ2dbKgu/Xupc0D4MHDjQtm3bZoMHD06b/I8HAqAUol9tXbt2LTPNunXrrG3btlHnqzQkHZW2T6Vp2rSpnXvuuRHzbr31VvvTn/5kd9xxh7Vp08bdxNONLqSJvpgeeOCB7uXbsGGDyzvNK57HO2vr1q2uREIld4i922+/3QU/qkLWj4Dw6rn/+7//c6Wr1asn9pK/ZcsW23XXXS0dgkedn7Vq1So1jfKuKt+JzZs3u5KXeOTP77//bjt27HDfq4peL/UDr1WrVu5aWZUAKJNwJUoTc+fOdRe0FStW2Isvvhgq0vSrz/QFVlTuz/f9/PPP7oLYrFkz9wtGv/YVLOhLE07Td955p6tOUpHunnvu6arR/DYCWqe+yI8++mjoM8orKVFgc8EFF7jSA62zY8eO7v3l7VNV2sDowqUL/B577GE333yzy4/wfVObqHbt2rnt0Pb89a9/tZ9++imiqHjJkiX21ltvRa32SUQ+ltYGSCVT2nZ9rqozhg4d6rYnWluYpUuX2hFHHOEuqrrw3XbbbRYP5X2Of2xnzJhh1157rUujtBs3bnTLVV2pfMnNzXXze/fu7Uonwql0T3muY6N9b9iwoR111FGWn59f6e2pyPlYlnnz5lm3bt3c+1q3bm333XdfpfJLJZRdunRx56lKGXVDWr16dUQanQd16tRx81U6qL91/qhUt6ioqMz1//rrrzZu3Djbf//9beLEiVHbJqmEUdUf4VQKoJIifY5u0ir5W79+fUSa5557zo4//nh37uk4aP9vvPHGEtvkn4MLFy60ww47zB2La665plLr8M+N4447znbffXe3TQrG9Z3y80jXOQmv2qnMd110Tp1wwgmu2YB+dOq4VPaYRuN/h3Udueiii9w5u9dee5WbPxU5N3Vd0Lp1fLWPykPlpc79ytCx1nny1VdfRcx/++237YwzzrC9997brVfXOpWo69zyxSr/UwUlQCmksLDQ/QIPp5NLDZsPOOAAd4PXCakvlF+kqaJuv92Mbg4DBgyI+HWhG4suqDoJdWK/++67rp2QikLDG0rry6cvr0qh1CBZvyz0hVD7I10g9Bmarwuo2tuIvoCl0ZdGX/gvv/zSLr74Yle1p5uAvkC6eV966aWl7pO+oFWhG4Yu4A899JC7KOhLKNp37dugQYPskksucQHX5MmT7aOPPnI33V122cXlxbBhw9w69Gs5vNonmfmoYuaxY8danz59XMnM559/blOnTrUPPvggtO0+XWQUVKjqSm0+nnrqKbv66qtdMKbtiZXKfI5ucvp1qpu4brb6W1WeSqeAQNWeKhF65JFH7I9//KPLK/8m/be//c2tW+ePSgh/+OEHF4ioyrNz586V2p6KnI+l+fTTT+3oo49256WOh46ptrui1YL+uacASkGKOizohq7jp3MwvORWAUHfvn2tR48e7kb3+uuvu5IdnSNllWoqX3788UcXMFamFFHnvAIN7Y9usDqXlT8zZ86M2H59LxQo6X8dv9GjR7tgdsKECRHr0zFSnqsqV0Gen0cVXcdrr73mApPGjRu7Y6IqPB3vWbNmuWl9/77//nuXTt+l4iryXffpu3T22We796gkZL/99is3v4pfn0XndL169SLmKfjR+aJ91A+esvKnsuemvisqrdL1Q4GKfvRVhs7f7777zh33cPpMXet0numes2DBArv77rtdWi2TWOZ/SvCQdI888oiKK6K+atasGZG2efPm3vHHH19iHUo7dOjQiHk33nijV7t2bW/58uUR80eOHOllZ2d7K1eudNNvvPGGe/8ll1xSYr07duwI/a11DRw4sEL7NGnSJLfO6dOnh+Zt377d69mzp1enTh1v48aN5e5TNOWlveOOO9znPvfcc2767bffdtP/+Mc/ItLNnj27xPx27dp5vXv3LrHOROWjfx6sWLHCTa9bt86rUaOGd/TRR3tFRUWhdJMnT3bpHn744dA8bbfmPfbYY6F527Zt8/Ly8rx+/fp5FbV+/Xq3njFjxkRdXtHPefPNN126Vq1aeVu2bInIhzZt2nh9+/aNyBOladmypXfUUUeF5uXm5pY4p6u6PZU5H4vv/ymnnOLl5OR43377bWje0qVL3bEv7xKqz2jYsKHXvn1779dffw3NnzVrlnvv6NGjQ/N0TmjeDTfcELGOgw46yOvSpUuZn3PnnXe69z7zzDNeRfjnWp8+fSKOw2WXXeb26+effw7NCz9+vr/+9a/errvu6m3durXEsbj33ntLpK/IOn7//Xd3Dug7/tNPP0WkDd9GnRPR8r0y33V9huZpWUX4xybaS+dy8Xw99NBD3f6EKy1/Knpu6rqgdPXq1XPXhorQfur6oe+1Xp9++ql33nnnRb1fbIlyjMaNG+dlZWVFnPuxyP9UQRVYClHRoiLr8NfLL79c5fUpav/DH/7gIn39cvFfKk3QL83//Oc/Lt3TTz/tSpqiNUKuajdfNZTTrzf9wvIp+tevAjW0VRFxPOjXpV994ueBqllUOhaeByp9UNo333wzZfNRv/63b9/uftWHt5vRr1X94lS1YfF9D6/r1y9TlaZ8/fXXFkuV+Rw1tgxvV7Fo0SL74osvXHst/Rr281K/ktVIV3npVyuqZETVIfrFubPbU9XzUcdX1SSqklLJn0+llyqpKY+qPlW9oRKB8N5Cqg5SNUTxY+iXfIXTuVfeMfSrFuvWrWuVoVKE8HNTn6V9/vbbb0Pzwo+fvlc6Xkqn0oJly5ZFrE8lEvr1X1xF1qFSApUY6Hwv3p6xIt+fyn7XVdJSkWPo0/Erfn3Wa/z48SXS6jsarSQuWv5U9tzs169fpUrJX331VZdeL5WKquRG2zChWOld+DHS91F5pwbz+k2gY1OeWFxrE40qsBSii3Z5jaArQzeaTz75pNQviy7Morpg1c1Xtii1LLqAqjFy8QavunH4y+NBF4zwG4HyQFWLqosvKw9SMR/9PCpeNK8bvBoxFs9DVSMWv1EoaNO2x1JlPqd4r0blpR8YlUbHS+tTOx6lU1sEXUTVLkRVvNr3ym5PVc9HtYdRFYXeW5yOi25eVTmGogBIVVfh/HZjxfelvDYUfhWMH/hXVHhQ53+WhH+e2sapHZeqrfxAK/xYhVP7q2gNciuyDr9NSlXHdarsdz1aj9uyKKDRj56KKG3d0fKnsudmZbdb1ak33XSTC2wXL17s/tbxrVFsO1auXOmq7J5//vkS51vx4xxNLK61iUYAlMH0S1rR+FVXXRV1+b777muZRl9w8bt2Kw/0hfzHP/4RNX1FfkmlSz6W1vYjvEF4oj+neK8av3RHvz7VPbesUjy151Epgbpw61es3qOG5//+978j2holar8Toaq9ABVM+e2VKjNMRXl5pzYoav+mAEvDdKgtkoI0NURXO6vinQCi9aKq7DqqqrLf9bJ6fO2s0tYdi8+s7DrU6N4P3FTipXNF7azuvPNO1yZLFBzpGqd2ZDomSqMG6Gr3qLZIFTlGsbjWJhoBUAbThUYlIuX9alE6FfPr5C+r9KIy1TjNmzd3v8D1pQj/ZeMXd2t5rGlfdbNUiYH/60n7pqqkQw45pNwLR2n7l6x89PNIjTXDSz1ULaaqgor+Gk0lfoNv3Qwrsv1qDKvqI730C1KNn9XLr7KNuqt6PuqirfPGL7kKp+NSkc/106qRd/H3x+p7cOihh7rSm3/+85+uZ1GshlNQbz5VVSroVM8ln86/WK/DPzf0I6asc6Os72lFv+upJNHXSlW/KiC95ZZbXKNlBToKnJcvX+56noV3pFEVXybnP22AMph+Qc+fP9/dlKP9KlNvAL9OWb/41NuorF/R+qIU735dGlVXFBQURPQm0eepV4F+4esLGEuqplBPOAUf6sXlf0mVB/p1o95IxWl7wventP1LVj7qJqBi6rvuuivi/erlpqJmXcjSjaqydKFUDye/ujKc3wVbx6x4sbt+XaqKUb3JKquq56MCCf1q1sjdqiLwqWdStPOhOFVpa7vvvffeiO1W2z6tI1bHUF2q9ctd69T/0Uq/pk+f7nr2VIYfSIWvTwG4hmaI9ToU3Kp6Rz3Rin8/in9/pHiaynzXU0mir5Wic+SHH35wg8eWdoz0tz/8QLhMyn9KgFKILorFGxWKGqIVb/dQEVdeeaWrz1Vxp4oxdfNR4zZF++oqrG6vKh7V+CkKHnSj1S9ddSnWrxF1SdYydc0UvV8RvgZZ041IFyvVL5fWuFLjauhzNe6Fxt3QZ6orpC5wlW2sGU7FsrqYi26i6vKuBni6iKgrvX7V+HTx0LS6H6sBrrozq4Gh9lPv0RdcozL7+6cu5qojVxWablz61Z6sfFTpg7raK6DSuk466SRXaqAbh7pUx3qgwkTQL1yNRKsSHA1ToMaYahehY6pGkioZeuGFF1xbFrXt0bHRmCi6ESjP1P1f3cIra2fOR+X/7NmzXXWcSqL8m5O2v7z2VTrXVG2n/dS5qIaufjd4bYOGgIgVnadqa6P8UV4q79S4Vt8LBXAKfjR8Q2Xo2qOSJbXFUqNc/bBQI9rKVC9WdB06N/T9O/HEE131qPJMJYC6Jmq//IBT3x/RuhSc6uatbuWV+a5XhY67f90pTsNvlDbYYXniea0sjb5/7du3d9cgjSumKi/9MNFwFfou6nuoTh3R2p4lK//jItnd0FB2N3i9tLwq3eBl06ZN3qhRo7x99tnHdalu0KCB16tXL2/ixImuq6VPXTYnTJjg7b///i7dnnvu6R177LHewoULQ2mWLVvmHXbYYV6tWrXc55XXJX7t2rXeoEGD3GdqnR06dIjYl/L2KRq/+6pe6p6pLqHqvj548GDv/fffL/V9999/v+tKrG2vW7eu25arrrrK+/7770NpCgoK3HZoudYf3iU+EflYvBt8eLd3rW+XXXbxGjVq5A0ZMqREN2Ftq/KhOK1beRbLbvAV+Ry/G/yTTz4ZdT0fffSRd9ppp3n169d3Qz3ovWeeeaY3Z86cUFf2K6+80uvYsaM7Hho6QH/fc889Vd7vip6P0fb/rbfecueP3qeu/erKrDQVvYTOnDnTdWfXvu6xxx7eOeec43333Xcltln7WVxlPkeeeuop1/VZn1O9enWvcePGXv/+/b25c+eG0vjn2gcffBDxXv+46X/fO++84x188MHufG3SpIn73rzyyisl0pV2LCqzDpk3b54bDsE/7gceeKB39913R3zHhg0b5r5bugYUz5uKfNcrc80prxt8+He2tHwtL38qcm763eB1famosvZz2rRpEfcXDe2gYRHU9V7boWvqxx9/XOIeFIv8TxVZ+ifZQRgAAEAi0QYIAAAEDgEQAAAIHAIgAAAQOARAAAAgcAiAAABA4BAAAQCAwGEgxCg0eJ2eQK0BqKr6NHQAAJBYGtlHA6lqkNniD5gtjgAoCgU/ep4UAABIP6tWrXKjyZeFACgKf+hxZaCGBAcAAKlv48aNrgCjIo8QIQCKwq/2UvBDAAQAQHqpSPMVGkEDAIDAIQACAACBQwAEAAAChwAIAAAEDgEQAAAIHAIgAAAQOARAAAAgcAiAAABA4BAAAQCAwGEkaAAAkDBFOzxbsOJHW7dpqzWsm2PdW+5h2dUS/+BxAiAAAJAQsxevsbEvLLU1hVtD8xrn5tiYE9vaMe0bWyJRBQYAABIS/AyZnh8R/EhB4VY3X8sTiQAIAADEvdpLJT9elGX+PC1XukQhAAIAAHGlNj/FS37CKezRcqVLFAIgAAAQV2rwHMt0sUAABAAA4kq9vWKZLhYIgAAAQFypq7t6e5XW2V3ztVzpEoUACAAAxJXG+VFXdykeBPnTWp7I8YAIgAAAQNxpnJ+p53a2vNzIai5Na36ixwFiIEQAANJEqoyiXFUKco5qm5cS+0AABABAGkilUZR3hoKdnq3rW7JRBQYAQIpLtVGUMwEBEAAAKSwVR1HOBARAAACksFQcRTkTEAABAJDCUnEU5UxAAAQAQApLxVGUMwEBEAAAKSwVR1HOBARAAACksFQcRTkTEAABAJDiUm0U5UzAQIgAAKSBVBpFORMQAAEAkCZSZRTlTEAVGAAACBwCIAAAEDgEQAAAIHAIgAAAQOAQAAEAgMAhAAIAAIFDAAQAAAInJQKgKVOmWIsWLSwnJ8d69OhhCxYsKDXtAw88YH/4wx9s9913d68+ffqUSO95no0ePdoaN25stWrVcmm++OKLBOwJAABIB0kPgGbOnGkjRoywMWPGWH5+vnXs2NH69u1r69ati5p+7ty5dvbZZ9ubb75p8+fPt2bNmtnRRx9tq1evDqW57bbb7K677rJ7773X3n//fatdu7Zb59atWxO4ZwAAIFVleSouSSKV+HTr1s0mT57spnfs2OGCmmHDhtnIkSPLfX9RUZErCdL7BwwY4Ep/mjRpYpdffrldccUVLk1hYaE1atTIpk2bZmeddVa569y4caPl5ua699WrVy8GewkAAOKtMvfvpJYAbd++3RYuXOiqqEIbVK2am1bpTkVs2bLFfvvtN9tjjz3c9IoVK6ygoCBincoMBVqlrXPbtm0u08JfAACg4op2eDb/qx/suUWr3f+aTmVJfRbYhg0bXAmOSmfCaXrZsmUVWsfVV1/tSnz8gEfBj7+O4uv0lxU3btw4Gzt2bBX3AgCAYJu9eI2NfWGprSn8X1OTxrk5NubEtin7pPqktwHaGePHj7cZM2bYM8884xpQV9WoUaNccZn/WrVqVUy3EwCATA5+hkzPjwh+pKBwq5uv5akoqQFQgwYNLDs729auXRsxX9N5eXllvnfixIkuAHr11VftwAMPDM3331eZddasWdPVFYa/AABA2VTNpZKfaJVd/jwtT8XqsKQGQDVq1LAuXbrYnDlzQvPUCFrTPXv2LPV96uV144032uzZs61r164Ry1q2bOkCnfB1qk2PeoOVtU4AAFA5C1b8WKLkJ5zCHi1XulST1DZAoi7wAwcOdIFM9+7dbdKkSbZ582YbNGiQW66eXU2bNnXtdOTWW291Y/w88cQTbuwgv11PnTp13CsrK8uGDx9uN910k7Vp08YFRNddd51rJ3TKKackdV8BAMgk6zZtjWm6QAVA/fv3t/Xr17ugRsFMp06dXMmO34h55cqVrmeYb+rUqa732Omnnx6xHo0jdP3117u/r7rqKhdEXXjhhfbzzz/boYce6ta5M+2EAABApIZ1c2KaLlDjAKUixgECAKB8attz6K1vuAbP0YKJLLXNzc2xeVf/0bKraSq+0mYcIAAAkL6yq2W5ru5SPLzxp7U8EcFPZREAAQCAKtM4P1PP7exKesJpWvNTdRygpLcBAgAA6e2Y9o3tqLZ5rreXGjyrzU/3lnukZMmPjwAIAADsNAU7PVvXt3RBFRgAAAgcAiAAABA4BEAAACBwCIAAAEDg0AgaAIAMGJAwnXpgpQICIAAA0tjsxWvcE9fDH0raODfHDUCYqmPwpAKqwAAASOPgZ8j0/BJPZNejKTRfyxEdARAAAGla7aWSn2jP4PLnabnSoSQCIAAA0pDa/BQv+QmnsEfLlQ4lEQABAJCG1OA5lumChgAIAIA0pN5esUwXNARAAACkIXV1V2+v0jq7a76WKx1KIgACACANaZwfdXWX4kGQP63ljAcUHQEQAABpSuP8TD23s+XlRlZzaVrzGQeodAyECABAGlOQc1TbPEaCriQCIAAA0pyquXq2rp/szUgrBEAAAGQwnhMWHQEQAAAZiueElY5G0AAAZCCeE1Y2AiAAADIMzwkrHwEQAAAZhueElY8ACACADMNzwspHAAQAQIbhOWHlIwACACDD8Jyw8hEAAQCQYXhOWPkIgAAAyEA8J6xsDIQIAECG4jlhpSMAAgAgg/GcsOioAgMAAIFDAAQAAAIn6QHQlClTrEWLFpaTk2M9evSwBQsWlJp2yZIl1q9fP5c+KyvLJk2aVCJNUVGRXXfdddayZUurVauWtW7d2m688UbzPC/OewIAANJFUgOgmTNn2ogRI2zMmDGWn59vHTt2tL59+9q6deuipt+yZYu1atXKxo8fb3l5eVHT3HrrrTZ16lSbPHmyffbZZ276tttus7vvvjvOewMAANJFlpfEohGV+HTr1s0FK7Jjxw5r1qyZDRs2zEaOHFnme1UKNHz4cPcKd8IJJ1ijRo3soYceCs1TqZFKg6ZPn16h7dq4caPl5uZaYWGh1atXr0r7BgAAEqsy9++klQBt377dFi5caH369PnfxlSr5qbnz59f5fX26tXL5syZY8uXL3fTH3/8sc2bN8+OPfbYUt+zbds2l2nhLwAAkLmS1g1+w4YNrr2OSmvCaXrZsmVVXq9KjhTA7L///padne0+4+abb7Zzzjmn1PeMGzfOxo4dW+XPBAAA6SXpjaBj7V//+pf94x//sCeeeMK1K3r00Udt4sSJ7v/SjBo1yhWX+a9Vq1YldJsBAEBASoAaNGjgSmjWrl0bMV/TpTVwrogrr7zSlQKdddZZbrpDhw727bffulKegQMHRn1PzZo13QsAAARD0kqAatSoYV26dHHtdXxqBK3pnj17Vnm96immtkThFGhp3QAAAEl/FIa6wKtUpmvXrta9e3c3rs/mzZtt0KBBbvmAAQOsadOmrvTGbzi9dOnS0N+rV6+2RYsWWZ06dWyfffZx80888UTX5mfvvfe2du3a2UcffWR///vf7c9//nMS9xQAAKSSpHaDF3WBnzBhghUUFFinTp3srrvuct3j5fDDD3fd3adNm+amv/nmGzfAYXG9e/e2uXPnur83bdrkBkJ85pln3HhCTZo0sbPPPttGjx7tSp0qgm7wAACkn8rcv5MeAKUiAiAAANJPWowDBAAAkCwEQAAAIHAIgAAAQOAQAAEAgMAhAAIAAIFDAAQAAAKHAAgAAAQOARAAAAgcAiAAABA4BEAAACBwCIAAAEDgEAABAIDAIQACAACBQwAEAAAChwAIAAAEDgEQAAAIHAIgAAAQOARAAAAgcAiAAABA4BAAAQCAwCEAAgAAgUMABAAAAocACAAABA4BEAAACBwCIAAAEDgEQAAAIHAIgAAAQOAQAAEAgMAhAAIAAIFDAAQAAAKHAAgAAAQOARAAAAgcAiAAABA4BEAAACBwkh4ATZkyxVq0aGE5OTnWo0cPW7BgQalplyxZYv369XPps7KybNKkSVHTrV692s4991yrX7++1apVyzp06GAffvhhHPcCAACkk6QGQDNnzrQRI0bYmDFjLD8/3zp27Gh9+/a1devWRU2/ZcsWa9WqlY0fP97y8vKipvnpp5/skEMOsV122cVefvllW7p0qd1+++22++67x3lvAABAusjyPM9L1oerxKdbt242efJkN71jxw5r1qyZDRs2zEaOHFnme1UKNHz4cPcKp/e988479vbbb1d5uzZu3Gi5ublWWFho9erVq/J6AABA4lTm/p20EqDt27fbwoULrU+fPv/bmGrV3PT8+fOrvN7nn3/eunbtameccYY1bNjQDjroIHvggQfKfM+2bdtcpoW/AABA5kpaALRhwwYrKiqyRo0aRczXdEFBQZXX+/XXX9vUqVOtTZs29sorr9iQIUPskksusUcffbTU94wbN85FjP5LpVAAACBzJb0RdKypGq1z5852yy23uNKfCy+80AYPHmz33ntvqe8ZNWqUKy7zX6tWrUroNgMAgIAEQA0aNLDs7Gxbu3ZtxHxNl9bAuSIaN25sbdu2jZh3wAEH2MqVK0t9T82aNV1dYfgLAABkrqQFQDVq1LAuXbrYnDlzIkpvNN2zZ88qr1c9wD7//POIecuXL7fmzZvv1PYCAIDMUT2ZH64u8AMHDnSNlrt37+7G9dm8ebMNGjTILR8wYIA1bdrUtdHxG06rW7v/t8b7WbRokdWpU8f22WcfN/+yyy6zXr16uSqwM888040rdP/997sXACC5inZ4tmDFj7Zu01ZrWDfHurfcw7KrZXFYEKxu8KIu8BMmTHANnzt16mR33XWX6x4vhx9+uOvuPm3aNDf9zTffWMuWLUuso3fv3jZ37tzQ9KxZs1y7ni+++MKlV6CldkAVRTd4AIi92YvX2NgXltqawq2heY1zc2zMiW3tmPaNyXLstMrcv5MeAKUiAiAAiH3wM2R6vhW/4fhlP1PP7UwQhGCMAwQACE61l0p+ov3a9udpudIBiUIABACIK7X5Ca/2Kk5hj5YrHZAoBEAAgLhSg+dYpgNigQAIABBX6u0Vy3RA2neDBwBkPnV1V2+vgsKtUdsBqSF0Xu5/u8QHFcMDJB4BEAAgrjTOj7q6qxeYgh0vSi8wLQ/qeEAMD5AcVIEBAOJO4/yoq7tKesJpOshd4P3hAYo3EldpmeZrOeKDEiAAQEIoyDmqbR4jQVdweACVh2m58iyopWPxRAAEAEgY3ch7tq5PjldyeADyLPaoAgMAIAkYHiC5CIAAAEgChgdILgIgAACSODxAaa17NL9xwIcHiCcCIAAAkjg8gBQPghgeIP4IgAAASBKGB0geeoEBAJBEDA+QHARAAAAkGcMDJB5VYAAAIHAIgAAAQOAQAAEAgMAhAAIAAIFDAAQAAAKHAAgAAAQOARAAAAgcAiAAABA4BEAAACBwGAkaAIAYKdrh2YIVP9q6TVutYd3/Psldozwj9RAAAQAQA7MXr7GxLyy1NYVbQ/Ma5+a4J77reV9ILVSBAQAQg+BnyPT8iOBHCgq3uvlajtRCAAQAwE5We6nkx4uyzJ+n5UqH1EEABACIK93453/1gz23aLX7P9MCAbX5KV7yE057q+VKh9RBGyAAQNwEoV2MGjzHMh3SsARo69atNnHixFiuEgCQpoLSLka9vWKZDikaAK1fv95mzZplr776qhUVFbl5v/32m915553WokULGz9+fDy2EwCQRoLULkZd3VWqVVpnd83XcqVDmgZA8+bNszZt2thJJ51kxx57rPXq1cuWLl1q7dq1s/vuu8+uv/56W7VqVfy2FgCQFoLULkbj/KhKT4oHQf60ljMeUBoHQNdee60dd9xx9sknn9iIESPsgw8+sFNPPdVuueUWFwj97W9/s1q1alV6I6ZMmeJKj3JycqxHjx62YMGCUtMuWbLE+vXr59JnZWXZpEmTyly3SqSUbvjw4ZXeLgBA1QStXYzaM009t7Pl5UZWc2la8zOlvVNgG0F/+umnds8991jbtm3thhtusL///e9222232cknn1zlDZg5c6YLpu69914X/Cig6du3r33++efWsGHDEum3bNlirVq1sjPOOMMuu+yyMtetAE0lUwceeGCVtw8lMdIpgPIEsV2Mgpyj2uYxEnQmBkA//fSTNWjQwP2tkp5dd93V2rdvv1MboCBq8ODBNmjQIDetQOjFF1+0hx9+2EaOHFkifbdu3dxLoi33/fLLL3bOOefYAw88YDfddNNObSOC1aMDQOzaxajBc7RWPln/v3Qk09rFqJqrZ+v6yd4MxKMRtKq6VAWml+d5rqTGn/ZfFbV9+3ZbuHCh9enT538bVK2am54/f77tjKFDh9rxxx8fse7SbNu2zTZu3BjxQnB7dADYebSLQcaNA3TkkUe6wMd3wgknuP/Vzkbz9b/fO6w8GzZscGkbNWoUMV/Ty5Yts6qaMWOG5efnuyqwihg3bpyNHTu2yp8XBOX16NCvOS1X8S8N/QCEt4spXmqskh9KjZFWAdCKFSss1akX2qWXXmqvvfaaa1RdEaNGjXLtkHwqAWrWrFkctzKze3RQ/AvAR7sYZEQA1Lx585h+uNoTZWdn29q1ayPmazovL69K61SV2rp166xz586heSpl+s9//mOTJ0921V36zHA1a9Z0L5QuaD06AMQO7WKQ9m2A1OPr119/DU2/8847LqDwbdq0yS666KIKr69GjRrWpUsXmzNnTmjejh073HTPnj2tKlRFp95qixYtCr26du3qGkTr7+LBDyomiD06AACZq1IBkKqKFOT4NBji6tWrI7qoq9t5ZajqST21Hn30Ufvss89syJAhtnnz5lCvsAEDBrjPDW847Qc2+lufr7+//PJLt7xu3bquZ1r4q3bt2la/fv2d7rEWZIx0CiDTH2qKYKlUFVh44+do01XRv39/93iN0aNHW0FBgXXq1Mlmz54dahi9cuVK1zPM9/3339tBBx0Umtazx/Tq3bu3zZ07d6e3B2X36FBvLzV4Dj/yjHQKZD6GwECmyfIqEcUoEFGQ4g9QqNKWjz/+2A1M6LfdadKkSYV7gaUqNYLOzc21wsJCq1evXrI3J6VwEQSCOwRG8ZuF/+OHkY6RjvfvSneDR7DRowMIFobAQKaqdAD04IMPWp06ddzfv//+u02bNi00OnR4+yBkLnp0AMHBEBjIVJUKgPbee2/XYNmnruqPP/54iTQAgMzAEBjIVJUKgL755pv4bQkAIOUwBAYyVaW6wb/xxhvuSfDRnpWlBkft2rWzt99+O5bbBwBIIobAQKaqVAA0adIk9+T2aC2r1er6r3/9q3u6OwAgM/BQU2SqSgVA6vJ+zDHHlLr86KOPdo+iAABk3kNN9RDTcJqmCzwC0QZI4/zssssupa+senU3qCEAILMwBAYCHQA1bdrUFi9ebPvss0/U5Z988ok1btw4VtsGAEghDIGBwFaBHXfccXbdddfZ1q0ln/ith6SOGTPGTjjhhFhuHwAAQHIfhaEqsM6dO7snql988cW23377ufnLli2zKVOmuEdg5Ofnh57jla54FAYAAOknbo/CUGDz7rvvuie26wntfuyUlZVlffv2dUFQugc/AAAg81X6URjNmze3l156yX766Sf78ssvXRDUpk0b23333eOzhQAAADFW5YehKuDp1q1bbLcGAAAg1RpBAwAAZAICIAAAEDhVrgIDUHVFOzxbsOJH96RtPWxSz1vSGCsAgMQgAAISbPbiNTb2haW2pvB/42k1zs2xMSe2daPtAgDijyowIMHBz5Dp+RHBjxQUbnXztRwAEH8EQEACq71U8hNt5FF/npYrHYDUp+/q/K9+sOcWrXb/891NL1SBAQmiNj/FS37CKezRcqXr2bp+Sh4X2i4B/0VVdvojAAISRA2eY5ku0bjgI+j8HwCvLS2wh9/5psRyvyp76rmdac+XBgiAgARRb69YpktG26XilXNc8BEU0X4AFKfvh/pyKt1RbfPo2ZniaAMEJIi6uqu3V2md3TVfy5UuldB2CUFXWueF8qqykdoIgIAE0Tg/6uouxYMgf1rLU208oMq0XQIyTVk/ANKxKhv/QwAEJJDG+VH7gLzcyGouTadqu4F0b7sExPMHQDpVZSMSbYCABFOQo/YB6TISdDq3XQJ2VmUD+6z//4Mm1aqyURIBEJAECnZStat7aW2X1OA5WjUAF3xkssoE9qlclY2SqAIDkJFtl4BEdF5Il6pslEQABCAj2y4B8f4B4LvgkBb2z8EH27yr/8h3IY1keZ7HuPvFbNy40XJzc62wsNDq1auXnCMDpCBGgkZQMRBo5t2/CYB2MgMBAMHAD4DMun/TCBoAgAzrvIA0aQM0ZcoUa9GiheXk5FiPHj1swYIFpaZdsmSJ9evXz6XPysqySZMmlUgzbtw469atm9WtW9caNmxop5xyin3++edx3gsAAJAukh4AzZw500aMGGFjxoyx/Px869ixo/Xt29fWrVsXNf2WLVusVatWNn78eMvLy4ua5q233rKhQ4fae++9Z6+99pr99ttvdvTRR9vmzZvjvDcAACAdJL0NkEp8VFozefJkN71jxw5r1qyZDRs2zEaOHFnme1UKNHz4cPcqy/r1611JkAKjww47rNxtog0QAADppzL376SWAG3fvt0WLlxoffr0+d8GVavmpufPnx+zz1FGyB57MDInAABIciPoDRs2WFFRkTVq1ChivqaXLVsWk89QiZJKiA455BBr37591DTbtm1zr/AIEgAAZK6ktwGKN7UFWrx4sc2YMaPUNGo0rSIz/6UqOAAAkLmSGgA1aNDAsrOzbe3atRHzNV1aA+fKuPjii23WrFn25ptv2l577VVqulGjRrlqMv+1atWqnf5sAACQupIaANWoUcO6dOlic+bMiaiy0nTPnj2rvF6161bw88wzz9gbb7xhLVu2LDN9zZo1XWOp8BcAAMhcSR8IUV3gBw4caF27drXu3bu7cX3UXX3QoEFu+YABA6xp06aumspvOL106dLQ36tXr7ZFixZZnTp1bJ999glVez3xxBP23HPPubGACgoK3HxVb9WqVStp+woAAFJD0rvBi7rAT5gwwQUqnTp1srvuust1j5fDDz/cdXefNm2am/7mm2+iluj07t3b5s6d6/7WAInRPPLII3b++eeXuz10gwcAIP3wLLAEZiAAAEgNaTMOEAAAQDIQAAEAgMAhAAIAAIGT9F5gACqvaIdnC1b8aOs2bbWGdXOse8s9LLta9Mb/AICSCICANDN78Rob+8JSW1O4NTSvcW6OjTmxrR3TvnFStw0A0gVVYECaBT9DpudHBD9SULjVzddyAED5CICANKr2UslPtIG7/HlarnQAgLIRAAFpQm1+ipf8hFPYo+VKBwAoGwEQkCbU4DmW6QAgyAiAgDSh3l6xTAcAQUYvMCBNqKu7enupwXO0Vj7qBJ+X+98u8cDOYqgFZDoCICBNaJwfdXVXby8FO+FBkD8CkJYzHhB2FkMtIAioAgPSiMb5mXpuZ1fSE07Tms84QNhZDLWAoKAECEgzCnKOapvHSNBI+FALKmnUcp1/lDQi3REAAWlIN5+eresnezMQ4KEWOP+Q7qgCAwA4DLWAICEAAgA4DLWAICEAAgBEDLXg9yosTvO1nKEWkAkIgAAAEUMtSPEgiKEWkGkIgAAAIQy1gKCgFxgAIAJDLSAICIAAACUw1AIyHVVgAAAgcAiAAABA4BAAAQCAwCEAAgAAgUMABAAAAocACAAABA4BEAAACBwCIAAAEDgEQAAAIHAIgAAAQOAQAAEAgMAhAAIAAIGTEgHQlClTrEWLFpaTk2M9evSwBQsWlJp2yZIl1q9fP5c+KyvLJk2atNPrBAAAwZL0AGjmzJk2YsQIGzNmjOXn51vHjh2tb9++tm7duqjpt2zZYq1atbLx48dbXl5eTNYJAACCJcvzPC+ZG6DSmW7dutnkyZPd9I4dO6xZs2Y2bNgwGzlyZJnvVQnP8OHD3StW65SNGzdabm6uFRYWWr169XZq/5D5inZ4tmDFj7Zu01ZrWDfHurfcw7KrZSV7swAgcDZW4v5d3ZJo+/bttnDhQhs1alRoXrVq1axPnz42f/78lFknUJrZi9fY2BeW2prCraF5jXNzbMyJbe2Y9o3JOABIUUmtAtuwYYMVFRVZo0aNIuZruqCgIGHr3LZtm4saw19ARYKfIdPzI4IfKSjc6uZrOZBqpZXzv/rBnlu02v2vaSCokloClCrGjRtnY8eOTfZmII3oxqGSn2i3D81TBZiWH9U2j+owpARKK4EUKgFq0KCBZWdn29q1ayPma7q0Bs7xWKeqy1Rf6L9WrVpVpc9GcKjNT/GSn+JBkJYrHZBslFYCKRYA1ahRw7p06WJz5swJzVODZU337NkzYeusWbOmaywV/gLKogbPsUwHJKu0UrSc6jAETdKrwNRdfeDAgda1a1fr3r27G9dn8+bNNmjQILd8wIAB1rRpU1dN5TdyXrp0aejv1atX26JFi6xOnTq2zz77VGidwM5Sb69YpgNSobSyZ+v6HAgERtIDoP79+9v69ett9OjRrpFyp06dbPbs2aFGzCtXrnS9uHzff/+9HXTQQaHpiRMnulfv3r1t7ty5FVonsLPU1V29vdTgOdova7UBysv9b5d4IJkorQRSdBygVMQ4QKhMuwoJ/xL5IwBNPbczXeGRdOrtdfYD75Wb7p+DD6YECIG6fyd9JGggXWmcHwU5KukJp2mCH6RaaWVpQ3NqvpZTWomgSXoVGJDuQZC6ujMSNFKVRiXXwJwqrcwqpbRSyxm9HEFDFVgUVIEByDSMA4Qg2Jguj8IAACQGpZVAJAIgAAgIVXPR1R34LxpBAwCAwCEAAgAAgUMABAAAAocACAAABA4BEAAACBwCIAAAEDgEQAAAIHAIgAAAQOAQAAEAgMAhAAIAAIFDAAQAAAKHAAgAAAQOARAAAAgcAiAAABA4BEAAACBwCIAAAEDgEAABAIDAIQACAACBQwAEAAAChwAIAAAEDgEQAAAIHAIgAAAQONWTvQFALBXt8GzBih9t3aat1rBujnVvuYdlV8sikwEAEQiAkDFmL15jY19YamsKt4bmNc7NsTEntrVj2jdO6rYhvgh8AVQWARAyJvgZMj3fvGLzCwq3uvlTz+1MEJShCHwBVAVtgJARv/5V8lM8+BF/npYrHTIz8A0v9QsPfLUcAKIhAELaU5uf4jfAcAp7tFzpkDkIfAHsDAIgpD01eI5lOqQHAl8AO4MACGlPvb1imQ7pgcAXQNoHQFOmTLEWLVpYTk6O9ejRwxYsWFBm+ieffNL2339/l75Dhw720ksvRSz/5Zdf7OKLL7a99trLatWqZW3btrV77703znuBZFFXd/X2Kq2zu+ZrudIhcxD4AkjrAGjmzJk2YsQIGzNmjOXn51vHjh2tb9++tm7duqjp3333XTv77LPtggsusI8++shOOeUU91q8eHEojdY3e/Zsmz59un322Wc2fPhwFxA9//zzCdwzJIrG+VFXdykeBPnTWs54QJkZ+Jbnp83bE7I9ANJLlud5Se0aoxKfbt262eTJk930jh07rFmzZjZs2DAbOXJkifT9+/e3zZs326xZs0LzDj74YOvUqVOolKd9+/Yu3XXXXRdK06VLFzv22GPtpptuKnebNm7caLm5uVZYWGj16tWL0Z4i3ugOHTwvffK9XfTER2WmUZA07+o/EgADAbCxEvfvpI4DtH37dlu4cKGNGjUqNK9atWrWp08fmz9/ftT3aL5KeMKpxOjZZ58NTffq1cuV9vz5z3+2Jk2a2Ny5c2358uV2xx13xHFvkGwa7PCotnmMBB0gu9euWW4avwdgz9b1E7JNANJDUgOgDRs2WFFRkTVq1ChivqaXLVsW9T0FBQVR02u+7+6777YLL7zQtQGqXr26C6oeeOABO+yww6Kuc9u2be4VHkEiPamaixtdcNAQGkDatgGKBwVA7733nisFUgnT7bffbkOHDrXXX389avpx48a5IjP/pSo4AKmPhtAA0rIEqEGDBpadnW1r166NmK/pvLy8qO/R/LLS//rrr3bNNdfYM888Y8cff7ybd+CBB9qiRYts4sSJrnqtOFXBhVerqQSIIAhIn4bQGvk5WmNGNYLPowcggFQrAapRo4ZrnDxnzpzQPDWC1nTPnj2jvkfzw9PLa6+9Fkr/22+/uZeqvcIp0NK6o6lZs6ZrLBX+ApD66AEIIG2rwFTyovY5jz76qOuyPmTIENfLa9CgQW75gAEDIhpJX3rppa6Lu6q11E7o+uuvtw8//NB1cxcFL71797Yrr7zSNX5esWKFTZs2zR577DE79dRTk7afAOLX+F0Pu1VJTzhN8xBcACn7NHh1V1+/fr2NHj3aNWRWd3YFOH5D55UrV0aU5qiH1xNPPGHXXnutq+pq06aN6wGmru++GTNmuKDpnHPOsR9//NGaN29uN998s/3tb39Lyj4CiC96AAJIu3GAUhHjAAEAkNn376RXgQEAACQaARAAAAgcAiAAABA4BEAAACBwCIAAAEDgJL0bPIKjaIfHg0oBACmBAAgJMXvxGhv7wlL3ZG6fHmEw5sS2bgwXAAASiSowJCT4GTI9PyL4ET2/SfO1HACARCIAQtyrvVTyE220TX+elisdAACJQgCEuFqw4scSJT/hFPZoudIBAJAoBECIq3WbtsY0HQAAsUAAhLhqWDcnpukAAIgFAiDEVfeWe7jeXlmlLNd8LVc6AAAShQAIcZVdLct1dZfiQZA/reVKBwBAohAAIe40zs/UcztbXm5kNZemNZ9xgAAAicZAiEgIBTlHtc1jJGgAQEogAELCqJqrZ+v65DgCh8fAAKmHAAgA4ojHwACpiTZAABAnPAYGSF0EQAAQBzwGBkhtBEAAEAc8BgZIbQRAABAHPAYGSG00ggZ2Ej18EA2PgQFSGwEQsBPo4YPyHgNTULjVvCjLs/7/YKA8BgZIDqrAgCqihw+S9RgYlTrO/+oHe27Rave/pgFUDiVAKIEqnZ3v4aNbmpZr9Ot0fc5ZUM6DeO6n/xgYnQtrCreG5qvkR8FPVR4DQ6kjEBsEQAG8oZS1HVxcY9/DJx1Hvw7KeZCI/YzlY2D8Usfigbeq2TSfZ+sBFUcAFLAbSlnbIWVdXKf8qbPtXrtG0gO4VJDJPXyCcpNN5H7G4jEwQSh1BBKJAChAN5SytuNv0/Ntt113KfXiKhf/M9/CmxpkYolA0Hv4BOUmm477memljkCi0Qg6IKPBVmQ7ft7yW5nrKL6JfgCnwCqoPXxKuzVqfuM07OETlMH70nE/M7nUEUgGAqCAXGjL246qSGQAF6QePskUlJtsOu5nppY6AslCABSQC2281p+Kv5QTxe/hox494TSdru1kgnKTTcf9zNRSRyBZaAMUkAttvNefSr+UEymWPXxSQVAG70vH/fRLHVXtrO3zMqTUEUgWSoAC8qutItuhRtD6vyqXz1T6pZxofg+fkzs1df+n8w0oU6v2MmU/M7HUEQh0ADRlyhRr0aKF5eTkWI8ePWzBggVlpn/yySdt//33d+k7dOhgL730Uok0n332mZ100kmWm5trtWvXtm7dutnKlSstqBfaimzH+NM6RL24lrVpFLtnnqDcZNN1P7Vd867+o/1z8MF251md3P+aTtXtBVJVlud5SW29OnPmTBswYIDde++9LviZNGmSC3A+//xza9iwYYn07777rh122GE2btw4O+GEE+yJJ56wW2+91fLz8619+/YuzVdffWXdu3e3Cy64wM4++2yrV6+eLVmyxA4++OCo6yxu48aNLnAqLCx07w3KOED+dhQfKPGnzdts6BMfuWXRit1T+WaB9B+4M96Csp9AEGysxP076QGQgh6VzkyePNlN79ixw5o1a2bDhg2zkSNHlkjfv39/27x5s82aNSs0T4FNp06dXBAlZ511lu2yyy72+OOPV2mb4hEApdKFtirbkSoBHAAAsbh/J7UR9Pbt223hwoU2atSo0Lxq1apZnz59bP78+VHfo/kjRoyImNe3b1979tlnQwHUiy++aFdddZWb/9FHH1nLli3dZ5xyyimWTLEYDTZZ25FpjX0BAMGW1DZAGzZssKKiImvUqFHEfE0XFBREfY/ml5V+3bp19ssvv9j48ePtmGOOsVdffdVOPfVUO+200+ytt96Kus5t27a5qDH8hcxu7AsACLaM6wavEiA5+eST7bLLLnN/q3pMbYdURda7d+8S71F7orFjxyZ8WwEAQABLgBo0aGDZ2dm2du3aiPmazsvLi/oezS8rvdZZvXp1a9v2vz2efAcccECpvcBUPab6Qv+1atWqndwzAACQypIaANWoUcO6dOlic+bMiSjB0XTPnj2jvkfzw9PLa6+9FkqvdapRtXqRhVu+fLk1b9486jpr1qzpGkuFvwAAQOZKehWYGjQPHDjQunbt6rquqxu8enkNGjTILVcX+aZNm7pqKrn00ktdNdbtt99uxx9/vM2YMcM+/PBDu//++0PrvPLKK11vMXWXP+KII2z27Nn2wgsv2Ny5c5O2nwAAIHUkPQBSoLJ+/XobPXq0a8is9joKWPyGzqq2Us8wX69evdzYP9dee61dc8011qZNG9cDzB8DSNToWe19FDRdcskltt9++9nTTz9thx56aFL2EQAApJakjwOUiuI1DhAAAEiN+3dKPAoDAAAgkQiAAABA4BAAAQCAwEl6I+hU5DeLYkRoAADSh3/frkjzZgKgKDZt2uT+10NZAQBA+t3H1Ri6LPQCi0KDMX7//fdWt25dy8rKClz0rMBPo2HTA468TAWck+RlquGcTN28VMmPgp8mTZpEDKETDSVAUSjT9tprLwsyRsQmL1MN5yR5mWo4J1MzL8sr+fHRCBoAAAQOARAAAAgcAiCUeDDsmDFj3P/YOeRlbJCPsUNeko+ppmYS7zk0ggYAAIFDCRAAAAgcAiAAABA4BEAAACBwCIAAAEDgEAAFwJQpU6xFixaWk5NjPXr0sAULFlTofTNmzHAjYZ9yyikR888//3w3P/x1zDHHWKarTD5OmzatRB7pfcVHLB09erQ1btzYatWqZX369LEvvvjCgiDWeck5WbHv9s8//2xDhw5155x63ey777720ksvVfnYZJJY5+X1119f4rzdf//9LdNNqUQ+Hn744SXySK/jjz8+MddJDxltxowZXo0aNbyHH37YW7JkiTd48GBvt91289auXVvm+1asWOE1bdrU+8Mf/uCdfPLJEcsGDhzoHXPMMd6aNWtCrx9//NHLZJXNx0ceecSrV69eRB4VFBREpBk/fryXm5vrPfvss97HH3/snXTSSV7Lli29X3/91ctk8chLzsny83Hbtm1e165dveOOO86bN2+e+47PnTvXW7RoUZWPTaaIR16OGTPGa9euXcR5u379ei+TzahkPv7www8R+bN48WIvOzvbfecTcZ0kAMpw3bt394YOHRqaLioq8po0aeKNGzeu1Pf8/vvvXq9evbwHH3zQ3ViiBUDF52W6yuajvsD60pZmx44dXl5enjdhwoTQvJ9//tmrWbOm989//tPLZLHOS+GcLD8fp06d6rVq1crbvn17zI5NpohHXioA6tixoxck3Xfy/Lnjjju8unXrer/88ktCrpNUgWWw7du328KFC12RYfhzzjQ9f/78Ut93ww03WMOGDe2CCy4oNc3cuXNdmv3228+GDBliP/zwg2WqqubjL7/8Ys2bN3cP+jv55JNtyZIloWUrVqywgoKCiHXq+TUqMi5rnekuHnnp45wsOx+ff/5569mzp6u2adSokbVv395uueUWKyoq2qljk+7ikZc+VdXooZytWrWyc845x1auXGmZansMzp+HHnrIzjrrLKtdu3ZCrpMEQBlsw4YN7gupL2g4TeukimbevHnuJHzggQdKXa/a+zz22GM2Z84cu/XWW+2tt96yY489tsSXP8j5qMDw4Ycftueee86mT59uO3bssF69etl3333nlvvvq8w6M0E88lI4J8vPx6+//tqeeuopl/9qq3LdddfZ7bffbjfddFOVj00miEdeim7Sar82e/Zsmzp1qruZ/+EPf3BPKs9EG3by/FFbocWLF9tf/vKX0Lx4Xyd5GjxC9MU877zzXPDToEGDUnNGEbqvQ4cOduCBB1rr1q3dL/AjjzySHDVzvw718umGfcABB9h9991nN954I3kU47zknCyfAkeV2t5///2WnZ1tXbp0sdWrV9uECRPcowgQ27zUj0KfrpEKiFSK+a9//avM0vWgeuihh9z9pHv37gn7TEqAMpiCGH05165dGzFf03l5eSXSf/XVV/bNN9/YiSeeaNWrV3cvlfSouFd/a3k0Kt7VZ3355ZeWiSqbj9HssssudtBBB4XyyH/fzqwzHcUjL6PhnCxJvWjUU0n571MgqV/Sqr6IxbFJR/HIy2h222039x6ukyVt3rzZ9TouHhjG+zpJAJTBatSo4X6ZqKoq/JeLpsN/UfvURfPTTz+1RYsWhV4nnXSSHXHEEe5vtb+IRlURagOki0Imqmw+RqOiYeWtn0ctW7Z0X+DwdW7cuNHef//9Cq8zHcUjL6PhnCzpkEMOcTdf5bdv+fLlLh91XGJxbNJRPPKytHZs+hHJdbKkJ5980rZt22bnnntuxPy4Xyd3uhk1Ur5bolrMT5s2zVu6dKl34YUXum6Jfjfi8847zxs5cmSFe9ds2rTJu+KKK7z58+e7rp+vv/6617lzZ69Nmzbe1q1bvUxV2XwcO3as98orr3hfffWVt3DhQu+ss87ycnJyXNfQ8O6dWsdzzz3nffLJJy6fg9INPpZ5yTlZsXxcuXKl62Fz8cUXe59//rk3a9Ysr2HDht5NN91U4WOTqeKRl5dffrnrGq/r5DvvvOP16dPHa9Cggbdu3TovU82o4v3m0EMP9fr37x91nfG8ThIABcDdd9/t7b333m58BnVTfO+990LLevfu7YKcigZAW7Zs8Y4++mhvzz339HbZZRevefPmbqyHTL9AVjYfhw8fHkrbqFEjN15Ifn5+xPrUxfO6665zy3XROPLII93FNAhimZeckxX/br/77rtejx493Pmmbtw333yzG/aioscmk8U6L3VDb9y4sVufxlTT9JdffullursrmY/Lli3zVBbz6quvRl1fPK+TWfpn58uRAAAA0gdtgAAAQOAQAAEAgMAhAAIAAIFDAAQAAAKHAAgAAAQOARAAAAgcAiAAABA4BEAA4kZPw9YzkIIsKyvLnn322YR+pp7pp8/VI2x2RosWLWzSpEkpt39ALBAAAWng/PPPdzcavfQw0EaNGtlRRx1lDz/8cMTziCri+uuvt06dOsV8G6PdLPv37++ekRRvhx9+eCh/9FL+nHHGGfbtt98m7DOLv7QcQOoiAALSxDHHHGNr1qxxv+5ffvll95DaSy+91E444QT7/fffLRXVqlXLGjZsmJDPGjx4sMuf77//3p577jlbtWpViYcrxtK///1v93l6LViwwM17/fXXQ/O0vCo0OH+qHk8gkxAAAWmiZs2a7snITZs2tc6dO9s111zjbvQKhlTV5Pv555/tL3/5i+25555Wr149++Mf/2gff/yxW6Z0Y8eOddN+SYX/3rLe53vhhResW7dulpOTYw0aNLBTTz3VzVdph0pbLrvsstB6S6sCmzp1qrVu3do9NXu//fazxx9/PGK53vvggw+6de+6667Wpk0be/7558vNH6VV/uhp2wcffLBdfPHFlp+fH5Hmrbfesu7du7u8VLqRI0eGgo3HHnvM6tSpY1988UUo/UUXXWT777+/bdmypcTn7bHHHu7z9FKeSf369UPztNy3YcOGUvdn7ty5bp91HPVUcm3bvHnzXMneuHHj3BOxFUh27NjRnnrqqdD7fvrpJzvnnHPcZ2u51vvII49EbOPXX3/tAmV9rt4/f/78iOVPP/20tWvXzn2mSvBuv/32MvNYeXPYYYe549+2bVt77bXXyj0uQMqKyRPFAMRV8YfShuvYsaN37LHHhqb11OkTTzzR++CDD7zly5e7p1LXr1/f++GHH9yDQzXdrl07b82aNe6leeW9T/TE6+zsbG/06NHuSc+LFi3ybrnlFrdMafbaay/vhhtuCK1XHnnkES83Nze0bf/+97/dQ3SnTJniHmh4++23u3W+8cYboTS6LGldTzzxhPfFF194l1xyiVenTp3QdkSjhyxeeumloWml1b4cccQRoXnfffedt+uuu3oXXXSR99lnn3nPPPOMezr3mDFjQmnOOOMMr1u3bt5vv/3m9lfb+uGHH5Z7fPTEb233Rx99VGJZefvz5ptvujQHHnigeyCkHpipZXqy+P777+/Nnj3b++qrr1xe6mGQesK4DB061OvUqZM7Xvr81157zXv++ecjtkfv134or08//XT38GLtm2i/qlWr5o6Zlmv9tWrVcv/7lP6OO+5wfxcVFXnt27d3D6PUsX/rrbe8gw46yH2O8hJINwRAQJoHQHrK9AEHHOD+fvvtt7169ep5W7dujUjTunVr77777nN/64avoClcRd7Xs2dP75xzzil1G8Nvlr7iAVCvXr28wYMHR6RR0KEnvPt0Q7322mtD07/88oub9/LLL5cZAClYqV27tgtylH7fffd1gYDvmmuu8fbbbz/3dGmfAjEFI7q5y48//uiClSFDhrinT+sJ3xVRXgBU1v74AdCzzz4bSqPjoP3QE8fDXXDBBd7ZZ5/t/laAN2jQoDK358EHHwzNW7JkiZun4E/+9Kc/eUcddVTE+6688kqvbdu2UY/pK6+84lWvXt1bvXp1aLn2gQAI6YoqMCDN6R7rVzmpyuqXX35xVTGqzvFfK1assK+++qrUdVTkfepRdOSRR+7Utn722Wd2yCGHRMzTtOaHO/DAA0N/165d21XJrVu3rsx1qzpI26h9URXSPvvsY0cffbRt2rQp9Nk9e/YM5ZX/2drv7777zk3vvvvu9tBDD4Wq6VRFFgsV2Z+uXbuG/v7yyy9dtZsauocfD1XT+cdjyJAhNmPGDNeg/aqrrrJ33323zM9VlZ/4n1vasVA1V1FRUYl1KX2zZs2sSZMmoXnKTyBdVU/2BgDYOboxqZ2I6GauG53alRRXVnf0irxP7UwSRT3dwiloKa+3W25urgt6RP8rkNE+zZw507Vtqqj//Oc/lp2d7Royb9682erWrWuJ2B8FRuHHQ1588UXX5iuc2uvIscce69pdvfTSS64tjoLToUOH2sSJE6N+rh/4VbbXIJCpKAEC0tgbb7xhn376qfXr189Nq3F0QUGBVa9e3QUB4S81WhY1Pi7+C78i71Npwpw5c0rdlmjrLe6AAw6wd955J2KeptWgNtYUxMivv/4a+mw1Av5vrdT/PlsBzl577eWmVYpy6623usbeKnFRQ+pkUH4o0Fm5cmWJ46FSGJ8aQA8cONCmT5/uhiC4//77K/wZpR2LfffdN5R3xdOrZ50CQ997771X5X0Eko0SICBNbNu2zQUpCjLWrl1rs2fPdr2E1A1+wIABLk2fPn1ctcQpp5xit912m7uZqVu4ShLUC0nVLOrto6otVRfpxq8AoCLvGzNmjCtlUNXQWWed5XpPqfTh6quvdp+t9ar0RMt08/YDp3BXXnmlnXnmmXbQQQe5z1Sgoe7i6j6+s1RlpPwR5c+NN97oeiupGszv0aUgYdiwYS6w+fzzz90+jRgxwqpVq+aqys477zy75JJLXOmK8kY93k488UQ7/fTTd3r7KkPH5IorrnC96lRic+ihh1phYaELUFR9pqBn9OjRrteYenHp3Jg1a5YLUirq8ssvd/unfNJ4TQoOJ0+ebPfcc0/U9DpeOi/02RMmTLCNGzfa//3f/8Vwr4EES3YjJAAVawStr6teaoi65557ul5bDz/8cKgBr2/jxo3esGHDvCZNmriGwc2aNXONl1euXBlqYNuvXz9vt912c+vze/2U9z55+umnXc+jGjVquB5Up512WmjZ/PnzXU8m9VTyLy3FG0HLPffc47Vq1cp9hhoqP/bYYxHLozWq1TrCeydFawTt549eu+++u5sX3rtM1INKvby0/Xl5ed7VV18d6hWlBsUdOnSIaAiuXmp77LGH60G2M42gy9ofvxH0Tz/9FJFGjbUnTZrkGm4rr3TM+/bt63pfyY033ugav6vnlrZRjeS//vrrUrdH69c8fZ7vqaeeco2etf69997bmzBhQpkN29Vb7NBDD3X5p2OnHmo0gka6ytI/iQ66AAAAkok2QAAAIHAIgAAAQOAQAAEAgMAhAAIAAIFDAAQAAAKHAAgAAAQOARAAAAgcAiAAABA4BEAAACBwCIAAAEDgEAABAIDAIQACAACB8/8A59cwqw5YzQMAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAR3pJREFUeJzt3QmcE/X9//HPshwr13KssIAIAl6ICHIJ9awg3ke1Ra2CVNHiXdQKHiDSigcq/Sveoq1UpSqKWrpqUawHLQpFBRUFUUA5FZZLQJf5P97fXycmIdlNdrObZPJ6Ph5hyWQy853vTGY+870mz/M8zwAAAAKiVroTAAAAkEoENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDdVsHnzZrvgggusuLjY8vLy7Morr3TTV69ebWeccYY1b97cTZ84caJl+zblmscff9xt/5dffmm5mkYtV8vXeiqrffv2duKJJ1qmSHV6ksmj8847z60/G910001uO9etW5fupAAJIbiJc8GI9/r3v/8dmveWW25x8w8fPtyeeOIJO/fcc9303/3ud/bKK6/YqFGj3PRjjz3WUk3rfuGFF6plubG2KRadqP18qVWrljVp0sQOPPBAu/DCC+0///lPldJx3333Vemimu58zCUff/yxu/hlciCI2MrKyuyxxx6zI4880po1a2b16tVzv+uhQ4fa+++/H4hse/LJJ2v8BlP5Ge8ast9++1mmyotKa+PGje2II46wv//971mV/1K7xteYJW6++Wbba6+9dpneqVOn0P9ff/11O+SQQ2zMmDER82j6KaecYldffXW1XpRVOnTqqaemdLnxtimebt262VVXXeX+v2nTJvvkk0/smWeesYcfftgFeXfddVelg5uioiJ3t1ud4uWjgrozzzzTnewzVaakUcHN2LFj3Qk9W0smctH3339vv/jFL6ykpMQOP/xwu+6661yAoyD1b3/7m/35z3+2ZcuW2R577GHZTBfXBQsW1HgptPJt/Pjxu0wvLCy0TDZgwAAbPHiw6bGTX331ld1///120kkn2T/+8Q8bOHBg1uQ/wU0cxx13nPXs2bPczFuzZo117tw55nSVYmSjeNsUT5s2beycc86JmHbbbbfZ2WefbXfffbftvfferhQo2+Tn57tXJsuGNFbFli1brEGDBulORmBdc801LrDR7zT6wqObG02vSbqYbtu2zXbbbTfLdDt37rQdO3ZYQUFB3HkUxESfG6ty3Kcif7Zt22Z169Z1Je3x7LPPPhHpPv3009014U9/+lOlgpu00VPB8ZPHHntMT0n33nvvvbjZ8sYbb7h5ol/+d6NfvvXr13tXXHGFt8cee3h169b1Onbs6N16661eWVlZxPL1fuLEiV6XLl28evXqeUVFRd7AgQNDaYq1jiFDhpS7G1evXu395je/8Vq0aOGW2bVrV+/xxx+vcJuWLl0ad5nt2rXzTjjhhJifbdq0yWvWrJnXpk0bb+fOnRHbdvfdd3udO3d26VB6LrzwQu+7776LWG50Oo444ogazUd/X0Zv/6RJk1zatd5WrVp5F198sUtPOKX1gAMO8BYuXOgdeeSR3m677ea1bt3au+2227xEaL2XXHKJN2XKFG+fffZxaT/44IO9N998M2K+6DTOnDnTy8vL82688caI+f7617+6+e67777QtBUrVnhDhw51+a9t0TY9+uijEd/Tcv3jOp54x7yOp/Bj5K233vJ69erltmWvvfby/vznP8dczqxZs7zhw4d7u+++u9ekSZPQ5zNmzPAOPfRQr379+l7Dhg29448/3luwYEHEMlauXOmdd9557pjTNhUXF3snn3xyxD5MND2yZMkS74wzzvCaNm3q9mGfPn28l19+OaE8ev75590xoOXr77Rp09yxpfUnorqPs+XLl3u1a9f2BgwYkFB6xowZ47bz888/d9tRWFjoNW7c2OX3li1bIuadPHmyd9RRR7l9qPTvv//+Ecde9L4oKSnxevTo4fJK54ZkluEfG4cffrg7Lho1auT17NnTHfN+HkUfm+H7YNu2bd7o0aPdOUTr0TnlmmuucdPj/Sa1X5R32sfx+Psm0XzVPjzrrLPcMd+tW7cK8yeRY/ON/53Tn3rqKe/66693x4bOD9HHUaztjKZzp85F4V544QX3O9Txqbzr0KGDd/PNN3s//vhjRD6kIv8rg5KbOEpLS3dpPKc6SDUS3n///V17FFW7qOjRr5bp3r17qJ2KX7Tn27p1q6u7/Prrr+2iiy6yPffc0959913XLmflypURdZLnn3++a2+i0iM17v3xxx/trbfecu19VJqkdWh67969XfsW6dixY7nFz6oyWLx4sV166aWuuk1VR6ry2bBhg11xxRVxt2n33XevVNDcsGFDO+200+zRRx911RYHHHCAm65t17apTv/yyy+3pUuX2r333mv//e9/7Z133rE6deq4vLjsssvcMq6//nr3vZYtW6Y9H9WuRNUv/fv3d6VRixYtckW27733XijtvvXr17u2Vir2/9WvfmXPPvusXXvtta5NktJTkTfffNOmTp3q8kjVTqqm0/LmzJljXbp0ifmdn//853bxxRe7onBVsx188MEuT5SXSvNvf/vbUIN3VT3qeNbxoH2sImfl18aNG5MqPlZ1htL4//7f/3PVGjqOxP8rOu5U9aflDxkyxCZPnuyOvR49eoSOC5/Sr/SMHj3a3cGK9pO+p7tGlQrqGFC+H3rooe648avCdIe5cOFCt72aplLI1157zVWthFeXJZIe5VG/fv3curR9+t2rmubkk092+1LHdjyvvvpq6G5X++Lbb791x3ui1Ts1cZxpf+v3UF6buli0Dp0/tF3z5s2zRx55xFq0aOH2i09pVT4qr2rXrm0vvfSS268q7bjkkksilqdtO+uss9xvediwYbbvvvsmtQz9vn/zm9+4eXUOUIm5jgmVSKn0WOcPnctXrFgRKonSeUW0LC3/7bffdr9/HbMfffSRm++zzz7bpS2equxVXaffjKrMK6qCVXumWA2wVfISXTLzy1/+0pVyq5r8/2KM+PmT7LE5btw4V1qjZhLbt293/0+G8k/HWfS5UXmvvBwxYoT7q/zR71bnkDvuuMPNk8r8T1qVw6OAiXcnqpci50RKLmJFv+PGjfMaNGjgffbZZxHTR44c6eXn53vLli1z719//XX3/csvv3yX5YaXgGhZFZXW+FR6oWXqrsO3Y8cOr2/fvu5uZ+PGjRVuUywVzau7DK13+vTp7r3ulvXev6vy6c4kerruesJLa2o6H6NLRdasWePuLI455piIEqJ7773Xzac7zei7lb/85S+hadu3b3clCaeffrpXEf94e//990PTvvrqK6+goMA77bTT4qZRdBfdqVMnl3+6+9H+0R22vu87//zz3d3WunXrItZ75plnujvyrVu3JlxyI88880xEaU04vxTuX//6V2ia8lK/pauuumqXbVHpTPidn0oAdTc7bNiwiOWuWrXKpdWfrrtRff+OO+4oN62JpufKK6908+mYDU+LSnnat28fOgZi5ZHuvJW/GzZsCE179dVXd7lrjaWmjrPf/e537rv//e9/vUT4JQwq/Q2n47F58+YR0/zjJ5xKTHVnH2tf6PcfLZFlKH9VUqNSi++//z7ub1y/gVj5/sQTT3i1atWK2MfywAMPuHS98847oWl6r3lVwpKIWCUW/uuiiy7aJV9VahMtXv4kemy+8b+SG+VZrPyMRfPr/LB27Vp3LOocdOyxx8b8bcVaprZNpavhJS+pyP/KoLdUHJMmTXJ3feEv3e1UlkpKDjvsMGvatKmL5v2X7s4U4f/rX/9y8z333HPujjpWg15Nr4wZM2a4rt26A/Dp7k9Rv7p+q5SgOvgRuhoa+3mgemiVaoXnge6YNe8bb7yRsfn4z3/+09Wxq1QjvL5ad1PqURDdm0DbE15vrbsllRB98cUXCa2vb9++Ll98KqFSI3X1wtN2xlO/fn13R6WG3SpVUbp0J6Tvi85fyhs1ENT/w/NQJSO6y9IdeSqpBEP7zKeSGd2BxsoL5Wd4OyL97lS6qGM3PK2ap0+fPqFjRnfDyuNZs2a5u8yqpke/Ge0vlQ6F71PdYarBrUojY1FJ2fz5812JUHjDUR3zibRlq6njTHfX0qhRI0uGX/rnUz6qZMpfnoS3CfFLwFXaqjTpfTiVAsVqx5HIMnRs6NwycuTIXdq+JPIb17lEpQXqvRR+bKkEVKLPR1p/Mu0RVbITfQ3RK1bJaHS+lpc/yR6bQ4YMSaqdjkrb9ZtQiZxKuGfOnGm///3vXQlNuPBlaj8o73Q8qETp008/TXn+J4tqqTh08FTUoDgZn3/+uX344Ydxq3lUhC5Lliyx1q1bu14LqaIW7yryjG5E5lcd6PPqoMAp/ASqPNCJST+a8vIgE/PRzyO/2Dz8YtKhQ4dd8lBVENEnWAVkSnsitL9iNfTTiWPt2rUuWI3nZz/7mavOUICuE6OK7X36roKFhx56yL0qux+S4QdW0XkRKwiJ7qGo/S3+CS+aLviiqjtVjag6VVWYqnbTeDaqGo7Oq0TSo/2p4Cla+G8mVvWgfxzE2n86dioKHGvqOPPzzb/xSFR03mldorzzl6mqM91UzJ492x2v4fT7Dw/6YvVITXQZ+o1LvGraiujY0k1AReeSitIaj6qedNOViHjLjjU92WNzryTTrZsoVb0pyFZVqKrKtA+irx+qAr7hhhtcdVR4cCvRQWwq8j9ZBDc1RPWLuntTBByLLlxBo+5/4d3nlQcKbP7617/GnD+R9j3Zko/xejGF16dXF9WrqwRDdAHQiUklOn7+ie72dUcXS9euXdOWF9F3mH561e4mVkCn9hg+3RGrREp19SrhuvHGG13bEJ181R6uMunJdJXdFn+sFbVx0HAOqVqfjrejjz7aLV/DQLRt29YFZiptUAmivz99sUoUkl1GZWk5apsUb7gKrbeitKZKvGWnYp27JbkMBcx+UHb88ce79kUKdo466ijXtkt0g6SSLAW0GjZF7XFUeqbgXW2+EtlHyeZ/sghuaoh2vkoyKorkNZ9OzN999125pQ7JVK20a9fO3cnpYAqPvv2iQ32eatrW559/3h2g/h2Ftk3F7ipZqOgHF2/70pWPfh6pgZ/uoH26u1Gj6ETv0BLll1iEUyM7BSkVBYG649Ud0YQJE9yJRsX2avAr+q5K0lS1lao0V7a6NBF+I0YFxYmkV/Or9EYv5aEu3HfeeadNmTIlqfVqf2tfR6voN+NPj7X/Yi0vXceZGhsrUFG+JNuouDxq+Kvg+sUXX4wo5UmmiiHRZfjHhm6iwscfS+Zc8sEHH7hAqjqP4VSr7LFZWWrMrKBSpTRqrKy80s2TqiOnTZvmqr99OkYzJf9pc1ND1MtARay64EZTFKyeC6JeFroLUm+J8u7GVOSp7yVC0feqVatc7xuf1nfPPfe4ulpF4Kmk3lk6YSqwUGt5/8BVHuiiqtb70ZSe8O2Jt33pykddVHT3qCAh/Puqn1YR7AknnGCppG0Mr8JYvny5TZ8+3Y455phyx7bRyNAKalSKoQu8xjJRbzS/XZW+q7xRuxu/ZC2cqq2S5ff8SPR4TIaq1XR3qKLxH374IW56VTqlMTyiT54K5HShTJZ+M+qZpv3gU+8tVeWpLUW8thetWrVyAZV6r4QXzautRbx2Ouk4znTToXY86tml80A03QgpKFQvl2T4x2Z42pVujYKc6mXot6D9q9K56H0f/RuPVU2ic4l6XWrA0VjnML+3Xqap7LFZWSod1blEN0w6B8XbRwrA1aszWrryn5KbONR4OFajKHXBC7+jSpQuMroTUTsAv9updp6KhdV9Tw3BVPynoj8FBjq56e5P3Tx1olEXZn2m4kHR91UKoiI9tS1RvWqselhRQ7MHH3zQrXfu3LnuB6B1ql5bXaeTbVQYTgenf1esEhWdwNVQTMGUfhCK+n0KovReJyM1utTJSQ2btZ36jgaJUhddf/vUHfQPf/iDuyvTnbvaXaQrH1Xioa6mCpa0LHVh1N2Tfsy9evWq1GBd5VGduS7s4V3BJVaw5tMJXlVNau/xxz/+MTS/7oTVFVl5pBPNrbfe6u6CtZ26wOlkqEBUwZTyQv9Phi7mOtmpzYtOYkqv9lW8tlXJUGCj40D7Ul3bNSKz9oW6d6txrUoBFbypVEt3gDphant0QlbJobrN6jvJUmnXU0895Uo4tA9U+qeARXemCgzLGwRNx7eCEDX4VHsn5acCCHVX9tuhxVOTx5mCF1UBaft0B67flNrQKG/1e9T5L9m8029awZmqB/Vb1/bq4qVjQY2tU7kMHRsqUdBwDsobdf1W+lUaoGBX+8v/jevGTg1iNZ9u6LRsHVPq2q3GvPo96FjSzZe2W9N1A1WVdpf6LcQrMazKfqzKsVlZOteqm7d+4xpmQtdB5bXON0qDbmBVdRyrOjRd+U9X8CS6gkd3+UymK7jfXW/UqFGuq666e2pgpH79+nkTJkxwXbN96gqrbnf77befm08DWR133HHe3LlzQ/N8+umnbuAqDeCU6CB+GrRN69QyDzzwwJhdfJPtCu7niwaHUpdjdUFW99z//Oc/cb/30EMPuUGplHZ15VRafv/733vffPNNRFdfpUOfRw/iVxP5GG8QP3XJ1fLq1KnjtWzZ0g04F29wtWiJDuIWPmDY3nvv7bopd+/efZeu1tFpVPdedYePznt159SgY0pr+PGgdbRt29Zti7oPH3300W7f+BLtCi4PP/yw63Kq9ccaxC+a8ih8n1Y0eKaWp67A6v6tLvEa9EsDyPnd5dWtXdujfaPu/ZpPXYT/9re/RSwn0fSED5SmruhaZ+/evRMexO+5555zA89p32nQt2QH8auJ48z/jTzyyCPeYYcd5vJM69N3da4I7ybud1lWF+FwsX4nL774ohskVHmmrskaVFBd2KPnK+9ck+gy/Hn1+9dvWOcg7ScNXOfbvHmzd/bZZ7v9GN0dX+cLLdsfcFGD4uncNHbsWK+0tLTCc3pluoKHX3bj5WtF+ZPIsfnG/7qCa6iGRJW3nTfddFPEb1tdtQ855JDQ4JE6h7/yyiu7DAuRivyvjLz/bRCADKG7IA1UphIJAEDyaHMDAAACheAGAAAECsENAAAIFHpLARmGZnAAUDWU3AAAgEAhuAEAAIGSc9VSGsjtm2++cQPXZdOQ2wAA5HqV/aZNm9yAqxUNVphzwY0Cm6o+kAsAAKSHHkejB3yWJ+eCG/9RA8ocDd8NAAAy38aNG13hRCKPDMq54MavilJgQ3ADAEB2SaRJCQ2KAQBAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKDk3AjF1aVsp2dzln5nazZtsxaNCqz3Xs0svxYP5gQAoKYR3KRAyYKVNvalj21l6bbQtFaFBTbmpM52bJdWqVgFAABIENVSKQhshk+ZFxHYyKrSbW66PgcAADWH4KaKVVEqsfFifOZP0+eaDwAA1AyCmypQG5voEptwCmn0ueYDAAA1g+CmCtR4OJXzAQCAqiO4qQL1ikrlfAAAoOoIbqpA3b3VKypeh29N1+eaDwAA1AyCmyrQODbq7i3RAY7/Xp8z3g0AADWH4KaKNI7N/eccbMWFkVVPeq/piYxzo95Us5d8a9Pnf+3+0rsKAIDKYxC/FFAAM6BzcaVGKGYAQAAAAlhyM2nSJGvfvr0VFBRYnz59bM6cOXHnffzxxy0vLy/ipe+lmwKZvh2b2ynd2ri/iQY2DAAIAEDAgpupU6faiBEjbMyYMTZv3jw76KCDbODAgbZmzZq432ncuLGtXLky9Prqq68s2zAAIAAAAQ1u7rrrLhs2bJgNHTrUOnfubA888IDVr1/fJk+eHPc7Kq0pLi4OvVq2bGnZhgEAAQAIYHCzY8cOmzt3rvXv3/+nBNWq5d7Pnj077vc2b95s7dq1s7Zt29opp5xiCxcutGzDAIAAAAQwuFm3bp2VlZXtUvKi96tWrYr5nX333deV6kyfPt2mTJliO3futH79+tmKFStizr99+3bbuHFjxCsTMAAgAAABrZZKVt++fW3w4MHWrVs3O+KII2zatGm2++6724MPPhhz/vHjx1thYWHopdKeTMAAgAAABDC4KSoqsvz8fFu9enXEdL1XW5pE1KlTx7p3726LFy+O+fmoUaOstLQ09Fq+fLllAgYABAAggMFN3bp1rUePHjZz5szQNFUz6b1KaBKhaq2PPvrIWrWKPVhevXr1XO+q8FeQBgAEAAAZNoifuoEPGTLEevbsab1797aJEyfali1bXO8pURVUmzZtXPWS3HzzzXbIIYdYp06dbMOGDXbHHXe4ruAXXHCB5doAgAAAIAODm0GDBtnatWtt9OjRrhGx2tKUlJSEGhkvW7bM9aDyrV+/3nUd17xNmzZ1JT/vvvuu60aerfwBAAEAQNXleZ7nWQ5Rbyk1LFb7m0yqogIAAKm5fmddbykAAIDyENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFSO90JQGqU7fRsztLvbM2mbdaiUYH13quZ5dfKI3sBADmH4CYAShastLEvfWwrS7eFprUqLLAxJ3W2Y7u0SmvaAACoaVRLBSCwGT5lXkRgI6tKt7np+hwAgFxCcJPlVVEqsfFifOZP0+eaDwCAXEFwk8XUxia6xCacQhp9rvkAAMgVBDdZTI2HUzkfAABBQHCTxdQrKpXzAQAQBAQ3WUzdvdUrKl6Hb03X55oPAIBcQXCTxTSOjbp7S3SA47/X54x3AwDIJQQ3WU7j2Nx/zsFWXBhZ9aT3ms44NwCAXMMgfgGgAGZA52JGKAYAgOAmOFT11Ldj83QnAwCAtKNaCgAABEpGBDeTJk2y9u3bW0FBgfXp08fmzJmT0Peefvppy8vLs1NPPbXa0wgAALJD2oObqVOn2ogRI2zMmDE2b948O+igg2zgwIG2Zs2acr/35Zdf2tVXX22HHXZYjaUVAABkvrQHN3fddZcNGzbMhg4dap07d7YHHnjA6tevb5MnT477nbKyMvv1r39tY8eOtQ4dOtRoegEAQGZLa3CzY8cOmzt3rvXv3/+nBNWq5d7Pnj077vduvvlma9GihZ1//vkVrmP79u22cePGiBcAAAiutAY369atc6UwLVu2jJiu96tWrYr5nbffftseffRRe/jhhxNax/jx462wsDD0atu2bUrSDgAAMlPaq6WSsWnTJjv33HNdYFNUVJTQd0aNGmWlpaWh1/Lly6s9nQAAIEcH8VOAkp+fb6tXr46YrvfFxcW7zL9kyRLXkPikk04KTdu5c6f7W7t2bVu0aJF17Ngx4jv16tVzLwAAkBvSWnJTt25d69Gjh82cOTMiWNH7vn377jL/fvvtZx999JHNnz8/9Dr55JPtqKOOcv+nygkAAKT98QvqBj5kyBDr2bOn9e7d2yZOnGhbtmxxvadk8ODB1qZNG9d2RuPgdOnSJeL7TZo0cX+jp2ezsp0ej1IAACBbg5tBgwbZ2rVrbfTo0a4Rcbdu3aykpCTUyHjZsmWuB1WuKFmw0sa+9LGtLN0WmtaqsMA93ZuHYAIAULE8z/M8yyHqCq5eU2pc3LhxY8u0wGb4lHkWvUPy/veXp3wDAHLVxiSu37lTJJIFVVEqsYkVafrT9LnmAwAA8RHcZIg5S7+LqIqKppBGn2s+AAAQH8FNhlizaVtK5wMAIFcR3GSIFo0KUjofAAC5iuAmQ/Teq5nrFeU3Ho6m6fpc8wEAgPgIbjJEfq08191bogMc/70+13wAACA+gpsMonFs1N27uDCy6knv6QYOAECWDOKHXQOcAZ2LGaEYAIBKIrjJQKp66tuxebqTAQBAVqJaCgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgZIRwc2kSZOsffv2VlBQYH369LE5c+bEnXfatGnWs2dPa9KkiTVo0MC6detmTzzxRI2mFwAAZK60BzdTp061ESNG2JgxY2zevHl20EEH2cCBA23NmjUx52/WrJldf/31Nnv2bPvwww9t6NCh7vXKK6/UeNoBAEDmyfM8z0tnAlRS06tXL7v33nvd+507d1rbtm3tsssus5EjRya0jIMPPthOOOEEGzduXIXzbty40QoLC620tNQaN25c5fQDAIDql8z1O60lNzt27LC5c+da//79f0pQrVruvUpmKqK4bObMmbZo0SI7/PDDY86zfft2lyHhLwAAEFxpDW7WrVtnZWVl1rJly4jper9q1aq431PU1rBhQ6tbt64rsbnnnntswIABMecdP368i/T8l0qFAABAcKW9zU1lNGrUyObPn2/vvfee/fGPf3RtdmbNmhVz3lGjRrlgyH8tX768xtMLAABqTm1Lo6KiIsvPz7fVq1dHTNf74uLiuN9T1VWnTp3c/9Vb6pNPPnElNEceeeQu89arV8+9AABAbkhryY2qlXr06OHazfjUoFjv+/btm/By9B21rQEAAEhryY2oSmnIkCFu7JrevXvbxIkTbcuWLa57twwePNjatGnjSmZEfzVvx44dXUAzY8YMN87N/fffn+YtAQAAmSDtwc2gQYNs7dq1Nnr0aNeIWNVMJSUloUbGy5Ytc9VQPgU+F198sa1YscJ2220322+//WzKlCluOQAAAGkf56amMc4NAADZJ2vGuQEAAEg1ghsAABAoBDcAACBQCG4AAECgENwAAIBASWlws23bNpswYUIqFwkAAFC9wY3GpHn55Zft1VdfdQ+9lB9++MH+9Kc/Wfv27e3WW29NdpEAAADpGcTv7bffthNPPNH1Nc/Ly3MjBT/22GN26qmnWu3ate2mm25yow0DAABkRcnNDTfcYMcff7x9+OGH7rEJeir3aaedZrfccot9/PHH9tvf/taNGgwAAJAVIxQ3b97c3nrrLevcubN9//331rBhQ5s2bZqdcsopli0YoRgAgOxTbSMUr1+/3oqKitz/VUJTv35969KlS9VSCwAAkM4HZ6r6SQ+4FBX6LFq0yD3MMlzXrl1Tl0IAAIDqqpbS07nVkDjWV/zp+uv3ospEVEsBAJB9krl+J1Vys3Tp0qqmDQAAoFolFdy0a9eu+lICAACQAkk1KL799ttdLynfO++8Y9u3bw+937Rpk1188cWpSBcAAED1t7nJz8+3lStXWosWLdx71XnNnz/fOnTo4N6vXr3aWrduTZsbAACQHV3Bo+OgJOIiAACAGsFTwQEAQKAQ3AAAgNwexO+RRx5xj12QH3/80R5//PHQqMVqUAwAAJA1DYrbt2/vBunL5vFwGMQPAIDsU22D+H355ZdVTRsAAEDmtLl5/fXX3RPBFT1FUyR1wAEHuKeGAwAAZEVwM3HiRBs2bFjM4iAVFV100UV21113pTJ9AAAA1RfcfPDBB3bsscfG/fyYY46xuXPnJpcCAACAdAU3GoG4Tp06cT+vXbu2rV27NhXpAgAAqP7gpk2bNrZgwYK4n3/44YfWqlWryqUEAACgpoOb448/3m688Ubbtm3bLp/pgZpjxoyxE088MRXpAgAAqP5xblQtdfDBB7sHaF566aW27777uumffvqpTZo0yT0wc968edayZUvLVIxzAwBA9qm2cW4UtLz77rs2fPhwGzVqVOjBmRrYb+DAgS7AyeTABgAABF/Sj19o166dzZgxw9avX2+LFy92Ac7ee+9tTZs2rZ4UAgAAVGdw41Mw06tXr8p+HQAAoFrwVHAAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAIlI4KbSZMmWfv27a2goMD69Oljc+bMiTvvww8/bIcddpg1bdrUvfr371/u/AAAILekPbiZOnWqjRgxwsaMGWPz5s2zgw46yAYOHGhr1qyJOf+sWbPsrLPOsjfeeMNmz55tbdu2tWOOOca+/vrrGk87AAC5oGynZ7OXfGvT53/t/up9JsvzPC+tKVRJTa9evezee+9173fu3OkClssuu8xGjhxZ4ffLyspcCY6+P3jw4Arn37hxoxUWFlppaak1btw4JdsAAEBQlSxYaWNf+thWlm4LTWtVWGBjTupsx3ZpVWPpSOb6ndaSmx07dtjcuXNd1VIoQbVqufcqlUnE1q1b7YcffrBmzZrF/Hz79u0uQ8JfAAAgscBm+JR5EYGNrCrd5qbr80yU1uBm3bp1ruSlZcuWEdP1ftWqVQkt49prr7XWrVtHBEjhxo8f7yI9/6VSIQAAUD5VPanEJlb1jj9Nn2diFVXa29xUxa233mpPP/20Pf/8864xciyjRo1yRVj+a/ny5TWeTgAAss2cpd/tUmITTiGNPtd8maZ2OldeVFRk+fn5tnr16ojpel9cXFzudydMmOCCm3/+85/WtWvXuPPVq1fPvQAAQOLWbNqW0vlypuSmbt261qNHD5s5c2ZomhoU633fvn3jfu/222+3cePGWUlJifXs2bOGUgsAQO5o0aggpfPlTMmNqBv4kCFDXJDSu3dvmzhxom3ZssWGDh3qPlcPqDZt2ri2M3LbbbfZ6NGj7cknn3Rj4/htcxo2bOheAACg6nrv1cz1ilLj4VitavLMrLiwwM2XadLe5mbQoEGuikkBS7du3Wz+/PmuRMZvZLxs2TJbufKn1tj333+/62V1xhlnWKtWrUIvLQMAAKRGfq08193bD2TC+e/1uebLNGkf56amMc4NAADBHucm7dVSAAAgcx3bpZUN6FzsekWp8bDa2KgqKhNLbHwENwAAoFwKZPp2bG7ZIu1tbgAAAFKJ4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABErtdCcASIeynZ7NWfqdrdm0zVo0KrDeezWz/Fp57AwACACCG+SckgUrbexLH9vK0m2haa0KC2zMSZ3t2C6t0po2AEDVUS2FnAtshk+ZFxHYyKrSbW66PgcAZDeCG+RUVZRKbLwYn/nT9LnmAwBkL4Ib5Ay1sYkusQmnkEafaz4AQPYiuEHOUOPhVM4HAMhMBDfIGeoVlcr5AACZieAGOUPdvdUrKl6Hb03X55oPAJC9CG6QMzSOjbp7S3SA47/X54x3AwDZjeAGOUXj2Nx/zsFWXBhZ9aT3ms44NwCQ/RjEDzlHAcyAzsWMUAwAAUVwg5ykqqe+HZunOxkAgCBWS02aNMnat29vBQUF1qdPH5szZ07ceRcuXGinn366mz8vL88mTpxYo2kFAACZL63BzdSpU23EiBE2ZswYmzdvnh100EE2cOBAW7NmTcz5t27dah06dLBbb73ViouLazy9AAAg86U1uLnrrrts2LBhNnToUOvcubM98MADVr9+fZs8eXLM+Xv16mV33HGHnXnmmVavXr0aTy8AAMh8aQtuduzYYXPnzrX+/fv/lJhatdz72bNnp2w927dvt40bN0a8AABAcKUtuFm3bp2VlZVZy5YtI6br/apVq1K2nvHjx1thYWHo1bZt25QtGwAAZJ60NyiubqNGjbLS0tLQa/ny5elOEgAACGJX8KKiIsvPz7fVq1dHTNf7VDYWVtsc2ucAAJA70lZyU7duXevRo4fNnDkzNG3nzp3ufd++fdOVLAAAkOXSOoifuoEPGTLEevbsab1793bj1mzZssX1npLBgwdbmzZtXLsZvxHyxx9/HPr/119/bfPnz7eGDRtap06d0rkpAAAgQ6Q1uBk0aJCtXbvWRo8e7RoRd+vWzUpKSkKNjJctW+Z6UPm++eYb6969e+j9hAkT3OuII46wWbNmpWUbAABAZsnzPM9LdyJqkrqCq9eUGhc3btw43ckBAAApvn4HvrcUAADILQQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABEpaB/EDACSmbKdnc5Z+Z2s2bbMWjQqs917NLL9WHtlXCeRl8BHcAECGXxhLFqy0sS99bCtLt4WmtSossDEndbZju7Sq1nUHDXmZGxihGAAy+MKodQ6fMs+ih5L3w6n7zzmYAIe8zAkbGaEYAKonyAgPbGRV6TY3XZ9Hl/DMXvKtTZ//tfur98nSdxRMxfqmP02fV2bZuYa8zC1USwFAFS+MKkXR5wM6F7sqqlSV8Kj6KzqYil63Ptd8fTs2Zz/mYF7Sfig2ghsASOGFsfT7HTGrkfwSnmSqkdSuJ5Xz5bJ052V1BCG0H4qP4AYAUnTBW7Vxm91e8mnCJTwV+XLdloTWq4slUpNH1ZGX1RGExGuLVZkgOogY5wYAUnTB+27z9oRLeBK5039qzrIK59NFUqUAKJ/ySHkVL6TMq6a8TLatViJoP1QxghsASNGFsVmDuikrCVIAtGrj9grnO7PXnox3kwCVlKmkRKL3o/9en6eyW391BSHJVJPmKoIbAEjRhbG4cLeUlQQlWhXWvqh+QvPBXDWNqmuKCyPzX++roxqnuoKQdLcfyga0uQGAJC6M0W0nisPaTugOXCU4qnKIdS+e97/5E6n6SGcbkSDTflKbp5oYiLG6ghCOjYoR3ABAii6MfgmP2lJoileFqg+/KiwVgRIiKf9rort3dQUhHBsVo1oKACpxYTylWxv3NzpQSVXVRzraiCA7GjFzbFSMxy8AQAaPa8JYJtnN7y1lcUryqtLWJ9eOjY1JPH6B4AYAMhyj0Ga36gxCcunY2Ehwk5rMAQAgFXIpCMmE6zcNigEACEgjZvwfGhQDAIBAoeQGAIA0VDvVZFVVWY5VixHcAABQww2Ga7KnU0mO9aoSqqUAAKjBB2NWx8M0U5m+ICC4AQCghh6MWZNP9C6rwXVlGoIbAKgEXRBmL/nWps//2v0N4gUCqX8wZk0+0XtODj89nDY3AJCkXGzDgNQ8GLMmn+i9JoefHk7JDQAkIVfbMCA1D8asySd6t8jhJ8sT3ABAgnK5DQNS82DM6nqYZiy9a3BdmYbgBgASlMttGJCap3PX5BO983P4yfIENwCQoFxuw4DY1MZKT/YuLoys2tH7eE/8rsx3KuvYGlxXJqFBMQAkKJfbMCA+BQgDOhcnNQJwZb5TWcfW4LoyBcENACTZhkGNh2O1qsn73x1xENswIPUPxqzJh2nm59iDO6mWAoAE5XIbBiCbENwAQBJytQ0DkE2olgKAJOViGwYgmxDcAEAl5FobBiCbUC0FAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUOgtBUdPMU5Ht9bKrDddaU0FP+2rSr+377bssGYN61lx48htqOr2JfL96Hl6tGtqc79an9I8DV9HUYN6bpS7dZu3p32fZdLxEzoeNm6z7zZvt2YN6lpx4W5Zc0zXxPEcvq5/L/nWZn+xzg2ZqJ5qvdo3S/i4rcn9nknHWK5uD8ENrGTBShv70scRTzvWEPMaabU6BySrzHrTldZUiJX26G2QqmxfIvkTax6dp3aGPU+gqnla3rYmuvxELpypSFdx43p2Vu89rX1Rg2oLJhNNSyryf8ePO+2J2V/aV99ttXbN6tu5fdtb3dq1YgYK7y5ZZ99s+N4FVM0a1LGiRgXWolE9+/GHnfb8B1/b1h1lLoAY0u+nZfjbq/Q/M3eFmyde+iV6GxXAjT35ACtqWC/hAHzp2s320Ftf2NYdO0Of3/vGYsvLM/MqOG61nHtfX2yPvbPUNnz/Q9z9nqoAP5vPUanYnkwJhPI8L/zQCL6NGzdaYWGhlZaWWuPGjS3X6cAdPmXeLs/J8Q/F6hpxtTLrTVdaUyFe2hOR6PYlkj+SSDqqkqeJbGtFy6+OC3+i+yDVwWRV8ijZ/B8/42N7+K2lEYGqrivDDtvLRh3fObTukdM+sg1bf7rQV0RBxIWH7WXd92xabtBaWYkE4Aml839//XxLZltTEeBn8zkqFdtT3YFdMtdvgpscpgj70Ntej3sC8R8C+Pa1P09p5F2Z9aYrralQUdoTUdH2JZI/LRvXc/9TFUgq1lnVbY23/Oq48CebrlQFk/HubBNNS6sk8l+BzYP/Whr384sO/7/g5LdT5lmmqUwAXtFxdeMJ+9vFT/43JWlK5DjL5nNUKranJgK7ZIIbGhTnMBUdlneC1UGqzzVfutebrrSmQkVpT0RF25dI/qzauD3hwCaRdVYmHRUtXydU3fklcmHTfJq/OtJV0fLLS2dF308mLYnmv6qiVGJTHn0++oUFlon8XLrpxYV204uJ7f/ylqV8u2F61bY1keMgXDafo6q6PVX5PVQXgpscpjrRVM5XnetNV1pTIZVpires6tzuZJZdmXSEfyfRC3+yF4pk05WKYDLe95NNSyLzq41NRdcNfb5m8w7LVJUJwMvz3ZYfUpKmRI+zbD5HVXV7MjGwI7jJYWrslcr5qnO96UprKqQyTfGWVZ3bncyyK5OO8O9Ux4W/sukqb/lVuZAlm5ZE5lfjYVSfRPZ3Np+jqro9mRjYEdzkMLViV51+vNpfTdfnmi/d601XWlPBT3tVVLR9ieSPeoeot1Gitf2VydOK0lHR8qvjwp9suhJZflUuZMmkJdH8V68o/B/la/MGdVOaHYns72w+R1V1ezIxsCO4yWFqBOZ314w+gP33+jzVjd8qs950pTUV/LQnE1Qku32J5M9NJx9gN50cex5LUZ6Wl45Elp9oIJjshSLRdCW6/KpcyMLTUlEaEs1/dfeuaDZ93qJhai/6qVSZADzWMmTcKV0qFcxW5TjL5nNUVbcnEwO7jAhuJk2aZO3bt7eCggLr06ePzZkzp9z5n3nmGdtvv/3c/AceeKDNmDGjxtIaNGq9rlbsavUeTu+rs9tiZdabrrSmgp/2eBduTX/gnIPdq7Lbl0j+xJsn+nxblTyNt45Elp9MIJjshSKRdKUymCzv+4kcD8nkv8agUXfv8ujzm0/tYjXBP57VQysRlQnAyzuuju/aKqlgtrw0JXOcZfM5qirbk4mBXdq7gk+dOtUGDx5sDzzwgAtsJk6c6IKXRYsWWYsWLXaZ/91337XDDz/cxo8fbyeeeKI9+eSTdtttt9m8efOsS5eKf7iMcxMbIxTXDEYoTmyE4uoa4C58H6j+/8t1W+2pOcsiGrHWxDg31TVCcbrHuTlq3yK78PBOEemf8eE3rudSeAPfisaUqWicm4b1atsFh+5lFx/VqdyB92Itp8ludezQvYvs/S/XR+z3VA5kmSkD2aVKotvDODdhFND06tXL7r33Xvd+586d1rZtW7vsssts5MiRu2TeoEGDbMuWLfbyyy+Hph1yyCHWrVs3FyBVhOAGyA7VMUJxeeupzsdd1KSaGqH4m/Vbbf6KDe7evH3z2OupyuM+Ih7f0bCe63Kzbkvyj++It39q4hEkuaisGn8PWTOI344dO6x+/fr27LPP2qmnnhqaPmTIENuwYYNNnz59l+/sueeeNmLECLvyyitD08aMGWMvvPCCffDBBxWuk+AGAIDsk8z1O63Pllq3bp2VlZVZy5YtI6br/aeffhrzO6tWrYo5v6bHsn37dvcKzxwAABBcGdGguDqpbY4iPf+lKi8AABBcaQ1uioqKLD8/31avXh0xXe+Li4tjfkfTk5l/1KhRrgjLfy1fvjyFWwAAADJNWoObunXrWo8ePWzmzJmhaWpQrPd9+/aN+R1ND59fXnvttbjz16tXz9XNhb8AAEBwpbXNjahxsBoQ9+zZ03r37u26gqs31NChQ93n6ibepk0bV70kV1xxhR1xxBF255132gknnGBPP/20vf/++/bQQw+leUsAAEAmSHtwo67da9eutdGjR7tGwerSXVJSEmo0vGzZMqtV66cCpn79+rmxbW644Qa77rrrbO+993Y9pRIZ4wYAAARf2gfxq2l0BQcAINjX78D3lgIAALmF4AYAAARK2tvc1DS/Fo7B/AAAyB7+dTuR1jQ5F9xs2rTJ/WUwPwAAsvM6rrY35cm5BsUaR+ebb76xRo0aWZ4edVtBlKggSAP/MT4O+cGxwe8kEZw3yAuOi+r5nShcUWDTunXriF7UseRcyY0yZI899kjqOwz+R35wbPA7SRbnDfKC4yL1v5OKSmx8NCgGAACBQnADAAACheCmHHou1ZgxY9xfkB8cG/xOEsF5g7zguEj/7yTnGhQDAIBgo+QGAAAECsENAAAIFIIbAAAQKAQ3AAAgUHI+uJk0aZK1b9/eCgoKrE+fPjZnzpxyM+yZZ56x/fbbz81/4IEH2owZMyxX82PhwoV2+umnu/k12vPEiRMtV/Pi4YcftsMOO8yaNm3qXv3796/wWApqXkybNs169uxpTZo0sQYNGli3bt3siSeesFw+b/iefvpp91s59dRTLRfz4vHHH3fbH/7S93L1uNiwYYNdcskl1qpVK9draJ999gnUNWVSEvlx5JFH7nJs6HXCCSdUbuVeDnv66ae9unXrepMnT/YWLlzoDRs2zGvSpIm3evXqmPO/8847Xn5+vnf77bd7H3/8sXfDDTd4derU8T766CMvF/Njzpw53tVXX+099dRTXnFxsXf33Xd7QZFsXpx99tnepEmTvP/+97/eJ5984p133nleYWGht2LFCi/X8uKNN97wpk2b5n4jixcv9iZOnOh+NyUlJV4QJJsfvqVLl3pt2rTxDjvsMO+UU07xcjEvHnvsMa9x48beypUrQ69Vq1Z5uZgX27dv93r27Okdf/zx3ttvv+2Oj1mzZnnz58/3cjE/vv3224jjYsGCBe68oWOmMnI6uOndu7d3ySWXhN6XlZV5rVu39saPHx9z/l/96lfeCSecEDGtT58+3kUXXeTlYn6Ea9euXaCCm6rkhfz4449eo0aNvD//+c9erueFdO/e3d0MBEFl8kPHQ79+/bxHHnnEGzJkSGCCm2TzQhcqBf1BlGxe3H///V6HDh28HTt2eEHUu4rnDV1PdA7dvHlzpdafs9VSO3bssLlz57rqg/DnTun97NmzY35H08Pnl4EDB8adP+j5EVSpyIutW7faDz/8YM2aNbNczgvdQM2cOdMWLVpkhx9+uGW7yubHzTffbC1atLDzzz/fgqKyebF582Zr166de2jiKaec4qq3czEvXnzxRevbt6+rlmrZsqV16dLFbrnlFisrK7NstyMF59BHH33UzjzzTFe1XRk5G9ysW7fOHUQ6qMLp/apVq2J+R9OTmT/o+RFUqciLa6+91j25NjoYzpW8KC0ttYYNG1rdunVdnfk999xjAwYMsGxXmfx4++233Yla7bKCpDJ5se+++9rkyZNt+vTpNmXKFNu5c6f169fPVqxYYbmWF1988YU9++yz7ntqZ3PjjTfanXfeaX/4wx8s18+hc+bMsQULFtgFF1xQ6TTk3FPBgep26623uoajs2bNClRjyWQ0atTI5s+f7+7SVXIzYsQI69Chg2s0mEs2bdpk5557rgtsioqKLNeppEIvnwKb/fff3x588EEbN26c5RIFdirNe+ihhyw/P9969OhhX3/9td1xxx3usQS57NFHH3Uddnr37l3pZeRscKMTjQ6o1atXR0zX++Li4pjf0fRk5g96fgRVVfJiwoQJLrj55z//aV27drVczQsVQXfq1Mn9X72lPvnkExs/fnzWBzfJ5seSJUvsyy+/tJNOOinioia1a9d21XUdO3a0XD1n1KlTx7p3726LFy+2bFaZvFAPKW2/vudToKeSDVXrqNQzWxVV4djYsmWLuzlUVW5V5Gy1lA4cRcq6qww/6eh9+J1FOE0Pn19ee+21uPMHPT+CqrJ5cfvtt7u7z5KSEtcVOghSdVzoO9u3b7dcyw8NG/HRRx+5Uiz/dfLJJ9tRRx3l/q92J7l8bKjqQvmjC302q0xe/OxnP3NBnR/symeffebyIpsDm6oeGxpuReeKc845x6rEy2HqqlavXj3v8ccfd91WL7zwQtdVze+aeO6553ojR46M6Apeu3Ztb8KECa6775gxYwLXFTyZ/FBXRnV91qtVq1auW7j+//nnn3u5lhe33nqr6/b47LPPRnRn3LRpk5dreXHLLbd4r776qrdkyRI3v34v+t08/PDDXhAkmx/RgtRbKtm8GDt2rPfKK6+4Y2Pu3LnemWee6RUUFLiuwrmWF8uWLXO9gS699FJv0aJF3ssvv+y1aNHC+8Mf/uDl8u/k0EMP9QYNGlTl9ed0cCP33HOPt+eee7oLk7qu/fvf/w59dsQRR7gTUbi//e1v3j777OPmP+CAA7y///3vXq7mh8ZlUHwc/dJ8uZYX6gofKy8UAOdaXlx//fVep06d3EWradOmXt++fd2JLpfPG0ENbpLNiyuvvDI0b8uWLd0YL/PmzfNy9bh499133XAiCgLULfyPf/yjGzYgV/Pj008/dedN3RxVVZ7+qVrZDwAAQObI2TY3AAAgmAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwCV8vjjj1uTJk1yOvfy8vLshRdeqNF16llVWq8e31AV7du3t4kTJ2bc9gGpQHADpNl5553nLiJ66UF6LVu2tAEDBtjkyZMjnjuTiJtuusk9qDLVYl0IBw0a5J6FU930sE0/f/RS/vzyl7+0r776qsbWGf3K9geAAkFHcANkgGOPPdZWrlzp7sr/8Y9/uAcrXnHFFXbiiSfajz/+aJlot912sxYtWtTIuoYNG+by55tvvrHp06fb8uXLq/5gvXJMmzbNrU+vOXPmuGl60rs/TZ9XhgaEz9T9CQQJwQ2QAerVq2fFxcXWpk0bO/jgg+26665zF3EFOqr+8W3YsMEuuOAC23333a1x48b285//3D744AP3meYbO3ase++XMPjfLe97vpdeesl69eplBQUFVlRUZKeddpqbrlIKlZL87ne/Cy03XrXU/fffbx07dnRPBd53333tiSeeiPhc333kkUfcsuvXr2977723vfjiixXmj+ZV/uiJyYcccohdeumlNm/evIh53nzzTevdu7fLS803cuTIUCDxl7/8xRo2bGiff/55aP6LL77YPbV769atu6yvWbNmbn16Kc+kefPmoWn63Ldu3bq42zNr1iy3zdqPekqy0vb222+7Ernx48fbXnvt5YLEgw46yJ599tnQ99avX2+//vWv3br1uZb72GOPRaTxiy++cEGw1qvvz549O+Lz5557zg444AC3TpW83XnnneXmsfLm8MMPd/u/c+fO9tprr1W4X4CMVeWnUwGokvIepHjQQQd5xx13XOh9//79vZNOOsl77733vM8++8y76qqrvObNm3vffvutt3XrVvdeD3T1n0quaRV9T/RE4vz8fG/06NHuCb7z5893T/cWzbPHHnt4N998c2i58thjj3mFhYWhtE2bNs2rU6eON2nSJPeU4zvvvNMt8/XXXw/No1OOlvXkk0+6p8dffvnlXsOGDUPpiEUP2LviiitC7zWvtuWoo44KTVuxYoVXv3597+KLL/Y++eQT7/nnn/eKiooiHlz6y1/+0uvVq5f3ww8/uO1VWt9///0K94//gFg98T5aRdvzxhtvuHm6du3qHga4ePFi95me/Lzffvt5JSUl7gnZyks9PHHWrFnue5dcconXrVs3t7+0/tdee8178cUXI9Kj72s7lNdnnHGGe3irtk20XbVq1XL7TJ9r+bvttpv769P8d999t/t/WVmZ16VLF+/oo492+/7NN9/0unfv7tajvASyDcENkMHBzaBBg7z999/f/f+tt97yGjdu7G3bti1ino4dO3oPPvig+78u5gqIwiXyPT25+9e//nXcNIZfCH3RwU2/fv28YcOGRcyjgEJPfvbpYnnDDTeE3m/evNlN+8c//lFucKNApEGDBi6A0fz77LOPu8j7rrvuOm/ffff1du7cGZqmIEuBhi7c8t1337lAZPjw4e6J1HoCcyIqCm7K2x4/uHnhhRdC82g/aDv0ROhw559/vnfWWWe5/yt4Gzp0aLnpeeSRR0LTFi5c6KYpsJOzzz7bGzBgQMT3rrnmGq9z584x9+krr7zi1a5d2/v6669Dn2sbCG6QraiWAjKYrp9+NZCqkTZv3uyqR1TF4r+WLl1qS5YsibuMRL6nnjdHH310ldL6ySef2M9+9rOIaXqv6eG6du0a+n+DBg1cNdmaNWvKXbaqaJRGbYuqdTp16mTHHHOMbdq0KbTuvn37hvLKX7e2e8WKFe5906ZN7dFHHw1VnanaKhUS2Z6ePXuG/r948WJXFaZG4+H7Q1Vn/v4YPny4Pf30065x+O9//3t79913y12vquHEX2+8faGqp7Kysl2Wpfnbtm1rrVu3Dk1TfgLZqna6EwAgPl101C5DdKHWRUztOKKV1yU7ke+pXUdNUY+wcApIKuoVVlhY6AIa0V8FKdqmqVOnurZEifrXv/5l+fn5rlHwli1brFGjRlYT26OgJ3x/yN///nfXxiqc2sfIcccd59o5zZgxw7V9UeB5ySWX2IQJE2Ku1w/qku1dBwQVJTdAhnr99dfto48+stNPP929V0PjVatWWe3atd0FPvylBsCihrzRd+aJfE+lADNnzoyblljLjbb//vvbO++8EzFN79U4NdUUoMj3338fWrca1P5fTdFP61bwsscee7j3Kv247bbbXMNplZSoUXI6KD8UxCxbtmyX/aHSE58aEw8ZMsSmTJniuuE/9NBDCa8j3r7YZ599QnkXPb96oCno8/373/+u9DYC6UbJDZABtm/f7gIQBRCrV6+2kpIS15tGXcEHDx7s5unfv7+rKjj11FPt9ttvdxcqdY1WCYB666jqQ71iVN2kKhxd1HVxT+R7Y8aMcaUDqq4588wzXS8jlRpce+21bt1arko99JkuzH5QFO6aa66xX/3qV9a9e3e3TgUR6jKtLtRVpWoc5Y8of8aNG+d69ahqyu/5pADgsssuc0HLokWL3DaNGDHCatWq5aqvzj33XLv88stdqYjyRj3DTjrpJDvjjDOsJmmfXH311a73mUpaDj30UCstLXXBh6q0FNCMHj3a9a5SbycdGy+//LILQBJ11VVXue1TPmk8IgV+9957r913330x59f+0nGhdd9xxx22ceNGu/7661O41UANS3ejHyDXqUGxfop6qVHn7rvv7no3TZ48OdQY1rdx40bvsssu81q3bu0a2bZt29Y1BF62bFmoserpp5/uNWnSxC3P7x1T0ffkueeecz106tat63oa/eIXvwh9Nnv2bNfjRz16/NNGdINiue+++7wOHTq4dajR71/+8peIz2M1UNUywnvxxGpQ7OePXk2bNnXTwnthiXoaqTeU0l9cXOxde+21od5Dapx74IEHRjSqVm+uZs2auZ5WVWlQXN72+A2K169fHzGPGj5PnDjRNYJWXmmfDxw40PVSknHjxrmG5OrhpDSqwfkXX3wRNz1avqZpfb5nn33WNSDW8vfcc0/vjjvuKLeRuHpVHXrooS7/tO/Uk4sGxchWefqnpgMqAACA6kKbGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAAALkv8Ppxpa0o1qbKoAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -2519,7 +2475,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAS7lJREFUeJzt3Qd8FHX+//FPCCUoEClCAJFuQZpUgygWFOwoKlaQ8yyIKOCh4CkRGyjooYJwVlT04CxYUKMeiIrioURUQMCCgkgoioAgoMn8H+/v7797u2ETkrAtmdfz8VjIzHx3duY7szOf/bZJ8TzPMwAAAB+pkOgNAAAAiDcCIAAA4DsEQAAAwHcIgAAAgO8QAAEAAN8hAAIAAL5DAAQAAHyHAAgAAPgOARAAAPAdAqAy5rfffrO//vWvlpGRYSkpKTZ06FA3f/369Xbuueda7dq13fyJEydaWd8nv5k2bZrb/++//96S1XHHHWetW7e28rw9Oga33XbbXtMpjdKW5XPt008/TfSmAAlDAJREF6PCXh9//HEw7d133+3SDxo0yJ555hm79NJL3fxhw4bZW2+9ZaNGjXLze/fuHfXt1Ge//PLLMVlvpH2KpEmTJsF8qVChgh1wwAHWpk0bu/LKK+2///3vPm3Hww8/7LYj1mKVj6URuInv7aVAA2XDrFmz7JRTTrE6depY5cqVrUGDBnb++efb3LlzrTx44403ihWgRtNll11W6HcjLS3NklXo9VKv/fff37p06WJPP/10mcr/WKmY6A3A/9x+++3WtGnTPbKkRYsWwb91ETvqqKMsKysrLI3mn3XWWfa3v/0tpjdulTL16dMnqustbJ8K0759e7vhhhvc39u2bbOvvvrKnn/+eXv00UddIHj//feXOgDSTUMXu1gqLB8V+F1wwQVWpUoVi5dzzjkn7PxSaZwC0bPPPtstC6hXr17ctgmlo8c6/uUvf3FB/JFHHmnDhw93parr1q1zQdGJJ55oH374oXXr1q1MZ7FuwJMnT477TVjfy8cee2yP+ampqZbMQq+XOhe0DwMGDLBdu3bZFVdcUWbyPxYIgJKIfrV16tSpyDQbNmywVq1aRZyv0pCyqLB9KkzDhg3tkksuCZt3zz332EUXXWT/+Mc/rGXLlu4mXtboQhrvi2nbtm3dK2DTpk0u7zSvYB7vq507d7oSCZXcIfruu+8+F/yoClk/AkKr5/7+97+70tWKFeN7yd+xY4ftt99+VhaCR52fVatWLTSN8q4034nt27e7kpdY5M+ff/5p+fn57ntV3OulfuA1a9bMXStLEwCVJ1yJyoh58+a5C9qqVavs9ddfDxZpBqrP9AVWVB6YH/Drr7+6C2KjRo3cLxj92lewoC9NKE0/8MADrjpJRboHHnigq0YLtBHQOvVFfuqpp4KfsbeSEgU2l19+uSs90DrbtWvn3r+3fSpNGxhduHSBr1Wrlt11110uP0L3TW2ijjjiCLcd2p6rrrrKNm/eHFZUvHTpUnvvvfciVvvEIx8LawOkkiltuz5X1RmDBw922xOpLcyyZcvs+OOPdxdVXfjuvfdei4W9fU7g2M6YMcNuueUWl0Zpt27d6parulL5kp6e7ub36NHDlU6EUume8lzHRvtet25dO+mkkywnJ6fE21Oc87Eo8+fPt86dO7v3NW/e3P75z3+WKL9UQtmxY0d3nqqUUTektWvXhqXReVCtWjU3X6WD+lvnj0p18/Lyilz/77//bmPHjrXDDjvMJkyYELFtkkoYVf0RSqUAKinS5+gmrZK/jRs3hqV55ZVX7LTTTnPnno6D9v+OO+7YY5sC5+CiRYvs2GOPdcfi5ptvLtE6AufGqaeeajVr1nTbpGBc36lAHuk6J6FVOyX5rovOqdNPP901G9CPTh2Xkh7TSALfYV1HrrnmGnfOHnTQQXvNn+Kcm7ouaN06vtpH5aHyUud+SehY6zz59ttvw+Z/8MEHdt5559nBBx/s1qtrnUrUdW4FRCv/kwUlQElky5Yt7hd4KJ1cath8+OGHuxu8Tkh9oQJFmirqDrSb0c2hf//+Yb8udGPRBVUnoU7sjz76yLUTUlFoaENpffn05VUplBok65eFvhBqf6QLhD5D83UBVXsb0RewMPrS6Av/zTff2LXXXuuq9nQT0BdIN+/rr7++0H3SF7Q0dMPQBfzxxx93FwV9CUX7rn0bOHCgXXfddS7gmjRpkn322WfuplupUiWXF0OGDHHr0K/l0GqfROajipnHjBljPXv2dCUzK1assClTptgnn3wS3PYAXWQUVKjqSm0+XnjhBbvppptcMKbtiZaSfI5ucvp1qpu4brb6W1WeSqeAQNWeKhF68skn7YQTTnB5FbhJX3311W7dOn9UQvjzzz+7QERVnh06dCjR9hTnfCzMl19+aSeffLI7L3U8dEy13cWtFgycewqgFKSow4Ju6Dp+OgdDS24VEPTq1cu6du3qbnT/+c9/XMmOzpGiSjWVL7/88osLGEtSiqhzXoGG9kc3WJ3Lyp+ZM2eGbb++FwqU9L+O3+jRo10wO378+LD16Rgpz1WVqyAvkEfFXcc777zjApP69eu7Y6IqPB3v2bNnu2l9/3766SeXTt+lgorzXQ/Qd+nCCy9071FJyKGHHrrX/Cp4fRad0zVq1Aibp+BH54v2UT94isqfkp6b+q6otErXDwUq+tFXEjp/f/zxR3fcQ+kzda3TeaZ7zsKFC+2hhx5yabVMopn/ScFDwj355JMqroj4qlKlSljaxo0be6eddtoe61DawYMHh8274447vP33399buXJl2PyRI0d6qamp3urVq9303Llz3fuvu+66Pdabn58f/FvrGjBgQLH2aeLEiW6d06dPD87bvXu3l5mZ6VWrVs3bunXrXvcpkr2l/cc//uE+95VXXnHTH3zwgZt+9tlnw9JlZ2fvMf+II47wevToscc645WPgfNg1apVbnrDhg1e5cqVvZNPPtnLy8sLpps0aZJL98QTTwTnabs17+mnnw7O27Vrl5eRkeH17dvXK66NGze69WRlZUVcXtzPeffdd126Zs2aeTt27AjLh5YtW3q9evUKyxOladq0qXfSSScF56Wnp+9xTpd2e0pyPhbc/z59+nhpaWneDz/8EJy3bNkyd+z3dgnVZ9StW9dr3bq19/vvvwfnz54927139OjRwXk6JzTv9ttvD1vHkUce6XXs2LHIz3nggQfce2fNmuUVR+Bc69mzZ9hxGDZsmNuvX3/9NTgv9PgFXHXVVd5+++3n7dy5c49jMXXq1D3SF2cdf/75pzsH9B3fvHlzWNrQbdQ5ESnfS/Jd12donpYVR+DYRHrpXC6Yr927d3f7E6qw/CnuuanrgtLVqFHDXRuKQ/up64e+13p9+eWX3qWXXhrxfrEjwjEaO3asl5KSEnbuRyP/kwVVYElERYuKrENfb775ZqnXp6j9mGOOcZG+frkEXipN0C/N999/36V78cUXXUlTpEbIpe3mq4Zy+vWmX1gBiv71q0ANbVVEHAv6dRmoPgnkgapZVDoWmgcqfVDad999N2nzUb/+d+/e7X7Vh7ab0a9V/eJUtWHBfQ+t69cvU5WmfPfddxZNJfkcNbYMbVexePFi+/rrr117Lf0aDuSlfiWrka7yMlCtqJIRVYfoF+e+bk9pz0cdX1WTqEpKJX8BKr1USc3eqOpT1RsqEQjtLaTqIFVDFDyGgZKvUDr39nYMA1WL1atXt5JQKULouanP0j7/8MMPwXmhx0/fKx0vpVNpwfLly8PWpxIJ/fovqDjrUCmBSgx0vhdsz1ic709Jv+sqaSnOMQzQ8St4fdZr3Lhxe6TVdzRSSVyk/Cnpudm3b98SlZK//fbbLr1eKhVVyY22YXyB0rvQY6Tvo/JODeb1m0DHZm+ica2NN6rAkogu2ntrBF0SutF88cUXhX5ZdGEW1QWrbr6kRalF0QVUjZELNnjVjSOwPBZ0wQi9ESgPVLWouvii8iAZ8zGQRwWL5nWDVyPGgnmoasSCNwoFbdr2aCrJ5xTs1ai8DARGhdHx0vrUjkfp1BZBF1G1C1EVr/a9pNtT2vNR7WFURaH3FqTjoptXaY6hKABS1VWoQLuxgvuytzYUgSqYQOBfXKFBXeCzJPTz1DZO7bhUbRUItEKPVSi1v4rUILc46wi0SSntuE4l/a5H6nFbFAU0+tFTHIWtO1L+lPTcLOl2qzr1zjvvdIHtkiVL3N86vpULbMfq1atdld2rr766x/lW8DhHEo1rbbwRAJVj+iWtaPzGG2+MuPyQQw6x8kZfcAl07VYe6Av57LPPRkxfnF9SZSUfC2v7EdogPN6fU7BXTaB0R78+1T23qFI8tedRKYG6cOtXrN6jhucvvfRSWFujeO13PJS2F6CCqUB7pZIMU7G3vFMbFLV/U4ClYTrUFklBmhqiq51VwU4AkXpRlXQdpVXS73pRPb72VWHrjsZnlnQdanQfCNxU4qVzRe2sHnjgAdcmSxQc6RqndmQ6JkqjBuhq96i2SMU5RtG41sYbAVA5pguNSkT29qtF6VTMr5O/qNKLklTjNG7c2P0C15ci9JdNoLhby6NN+6qbpUoMAr+etG+qSjr66KP3euEobP8SlY+BPFJjzdBSD1WLqaqguL9Gk0mgwbduhsXZfjWGVfWRXvoFqcbP6uVX0kbdpT0fddHWeRMouQql41Kczw2kVSPvgu+P1vege/furvTmX//6l+tZFK3hFNSbT1WVCjrVcylA51+01xE4N/Qjpqhzo6jvaXG/68kk3tdKVb8qIL377rtdo2UFOgqcV65c6XqehXakURVfec5/2gCVY/oFvWDBAndTjvSrTL0BAnXK+sWn3kZF/YrWF6Vg9+vCqLoiNzc3rDeJPk+9CvQLX1/AaFI1hXrCKfhQL67Al1R5oF836o1UkLYndH8K279E5aNuAiqmfvDBB8Per15uKmrWhaysUVWWLpTq4RSorgwV6IKtY1aw2F2/LlXFqN5kJVXa81GBhH41a+RuVREEqGdSpPOhIFVpa7unTp0att1q26d1ROsYqku1frlrnfo/UunX9OnTXc+ekggEUqHrUwCuoRmivQ4Ft6reUU+0gt+Pgt8fKZimJN/1ZBLva6XoHPn555/d4LGFHSP9HRh+IFR5yn9KgJKILooFGxWKGqIVbPdQHCNGjHD1uSruVDGmbj5q3KZoX12F1e1VxaMaP0XBg260+qWrLsX6NaIuyVqmrpmi9yvC1yBruhHpYqX65cIaV2pcDX2uxr3QuBv6THWF1AWupI01Q6lYVhdz0U1UXd7VAE8XEXWl16+aAF08NK3ux2qAq+7MamCo/dR79AXXqMyB/VMXc9WRqwpNNy79ak9UPqr0QV3tFVBpXWeeeaYrNdCNQ12qoz1QYTzoF65GolUJjoYpUGNMtYvQMVUjSZUMvfbaa64ti9r26NhoTBTdCJRn6v6vbuEltS/no/I/OzvbVcepJCpwc9L27619lc41VdtpP3UuqqFroBu8tkFDQESLzlO1tVH+KC+Vd2pcq++FAjgFPxq+oSR07VHJktpiqVGuflioEW1JqheLuw6dG/r+nXHGGa56VHmmEkBdE7VfgYBT3x/RuhSc6uatbuUl+a6Xho574LpTkIbfKGyww72J5bWyMPr+tW7d2l2DNK6Yqrz0w0TDVei7qO+hOnVEanuWqPyPiUR3Q0PR3eD10vLSdIOXbdu2eaNGjfJatGjhulTXqVPH69atmzdhwgTX1TJAXTbHjx/vHXbYYS7dgQce6J1yyineokWLgmmWL1/uHXvssV7VqlXd5+2tS/z69eu9gQMHus/UOtu0aRO2L3vbp0gC3Vf1UvdMdQlV9/UrrrjC++9//1vo+x555BHXlVjbXr16dbctN954o/fTTz8F0+Tm5rrt0HKtP7RLfDzysWA3+NBu71pfpUqVvHr16nmDBg3ao5uwtlX5UJDWrTyLZjf44nxOoBv8888/H3E9n332mXfOOed4tWvXdkM96L3nn3++N2fOnGBX9hEjRnjt2rVzx0NDB+jvhx9+uNT7XdzzMdL+v/fee+780fvUtV9dmZWmuJfQmTNnuu7s2tdatWp5F198sffjjz/usc3az4JK8jnywgsvuK7P+pyKFSt69evX9/r16+fNmzcvmCZwrn3yySdh7w0cN/0f8OGHH3pHHXWUO18bNGjgvjdvvfXWHukKOxYlWYfMnz/fDYcQOO5t27b1HnroobDv2JAhQ9x3S9eAgnlTnO96Sa45e+sGH/qdLSxf95Y/xTk3A93gdX0prqL2c9q0aWH3Fw3toGER1PVe26Fr6ueff77HPSga+Z8sUvRPooMwAACAeKINEAAA8B0CIAAA4DsEQAAAwHcIgAAAgO8QAAEAAN8hAAIAAL7DQIgRaPA6PYFaA1CV9mnoAAAgvjSyjwZS1SCzBR8wWxABUAQKfvQ8KQAAUPasWbPGjSZfFAKgCAJDjysDNSQ4AABIflu3bnUFGMV5hAgBUASBai8FPwRAAACULcVpvkIjaAAA4DsEQAAAwHcIgAAAgO8QAAEAAN8hAAIAAL5DAAQAAHyHAAgAAPgOARAAAPAdAiAAAOA7jAQdR3n5ni1c9Ytt2LbT6lZPsy5Na1lqBR62CgBAvBEAxUn2knU25rVltm7LzuC8+ulplnVGK+vdun68NgMAAFAFFr/gZ9D0nLDgR3K37HTztRwAAMQPbYDiUO2lkh8vwrLAPC1XOgAAEB8EQDGmNj8FS35CKezRcqUDAADxQQAUY2rwHM10AABg3xEAxZh6e0UzHQAA2HcEQDGmru7q7VVYZ3fN13KlAwAA8UEAFGMa50dd3aVgEBSY1nLGAwIAIH4IgOJA4/xMuaSDZaSHV3NpWvMZBwgAgPhiIMQ4UZBzwmH17JkF39sPv+ywxrX2s0szm1jlisSgAADEGwFQAkeCfmz+KkaCBgAgASh+iANGggYAILkQAMUYI0EDAJB8CIBijJGgAQBIPgRAMcZI0AAAJB8CoBhjJGgAAJIPAVCMMRI0AADJhwAoxhgJGgCA5EMAFAeMBA0AQHJhIMQ4BkEntcpwvcLUMFptg1Q9xjPAAACIPwKgOFKwk9m8djw/EgAAREAVGAAA8B0CIAAA4DsEQAAAwHcIgAAAgO8QAAEAAN8hAAIAAL5DAAQAAHwnKQKgyZMnW5MmTSwtLc26du1qCxcuLDTto48+asccc4zVrFnTvXr27LlHes/zbPTo0Va/fn2rWrWqS/P111/HYU8AAEBZkPAAaObMmTZ8+HDLysqynJwca9eunfXq1cs2bNgQMf28efPswgsvtHfffdcWLFhgjRo1spNPPtnWrl0bTHPvvffagw8+aFOnTrX//ve/tv/++7t17ty5M457BgAAklWKp+KSBFKJT+fOnW3SpEluOj8/3wU1Q4YMsZEjR+71/Xl5ea4kSO/v37+/K/1p0KCB3XDDDfa3v/3NpdmyZYvVq1fPpk2bZhdccMFe17l161ZLT09376tRo0YU9hIAAMRaSe7fCS0B2r17ty1atMhVUQU3qEIFN63SneLYsWOH/fHHH1arVi03vWrVKsvNzQ1bpzJDgVZh69y1a5fLtNAXAACIvrx8zxZ8+7O9snit+1/TvnsW2KZNm1wJjkpnQml6+fLlxVrHTTfd5Ep8AgGPgp/AOgquM7CsoLFjx9qYMWNKuRcAAKA4spesszGvLbN1W/7XJKV+epplndHKPTTcV22A9sW4ceNsxowZNmvWLNeAurRGjRrlissCrzVr1kR1OwEA8LvsJets0PScsOBHcrfsdPO13DcBUJ06dSw1NdXWr18fNl/TGRkZRb53woQJLgB6++23rW3btsH5gfeVZJ1VqlRxdYWhLwAAEB2q5lLJT6TKrsA8LY9ndVhCA6DKlStbx44dbc6cOcF5agSt6czMzELfp15ed9xxh2VnZ1unTp3CljVt2tQFOqHrVJse9QYrap0AACA2Fq76ZY+Sn1AKe7Rc6XzRBkjUBX7AgAEukOnSpYtNnDjRtm/fbgMHDnTL1bOrYcOGrp2O3HPPPW6Mn+eee86NHRRo11OtWjX3SklJsaFDh9qdd95pLVu2dAHRrbfe6toJ9enTJ6H7CgCAH23YtjOq6cpFANSvXz/buHGjC2oUzLRv396V7AQaMa9evdr1DAuYMmWK6z127rnnhq1H4wjddttt7u8bb7zRBVFXXnml/frrr9a9e3e3zn1pJwQAAEqnbvW0qKYrF+MAJSPGAQIAIHrUtqf7PXNdg+dIQUeK2vCmp9n8m06w1AqaKufjAAEAgPIvtUKK6+ouBcObwLSW70vwU1IEQAAAIOY0zs+USzq4kp5Qmtb8eI8DlPA2QAAAwB96t65vJ7XKcL291OBZbX66NK0V15KfAAIgAAAQNwp2MpvXtkSjCgwAAPgOARAAAPAdAiAAAOA7BEAAAMB3aAQNAADiOigivcAAAIBvZC9Z5576Hvpg1PrpaW4QxHiPA0QVGAAAiEvwM2h6zh5PhdfjMTRfy+OJAAgAAMS82kslP5GeAxaYp+VKFy8EQAAAIKbU5qdgyU8ohT1arnTxQgAEAABiSo+9iGa6aCAAAgAAMaVnfkUzXTQQAAEAgJjSA0/V26uwR55qvpYrXbwQAAEAgJg/AFVd3aVgEBSY1vJ4PhWeAAgAAMScxvmZckkHy0gPr+bStObHexwgRoIGAABxoSDnpFYZjAQNAAD8JbVCimU2r53ozaAECAAAxA/PAgMAAL6SzbPAAACAn2TzLDAAAOAneTwLDAAA+M1CngUGAAD8ZgPPAgMAAH5Tl2eBAQAAv+nCs8AAAIDfpPIsMAAA4Ee9eRYYAADwo948CwwAAPhRapI8C6xCojcAAAAg3giAAACA7yQ8AJo8ebI1adLE0tLSrGvXrrZw4cJC0y5dutT69u3r0qekpNjEiRP3SJOXl2e33nqrNW3a1KpWrWrNmze3O+64wzzPi/GeAACAsiKhAdDMmTNt+PDhlpWVZTk5OdauXTvr1auXbdiwIWL6HTt2WLNmzWzcuHGWkZERMc0999xjU6ZMsUmTJtlXX33lpu+991576KGHYrw3AACgrEjxElg0ohKfzp07u2BF8vPzrVGjRjZkyBAbOXJkke9VKdDQoUPdK9Tpp59u9erVs8cffzw4T6VGKg2aPn16sbZr69atlp6eblu2bLEaNWqUat8AAEB8leT+nbASoN27d9uiRYusZ8+e/9uYChXc9IIFC0q93m7dutmcOXNs5cqVbvrzzz+3+fPn2ymnnFLoe3bt2uUyLfQFAADKr4qJ+uBNmza59joqrQml6eXLl5d6vSo5UgBz2GGHWWpqqvuMu+66yy6++OJC3zN27FgbM2ZMqT8TAACULQlvBB1t//73v+3ZZ5+15557zrUreuqpp2zChAnu/8KMGjXKFZcFXmvWrInrNgMAAJ+UANWpU8eV0Kxfvz5svqYLa+BcHCNGjHClQBdccIGbbtOmjf3www+ulGfAgAER31OlShX3AgAA/pCwEqDKlStbx44dXXudADWC1nRmZmap16ueYmpLFEqBltYNAACQ0BIgURd4lcp06tTJunTp4sb12b59uw0cONAt79+/vzVs2NCV3gQaTi9btiz499q1a23x4sVWrVo1a9GihZt/xhlnuDY/Bx98sB1xxBH22Wef2f33329/+ctfErinAAAgmSS0G7yoC/z48eMtNzfX2rdvbw8++KDrHi/HHXec6+4+bdo0N/3999+7AQ4L6tGjh82bN8/9vW3bNjcQ4qxZs9x4Qg0aNLALL7zQRo8e7UqdioNu8AAAlD0luX8nPABKRgRAAACUPWViHCAAAIBEIQACAAC+QwAEAAB8hwAIAAD4DgEQAADwHQIgAADgOwRAAADAdwiAAACA7xAAAQAA3yEAAgAAvkMABAAAfIcACAAA+A4BEAAA8B0CIAAA4DsEQAAAwHcIgAAAgO8QAAEAAN8hAAIAAL5DAAQAAHyHAAgAAPgOARAAAPAdAiAAAOA7BEAAAMB3CIAAAIDvEAABAADfIQACAAC+QwAEAAB8hwAIAAD4DgEQAADwHQIgAADgOwRAAADAdwiAAACA7xAAAQAA3yEAAgAAvpPwAGjy5MnWpEkTS0tLs65du9rChQsLTbt06VLr27evS5+SkmITJ06MmG7t2rV2ySWXWO3ata1q1arWpk0b+/TTT2O4FwAAoCxJaAA0c+ZMGz58uGVlZVlOTo61a9fOevXqZRs2bIiYfseOHdasWTMbN26cZWRkREyzefNmO/roo61SpUr25ptv2rJly+y+++6zmjVrxnhvAABAWZHieZ6XqA9XiU/nzp1t0qRJbjo/P98aNWpkQ4YMsZEjRxb5XpUCDR061L1C6X0ffvihffDBB6Xerq1bt1p6erpt2bLFatSoUer1AACA+CnJ/TthJUC7d++2RYsWWc+ePf+3MRUquOkFCxaUer2vvvqqderUyc477zyrW7euHXnkkfboo48W+Z5du3a5TAt9AQCA8ithAdCmTZssLy/P6tWrFzZf07m5uaVe73fffWdTpkyxli1b2ltvvWWDBg2y6667zp566qlC3zN27FgXMQZeKoUCAADlV8IbQUebqtE6dOhgd999tyv9ufLKK+2KK66wqVOnFvqeUaNGueKywGvNmjVx3WYAAOCTAKhOnTqWmppq69evD5uv6cIaOBdH/fr1rVWrVmHzDj/8cFu9enWh76lSpYqrKwx9AQCA8ithAVDlypWtY8eONmfOnLDSG01nZmaWer3qAbZixYqweStXrrTGjRvv0/YCAIDyo2IiP1xd4AcMGOAaLXfp0sWN67N9+3YbOHCgW96/f39r2LCha6MTaDitbu2BvzXez+LFi61atWrWokULN3/YsGHWrVs3VwV2/vnnu3GFHnnkEfcCAACJlZfv2cJVv9iGbTutbvU069K0lqVWSPFXN3hRF/jx48e7hs/t27e3Bx980HWPl+OOO851d582bZqb/v77761p06Z7rKNHjx42b9684PTs2bNdu56vv/7apVegpXZAxUU3eAAAoi97yTob89oyW7dlZ3Be/fQ0yzqjlfVuXX+f11+S+3fCA6BkRAAEAED0g59B03OsYNARKPuZckmHfQ6CysQ4QAAAwD/VXmNeW7ZH8COBeVqudPFCAAQAAGJKbX5Cq70KUtij5UoXLwRAAAAgptTgOZrpooEACAAAxJR6e0UzXZnvBu83ydL1DwCAeNL9Tr29crfsjNgOSHfCjPT/uy/GCwFQOen6BwBAskqtkOLud+oFpmAnNAgKFANoeTwLBagCi2PXv4INwBQJa76WAwBQnvVuXd91dVdJTyhNR6MLfElRApTgrn+KdbX8pFYZVIcBAMq13q3ru/tdMjQHIQBKoq5/mc1rx3pzAABIKAU7yXC/owrMh13/AADwOwIgH3b9AwDA7wiA4tT1r7DaTc2vH+eufwAA+B0BUJy6/knBIChRXf8AAPA7AiAfdv0DAMDv6AXmw65/AAD4HQGQD7v+AQDgd1SBAQAA3yEAAgAAvkMABAAAfIcACAAA+A4BEAAA8B0CIAAA4DsEQAAAwHcIgAAAgO8QAAEAAN9hJGgAABA3efleUjwWigAIAADERfaSdTbmtWW2bsvO4Lz66WmWdUaruD8YnCowAAAQl+Bn0PScsOBHcrfsdPO1PJ4IgAAAQMyrvVTy40VYFpin5UoXLwRAcaQDu+Dbn+2VxWvd//E80AAAJMrCVb/sUfITSndDLVe6eKENkA/rPQEAiCc1eI5muqQrAdq5c6dNmDAhmqssF5Kt3hMAgHhSb69opktIALRx40abPXu2vf3225aXl+fm/fHHH/bAAw9YkyZNbNy4cbHYzjIrGes9AQCIJ3V1V61HYZ3dNV/LlS4pA6D58+dby5Yt7cwzz7RTTjnFunXrZsuWLbMjjjjC/vnPf9ptt91ma9asid3WlkHJWO8JAEA8aZwfNfmQgkFQYFrL4zkeUIkCoFtuucVOPfVU++KLL2z48OH2ySef2Nlnn2133323C4Suvvpqq1q1aok3YvLkya70KC0tzbp27WoLFy4sNO3SpUutb9++Ln1KSopNnDixyHWrRErphg4daomQjPWeAADEm9q7Trmkg2Wkh1dzaVrz490etkSNoL/88kt7+OGHrVWrVnb77bfb/fffb/fee6+dddZZpd6AmTNnumBq6tSpLvhRQNOrVy9bsWKF1a1bd4/0O3bssGbNmtl5551nw4YNK3LdCtBUMtW2bVtLlGSs9wQAIBEU5JzUKiMpRoIuUQnQ5s2brU6dOu5vlfTst99+1rp1633aAAVRV1xxhQ0cONAFVgqEtN4nnngiYvrOnTvb+PHj7YILLrAqVaoUut7ffvvNLr74Ynv00UetZs2aluh6z6LEu94TAIBEUbCT2by2ndW+ofs/EcFPqRpBq6pLVWB6eZ7nSmoC04FXce3evdsWLVpkPXv2/N8GVajgphcsWGD7YvDgwXbaaaeFrbswu3btsq1bt4a9okUH9sx2RRfraXmiTgAAAPyoxOMAnXjiiS7wCTj99NPd/2pno/n6P9A7bG82bdrk0tarVy9svqaXL19upTVjxgzLyclxVWDFMXbsWBszZozFgnp3vfp50d3ctfzG3ocTBAEAkIwB0KpVqyzZqRfa9ddfb++8845rVF0co0aNcu2QAlQC1KhRo6hsz956gVlILzAVBQIAgCQLgBo3bhzVD1d7otTUVFu/fn3YfE1nZGSUap2qUtuwYYN16NAhOE+lTO+//75NmjTJVXfpM0OpLVFR7Yn2Bb3AAABIPiVqA6QeX7///ntw+sMPP3QBRcC2bdvsmmuuKfb6KleubB07drQ5c+YE5+Xn57vpzMxMKw1V0am32uLFi4OvTp06uQbR+rtg8BNr9AIDAKCMB0CqKlKQE6DBENeuXRvWRV3dzktCVU/qqfXUU0/ZV199ZYMGDbLt27e7XmHSv39/97mhDacDgY3+1ufr72+++cYtr169uuuZFvraf//9rXbt2vvcY628jH4JAIDfHwxeoiqw0MbPkaZLo1+/fu7xGqNHj7bc3Fxr3769ZWdnBxtGr1692vUMC/jpp5/syCOPDE7r2WN69ejRw+bNm2fJOvqlnvmlYMdLgtEvAQDw+4PBU7wSRDEKRBSkBAYoVGnL559/7gYmDLTdadCgQbF7gSUrNYJOT0+3LVu2WI0aNcrdQQcAIFEPBi8YdAR+/kdjNOiS3L9L3A0eZX/0SwAAkunB4LoTarnuk/G6L5Y4AHrsscesWrVq7u8///zTpk2bFhwdOrR9EAof/RIAAD9ZWIIHg8frPlmiAOjggw92DZYD1FX9mWee2SMNAABAMg8JU6IA6Pvvv4/dlgAAgHKpbhI+GLxE3eDnzp3rHlga6VlZanB0xBFH2AcffBDN7QMAAGVclyQcEqZEAdDEiRPdk9sjtaxWq+urrrrKPd0dAACg4JAwUjAIStSQMCUKgNTlvXfv3oUuP/nkk92jKAAAAAr2hlZX94z08GouTUejC3xM2wBpnJ9KlSoVvrKKFd2ghgAAAMk8JEyJAqCGDRvakiVLrEWLFhGXf/HFF1a/PoP6AQCA5B4SpkRVYKeeeqrdeuuttnPnnt3U9JDUrKwsO/3006O5fQAAAIl9FIaqwDp06OCeqH7ttdfaoYce6uYvX77cJk+e7B6BkZOTE3yOV1kVi0dhAACA2IrZozAU2Hz00Ufuie16QnsgdkpJSbFevXq5IKisBz8AAKD8K/GjMBo3bmxvvPGGbd682b755hsXBLVs2dJq1qwZmy0EAACIslI/DFUBT+fOnaO7NQAAAMnWCBoAAKA8IAACAAC+U+oqMJRcXr6XFIM/AQDgdwRAcZK9ZJ2NeW2ZrdvyvzGU9OA3Pfsk3sN/AwDgd1SBxSn4GTQ9Jyz4kdwtO918LQcAAPFDABSHai+V/EQabTIwT8uVDgAAxAcBUIypzU/Bkp9QCnu0XOkAAEB80AYoxtTgOZrpAAAoy/KSpEMQAVCM1dm/SlTTAQBQVmUnUYcgqsBiLL+Yz5otbjoAAMqi7CTrEEQAFGP/LWbbnuKmAwCgrMlLwg5BBEAxV9yDSQkQAKB8WpiEHYIIgGIss1mdqKYDAKCs2ZCEHYIIgGLsqOa17YD9KhWZRsuVDgCA8qhu9bSoposGAqAYU9e+cee0KTKNlvNMMABAedWlaS3X26uwzu6ar+VKFy8EQHGgrn1TL+lgGTXCu7prWvN5FhgAoDxLrZDiurpLwSAoMK3l8SwMSPE8+l8XtHXrVktPT7ctW7ZYjRo1yt3gTwAAlMdxgEpy/yYA2scMBAAAyVEYUJL7NyNBAwCAuFGwk5kEHX+Sog3Q5MmTrUmTJpaWlmZdu3a1hQsXFpp26dKl1rdvX5c+JSXFJk6cuEeasWPHWufOna169epWt25d69Onj61YsSLGewEAAMqKhAdAM2fOtOHDh1tWVpbl5ORYu3btrFevXrZhw4aI6Xfs2GHNmjWzcePGWUZGRsQ07733ng0ePNg+/vhje+edd+yPP/6wk08+2bZv3x7jvQEAAGVBwtsAqcRHpTWTJk1y0/n5+daoUSMbMmSIjRw5ssj3qhRo6NCh7lWUjRs3upIgBUbHHnvsXreJNkAAAJQ9Jbl/J7QEaPfu3bZo0SLr2bPn/zaoQgU3vWDBgqh9jjJCatWK3/gCAAAgeSW0EfSmTZssLy/P6tWrFzZf08uXL4/KZ6hESSVERx99tLVu3Tpiml27drlXaAQJAADKr4S3AYo1tQVasmSJzZgxo9A0ajStIrPAS1VwAACg/EpoAFSnTh1LTU219evXh83XdGENnEvi2muvtdmzZ9u7775rBx10UKHpRo0a5arJAq81a9bs82cDAIDkldAAqHLlytaxY0ebM2dOWJWVpjMzM0u9XrXrVvAza9Ysmzt3rjVt2rTI9FWqVHGNpUJfAACg/Er4QIjqAj9gwADr1KmTdenSxY3ro+7qAwcOdMv79+9vDRs2dNVUgYbTy5YtC/69du1aW7x4sVWrVs1atGgRrPZ67rnn7JVXXnFjAeXm5rr5qt6qWrVqwvYVAAAkh4R3gxd1gR8/frwLVNq3b28PPvig6x4vxx13nOvuPm3aNDf9/fffRyzR6dGjh82bN8/9rQESI3nyySftsssu2+v20A0eAICyh2eBxTEDAQBAcigz4wABAAAkAgEQAADwHQIgAADgOwnvBeYnefmeLVz1i23YttPqVk+zLk1rWWqFyA22AQBA7BAAxUn2knU25rVltm7LzuC8+ulplnVGK+vdun68NgMAAFAFFr/gZ9D0nLDgR3K37HTztRwAAMQPbYDiUO2lkp9Igy0F5mm50gEAgPggAIoxtfkpWPITSmGPlisdAACIDwKgGFOD52imAwAA+44AKMbU2yua6QAAwL4jAIoxdXVXb6/COrtrvpYrHQAAiA8CoBjTOD/q6l5YE2fN13LGAwIAIH4IgAAAgO8QAMWpG7wVUQVGN3gAAOKLACjG6AYPAEDyIQCKMbrBAwCQfAiAYoxu8AAAJB8CoBijGzwAAMmHAChO3eCl4FhAgWm6wQMAEF8EQHHQu3V9m3JJB8tIDx/tWdOar+UAACB+Ksbxs3xNQc5JrTJcrzA1jFbbIFWPMQAiAADxRwAURwp2MpvXjudHAgCACKgCAwAAvkMABAAAfIcACAAA+A4BEAAA8B0CIAAA4DsEQAAAwHcIgAAAgO8QAAEAAN8hAAIAAL5DAAQAAHyHAAgAAPgOARAAAPCdpAiAJk+ebE2aNLG0tDTr2rWrLVy4sNC0S5cutb59+7r0KSkpNnHixH1eJwAA8JeEB0AzZ8604cOHW1ZWluXk5Fi7du2sV69etmHDhojpd+zYYc2aNbNx48ZZRkZGVNYJAAD8JcXzPC+RG6DSmc6dO9ukSZPcdH5+vjVq1MiGDBliI0eOLPK9KuEZOnSoe0VrnbJ161ZLT0+3LVu2WI0aNSxa8vI9W7jqF9uwbafVrZ5mXZrWstQKKVFbPwAAfra1BPfvipZAu3fvtkWLFtmoUaOC8ypUqGA9e/a0BQsWJM06oyF7yTob89oyW7dlZ3Be/fQ0yzqjlfVuXT9h2wUAgB8ltAps06ZNlpeXZ/Xq1Qubr+nc3Ny4rXPXrl0uagx9RTv4GTQ9Jyz4kdwtO918LQcAwA/y8j1b8O3P9srite5/TSdCQkuAksXYsWNtzJgxMVm3DqxKfiIdXs1TBZiWn9Qqg+owAEC5lp1EtSEJLQGqU6eOpaam2vr168Pma7qwBs6xWKeqy1RfGHitWbPGokVtfgqW/BQMgrRc6QAAKK+yk6w2JKEBUOXKla1jx442Z86c4Dw1WNZ0ZmZm3NZZpUoV11gq9BUtavAczXQAAJQ1eXupDREtj2d1WMKrwNRdfcCAAdapUyfr0qWLG9dn+/btNnDgQLe8f//+1rBhQ1dNFWjkvGzZsuDfa9eutcWLF1u1atWsRYsWxVpnPKm3VzTTAQBQ1iwsQW1IZvPa/giA+vXrZxs3brTRo0e7Rsrt27e37OzsYCPm1atXu15cAT/99JMdeeSRwekJEya4V48ePWzevHnFWmc8qau76jdVxBcprlUboIz0/+sSDwBAebQhCWtDEj4OUDKK9jhAgXpPCc3swAhAUy7pQFd4AEC5teDbn+3CRz/ea7p/XXHUPpUAleT+nfCRoP1ALdsV5KikJ5SmCX4AAOVdl/9fG1LY0L+aXz/OtSEJrwLzUxCkru6MBA0A8JvUCimuq7tqQ1IKqQ3R8ng+HYEqsDg+CgMAAD/LjvE4QGXmURgAAMA/eidRbQgBEAAAiBsFO/Hq6l4UGkEDAADfIQACAAC+QwAEAAB8hwAIAAD4DgEQAADwHQIgAADgOwRAAADAdwiAAACA7xAAAQAA3yEAAgAAvkMABAAAfIcACAAA+A4BEAAA8B0CIAAA4DsEQAAAwHcIgAAAgO8QAAEAAN8hAAIAAL5DAAQAAHyHAAgAAPgOARAAAPAdAiAAAOA7FRO9AX6Sl+/ZwlW/2IZtO61u9TTr0rSWpVZISfRmAQDgOwRAcZK9ZJ3d9upSy926Kzgvo0YVu+3MI6x36/rx2gwAAEAVWPyCn6un54QFP6JpzddyAAAQP7QBikO118iXviwyjZYrHQAAiA8CoBj7+Nuf7dcdfxSZRsuVDgAAxAcBUIwt+G5TVNMBAIB9RyPomCtuLy96gwEAyr+8JOkRnRQlQJMnT7YmTZpYWlqade3a1RYuXFhk+ueff94OO+wwl75Nmzb2xhtvhC3/7bff7Nprr7WDDjrIqlataq1atbKpU6daImQ2rx3VdAAAlFXZS9ZZ93vm2oWPfmzXz1js/td0IjoDJTwAmjlzpg0fPtyysrIsJyfH2rVrZ7169bINGzZETP/RRx/ZhRdeaJdffrl99tln1qdPH/dasmRJMI3Wl52dbdOnT7evvvrKhg4d6gKiV1991eLtqGa17YD9KhWZpuZ+lVw6AADKq+wl62zQ9Bxbt2Vn2PzcLTvd/HgHQSme5yW0+5FKfDp37myTJk1y0/n5+daoUSMbMmSIjRw5co/0/fr1s+3bt9vs2bOD84466ihr3759sJSndevWLt2tt94aTNOxY0c75ZRT7M4779zrNm3dutXS09Nty5YtVqNGjah1gy/M1Es6MBYQAKBcV3t1v2fuHsFPgCrAMtLTbP5NJ+xTdVhJ7t8JLQHavXu3LVq0yHr27Pm/DapQwU0vWLAg4ns0PzS9qMQoNH23bt1cac/atWtN8d27775rK1eutJNPPtkSQQMdKsjJqJEWNr9+ehrBDwCg3Fu46pdCgx9RSYyWK50vGkFv2rTJ8vLyrF69emHzNb18+fKI78nNzY2YXvMDHnroIbvyyitdG6CKFSu6oOrRRx+1Y489NuI6d+3a5V6hEWQsgqCTWmUkRcMvAADiSfe9aKaLhnLZC0wB0Mcff+xKgRo3bmzvv/++DR482Bo0aLBH6ZGMHTvWxowZE/PtUrBDY2cAgN/UrZ4W1XRlPgCqU6eOpaam2vr168PmazojIyPiezS/qPS///673XzzzTZr1iw77bTT3Ly2bdva4sWLbcKECREDoFGjRrmG06ElQGqHBAAA9p1qPNTsQw2evSLaACldvCS0DVDlypVd4+Q5c+YE56kRtKYzMzMjvkfzQ9PLO++8E0z/xx9/uJeqvUIp0NK6I6lSpYprLBX6AgAA0asByTqjlfu7YMOPwLSWx7NZSMK7wavkRe1znnrqKddlfdCgQa6X18CBA93y/v37uxKagOuvv951cb/vvvtcO6HbbrvNPv30U9fNXRS89OjRw0aMGGHz5s2zVatW2bRp0+zpp5+2s88+O2H7CQCAn/VuXd+mqENQeng1l6Y1X8vjKeFtgNRdfePGjTZ69GjXkFnd2RXgBBo6r169Oqw0Rz28nnvuObvllltcVVfLli3t5Zdfdl3fA2bMmOGCposvvth++eUX1w7orrvusquvvjoh+wgAACypOgQlfBygZBTtcYAAAEDslZlxgAAAABKBAAgAAPgOARAAAPAdAiAAAOA7BEAAAMB3Et4N3m9Pw02Grn8AAPgdAVCcZC9ZZ2NeWxb2NFwNC66RL+M9+BMAAH5HFVicgp9B03PCgh/RM1E0X8sBAED8EADFodpLJT+RRpsMzNNypQMAAPFBABRjavNTsOQnlMIeLVc6AAAQHwRAMaYGz9FMBwAA9h0BUIypt1c00wEAgH1HABRj6uqu3l6FdXbXfC1XOgAAEB8EQDGmcX7U1V0KBkGBaS1nPCAAAOKHACgONM7PlEs6WEZ6eDWXpjWfcYAAAIgvBkKMEwU5J7XKYCRoAACSAAFQHKmaK7N57Xh+JAAASSUvSR4LRQAEAAB891go2gABAADfPRaKAAgAAPjusVAEQAAAwHePhSIAAgAAvnssFAEQAADw3WOhCIAAAEBcHgtVlHg/FooACAAAxJTG+TmzXdHd3LU8nuMBEQDFkVq3L/j2Z3tl8Vr3fzxbuwMAkCh5+Z69+nnR3dy1PJ73RQZCjBONb3Dbq8ssd+v/Gnhl1Eiz286M/+BPAAAkUy8wC+kFFq8nJlACFKfg5+rpOWHBj2j66gQM/gQAQDzlbvk9qumigQAoxlScd8O/Py8yzQ3Pf051GACg3NqwbVdU00UDAVCMffTNJtu+O6/INNt35bl0AACUR1/9tDWq6aKBACjGXsz5MarpAAAoa3b88WdU00UDAVCM/bj596imAwCgrOncpHZU00UDAVCMNTwgLarpAAAoawZ0a2IpexniR8uVLl4IgGLs3A6NopoOAICypnLFCnblMU2LTKPlSuerAGjy5MnWpEkTS0tLs65du9rChQuLTP/888/bYYcd5tK3adPG3njjjT3SfPXVV3bmmWdaenq67b///ta5c2dbvXq1xVu3lnVsv8qpRabRcqUDAKC8GnVqK7vq2KZWcLBnTWu+lsdTwgOgmTNn2vDhwy0rK8tycnKsXbt21qtXL9uwYUPE9B999JFdeOGFdvnll9tnn31mffr0ca8lS5YE03z77bfWvXt3FyTNmzfPvvjiC7v11ltdwBRvGtb7/vPbFZlGy+M5/DcAAImgIGf5HafYracdbv0zG7v/NR3v4EdSPM9L6PMYVOKj0plJkya56fz8fGvUqJENGTLERo4cuUf6fv362fbt22327NnBeUcddZS1b9/epk6d6qYvuOACq1Spkj3zzDOl2qatW7e6kqMtW7ZYjRo1LBo02GHWK0ts/bbdwXn1qle2MWe1ZiRoAACioCT374SWAO3evdsWLVpkPXv2/N8GVajgphcsWBDxPZofml5UYhRIrwDq9ddft0MOOcTNr1u3rguyXn75ZUskPe7io1E97V9XHGUPXNDe/a9pHoMBAED8JTQA2rRpk+Xl5Vm9evXC5ms6Nzc34ns0v6j0qjr77bffbNy4cda7d297++237eyzz7ZzzjnH3nvvvYjr3LVrl4saQ1+xoGouPePkrPYN3f9UewEAkBjl7mGoKgGSs846y4YNG+b+VvWY2g6piqxHjx57vGfs2LE2ZsyYuG8rAADwYQlQnTp1LDU11davXx82X9MZGRkR36P5RaXXOitWrGitWoU3qDr88MML7QU2atQoV18YeK1Zs2Yf9wwAACSzhAZAlStXto4dO9qcOXPCSnA0nZmZGfE9mh+aXt55551geq1TjapXrFgRlmblypXWuHHjiOusUqWKaywV+gIAAOVXwqvA1AV+wIAB1qlTJ+vSpYtNnDjR9fIaOHCgW96/f39r2LChq6aS66+/3lVj3XfffXbaaafZjBkz7NNPP7VHHnkkuM4RI0a43mLHHnusHX/88ZadnW2vvfaa6xIPAACQ8ABIgcrGjRtt9OjRriGz2usoYAk0dFa1lXqGBXTr1s2ee+45u+WWW+zmm2+2li1buh5erVu3DqZRo2e191HQdN1119mhhx5qL774ohsbCAAAIOHjACWjWIwDBAAAYqvMjAMEAACQCARAAADAdwiAAACA7yS8EXQyCjSLitWI0AAAIPoC9+3iNG8mAIpg27Zt7n89lBUAAJS9+7gaQxeFXmARaDDGn376yapXr24pKSlRj04VWGm0aXqYxQ75HB/kM/lcnnA+l/28VsmPgp8GDRqEDaETCSVAESjTDjroIIslRpyOD/KZfC5POJ/J5/KmRgyevrC3kp8AGkEDAADfIQACAAC+QwAUZ3rwalZWlvsf5HNZx/lMPpcnnM/+ymsaQQMAAN+hBAgAAPgOARAAAPAdAiAAAOA7BEAAAMB3CIBiYPLkydakSRNLS0uzrl272sKFC4tM//zzz9thhx3m0rdp08beeOONWGyWr/P50UcftWOOOcZq1qzpXj179tzrcUHJ8znUjBkz3Ejqffr0ISujfD7Lr7/+aoMHD7b69eu7njSHHHII144Y5PPEiRPt0EMPtapVq7qRi4cNG2Y7d+7knC7C+++/b2eccYYbjVnXgJdfftn2Zt68edahQwd3Lrdo0cKmTZtmMechqmbMmOFVrlzZe+KJJ7ylS5d6V1xxhXfAAQd469evj5j+ww8/9FJTU717773XW7ZsmXfLLbd4lSpV8r788kuOTBTz+aKLLvImT57sffbZZ95XX33lXXbZZV56err3448/ks9RzOeAVatWeQ0bNvSOOeYY76yzziKPo5zPu3bt8jp16uSdeuqp3vz5811+z5s3z1u8eDF5HcV8fvbZZ70qVaq4/5XHb731lle/fn1v2LBh5HMR3njjDe/vf/+799JLL+mJpN6sWbOKSu5999133n777ecNHz7c3Qcfeughd1/Mzs72YokAKMq6dOniDR48ODidl5fnNWjQwBs7dmzE9Oeff7532mmnhc3r2rWrd9VVV0V703ydzwX9+eefXvXq1b2nnnoqhlvpz3xW3nbr1s177LHHvAEDBhAAxSCfp0yZ4jVr1szbvXt3yQ6oz5U0n5X2hBNOCJunm/TRRx8d820tL6wYAdCNN97oHXHEEWHz+vXr5/Xq1Sum20YVWBTt3r3bFi1a5KpXQp8rpukFCxZEfI/mh6aXXr16FZoepcvngnbs2GF//PGH1apViyyN4vkst99+u9WtW9cuv/xy8jZG+fzqq69aZmamqwKrV6+etW7d2u6++27Ly8sjz6OYz926dXPvCVSTfffdd66a8dRTTyWfoyhR90EehhpFmzZtchcgXZBCaXr58uUR35ObmxsxveYjevlc0E033eTqpwt+6bBv+Tx//nx7/PHHbfHixWRlDPNZN+K5c+faxRdf7G7I33zzjV1zzTUuqNfouohOPl900UXufd27d3dPGf/zzz/t6quvtptvvpksjqLC7oN6Yvzvv//u2l/FAiVA8J1x48a5BrqzZs1yDSERHdu2bbNLL73UNTivU6cO2RpD+fn5rpTtkUcesY4dO1q/fv3s73//u02dOpV8jyI1zFXJ2sMPP2w5OTn20ksv2euvv2533HEH+VwOUAIURbrop6am2vr168PmazojIyPiezS/JOlRunwOmDBhgguA/vOf/1jbtm3Jziiez99++619//33rvdH6I1aKlasaCtWrLDmzZuT5/uYz6KeX5UqVXLvCzj88MPdL2lV9VSuXJl8jkI+33rrrS6o/+tf/+qm1Ut3+/btduWVV7qAU1Vo2HeF3Qdr1KgRs9If4ehFkS46+jU2Z86csBuAplVfH4nmh6aXd955p9D0KF0+y7333ut+uWVnZ1unTp3IyiifzxrK4csvv3TVX4HXmWeeaccff7z7W12Ise/5LEcffbSr9goEmLJy5UoXGBH8ROd8DrQVLBjkBILO/2vfi2hI2H0wpk2sfdrNUt0mp02b5rrzXXnlla6bZW5urlt+6aWXeiNHjgzrBl+xYkVvwoQJrnt2VlYW3eBjkM/jxo1z3V9feOEFb926dcHXtm3bon8S+DifC6IXWGzyefXq1a4X47XXXuutWLHCmz17tle3bl3vzjvv3McjXr6VNJ91PVY+/+tf/3Jdtd9++22vefPmrvcuCqfrqoYc0Uthxv333+/+/uGHH9xy5bHyumA3+BEjRrj7oIYsoRt8GaUxDA4++GB3w1W3y48//ji4rEePHu6mEOrf//63d8ghh7j06gr4+uuvJ2Cry3c+N27c2H0RC750gUP08rkgAqDYnM/y0UcfuSEzdENXl/i77rrLDUGA6OXzH3/84d12220u6ElLS/MaNWrkXXPNNd7mzZvJ5iK8++67Ea+3gbzV/8rrgu9p3769Oy46n5988kkv1lL0T2zLmAAAAJILbYAAAIDvEAABAADfIQACAAC+QwAEAAB8hwAIAAD4DgEQAADwHQIgAADgOwRAAGJm2rRpdsABB/g6h1NSUuzll1+O62fqmWz6XD2CZF80adLEJk6cmHT7B0QDARBQBlx22WXuRqOXHoJZr149O+mkk+yJJ54Iex5Ucdx2223Wvn37qG9jpJulnlKuZ1TF2nHHHRfMH72UP+edd5798MMPcfvMgi8tB5C8CICAMqJ37962bt069+v+zTffdA8Zvf766+3000+3P//805KRnuRct27duHzWFVdc4fLnp59+sldeecXWrFljl1xyScw+76WXXnKfp9fChQvdvP/85z/BeVpeGhqcP1mPJ1CeEAABZUSVKlUsIyPDGjZsaB06dLCbb77Z3egVDKmqKeDXX3+1v/71r3bggQdajRo17IQTTrDPP//cLVO6MWPGuOlASUXgvUW9L+C1116zzp07W1pamtWpU8fOPvtsN1+lHSptGTZsWHC9hVWBTZkyxZo3b+6ezn3ooYfaM888E7Zc733sscfcuvfbbz9r2bKlvfrqq3vNH6VV/uiJ6EcddZRde+21lpOTE5bmvffesy5duri8VLqRI0cGg42nn37aqlWrZl9//XUw/TXXXOOecq+nghdUq1Yt93l6Kc+kdu3awXlaHrBp06ZC92fevHlun3Uc9bRybdv8+fNdyd7YsWOtadOmLpBs166dvfDCC8H3bd682S6++GL32Vqu9T755JNh2/jdd9+5QFmfq/cvWLAgbPmLL75oRxxxhPtMleDdd999Reax8ubYY491x79Vq1buid1AmRXzp40B2GdFPVS0Xbt23imnnBKc7tmzp3fGGWd4n3zyibdy5Urvhhtu8GrXru39/PPP3o4dO9y0Hrq7bt0699K8vb1P9MRxPaF59OjR7knaixcv9u6++263TGkOOugg7/bbbw+uV/RAw/T09OC2vfTSS16lSpXc0571FPP77rvPrXPu3LnBNLosaV3PPfec9/XXX3vXXXedV61ateB2RKIHK15//fXBaaXVvhx//PHBeT/++KN74rQeZqknTs+aNcurU6dO2ANxzzvvPK9z587uIZjaX23rp59+utfjs2rVKrfdeuJ1QXvbn8CDI9u2beueNv7NN9+4ZXqy+2GHHeZlZ2d73377rctLPfh03rx57n2DBw92D4/U8dLnv/POO96rr74atj16v/ZDeX3uuee6hwJr30T7VaFCBXfMtFzrr1q1athDKJX+H//4h/s7Ly/Pa926tXfiiSe6Y//ee+95Rx55pPsc5SVQ1hAAAWU8AOrXr593+OGHu78/+OADr0aNGt7OnTvD0uhp1v/85z/d37rhK2gKVZz3ZWZmehdffHGh2xh6swwoGAB169bNu+KKK8LSKOg49dRTg9O6od5yyy3B6d9++83Ne/PNN4sMgBSs7L///i7IUfpDDjnEBQIBN998s3fooYd6+fn5wXkKxBSM6OYuv/zyiwtWBg0a5NWrV889Yb049hYAFbU/gQDo5ZdfDqbRcdB+6InvoS6//HLvwgsvdH8rwBs4cGCR2/PYY48F5y1dutTNU/AnF110kXfSSSeFvW/EiBFeq1atIh7Tt956y6tYsaK3du3a4HLtAwEQyiqqwIAyTvfYQJWTqqx+++03VxWj6pzAa9WqVfbtt98Wuo7ivE89ik488cR92tavvvrKjj766LB5mtb8UG3btg3+vf/++7squQ0bNhS5blUHaRu1L6pCatGihZ188sm2bdu24GdnZmYG8yrw2drvH3/80U3XrFnTHn/88WA1narIoqE4+9OpU6fg3998842rdlND99DjoWq6wPEYNGiQzZgxwzVov/HGG+2jjz4q8nNV5SeBzy3sWKiaKy8vb491KX2jRo2sQYMGwXnKT6CsqpjoDQCwb3RjUjsR0c1cNzq1KymoqO7oxXmf2pnEi3q6hVLQsrfebunp6S7oEf2vQEb7NHPmTNe2qbjef/99S01NdQ2Zt2/fbtWrV7d47I8Co9DjIa+//rpr8xVK7XXklFNOce2u3njjDdcWR8Hp4MGDbcKECRE/NxD4lbTXIFBeUQIElGFz5861L7/80vr27eum1Tg6NzfXKlas6IKA0JcaLYsaHxf8hV+c96k0Yc6cOYVuS6T1FnT44Yfbhx9+GDZP02pQG20KYuT3338PfrYaAf9frdT/PlsBzkEHHeSmVYpyzz33uMbeKnFRQ+pEUH4o0Fm9evUex0OlMAFqAD1gwACbPn26G4LgkUceKfZnFHYsDjnkkGDeFUyvnnUKDAM+/vjjUu8jkGiUAAFlxK5du1yQoiBj/fr1lp2d7XoJqRt8//79XZqePXu6aok+ffrYvffe625m6haukgT1QlI1i3r7qGpL1UW68SsAKM77srKyXCmDqoYuuOAC13tKpQ833XST+2ytV6UnWqabdyBwCjVixAg7//zz7cgjj3SfqUBD3cXVfXxfqcpI+SPKnzvuuMP1VlI1WKBHl4KEIUOGuMBmxYoVbp+GDx9uFSpUcFVll156qV133XWudEV5ox5vZ5xxhp177rn7vH0loWPyt7/9zfWqU4lN9+7dbcuWLS5AUfWZgp7Ro0e7XmPqxaVzY/bs2S5IKa4bbrjB7Z/ySeM1KTicNGmSPfzwwxHT63jpvNBnjx8/3rZu3Wp///vfo7jXQJwluhESgOI1gtbXVS81RD3wwANdr60nnngi2IA3YOvWrd6QIUO8Bg0auIbBjRo1co2XV69eHWxg27dvX++AAw5w6wv0+tnb++TFF190PY8qV67selCdc845wWULFixwPZnUUylwaSnYCFoefvhhr1mzZu4z1FD56aefDlseqVGt1hHaOylSI+hA/uhVs2ZNNy+0d5moB5V6eWn7MzIyvJtuuinYK0oNitu0aRPWEFy91GrVquV6kO1LI+ii9ifQCHrz5s1hadRYe+LEia7htvJKx7xXr16u95XccccdrvG7em5pG9VI/rvvvit0e7R+zdPnBbzwwguu0bPWf/DBB3vjx48vsmG7eot1797d5Z+OnXqo0QgaZVWK/ol30AUAAJBItAECAAC+QwAEAAB8hwAIAAD4DgEQAADwHQIgAADgOwRAAADAdwiAAACA7xAAAQAA3yEAAgAAvkMABAAAfIcACAAA+A4BEAAA8J3/BzGyNKezfyoEAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAASMtJREFUeJzt3QmcE/X9//HPsggr13IJC4gg4IUoILAIXlVBvBCstniCVPm1eBdtBbUgUgUVlVYRvNAqtVIpilq6HiitBxaFoiCKBVEOORU5BXSZ/+P9/XdiNiS7yW6ySWZfz8cjsJlM5vjOd2Y++V6T43meZwAAAAFRLd0bAAAAkEwENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDdJtH37drviiiusoKDAcnJy7Prrr3fT169fb+eff741atTITZ8wYYJl+z5VNU8++aTb/y+++KLS1631Xn311ZbJ5syZ47Zz+vTpFtTtue2229wy46H5NH82at26tZ199tnp3gygQghu4rypxXq99957oXnvvPNON//QoUPt6aeftksvvdRN//Wvf22vvPKKjRgxwk0//fTTLdm07hdeeCEly422T7Euin66VKtWzerXr29HHXWU/d///Z/9+9//rtB2PPTQQ247Ui1V6RgUzzzzTFYF5/iRfmTdeOONdvjhh1utWrWsdu3a1qVLF/v9739v3377bdYn1c6dO11AqcC2sujHTmn3h3Hjxlk23NeqV69uLVq0sMsuu8zWrFmTNelfmurp3oBscfvtt9vBBx+8z/R27dqF/n7jjTfs2GOPtVGjRpWYR9P79evnLiypvCmrdKh///5JXW6sfYqlU6dOdsMNN7i/t23bZp988ok999xz9uijj7og77777it3cNO4cWN38qVSrHRUUHfBBRdYzZo1raoHN4sXL66yJXjZ6v3337czzzzTlcRecsklLqiRDz74wN2A//Wvf9mrr75q2Uw319GjR7u/f/KTn1Tqui+88EKXvpE6d+5s2XBf27Vrl/uhrqDn7bffdud4Xl5e1qR/NAQ3cTrjjDOsa9eupc6zYcMGa9++fdTpKsXIRrH2KRZF/7p4hrvrrrvsoosusvvvv98OOeQQVwqUbXJzc90LqaELo0oTkHwqlTn33HNd/v3Pf/7jSm7C3XHHHe7HR2XSzbRGjRquhDfT7dixw5VyleaYY47Z57pXFj2zWumw//77pyR9dsSx3eH3NTU/0A9IXa9ffPFF+/nPf27ZLPNzVhbw6/dXrFhhf//730NFfX7RnzLxxIkTQ9PDLzr6BdyyZUtXIqBSIGWsvXv3lli+3v/hD39wVTyKpg844ABXtaVfXaJlKiP/6U9/Cq2jrBIOBS2XX365NW3a1C2zY8eO7vtl7VN52pzo5FWVVsOGDd2FNPxB9No3VXMceeSRbju0Pb/85S9t8+bNJaq7Pv74Y/vnP/8Z2o7wXwaVkY6x2tyoREnbrvU2b97crrrqqn2K+LWtHTp0sCVLltjJJ5/sbuIKAu++++6E0vHPf/6zHXbYYW7b9ctbv7Yj6ealC1a9evWsTp06duqpp5aoOlVJnC6YI0eO3KdERvs3adKkmOvXfigvfPnll6H00bGJTGMd4wMPPNBtp9a/bNmyqOkxf/58O/HEE1163Hzzze6z3bt3u1JCHUOlqY7pb3/7Wzc93GuvvWbHH3+8+9Gg/VS6+MtIdHtEpYtKU+VVXeB1o4qneF7bpRJJ5aW6devaOeecY6tXr7Z4lXUehld9jB8/3h555BFr27atS5tu3bq5EpmyPPzww25fVGoaGdiI1n3rrbfuM12/4AsLC912tWnTxp566qkSn3/zzTeuNFrnk46B8pzy3ocfflhiPv9a8uyzz7r1KO/rmG/dujXuZfg3fFV7HHrooW6bmjVrZj/96U9t+fLlLo10DESlB37+DG/39Omnn7pSWV2H9H3d1HUTD+ef57rWXHnlldakSROXd5LZlklNFLRu5TUdm9LSJ968qeuU0k9poRKkunXr2sUXX5zwNp5wwgnufy3Ht2fPHne90Dbk5+e7gEnzvfnmm6F5kpX+SeWhVE888YTuxN7rr7/ubdy4scRr06ZNbp5169Z5Tz/9tNe4cWOvU6dO7m+9Fi9e7P7X93v37h2aLjt27PCOPvpor1GjRt7NN9/sTZ482Rs4cKCXk5PjXXfddSW24bLLLnPLOOOMM7wJEyZ448eP9/r16+c98MAD7nMts2bNmt4JJ5wQWse7774bc5927tzpHXHEEd5+++3n/frXv/b++Mc/uu9qHVp+afu0ffv2mMtt1aqVd9ZZZ8X8/PLLL3frULr4rrjiCq969erekCFDXBrcdNNNXu3atb1u3bp5e/bscfM8//zz3oEHHugdfvjhoe149dVXKzUd/XywYsWK0PJGjRrlpvXq1cst4+qrr/Zyc3NLbLucdNJJXvPmzb2WLVu6bXrooYe8U045xX131qxZXlk0X4cOHdyxuP3227277rrLpfX+++/vLVq0KDSf0lVp16xZM2/MmDHeuHHjvIMPPtjt03vvvRea76qrrnJpPn/+fPf+q6++8ho2bOj2Y+/evTG3Q2muvKDt8NNHx0befPNNt52dO3f2unTp4t1///3ebbfd5tWqVcsrLCwssRylR0FBgXfAAQd411xzjffwww97L7zwgldcXOyddtpp7jvXX3+9m6401bbqOIXvZ40aNbyuXbt6f/jDH9wxv/HGG70TTzwxNE8i2+MfWx03zTd8+HCXtq1bt/Y2b968z/EOd8kll7hpF110kffggw96P/3pT11+1DTNX5p4zkNRnvP3pV27du7433333e446LwIz2vR9OzZ0+3P7t27vXgobx122GFe06ZN3Tml/TrmmGPcORV+7r7//vte27ZtXXrpWClvtmjRwsvPz/fWrFmzz7Fo3769yz/33XefN3bsWHfuxruMH374wTv11FPdci644AK3TVqGziPlHV2XJk2a5D4/99xzQ/nzww8/dN/XdmuZ2galn76v/KJ9mjFjxj55QfMpn+q81nkUi39sRo8evc/9Qa/vv/++RLrq+DVo0MDtr/Kt0qa09Ik3bw4aNMid50pL/T158mTvqaeeirnd/nKV/uGULpqutPRpP3RNGTZsmJuuvKf8oXz7n//8x82TrPRPJoKbMviZINpLmSmem7vm1Q0lnG4+uhF99tlnJaYr8+oGuXLlSvf+jTfecN+/9tpr91lu+I1Iy1KmjocunFrm1KlTQ9N0gezRo4dXp04db+vWrWXuUzRlzauTU+udOXOme//WW2+593/+859LzFdUVLTP9COPPNJdbCJVVjpGBjcbNmxwN1jdjHVTjrw4TJkyJTRN261p4Rcb3Wh0gz/vvPO8svj57YMPPghN+/LLL728vDx3IfH179/fbdPy5ctD0xS41K1bt8SNXxdNXWSVprt27XLHrF69em6ZZdG8Os6R/Au0btbhN1EFH5oeHoT56aELcDhdDKtVq+byRTjNp/nfeeedEvlIF91Y4t0e5fsmTZq44PG7774Lzffyyy+7+UaOHBkzuFm4cKF7f+WVV5ZYtwKdeIKbeM9D/waqAP6bb74JzavzSNNfeumlUtejm2nHjh29eOn4arn/+te/QtOU33W9u+GGG0LTlHfC876/rZpPQUrksWjTpo0L6MLFuwydT1qGbvyxzl/lh1jprsDoqKOOcusL/54Cv0MOOWSf8/z44493AVVZ/GMT6zV37tx90lXXt3Cx0ieRvKlrlqbpuleeH+2rVq3ypk+f7n5wKO313qd0iAyMFVgp+P3FL34RmpaM9E8mqqXipGolFYWHv/7xj3+Uu8RMRY0q2mvQoIFt2rQp9OrVq5cVFxeHqhz+9re/ueK9aA164+2WGmnWrFmua7cawfn2228/u/baa12DQxXJpoKKTf2Gxn4aqJizd+/eJdJAxZ+aN7zYM9PS8fXXX3fFtaoOC68XHzJkiCtaV/VN5L6H18mrPl1F/p9//nlc6+vRo0eoEagcdNBBrpG6iri1n3qpQagaQqsKwaeie7V3UhWDX8ytIm8Vv6uxt6qFtK1qD6VlVtTgwYPdvkUWc0fup6pVNG/ksTziiCNc1Un4sTzllFPc535+8NuvzZw5c5+qx0S3R1WSqhpSFUR4A8qzzjrLbUfkcYw8j0TnTbh4G1sneh4OGDDA5fNY+xKLjruqKRKhdnb+8kVVDqr6C1+XjqGf95X/vv7661AV4YIFC/ZZ5qBBg/ZpXxLvMnT+qkrmmmuuSfj8VdWXqmPVhkTXHj9faV19+vSx//73v/tU8+g8TqSNnXqERt4f9Ipsr6jGu1pnNJHpU568mWh7xl69erljq+pfVRmpyklVReFVcUoH/xzS+ab0/OGHH1y1UrTjnIz0TwYaFMdJN6KyGhQnQgf0o48+CtVTRlKm9us+1ZZD9ZTJojYTatgb2VhNNxb/81TQBVv8C63SYMuWLa5eu7Q0yMR09NNIF+FwuggouIhMQ10sIi/CulFp2+Oh4xVJbQ/UEHfjxo3uvf6O3B7/uOqitGrVKtc+SI477jh3IVTQrgvML37xC0uGyADJvxmHt6EStSsIDzr8Y6mAq6xjqZv8Y4895hpADh8+3LWjUdsLXZwj83RZ2xPrOIpuIAoKY9F3tT61gQkXbVnJOA/jTdtICrb9HxTxihboan3h6/LbsKndmdrmKTjxaUyvSNF6m8a7DJ2/Sld1WU6U2lipAPR3v/ude8XKW8qTpW1raXQcFSiUpbTlRn6WaN5U2iTaPmjixInuOqLr8JQpU9yPwWg9QtUO7N5773XtZr7//vu49qci6Z8MBDdpopNaJRZqLBmNMlzQqHthePd5pYECGzWUjSbWTS4b0zHWr8DwxtWVSQ1h/fEodONIVm+lePczWg8RHUs1LI01XIB+Xfrf1UVYJTn69VpUVGTTpk1zJTwqvQrfhkxL94oo777oRrhw4UJX0hgZUFZkXRo2QTcrBcZjxoxxPxwUqKnkKlqJWrRjnugyysNfjhouxyo1CR/SI9a2JkNpy63oOsNLwcrzo12lvmqkr5LepUuXhkrap06d6hos6/Pf/OY37pqt/DF27NgSDY+Tmf7JQHCTJvq1p5KMsqJ9zaeqBxXtlVbqkEjVSqtWrVyJgTJd+MmgqNz/PNm0r88//7y7Qfm/TLVvqt5RKUJZJ3as/UtXOvpppItAeDWQbiD6BRrPr7hEqFQj0meffeYCEj8I1N/ankg6rjrOfnAgqp5TKYl64Nx0002uBOSPf/xjmdtR3qrQeOgYqZeMSmLKWo/2R/PppWBIN8lbbrnFBTyJpH34cfSrv3yaVtq5oM90DvmlCuHfy6TzsG/fvjZ37lxXtRNeBVZRGv1Zvf8ef/zxEtPVW1BVSMlchvKGBgJVqYGq7qKJlWf881PfS/Z5mUoVyZvl4QcsOh4PPviguyb4x0hpOGPGjBJpHFnFn2npT5ubNFH9oy44uuFG0omtOk0577zz3K8lf3CkWL+iVFca7yij6iq4bt0692vXp/U98MADLlo/6aSTLJm+++47NwieAgvdgPyTQGmgYmj9Youk7Qnfn1j7l6501EmqX8EKCMK/r4u0inhVL55M2sfw+m1VManNyWmnnRYag0d/a1p4d3WNSqtu3vpFpuoJ0U1CQY1+HWvARf0a08UsnrZWSh/tXyroWKruPdqYK8pD6qYvykfRBo+UyC7jZdGvVv0SnTx5convqj2dgr/SjqO6LEtkUBjvCM6VdR7+6le/cm2vdKwVEEerEtAoxYlSnossNVK7qUTaT8S7DJ2/aqehfBrJ/75f8hh5/ur4avgBdbteu3btPt/3q3UzTUXyZnkpnVSaozysrvfhpXjhx0nXEF2TwmVa+lNyEydlKP8XVbiePXuW+OUeL91Q1HBL4x6oyE+NRXXxXrRokYuUdYPSLxdF0QoMdAHVr3eNy6Jfem+99Zb7zH/mkL6vUhD9ilXbEtWFdu/ePWbjN2U0rVdjjWj8Ba3znXfecZk60caH4XRRUjGmqERFY7voYqWLuC6uGsPGp4u33uvXgorNdXNWdK/91HdUF692FP7+aQwWXYRVhKkTRr9m0pWOKi3R4zQULGlZGt9Ev6bUdkDjjyQ6oFdZNC6MinTV2FTFz1qPhAdrSht//Bc1QlQdvI6zLoz+mDq6YKnhotoIaPwXfxkvvfSSa3yrdCtt4C+lj27Gw4YNc/upm7BKBpJBx+evf/2ruxmrBEYlegp+dd5puj8+iEZVVbWULu769aqbs9JD7Q2074lQftOYSNp35UeVbCggVN7TeaExbGJRQKX5tW4FfLoWzJ49O+o4OpV9Hka2lVGpqYIpbXP4CMUKmP/yl7+4BuuJ0jmnY6G0074r76iKOZHrYbzLGDhwoBtnR/lu3rx5rrGzznOdq8rralyv0l814FX+VHW0Smh13uiltiXKG6r2VGNhLV/HWTdojUsUbVydRCgd/eteOJU4lSdtK5o3K0LX1J/97Geu04HORR0jldpoIEidcyqZVsCltPbbUUo60z+qlPTBqiJdwfXS5+XpCi7btm3zRowY4brlqguvxq1Q1ziNvxI+doW64t1zzz1unBfNp+56GqvFH6dEPv30U9fdV2MgaH1ldQtfv369N3jwYLdOLVPd9ML3pax9isbv6qiXxi9Q92J1N9YYNv/+979jfu+RRx5xY5Fo29VtWdvy29/+1nVj9mncHW2HPtfyw7uFV0Y6Rhvnxu/6reVpzAd1jRw6dGiJ8SdE26p0iKRlR+tWHSv/qMuwuk2qq6bGPFEX0kgLFizw+vTp47oSa0yXk08+ucSYRxpPRV3kI4+HuplrPBltf2k0noW6OtevX99tl7/9fnfW5557LmpX2fC8FSs9RMdL42Doc+2nujErb2gckS1btrh5Zs+e7ca90dhBOo76/8ILLywxHEAi2yPTpk1zaap1asyfiy++2Fu9enWJeaKNc6MuuhpeQN20NYxA3759XTfaeLqCx3se+tusvBsp3vWIzicd/0MPPdQNI6D8obS94447Qmlb2jmv4xZ+3qlbr7qGawwUnS/HHXec6/ocOV+sY5HIMkTdpG+55RY3dpPONw2lcP7555cY+kB5XfuktIxMG82nMbD0PX1f4+mcffbZrgt0WeO/lLcrePh1OFa6lpY+8eZNrUf5L15PlLKf6pqv8XL00jVTXbbvvPNOt/3+tUfd0aNdvyqa/smUo3+SHzIBAACkB21uAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACJQqN4ifBm776quv3ABZqRxKHgAAJI9GrtFDYDXAalnP0apywY0Cm/Bn7AAAgOyhx8+U9QT0Khfc+EOaK3H8Z+0AAIDMtnXrVlc4Ec+jSapccONXRSmwIbgBACC7xNOkhAbFAAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFCq3AjFAIDsULzXs3krvrEN23ZZk7p5VnhwQ8utxgOPUTaCGwBAxilavNZGv7TE1m7ZFZrWLD/PRvVtb6d3aJbWbUPmo1oKAJBxgc3QqQtKBDaybssuN12fA6UhuAEAZFRVlEpsvCif+dP0ueYDYiG4AQBkDLWxiSyxCaeQRp9rPiAWghsAQMZQ4+FkzoeqieAGAJAx1CsqmfOhaiK4AQBkDHX3Vq+oWB2+NV2faz4gFoIbAEDG0Dg26u4tkQGO/16fM94NSkNwAwDIKBrHZtIlx1hBfsmqJ73XdMa5qRzFez2bu/xrm7lwjfs/m3qoMYgfACDjKIDp3b6AEYrTpCjLB1HMiJKbiRMnWuvWrS0vL8+6d+9u8+bNiznvk08+aTk5OSVe+h4AIFhU9dSjbSPr16mF+5+qqMpRFIBBFNMe3EybNs2GDRtmo0aNsgULFljHjh2tT58+tmHDhpjfqVevnq1duzb0+vLLLyt1mwEACKLigAyimPbg5r777rMhQ4bY4MGDrX379jZ58mSrVauWTZkyJeZ3VFpTUFAQejVt2rRStxkAgCCaF5BBFNMa3OzZs8fmz59vvXr1+nGDqlVz7+fOnRvze9u3b7dWrVpZy5YtrV+/fvbxxx9X0hYDABBcGwIyiGJag5tNmzZZcXHxPiUver9u3bqo3znssMNcqc7MmTNt6tSptnfvXuvZs6etXr066vy7d++2rVu3lngBAIDgDqKY9mqpRPXo0cMGDhxonTp1spNOOslmzJhhBxxwgD388MNR5x87dqzl5+eHXirtAQAAwR1EMa3BTePGjS03N9fWr19fYrreqy1NPPbbbz/r3LmzLVu2LOrnI0aMsC1btoReq1atSsq2AwAQNLkBGUQxrcFNjRo1rEuXLjZ79uzQNFUz6b1KaOKhaq1FixZZs2bR+93XrFnT9a4KfwEAgOAOopj2QfzUDXzQoEHWtWtXKywstAkTJtiOHTtc7ylRFVSLFi1c9ZLcfvvtduyxx1q7du3s22+/tXvuucd1Bb/iiivSvCcAAATD6Vk+iGLag5sBAwbYxo0bbeTIka4RsdrSFBUVhRoZr1y50vWg8m3evNl1Hde8DRo0cCU/7777rutGDgAAkjuIYjbK8Twvs0fiSTL1llLDYrW/oYoKAIDg3b+zrrcUAABAaQhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAqZ7uDQCARBXv9Wzeim9sw7Zd1qRunhUe3NByq+WQkAAcghsAWaVo8Vob/dISW7tlV2has/w8G9W3vZ3eoVlatw1AZqBaCkBWBTZDpy4oEdjIui273HR9DgAENwCypipKJTZelM/8afpc8wGo2ghuAGQFtbGJLLEJp5BGn2s+AFUbwQ2ArKDGw8mcD0BwEdwAyArqFZXM+QAEF8ENgKyg7t7qFRWrw7em63PNB6BqI7gBkBU0jo26e0tkgOO/1+eMdwOA4AZA1tA4NpMuOcYK8ktWPem9pjPODQBhED8AWUUBTO/2BYxQDCAmghsAWUdVTz3aNkr3ZgDIUFRLAQCAQMmI4GbixInWunVry8vLs+7du9u8efPi+t6zzz5rOTk51r9//5RvIwAAyA5pD26mTZtmw4YNs1GjRtmCBQusY8eO1qdPH9uwYUOp3/viiy/sxhtvtBNOOKHSthUAAGS+tAc39913nw0ZMsQGDx5s7du3t8mTJ1utWrVsypQpMb9TXFxsF198sY0ePdratGlTqdsLAAAyW1qDmz179tj8+fOtV69eP25QtWru/dy5c2N+7/bbb7cmTZrY5ZdfXuY6du/ebVu3bi3xAgAAwZXW4GbTpk2uFKZp06Ylpuv9unXron7n7bfftscff9weffTRuNYxduxYy8/PD71atmyZlG0HAACZKe3VUonYtm2bXXrppS6wady4cVzfGTFihG3ZsiX0WrVqVcq3EwAAVNFxbhSg5Obm2vr160tM1/uCgoJ95l++fLlrSNy3b9/QtL1797r/q1evbkuXLrW2bduW+E7NmjXdCwAAVA1pLbmpUaOGdenSxWbPnl0iWNH7Hj167DP/4YcfbosWLbKFCxeGXuecc46dfPLJ7m+qnAAAQNpHKFY38EGDBlnXrl2tsLDQJkyYYDt27HC9p2TgwIHWokUL13ZG4+B06NChxPfr16/v/o+cDgBIvuK9Ho++QMZLe3AzYMAA27hxo40cOdI1Iu7UqZMVFRWFGhmvXLnS9aACAKRX0eK1NvqlJbZ2y67QtGb5ee5p7Dy0FJkkx/M8z6oQdQVXryk1Lq5Xr166NwcAsiawGTp1gUXeMHL+9z9PZUcm3b8pEgEAlFkVpRKbaL+E/Wn6XPMBmYDgBgBQqnkrvilRFRVJIY0+13xAJiC4AQCUasO2XUmdD0g1ghsAQKma1M1L6nxAqhHcAABKVXhwQ9crym88HEnT9bnmAzIBwQ0AoFS51XJcd2+JDHD89/pc8wGZgOAGAFAmjWOj7t4F+SWrnvSebuDINGkfxA8AkD0BTu/2BYxQjIxHcAMAiJuqnnq0bUSKIaNRLQUAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEDJiOBm4sSJ1rp1a8vLy7Pu3bvbvHnzYs47Y8YM69q1q9WvX99q165tnTp1sqeffrpStxcAAGSutAc306ZNs2HDhtmoUaNswYIF1rFjR+vTp49t2LAh6vwNGza0W265xebOnWsfffSRDR482L1eeeWVSt92AACQeXI8z/PSuQEqqenWrZs9+OCD7v3evXutZcuWds0119jw4cPjWsYxxxxjZ511lo0ZM6bMebdu3Wr5+fm2ZcsWq1evXoW3HwAApF4i9++0ltzs2bPH5s+fb7169fpxg6pVc+9VMlMWxWWzZ8+2pUuX2oknnhh1nt27d7sECX8BAIDgSmtws2nTJisuLramTZuWmK7369ati/k9RW116tSxGjVquBKbBx54wHr37h113rFjx7pIz3+pVAgAAARX2tvclEfdunVt4cKF9v7779sdd9zh2uzMmTMn6rwjRoxwwZD/WrVqVaVvLwAAqDzVLY0aN25subm5tn79+hLT9b6goCDm91R11a5dO/e3ekt98sknroTmJz/5yT7z1qxZ070AAEDVkNaSG1UrdenSxbWb8alBsd736NEj7uXoO2pbAwAAkNaSG1GV0qBBg9zYNYWFhTZhwgTbsWOH694tAwcOtBYtWriSGdH/mrdt27YuoJk1a5Yb52bSpElp3hMAAJAJ0h7cDBgwwDZu3GgjR450jYhVzVRUVBRqZLxy5UpXDeVT4HPllVfa6tWrbf/997fDDz/cpk6d6pYDAACQ9nFuKhvj3AAAkH2yZpwbAACAZCO4AQAAgUJwAwAAAoXgBgAABArBDQAACJSkBje7du2y8ePHJ3ORAAAAqQ1uNCbNyy+/bK+++qp76KV8//339oc//MFat25t48aNS3SRAAAA6RnE7+2337azzz7b9TXPyclxIwU/8cQT1r9/f6tevbrddtttbrRhAACArCi5ufXWW+3MM8+0jz76yD02QU/lPvfcc+3OO++0JUuW2K9+9Ss3ajAAAEBWjFDcqFEje+utt6x9+/b23XffWZ06dWzGjBnWr18/yxaMUAwAQPZJ2QjFmzdvtsaNG7u/VUJTq1Yt69ChQ8W2FgAAIJ0PzlT1kx5wKSr0Wbp0qXuYZbijjz46eVsIAACQqmopPZ1bDYmjfcWfrv/9XlSZiGopAACyTyL374RKblasWFHRbQMAAEiphIKbVq1apW5LAAAAkiChBsV333236yXle+edd2z37t2h99u2bbMrr7wyGdsFAACQ+jY3ubm5tnbtWmvSpIl7rzqvhQsXWps2bdz79evXW/PmzWlzAwAAsqMreGQclEBcBAAAUCl4KjgAAAgUghsAAFC1B/F77LHH3GMX5IcffrAnn3wyNGqxGhQDAABkTYPi1q1bu0H6snk8HAbxAwAg+6RsEL8vvviiotsGAACQOW1u3njjDfdEcEVPkRRJHXnkke6p4QAAAFkR3EyYMMGGDBkStThIRUW//OUv7b777kvm9gEAAKQuuPnwww/t9NNPj/n5aaedZvPnz09sCwAAANIV3GgE4v322y/m59WrV7eNGzcmY7sAAABSH9y0aNHCFi9eHPPzjz76yJo1a1a+LQEAAKjs4ObMM8+03/3ud7Zr1659PtMDNUeNGmVnn312MrYLAAAg9ePcqFrqmGOOcQ/QvPrqq+2www5z0z/99FObOHGie2DmggULrGnTppapGOcGAIDsk7JxbhS0vPvuuzZ06FAbMWJE6MGZGtivT58+LsDJ5MAGAAAEX8KPX2jVqpXNmjXLNm/ebMuWLXMBziGHHGINGjRIzRYCAACkMrjxKZjp1q1beb8OAACQEjwVHAAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQMmI4GbixInWunVry8vLs+7du9u8efNizvvoo4/aCSecYA0aNHCvXr16lTo/AACoWtIe3EybNs2GDRtmo0aNsgULFljHjh2tT58+tmHDhqjzz5kzxy688EJ78803be7cudayZUs77bTTbM2aNZW+7QAA4EfFez2bu/xrm7lwjftf79Mhx/O89Kz5f1RS061bN3vwwQfd+71797qA5ZprrrHhw4eX+f3i4mJXgqPvDxw4sMz5t27davn5+bZlyxarV69eUvYBAICqrmjxWhv90hJbu2VXaFqz/Dwb1be9nd6hWYWXn8j9O60lN3v27LH58+e7qqXQBlWr5t6rVCYeO3futO+//94aNmwY9fPdu3e7BAl/AQCA5AY2Q6cuKBHYyLotu9x0fV6Z0hrcbNq0yZW8NG3atMR0vV+3bl1cy7jpppusefPmJQKkcGPHjnWRnv9SqRAAAEgOVT2pxCZaNZA/TZ9XZhVV2tvcVMS4cePs2Wefteeff941Ro5mxIgRrgjLf61atarStxMAgKCat+KbfUpswimk0eear7JUtzRq3Lix5ebm2vr160tM1/uCgoJSvzt+/HgX3Lz++ut29NFHx5yvZs2a7gUAAJJvw7ZdSZ0v60tuatSoYV26dLHZs2eHpqlBsd736NEj5vfuvvtuGzNmjBUVFVnXrl0raWsBAECkJnXzkjpf1pfciLqBDxo0yAUphYWFNmHCBNuxY4cNHjzYfa4eUC1atHBtZ+Suu+6ykSNH2jPPPOPGxvHb5tSpU8e9AABA5Sk8uKHrFaXGw9Fa1eSYWUF+npuvyrS5GTBggKtiUsDSqVMnW7hwoSuR8RsZr1y50tau/bGV9aRJk1wvq/PPP9+aNWsWemkZAACgcuVWy3Hdvf1AJpz/Xp9rviozzk1lY5wbAACCPc5N2qulAABA9ju9QzPr3b7A9YpS42G1sVFVVGWW2PgIbgAAQFIokOnRtpGlW9rb3AAAACQTwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACJTq6d4AAABQuuK9ns1b8Y1t2LbLmtTNs8KDG1putRySLQaCGwAAMljR4rU2+qUltnbLrtC0Zvl5Nqpvezu9Q7O0blumoloKAIAMDmyGTl1QIrCRdVt2uen6HPsiuAEAIEOrolRi40X5zJ+mzzUfSiK4AQAgA6mNTWSJTTiFNPpc86EkghsAADKQGg8nc76qhOAGAIAMpF5RyZyvKiG4AQAgA6m7t3pFxerwren6XPOhJIIbAAAykMaxUXdviQxw/Pf6nPFu9kVwAwBAhtI4NpMuOcYK8ktWPem9pjPOTXQM4gcAQAZTANO7fQEjFCeA4AYAgAynqqcebRulezOyRtqrpSZOnGitW7e2vLw86969u82bNy/mvB9//LGdd955bv6cnBybMGFCpW4rAADIfGkNbqZNm2bDhg2zUaNG2YIFC6xjx47Wp08f27BhQ9T5d+7caW3atLFx48ZZQUFBpW8vAADIfGkNbu677z4bMmSIDR482Nq3b2+TJ0+2WrVq2ZQpU6LO361bN7vnnnvsggsusJo1a1b69gIAgMyXtuBmz549Nn/+fOvVq9ePG1Otmns/d+7cpK1n9+7dtnXr1hIvAAAQXGkLbjZt2mTFxcXWtGnTEtP1ft26dUlbz9ixYy0/Pz/0atmyZdKWDQAAMk/aGxSn2ogRI2zLli2h16pVq9K9SQAAIIhdwRs3bmy5ubm2fv36EtP1PpmNhdU2h/Y5AABUHWkrualRo4Z16dLFZs+eHZq2d+9e975Hjx7p2iwAAJDl0jqIn7qBDxo0yLp27WqFhYVu3JodO3a43lMycOBAa9GihWs34zdCXrJkSejvNWvW2MKFC61OnTrWrl27dO4KAADIEGkNbgYMGGAbN260kSNHukbEnTp1sqKiolAj45UrV7oeVL6vvvrKOnfuHHo/fvx49zrppJNszpw5adkHAACQWXI8z/PSvRGVSV3B1WtKjYvr1auX7s0BAABJvn8HvrcUAACoWghuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACJS0DuIHAMh+xXs9m7fiG9uwbZc1qZtnhQc3tNxqORm7XAQfwQ0AoNyKFq+10S8tsbVbdoWmNcvPs1F929vpHZpl3HLLgyAr+zBCMQCg3AHI0KkLLHKYe79sZdIlx5QrEEnVcrM9yKrqtjJCMZA++pU3d/nXNnPhGve/3gNBo3ytm3603O1P0+eJ5v9ULbc8/CArPLCRdVt2uen6HJmJaikgi37lUTyOTKG2MJE3/XAKPfS55uvRtlHallvec6asIEtL0Oe92xfQDigDEdwASRKrKN3/lVfRovREAieCIKSagoVkzpeK5Vbkx0aqgjdUDoIbIAlS/SsvkcCJNgKoDCoFSeZ8yV5uRX9spCp4Q+VgnBsgCRL5lZeoRNog0EYAlUXVOyoFiRWqa7o+13yVvdxktNtJVfCGykFwAyRBKn/lxRs4vbf864xpiIngUwmkqnckMhDx3+vzREsqk7HcZPzYSFXwhspBcAMkQSp/5cUbEM39fFPKSo+AaFSto+qdgvyS+VrvK9LGrKLLTcaPjVQFb6gctLkBksD/laf6/GjlIjn/uzCX51de/AFRfBdZ2gggmRRoqC1ZskcSrshyk/Vjww+yIhsl61xmnJvMRnADJIH/K08NFXXp9ZL4Ky/ewEk9Nh58c1mZy6ONAJJN+ToVPYbKu9xk/thIVfCG1KJaCsjwIvp4i8ePbdOINgJACqqU/CCrX6cW7n8Cm8zH4xeAJEvVGDPxdPH2e0tZjNKjyhy2Hkg3hkWouo9fILgBAhY4cUEHEjtnkB0IbpKUOEC24oIOoCrfv2lQDARQqhp4AkA2oEExAAAIFEpuAFTZqq4g7hOChTxaPgQ3AMoUxEbKQdwnBAt5tPyolgJQqiA+jDOI+4RgIY9WDMENgJQ+XTnTBHGfECzk0YojuAGQ0qcrZ5og7hOCJVPyaPFez+Yu/9pmLlzj/s+mgJ82NwBS+nTlTBPEfUKwZEIeLcryNmmU3ABI+dOVM0kQ9wnBku48WhSANmkENwDKfLpyrM7Rmt4szqcrZ4og7hOCJZ15tDggbdIIbgBU2tOVM0EQ9wnBks48Oi9D2vtUFMENgFKpfl1PEy/IL1kErvfZ+pTxIO4TgiVdeXRDBrT3SQYaFAMoky6kvdsXBGo03yDuE4IlHXm0SUDapBHcAKiyD+MM4j4hWCo7jxb+r72PGg9Ha1WT87/So0xvk0a1FAAACFSbNIIbAAAQqDZpVEsBAIBAtUkjuAEAAIFqk0a1FAAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgECht1SS6Amp7y3/2t5ZvtG++naXtWiwv/Vs29iObdMo4a5zWla6ut+let3hy29cu6YbFWrT9t37rCtZ25HOtEy1bNm3eLYz0/alotvjf3/dlu/smx17rGGdmlZQL/X7FW27pbR9ybS0r8g2pWpfMvGanInHLZMQ3CRB0eK1NnzGIvt25/clpk98c7nVr7WfjfvpUXEPeqRl6XHy4U9l1VDYGhEy1QMnpXrd0ZYfzl+XJGM7oq2voF5Nu7DwIGvduHa5Lprrtu6yb7bvtoa1a1hB/v7WpVUDm//l5rgvMPEGd2V994tNO+0v81a67alIGiUq0QtqPHkqnXm+vNuc6Pd9dfNy7fxjDrTTjmyW9JtRtPXq+iPh1ybl3d/362BnHt0sKWlf0Tz93udf29zlX9teb681qFXTvvr2O3th4RrbHLbNCgxvO6f0bZr10Vq7deZiF0yWtS+J5ONoaaQ07N+puRsHJloAmeh1IVbaPPjGf+2Jd76wb7/7vsQ+ndOxmb344dqknTPFAQyUcjzPi/b4iMDaunWr5efn25YtW6xevXoVXp4y/q+mLihzvslxjOqoZQ2dumCf53n4WSyVI0Omet2xlh+5rlifJ7od8awv3gtCaTcrnf97vfiWF29wV57vVkY+SfRGGE+eknTl+VScB/Hmu1T8cIh3vb7e7ZvY60s2VCjtK5qno/0oLM91dOysJfbwv1ZE/U5OxL4kko/jSddoAWQi14VoypM25T1nijLsx0Wy7t8ENxWgaPe4cbNt3dbdZc6rzPL2TafEjIa1rOPveiPmRcJ/WFlpyyivVK+7rOXHK97tSGR9ZV0QEr1pxFpevMFdeb+b6nyS6E0/3jyl31axzp9U5vlUnAflyeeRN95UbHd5xJP2Fc3T8fwojNSg1n72wa29S2zTrI++siuf+U9c19/XlqyLOx8nM10TDRgTDVTLe84UpfEHdaqDGxoUV8D/r6YoO7ARnSCav7RllXYSeXEso7xSve6ylh+veLcjkfX5J7V+uehiFk7vNT2Ri0y05cW7nIp8N5X5pLRtiJV+8eap0s6fVOb5VJwH5c3n0fJeOs6vRPa1onn6theXlGu7VFWlaqzw7VBVVFm0L2oTmUg+Tma6lnadqeg1p7znTHE5zutsQnBTAaqfTNb88S4r0XUmc5nlXXeyt7ms5SW6vlgXhPJe3CKXl2iwVd7vpirNy3PTT+b6U5HnK7KeWPOVZzuTEcClMn1iLbuieTq8rVii1D4nfDu+2RFf1c3czzcllI+Tna7xHOtkBVQb4tj2dP6grgwENxWghlfJmj/eZSW6zmQus7zrTvY2l7W88q4v8oJQ0Yub//3yLKci3012mpfnpp/M9aciz1dkPbHmq8h2ViSvpTJ9Yi07HXn6Rz+WJCS2rPiqNv1lpipdk/EjtyxN4tj2dP6grgwENxWgFuXqfRMP1fn6repjLUvzxDr9cuJYRnmlet1lLT9e8W5HedcXeUGo6MXN/355llPe76Yin5Tnph9vntL5k448n4rzwP9+eVQkryXr/EpkXyszT0fq0aZxwtvRqHaNuB8A6S8zFekavvxEP4tHIudMkzT+oK4MBDcVoAZbt51zZFzzquV5aQ289JnfDTpyrpw4l1FeqV53acuPtq6Kbke86yvrglDei1vk8hJZTkW/m4p8Up6bfrx5yj9/KjvPp+I88L+fyNYmI4BLNL9H24ZE97WieVpdu8tDPZOODQtS4g0ox/Tr4MYcSyQfVzRdy1p+NBUJqBI9ZwrT+IO6ygQ3EydOtNatW1teXp51797d5s2bV+r8zz33nB1++OFu/qOOOspmzZpl6aKW5Oqe6HcHjNa6P55u4P6y1Dpdrd3D6X2qW62net2xlh+5LqXV5CRsRzzrK+uCEH5xi1e05SUa3JXnu6nMJ+W96ceTp9KZ56Op6Pb430+kBCcZAVys7a5dIzfmd7TGX554cLn2taJ5WmPWlIfGDAtPq3gCSu2jxvQpTz6O9zqSrMAjnnTVvUb71KyC50xuGn9QV4a0dwWfNm2aDRw40CZPnuwCmwkTJrjgZenSpdakSZN95n/33XftxBNPtLFjx9rZZ59tzzzzjN111122YMEC69ChQ6WPc+NjhOLMH6G4vAPfZeo4N+UdkLC8yjseRlUeofjVj9fa9AVrbNuuH/aZJxVjiUTb7lcW+4PbfR913RXZ18oa50Z5XaV8sdIq+kB7+/1vsMLmZc5b1rHw0+j1Jevs+YVrSqRlqsa5iTYg4+CeB9vVp7RL6gjFRYxzkxoKaLp162YPPvige793715r2bKlXXPNNTZ8+PB95h8wYIDt2LHDXn755dC0Y4891jp16uQCpHQFN8gOFR3WPVNGKE5XAJAJ25Bt0vUohso6bskeobhx3ZrWpG5N12540474lpPoPlYkPeJ5xEWyRiiurHOtOEvO66wZxG/Pnj1Wq1Ytmz59uvXv3z80fdCgQfbtt9/azJkz9/nOQQcdZMOGDbPrr78+NG3UqFH2wgsv2IcffljmOgluAADIPoncv9P6bKlNmzZZcXGxNW3atMR0vf/000+jfmfdunVR59f0aHbv3u1e4YkDAACCKyMaFKeS2uYo0vNfqvICAADBldbgpnHjxpabm2vr168vMV3vCwoKon5H0xOZf8SIEa4Iy3+tWrUqiXsAAAAyTVqDmxo1aliXLl1s9uzZoWlqUKz3PXr0iPodTQ+fX1577bWY89esWdPVzYW/AABAcKW1zY2ocbAaEHft2tUKCwtdV3D1hho8eLD7XN3EW7Ro4aqX5LrrrrOTTjrJ7r33XjvrrLPs2WeftQ8++MAeeeSRNO8JAADIBGkPbtS1e+PGjTZy5EjXKFhduouKikKNhleuXGnVqv1YwNSzZ083ts2tt95qN998sx1yyCGup1Q8Y9wAAIDgS/sgfpWNruAAAAT7/h343lIAAKBqIbgBAACBkvY2N5XNr4VjMD8AALKHf9+OpzVNlQtutm3b5v5nMD8AALLzPq62N6Wpcg2KNY7OV199ZXXr1rWcnJykR5UKmjRQYFUdT4c0IA3IC5wPXBO4Nqbi/qBwRYFN8+bNS/SijqbKldwoQQ488MCUroPBAkkD8gHnA9cErovcH5J/jyyrxMZHg2IAABAoBDcAACBQCG6SSM+xGjVqlPu/qiINSAPyAucD1wSujem+P1S5BsUAACDYKLkBAACBQnADAAACheAGAAAECsENAAAIFIKbBE2cONFat25teXl51r17d5s3b16p8z/33HN2+OGHu/mPOuoomzVrllWlNPj444/tvPPOc/NrROgJEyZYECSSBo8++qidcMIJ1qBBA/fq1atXmfkmiOkwY8YM69q1q9WvX99q165tnTp1sqefftqq2jXB9+yzz7pzon///laV0uDJJ590+x3+0veCING88O2339pVV11lzZo1cz2IDj300Ky/R0xMIA1+8pOf7JMX9DrrrLMqviHqLYX4PPvss16NGjW8KVOmeB9//LE3ZMgQr379+t769eujzv/OO+94ubm53t133+0tWbLEu/XWW7399tvPW7RoUZVJg3nz5nk33nij95e//MUrKCjw7r//fi/bJZoGF110kTdx4kTvP//5j/fJJ594l112mZefn++tXr3aq0rp8Oabb3ozZsxw58KyZcu8CRMmuPOjqKjIqypp4FuxYoXXokUL74QTTvD69evnZbNE0+CJJ57w6tWr561duzb0WrdunZftEk2H3bt3e127dvXOPPNM7+2333Z5Ys6cOd7ChQu9qpIGX3/9dYl8sHjxYndNUB6pKIKbBBQWFnpXXXVV6H1xcbHXvHlzb+zYsVHn//nPf+6dddZZJaZ1797d++Uvf+lVlTQI16pVq0AENxVJA/nhhx+8unXren/605+8qpwO0rlzZxf0V6U00PHv2bOn99hjj3mDBg3K+uAm0TTQjUvBfdAkmg6TJk3y2rRp4+3Zs8cLisIKXhN0f9C1cfv27RXeFqql4rRnzx6bP3++q1IIf06V3s+dOzfqdzQ9fH7p06dPzPmDmAZBk4w02Llzp33//ffWsGFDq6rpoB9Ws2fPtqVLl9qJJ55oVSkNbr/9dmvSpIldfvnllu3Kmwbbt2+3Vq1auYco9uvXz1VfV7V0ePHFF61Hjx6uWqpp06bWoUMHu/POO624uNiq6rXx8ccftwsuuMBVW1cUwU2cNm3a5DKdMmE4vV+3bl3U72h6IvMHMQ2CJhlpcNNNN7mn2kYGvlUhHbZs2WJ16tSxGjVquHr1Bx54wHr37m1VJQ3efvttdwFXO6wgKE8aHHbYYTZlyhSbOXOmTZ061fbu3Ws9e/a01atXW1VKh88//9ymT5/uvqd2Nr/73e/s3nvvtd///vdWFa+N8+bNs8WLF9sVV1yRlO2pck8FB9Jp3LhxriHpnDlzAtOIMhF169a1hQsXul/uKrkZNmyYtWnTxjUsDLpt27bZpZde6gKbxo0bW1Wl0gq9fApsjjjiCHv44YdtzJgxVlUoqFMJ3iOPPGK5ubnWpUsXW7Nmjd1zzz3uEQVVzeOPP+463RQWFiZleQQ3cdLFSBlw/fr1JabrfUFBQdTvaHoi8wcxDYKmImkwfvx4F9y8/vrrdvTRR1tVTAcVU7dr1879rd5Sn3zyiY0dOzYrg5tE02D58uX2xRdfWN++fUvc4KR69equiq5t27ZW1a4J++23n3Xu3NmWLVtm2ao86aAeUtp3fc+nIE+lHKriUelmVckLO3bscD/6VGWbLFRLxUkZTZG1fm2GX5j0PvxXSDhND59fXnvttZjzBzENgqa8aXD33Xe7X6VFRUWuO3S2S1Ze0Hd2795tVSENNCTEokWLXMmV/zrnnHPs5JNPdn+r/UlVzAeqylC66GafrcqTDscdd5wL6PwAVz777DOXDtkW2FQ0L2jIFF0HLrnkEkuaCjdJrkLUza1mzZrek08+6bqz/t///Z/r5uZ3Y7z00ku94cOHl+gKXr16dW/8+PGuC/CoUaMC0RU8kTRQd0d1gdarWbNmrlu4/v7vf//rVZU0GDdunOseOX369BLdHrdt2+Zls0TT4c477/ReffVVb/ny5W5+nRc6Px599FGvqqRBpCD0lko0DUaPHu298sorLh/Mnz/fu+CCC7y8vDzXdbgqpcPKlStdz6Crr77aW7p0qffyyy97TZo08X7/+997Ve18OP74470BAwYkdVsIbhL0wAMPeAcddJC7Wanb23vvvRf67KSTTnIXq3B//etfvUMPPdTNf+SRR3p///vfvaqUBhq7QTF05EvzVZU0UBf4aGmgYDfbJZIOt9xyi9euXTt3I2vQoIHXo0cPdzGsateEoAU3iabB9ddfH5q3adOmbpyXBQsWeEGQaF5499133fAgCgjULfyOO+5wQwVUpTT49NNP3fVQP3ySKUf/JK8cCAAAIL1ocwMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBUC5PPvmk1a9fv0qnXk5Ojr3wwguVuk49n0rr1SMbKqJ169Y2YcKEjNs/IBkIboA0u+yyy9xNRC89SK9p06bWu3dvmzJlSonnzsTjtttucw+kTLZoN8IBAwa4Z+Gkmh6q6aePXkqfn/3sZ/bll19W2jojX9n4oE+gKiG4ATLA6aefbmvXrnW/yv/xj3+4hyled911dvbZZ9sPP/xgmWj//fe3Jk2aVMq6hgwZ4tLnq6++spkzZ9qqVauS+5C9CDNmzHDr02vevHlump7m7k/T5+WhAeEz9XgCQUJwA2SAmjVrWkFBgbVo0cKOOeYYu/nmm91NXIGOqn983377rV1xxRV2wAEHWL169eyUU06xDz/80H2m+UaPHu3e+yUM/ndL+57vpZdesm7dulleXp41btzYzj33XDddpRQqJfn1r38dWm6saqlJkyZZ27Zt3ROCDzvsMHv66adLfK7vPvbYY27ZtWrVskMOOcRefPHFMtNH8yp99MTkY4891q6++mpbsGBBiXn++c9/WmFhoUtLzTd8+PBQIPHUU09ZnTp17L///W9o/iuvvNI9qXvnzp37rK9hw4ZufXopzaRRo0ahafrct2nTppj7M2fOHLfPOo56YrK27e2333YlcmPHjrWDDz7YBYkdO3a06dOnh763efNmu/jii9269bmW+8QTT5TYxs8//9wFwVqvvj937twSn//tb3+zI4880q1TJW/33ntvqWmstDnxxBPd8W/fvr299tprZR4XIGMl9UlVABJW2sMTO3bs6J1xxhmh97169fL69u3rvf/++95nn33m3XDDDV6jRo28r7/+2tu5c6d7rwe0+k8e17Syvid6InFubq43cuRI9zTfhQsXuqd4i+Y58MADvdtvvz20XHniiSe8/Pz80LbNmDHDPfV+4sSJ7inH9957r1vmG2+8EZpHlxwt65lnnnFPhr/22mu9OnXqhLYjGj1s77rrrgu917zal5NPPjk0bfXq1V6tWrW8K6+80vvkk0+8559/3mvcuHGJh5P+7Gc/87p16+Z9//33bn+1rR988EGZx8d/+KueZh+prP1588033TxHH320ezDgsmXL3Gd68vPhhx/uFRUVuadjKy318MQ5c+a471111VVep06d3PHS+l977TXvxRdfLLE9+r72Q2l9/vnnuwe0at9E+1WtWjV3zPS5lr///vu7/32a//7773d/FxcXex06dPBOPfVUd+z/+c9/ep07d3brUVoC2YbgBsjg4GbAgAHeEUcc4f5+6623vHr16nm7du0qMU/btm29hx9+2P2tm7kConDxfE9P6L744otjbmP4jdAXGdz07NnTGzJkSIl5FFDoqc8+3SxvvfXW0Pvt27e7af/4xz9KDW4UiNSuXdsFMJr/0EMPdTd538033+wddthh3t69e0PTFGQp0NCNW7755hsXiAwdOtQ9jVpPYI5HWcFNafvjBzcvvPBCaB4dB+2Hnggd7vLLL/cuvPBC97eCt8GDB5e6PY899lho2scff+ymKbCTiy66yOvdu3eJ7/3mN7/x2rdvH/WYvvLKK1716tW9NWvWhD7XPhDcIFtRLQVkMN0//WogVSNt377dVY+oisV/rVixwpYvXx5zGfF8Tz1vTj311Apt6yeffGLHHXdciWl6r+nhjj766NDftWvXdtVkGzZsKHXZqqLRNmpfVK3Trl07O+2002zbtm2hdffo0SOUVv66td+rV6927xs0aGCPP/54qOpM1VbJEM/+dO3aNfT3smXLXFWYGo2HHw9VnfnHY+jQofbss8+6xuG//e1v7d133y11vaqGE3+9sY6Fqp6Ki4v3WZbmb9mypTVv3jw0TekJZKvq6d4AALHppqN2GaIbtW5iascRqbQu2fF8T+06Kot6hIVTQFJWr7D8/HwX0Ij+V5CifZo2bZprSxSvf/3rX5abm+saBe/YscPq1q1rlbE/CnrCj4f8/e9/d22swql9jJxxxhmundOsWbNc2xcFnldddZWNHz8+6nr9oC7R3nVAUFFyA2SoN954wxYtWmTnnXeee6+GxuvWrbPq1au7G3z4Sw2ARQ15I3+Zx/M9lQLMnj075rZEW26kI444wt55550S0/RejVOTTQGKfPfdd6F1q0Ht/68p+nHdCl4OPPBA916lH3fddZdrOK2SEjVKTgelh4KYlStX7nM8VHriU2PiQYMG2dSpU103/EceeSTudcQ6Foceemgo7SLnVw80BX2+9957r9z7CKQbJTdABti9e7cLQBRArF+/3oqKilxvGnUFHzhwoJunV69erqqgf//+dvfdd7sblbpGqwRAvXVU9aFeMapuUhWObuq6ucfzvVGjRrnSAVXXXHDBBa6XkUoNbrrpJrduLVelHvpMN2Y/KAr3m9/8xn7+859b586d3ToVRKjLtLpQV5SqcZQ+ovQZM2aM69Wjqim/55MCgGuuucYFLUuXLnX7NGzYMKtWrZqrvrr00kvt2muvdaUiShv1DOvbt6+df/75Vpl0TG688UbX+0wlLccff7xt2bLFBR+q0lJAM3LkSNe7Sr2dlDdefvllF4DE64YbbnD7p3TSeEQK/B588EF76KGHos6v46V8oXXfc889tnXrVrvllluSuNdAJUt3ox+gqlODYp2KeqlR5wEHHOB6N02ZMiXUGNa3detW75prrvGaN2/uGtm2bNnSNQReuXJlqLHqeeed59WvX98tz+8dU9b35G9/+5vroVOjRg3X0+inP/1p6LO5c+e6Hj/q0eNfNiIbFMtDDz3ktWnTxq1DjX6feuqpEp9Ha6CqZYT34onWoNhPH70aNGjgpoX3whL1NFJvKG1/QUGBd9NNN4V6D6lx7lFHHVWiUbV6czVs2ND1tKpIg+LS9sdvULx58+YS86jh84QJE1wjaKWVjnmfPn1cLyUZM2aMa0iuHk7aRjU4//zzz2Nuj5avaVqfb/r06a4BsZZ/0EEHeffcc0+pjcTVq+r444936adjp55cNChGtsrRP5UdUAEAAKQKbW4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAALEj+HzNTLEvoC+Q/AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -2529,7 +2485,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAATa1JREFUeJzt3QucjnX+//HPGIdRmEIMknMHkfMwOuigaDunwtaS2oqipBPtRjpR1NpiqXY3tSo6n1OtaFNKkcqxk2KFITVEqJn7/3h//7/r3vu+3TNmxn2a+3o9H4/buK7re1/3db4+1/d0ZQQCgYABAAD4SKVkLwAAAECiEQABAADfIQACAAC+QwAEAAB8hwAIAAD4DgEQAADwHQIgAADgOwRAAADAdwiAAACA7xAAwfn555/tj3/8o+Xk5FhGRoYNHz7cjd+4caOdd955VqdOHTd+0qRJFX6dyuviiy+2pk2bWkV16623uu2AikX7bOjQocleDCDtEAClsenTp7uLZ3GfDz74IJj2rrvucumHDBli//rXv+wPf/iDG3/ttdfaG2+8YaNGjXLje/fuHfPl1G+/8MILcZlvtHWKRoHN6aefbqlGQVdJ+9D7KB0qlq+//tquuOIKa968uWVlZVmtWrXs6KOPtr/+9a/2yy+/WEX3/fffu6B7yZIlCfvNefPmlXiezJw501L54cT7VKlSxV2Trr76avvpp58qzPavaConewEQf7fddps1a9Zsj/EtW7YM/v/tt9+2bt262ZgxY8LSaPxZZ51l119/fdyWT4GKcpnOPvvsmM63uHUqr4cfftiKiooskXSD7NmzZ3B49erVNnr0aLv88svt2GOPDY5v0aJFQpcL++bVV1+1888/36pVq2YDBgywNm3a2O7du23+/Pl2ww032LJly+yhhx6q0JtZN+CxY8e6G3n79u0T+tsKHLp06bLH+Ly8PEtlU6dOtRo1atj27dttzpw59sADD9jixYvdcVGRtn9FQQDkA6eeeqp17ty5xDT5+fnWunXrqOMPOOAAq4iKW6fy0lNZoumCHXrR/vjjj10ApHEXXXSRJdOOHTtsv/32S+oyVEQKYvv162dNmjRxQXqDBg2C06666ir76quvXICUSLrh7r///lYRlGZZ9XCgh6qy0MONglDlxpXnN2NxvmiZ69atG3z40XEya9YsW7hwoeXm5u7T72NPFIH5nJdlrIuyLrpeFqxXfBYIBGzKlCnB8R5ly6pOTePGjd1TrHKT7r777j1ySDSsLP22bdu6C8tBBx3kitF0IxfNUxeXRx99tNTFOQpsLr30Uqtfv76bZ7t27dz397ZO3377bUzrAGl+mu/EiRPd07pyYbQt9OT50Ucf7fH9lStXugtc7dq13XIrKH3ppZcsFp5++mnr1KmTVa9e3V1AFRytW7euVN+dMWNG8LtaNl10165dG5bm+OOPd7kUixYtsuOOO85dyG+++WY37cUXX7TTTjvNGjZs6NZf2+H222+3wsLCqPNYvny5nXDCCW4ejRo1snvuuWePZdq5c6fLvj/00EPdtlKQcO6557pio9BjS3XSjjzySJdGx4NuGj/++GM5t6LZN99843JmtB20fMpBjAxGvOPrqaeesjvvvNMOPvhg9/snnXSSC172Ruur+mn/+Mc/woIfj86la665Zo/xKibW9tM21jrPnj07bPp3331nV155pR122GFuX6rentYl8rj3zu133nnHpa9Xr55bh7LMw7sGqIhc54SWSfNQbtbmzZvdNvJyYAYNGhR2XfF8+OGH7lqQnZ3ttnWPHj3svffei1o0pGPm97//vR144IF2zDHHWCzrVj3++ONue2odtE1L2j7yt7/9LZhex7yC1shiqpLOl7LwcnlDj/stW7a4HHldU5VbpKJTPeR++umnwTSx2v7pjhwgHygoKHAXpVA6GXRxO+KII1z9GF3IdJJfd911bnqHDh2C9WZOPvlkd2ELfZLRyaIbrG44hxxyiL3//vuuntD69evDKkorUNFJpxNUFZJ/++03e/fdd139IwUA+g2N19ONinX2VpyjuhG6uOhGo4uXivZ081dwoouQbhzFrZOCr3h44oknbNu2bW5baLvqBqebtW6mXq6RijRUv0M3/JEjR7qnSd1AVez37LPP2jnnnFPu39f21UVOF7xx48a5iusKOnUx++STT0rMwdMN/JZbbrELLrjA7YdNmza5bHddtCO/+8MPP7j9qABJAZYCDu/3dSEeMWKE+6tcDeVSbd261SZMmBD2ewpOdNHV9tFvPvPMM3bTTTe5i7nmLQqcVB9LRQD6Le1Tbd+33nrLli5dGjw+tL29dVeRhwLeyZMnu+XWupc1x07brXv37u741vx0fiiwPvPMM91yRu6j8ePHW6VKldzNSOeY9vuFF17obiwlefnll129H/1WaakI5LnnnnM35Jo1a9r9999vffr0sTVr1rjlFAXdOg+1zXTcK2hRkYrOFwUQkbkPmpfOCe0rPYSUZR4K4HRzXrFihV1yySXWsWNHd41RQP/f//7XnYMqeo8srvXWWceI9rcCbxVRazs+8sgjduKJJ7rrQ2Ruh4KwVq1aueJyPZTtjY6XyGueeI05PFoOnYe6lujBQcGcV2cm2vZRQKZiJRVLq27hqlWr3PbRdos85oo7X8rCCzwV+Hl0XVEwrG2i65+O2wcffNBdk7WPFJTFevunrQDS1iOPPKIrRdRPtWrVwtI2adIkcNppp+0xD6W96qqrwsbdfvvtgf333z/wxRdfhI0fOXJkIDMzM7BmzRo3/Pbbb7vvX3311XvMt6ioKPh/zWvgwIGlWqdJkya5ec6YMSM4bvfu3YG8vLxAjRo1Alu3bt3rOkVTmrRaRqXzrF692i1LnTp1Alu2bAmOf/HFF934l19+OTjupJNOCrRt2zawc+fOsG3QvXv3QKtWrQKl9dFHH7l5a996616vXr1AmzZtAr/88ksw3SuvvOLSjR49OjhuzJgxbpzn22+/dfvrzjvvDPuNzz//PFC5cuWw8T169HDfnTZt2h7LtGPHjj3GXXHFFYH99tsvbH29eTz22GPBcbt27Qrk5OQE+vTpExz3z3/+06W77777ij1u3n33XZfm8ccfD5s+e/bsqONLY/jw4e67mrdn27ZtgWbNmgWaNm0aKCwsdOPmzp3r0h1xxBFu+T1//etf3Xhtv+IUFBS4NGeddVapl0vpq1atGvjqq6+C4z799FM3/oEHHihxPyxYsGCPbe5dF4455pjAb7/9Fpa+tPPQcaVxzz33XLH7KPJYDZ2uY75Xr15h1wH9trb1ySefvMcx279//0BpePumuM/69euDaTVcqVKlwLJly8LmUdz2yc/Pd/vhlFNOCR4LMnnyZJdex21pzpdovPVctWpVYNOmTe7c1PyqV68eOOiggwLbt28PptU5Ffr73rVI1/TbbrstOC4W2z/dUQTmAyrC0tNz6Of1118v9/yU46InCj2V6CnL++ipSE/v//nPf1w65WzoaStaJeTyNsd+7bXXXLP2/v37B8fpqUtP7HoqVbZ1ovXt2zfsCc172tKTmpdlrScu5Xh4T6b66AmxV69e9uWXX5a6uCqSihJVJKin1dC6CyqSOvzww0usS6IcBRUjablC96O2r562586dG5ZeWf7KbYmkohKPt37aBspJUbFfKOUQhdZdqlq1qnva9LaVd9zoaXzYsGHFHjc6BpV1r9zJ0GXXE61+I3LZS3tsaVlCi1g0Lz1B60lcT9ehtC20/MXt92iUKybKxSkLnVuhOaNHHXWUK/oI/a3Q/fDrr7+640vFacrFU0XaSJdddpllZmaGjSvtPLSPVPQcLedyb+e2clh0zKtIS/P39p1yWVSMqOtHZFH64MGDrSyU8xF5zdNHRZuhlGtSXD3ByO3z73//29URUtG/ckxC02lfRJ5rxZ0vJVHRo3KdlBOlnDVte12rQ3PvNF/v93W91TbUcarvRtvPsdj+6YoiMB/QRX1vlaDLQifPZ599VmyRkm7IXrm1smMjLzr7QnUUdHMOvQCJsny96YmmIsBQXjDk1UVRcZ0eOFXUpE9x20zFY2Xlra8ufpEUAJXUekT7Ucul7RlNZBGSli/0hu9R8d6f//xnF+R5N3iPioZCqVgl8gap7aXjyaPjRutTuXLlEpdd81b9jJKOwbJuy65du+4xPvTYUr2O0u73aHSj9ALFsoj8Le/3Qn9LxcMqAlVRhgLq0KKiyP0g0VqGlnYe2kcqgisP7TsZOHBgsWn0W6EPFdGWtSQqUg1tPVmckuYbOa24c03nhIo0I689xZ0vJVFgqWNERdEq5lSxbmhQGlqvUnWRND20rp1XHBrr7Z+uCIBQZjoB9eR94403Rp2uiqt+EvkU7fFuHt7TlOqKKMcnmtAuCRJFy6VgRE+Y0dZBT5WhIi/EonpXeorWRVt1DpRLoZwoPYmqbk/kk+TetlVZll3BjyqwRhOv+l77ui7aTnooUF2mWP+WcswUuCiHQq0ElUOm/as6KNGe6KPtz7LOozy8+ah+WHHNs0tz7MVCSfPd198sz/dV985rBXbGGWe4QE71ylSZ2nvoUz0oPUgph0iNDfSAqWnaZ6XZR+XZ/umKAAhlppucipv29oSldOpEUUVAJeUClaU4TE2HlVugkzg0F8gratH0VKOnQy9HpTRPpWXhra8qY6oCYyiNK2l7aP/oBqon3fIGrWptomx0Fafp4u3Rk2l5ablUkVhFMMVVZFYaFUmoYnmsbo7aVtpmkWJ9bKmCt1oNLliwIKb90qiitp7q77333rDWdGXpSK+089D231sQV9x57RXlKRiM9fkQT6HnmndOi4rFdLzHel0UhKj6gIrRVFFbQai3j9SKUq0IQ2kfecFTOm7/eKAOEMpMdUZ08VZwE0knoVp6ibLIdYNVq4mSnlzVIqq0F+nf/e53tmHDBtc3hke/p5ZLumAoNyLVKKdCrWjUUkOt5CIpu7u8VLSp+U+bNs127doVHK9cHbXQUV2g4qgllnIWtH8icy00rMCmtDkTod/XDUHZ8+Wl40Z1EtSiK5L3OzoGlfWvJ+BIOh7K03uuji31t6Jj26N6EQpWVCcjVn1KKedUx7xa3akFTyQVL6mIo6y0LyL3o86LyO4IYjEP7SM1u37++ef3mIf3fa/fnMh9oXpaugmr+wg9SMXyfIgnBQsq0lLRVOg2UiCiIqOSzrXyUu6Pio3VxUhJ+0h14iLrEabb9o8HcoB8QDfDyMqoXpPI0CeZ0lJPtWruqidZNT/XCaUbxeeff+6eTlRhVE8iekpRM3pdMFTurObPyrlRM0tN895vpO/raf6+++5zxQPKkYhWF0NUIVWBhH5X2cK6Mek31QRVze/LWrk0lOrq3HHHHXuMV5cA+3pxU0V0Va5VlrYqTWq76+anm62aDYf24VEWyiHRxVFPiQr+VDncawavbaOuAIqji6DWV90XaJ+pSb62n55mdWPTtt5bD+A6hlRXQLkGqoiup051QVDWIq1Q6nLhsccec83qFZCocrGOLx0jquytnsm1rmoGr/oqqtR5yimnuG2h40w3A61/WTvCU/cETz75pGserHVRrqWawWt7qG5GZL2z8tJ2V9cJqjyv+kWhPUGrCbrXrUNZ6XzUtlexlYI1HVvaZqWpF1LWeegaoPNOTbFVFKNzWDm9ui4oGFcFaa2nKk9rWMeVbsg6r3V+//3vf3fbWf3p6NhVfRndwFV5XTkT6ipgX+gao5yrSKo8rk95qFhV54oeGHQtU/cIyg1SsK8uKOLRMamOaXUDoe2tPor0u9pHKm7WdtP5p+uuioIjr+XJ3P4VRrKboSE5zeAjm0eWpRm81zx41KhRgZYtW7qmoXXr1nVNuidOnOiaZnvUjHTChAmBww8/3KVTk85TTz01sGjRomCalStXBo477jjX5FO/t7cm8Rs3bgwMGjTI/abmqeblkU09S1qnaJS2uO106aWXltgMXusXbbupaWuor7/+OjBgwADX7LtKlSqBRo0aBU4//fTAM888Eyit4pq2zpo1K9ChQwfXFLZ27dqBCy+8MPDf//43LE1kM3jPs88+65r8qjsCfbSvtM/VJDe0We+RRx4ZdZnee++9QLdu3dz+a9iwYeDGG28MvPHGG+631Cx5b/OI3K5ek9w//elPrlmutpW22Xnnnee2YaiHHnoo0KlTJ/fbNWvWdMeCfv/7778PlIfmr9854IADAllZWYHc3FzXpUC0ptZPP/102HjveIh2LEajbiQuu+wy18Rex7GW/+ijj3ZN20O7DyjuHNQ2Cz1Xfvzxx+B5oS4h1MxZ51ZkOu+6oGMpUmnnIT/88ENg6NCh7jjW8h988MEuzebNm8O6hGjdurXrViFy23zyySeBc88913UjoeNWv3HBBRcE5syZs8cxq6bhsWgGH3pOFrddS9o+XrN3nSM6LuvXrx8YMmSI226hSjpfoilpPdV1QnZ2tpun6Ni47rrrAg0aNHDHvY4ZdVWg6V6aWG3/dJehf5IdhAEAACQSdYAAAIDvEAABAADfIQACAAC+QwAEAAB8hwAIAAD4DgEQAADwHTpCjEKd9X3//feu86jyvrUcAAAklnr20cuG1anu3jovJQCKQsFP48aN47V/AABAHK1du9a9RqQkBEBReK9T0AZUt+AAACD1bd261WVglOa1SARAUXjFXgp+CIAAAKhYSlN9hUrQAADAdwiAAACA7xAAAQAA3yEAAgAAvkMABAAAfIcACAAA+A4BEAAA8B0CIAAA4DsEQAAAwHfoCRoAACRMYVHAFq7eYvnbdlq9mlmW26y2ZVZK/IvHCYAAAEBCzF663sa+vNzWF+wMjmuQnWVjzmhtvds0sESiCAwAACQk+BkyY3FY8CMbCna68ZqeSARAAAAg7sVeyvkJRJnmjdN0pUsUAiAAABBXqvMTmfMTSmGPpitdohAAAQCAuFKF51imiwUCIAAAEFdq7RXLdLFAAAQAAOJKTd3V2qu4xu4ar+lKlygEQAAAIK7Uz4+auktkEOQNa3oi+wMiAAIAAHGnfn6mXtTRcrLDi7k0rPGJ7geIjhABAEBCKMg58fD69q8F39p3W3ZYk9r72R/ymlrVyonPjyEAAgAASesJ+u/zV9MTNAAASE+z6QkaAAD4SSE9QQMAAL9ZSE/QAADAb/LpCRoAAPhNPXqCBgAAfpNLT9AAAMBvMukJGgAA+FFveoIGAAB+DYJObp3jWoWpYrTqBql4LJHvAPPQEzQAAEgYBTt5LepYsvEyVAAA4DsEQAAAwHcIgAAAgO8QAAEAAN8hAAIAAL5DAAQAAHyHAAgAAPhOSgRAU6ZMsaZNm1pWVpZ17drVFi5cWGzahx9+2I499lg78MAD3adnz557pA8EAjZ69Ghr0KCBVa9e3aX58ssvE7AmAACgIkh6ADRr1iwbMWKEjRkzxhYvXmzt2rWzXr16WX5+ftT08+bNs/79+9vcuXNtwYIF1rhxYzvllFNs3bp1wTT33HOP3X///TZt2jT78MMPbf/993fz3LlzZwLXDAAApKqMgLJLkkg5Pl26dLHJkye74aKiIhfUDBs2zEaOHLnX7xcWFrqcIH1/wIABLvenYcOGdt1119n111/v0hQUFFj9+vVt+vTp1q9fv73Oc+vWrZadne2+V6tWrRisJQAAiLey3L+TmgO0e/duW7RokSuiCi5QpUpuWLk7pbFjxw779ddfrXbt2m549erVtmHDhrB5amMo0Cpunrt27XIbLfQTD4VFAVvw9Q/24pJ17q+GAQCA+etdYJs3b3Y5OMqdCaXhlStXlmoeN910k8vx8QIeBT/ePCLn6U2LNG7cOBs7dqzF0+yl623sy8ttfcH/iuEaZGfZmDNau5fDAQAAH9UB2hfjx4+3mTNn2vPPP+8qUJfXqFGjXHaZ91m7dm3Mg58hMxaHBT+yoWCnG6/pAADAJwFQ3bp1LTMz0zZu3Bg2XsM5OTklfnfixIkuAHrzzTftqKOOCo73vleWeVarVs2VFYZ+YkXFXMr5iVbY5Y3TdIrDAADwSQBUtWpV69Spk82ZMyc4TpWgNZyXl1fs99TK6/bbb7fZs2db586dw6Y1a9bMBTqh81SdHrUGK2me8bJw9ZY9cn4igyBNVzoAAOCDOkCiJvADBw50gUxubq5NmjTJtm/fboMGDXLT1bKrUaNGrp6O3H333a6PnyeeeML1HeTV66lRo4b7ZGRk2PDhw+2OO+6wVq1auYDolltucfWEzj777ISvX/62nTFNBwAA0iAA6tu3r23atMkFNQpm2rdv73J2vErMa9ascS3DPFOnTnWtx84777yw+agfoVtvvdX9/8Ybb3RB1OWXX24//fSTHXPMMW6e+1JPqLzq1cyKaToAAJAG/QClolj2A6S6Pcfc/bar8BxtQ2eo3lJ2ls2/6UTLrKQhAACQ1v0A+YGCGjV1l8jwxhvWdIIfAAAShwAoAdTPz9SLOrqcnlAa1nj6AQIAwGd1gPxCQc7JrXNcay9VeFadn9xmtcn5AQAgCQiAEkjFXHkt6iTyJwEAQBQUgQEAAN8hAAIAAL5DAAQAAHyHAAgAAPgOlaABAEDCqIPgVGgRTQAEAAASYvbS9Tb25eVhLwlvkJ3lOgROdJ94FIEBAICEBD9DZiwOC35Er4rSeE1PJAIgAAAQ92Iv5fxEeyemN07TlS5RCIAAAEBcqc5PZM5PKIU9mq50iUIABAAA4koVnmOZLhYIgAAAQFyptVcs08UCARAAAIgrNXVXa6/iGrtrvKYrXaIQAAEAgLhSPz9q6i6RQZA3rOmJ7A+IAAgAAMSd+vmZelFHy8kOL+bSsMYnuh8gOkIEAAAJoSDn5NY59AQNAAD8JbNShuW1qJPsxSAHCIB/pMo7iAAkH0VgAHwhld5BBCD5qAQNIO2l2juIACQfARCAtJaK7yACkHwEQADSWiq+gwhA8hEAAUhrqfgOIgDJRwAEIK2l4juIACQfARCAtJaK7yACkHwEQADSWiq+gwhA8hEAAUh7qfYOIgDJR0eIAHwhld5BBCD5CIAA+EaqvIMIQPJRBAYAAHyHAAgAAPhO0gOgKVOmWNOmTS0rK8u6du1qCxcuLDbtsmXLrE+fPi59RkaGTZo0aY80hYWFdsstt1izZs2sevXq1qJFC7v99tstEKCbewAAkAIB0KxZs2zEiBE2ZswYW7x4sbVr18569epl+fn5UdPv2LHDmjdvbuPHj7ecnJyoae6++26bOnWqTZ482VasWOGG77nnHnvggQfivDYAAKCiyAgkMWtEOT5dunRxwYoUFRVZ48aNbdiwYTZy5MgSv6tcoOHDh7tPqNNPP93q169v//jHP4LjlGuk3KAZM2aUarm2bt1q2dnZVlBQYLVq1SrXugEAgMQqy/07aTlAu3fvtkWLFlnPnj3/tzCVKrnhBQsWlHu+3bt3tzlz5tgXX3zhhj/99FObP3++nXrqqcV+Z9euXW6jhX4AAED6Sloz+M2bN7v6OsqtCaXhlStXlnu+yjlSAHP44YdbZmam+40777zTLrzwwmK/M27cOBs7dmy5fxMAAFQsSa8EHWtPPfWUPf744/bEE0+4ekWPPvqoTZw40f0tzqhRo1x2mfdZu3ZtQpcZAAD4JAeobt26Lodm48aNYeM1XFwF59K44YYbXC5Qv3793HDbtm3tu+++c7k8AwcOjPqdatWquQ8AAPCHpOUAVa1a1Tp16uTq63hUCVrDeXl55Z6vWoqpLlEoBVqaNwAAQNJfhaEm8MqV6dy5s+Xm5rp+fbZv326DBg1y0wcMGGCNGjVyuTdexenly5cH/79u3TpbsmSJ1ahRw1q2bOnGn3HGGa7OzyGHHGJHHnmkffLJJ3bffffZJZdcksQ1BQAAqSSpzeBFTeAnTJhgGzZssPbt29v999/vmsfL8ccf75q7T58+3Q1/++23roPDSD169LB58+a5/2/bts11hPj888+7/oQaNmxo/fv3t9GjR7tcp9KgGTwAABVPWe7fSQ+AUhEBEAAAFU+F6AcIAAAgWQiAAACA7xAAAQAA3yEAAgAAvkMABAAAfIcACAAA+A4BEAAA8B0CIAAA4DsEQAAAwHcIgAAAgO8QAAEAAN8hAAIAAL5DAAQAAHyHAAgAAPgOARAAAPAdAiAAAOA7BEAAAMB3CIAAAIDvEAABAADfIQACAAC+QwAEAAB8hwAIAAD4DgEQAADwHQIgAADgOwRAAADAdwiAAACA7xAAAQAA3yEAAgAAvkMABAAAfIcACAAA+A4BEAAA8B0CIAAA4DsEQAAAwHcIgAAAgO8kPQCaMmWKNW3a1LKysqxr1662cOHCYtMuW7bM+vTp49JnZGTYpEmToqZbt26dXXTRRVanTh2rXr26tW3b1j7++OM4rgUAAKhIkhoAzZo1y0aMGGFjxoyxxYsXW7t27axXr16Wn58fNf2OHTusefPmNn78eMvJyYma5scff7Sjjz7aqlSpYq+//rotX77c7r33XjvwwAPjvDYAAKCiyAgEAoFk/bhyfLp06WKTJ092w0VFRda4cWMbNmyYjRw5ssTvKhdo+PDh7hNK33vvvffs3XffLfdybd261bKzs62goMBq1apV7vkAAIDEKcv9O2k5QLt377ZFixZZz549/7cwlSq54QULFpR7vi+99JJ17tzZzj//fKtXr5516NDBHn744RK/s2vXLrfRQj8AACB9JS0A2rx5sxUWFlr9+vXDxmt4w4YN5Z7vN998Y1OnTrVWrVrZG2+8YUOGDLGrr77aHn300WK/M27cOBcxeh/lQgEAgPSV9ErQsaZitI4dO9pdd93lcn8uv/xyu+yyy2zatGnFfmfUqFEuu8z7rF27NqHLDAAAfBIA1a1b1zIzM23jxo1h4zVcXAXn0mjQoIG1bt06bNwRRxxha9asKfY71apVc2WFoR8AAJC+khYAVa1a1Tp16mRz5swJy73RcF5eXrnnqxZgq1atChv3xRdfWJMmTfZpeQEAQPqonMwfVxP4gQMHukrLubm5rl+f7du326BBg9z0AQMGWKNGjVwdHa/itJq1e/9Xfz9LliyxGjVqWMuWLd34a6+91rp37+6KwC644ALXr9BDDz3kPgAAILkKiwK2cPUWy9+20+rVzLLcZrUts1KGv5rBi5rAT5gwwVV8bt++vd1///2uebwcf/zxrrn79OnT3fC3335rzZo122MePXr0sHnz5gWHX3nlFVev58svv3TpFWipHlBp0QweAIDYm710vY19ebmtL9gZHNcgO8vGnNHaerdpsM/zL8v9O+kBUCoiAAIAIPbBz5AZiy0y6PDyfqZe1HGfg6AK0Q8QAADwT7HX2JeX7xH8iDdO05UuUQiAAABAXKnOT2ixVySFPZqudIlCAAQAAOJKFZ5jmS4WCIAAAEBcqbVXLNPFAgEQAACIKzV1V2uv4hq7a7ymK12iEAABAIC4Uj8/aupeXBVnjdf0RPYHRAAEAAB8hwAIAAAkpBl8cZTvQzN4AACQVhbSDB4AAPhNPs3gAQCA39SjGTwAAPCbXJrBAwAAvzaDl8iG7t4wzeABAEDa6d2mgXvje052eG/PGo7Fm+DLqnJCfw0AAPhW7zYN7OTWOa5VmCpGq26QiscS2QGihwAIAAAkjIKdvBZ1LNnoCBEAAPgOARAAAPAdAiAAAOA7BEAAAMB3CIAAAIDvEAABAADfIQACAAC+QwAEAAB8hwAIAAD4Dj1BAwCAhCksCvAqDAAA4B+zl663sS8vt/UFO4PjGmRnuTfBJ/plqBSBAQCAhAQ/Q2YsDgt+ZEPBTjde0xOJAAgAAMS92Es5P4Eo07xxmq50FS4A2rlzp02cODFWswOAmNPFdcHXP9iLS9a5v4m82AJ+tnD1lj1yfkLpTNR0pUvJStCbNm2yDz/80KpWrWonnXSSZWZm2q+//mp/+9vfbNy4cfbbb7/Z9ddfH7+lBYA0qHsA+E3+tp0xTZfQHKD58+dbq1at7Mwzz7RTTz3VunfvbsuXL7cjjzzSHnzwQbv11ltt7dq18V1aAEiDugeA39SrmRXTdAkNgP785z/b7373O/vss89sxIgR9tFHH9k555xjd911lwuEBg8ebNWrV4/v0gJAGtQ9APwmt1ltl+OaUcx0jdd0pUu5AOjzzz93QVCbNm3stttus4yMDLvnnnvsvPPOi+8SAkCa1T0A/CazUoYrbpbIIMgb1nSlS7kA6Mcff7S6deu6/yunZ7/99nPBUCxMmTLFmjZtallZWda1a1dbuHBhsWmXLVtmffr0cekVhE2aNKnEeY8fP96lGz58eEyWFUDFkop1DwA/6t2mgU29qKPlZIcXc2lY4xNdF69MlaBV1LVhwwb3/0AgYKtWrbLt27eHpTnqqKPKtACzZs1yRWrTpk1zwY8Cml69erl516tXb4/0O3bssObNm9v5559v1157bYnzVjGd6ieVdZnSvfdLwE9Sse4B4Fe92zSwk1vnpMS9MCOgSKYUKlWq5HJSoiX3xutvYWFhmRZAQU+XLl1s8uTJbrioqMgaN25sw4YNs5EjR5b4XeUCKWcnWu7Ozz//bB07dnQt1O644w5r3779XnOLPFu3brXs7GwrKCiwWrVqWSzQAgVI3oPHMXe/7So8R7vYZfzfE+j8m07kgQSo4Mpy/y51DtDq1ast1nbv3m2LFi2yUaNGhQVaPXv2tAULFuzTvK+66io77bTT3LwUAJVk165d7hO6AePRAiXy4uu1QElG1h/gt7oHOtcU7ARSoO4BgOQrdQDUpEmTmP/45s2bXY5R/fr1w8ZreOXKleWe78yZM23x4sWuCKw01IfR2LFjLRktUHTJ1XRlCXIBBuJb9yCyHyDl/NAPEOBPpa4ErRZfv/zyS3D4vffeC8s12bZtm1155ZWWbOqL6JprrrHHH3/cVaouDeVAKbvM+8SyPyNaoACpEwSpmOvJy7rZX/u1d381TO4r4E+lDoAUJCjI8agzxHXr1oVVTlaF47JQqzL1Jr1x48aw8RrOycmx8lCRWn5+vqv/U7lyZfd555137P7773f/j1ZHqVq1aq6sMPQTK7RAAVKHclnzWtSxs9o3cn/JdQX8q9QBUGTl51LWnS6RXqnRqVMnmzNnTnCcKkFrOC8vr1zz1Cs61GfRkiVLgp/OnTvbhRde6P6vgCuRaIECAEDqKVMz+HhQE/iBAwe6ICU3N9e11FLT+kGDBrnpAwYMsEaNGrl6Ol7FaTXH9/6vXCgFNjVq1LCWLVtazZo19+ifaP/997c6derErN+i8vR+ubcWKIns/RIAAL93CZP0AKhv377uJaujR492fQypufrs2bODFaPXrFnjWoZ5vv/+e+vQoUNwWG+g16dHjx42b948SzW0QAEAIPW6hClTP0BqTq6cFrnpppvshhtuCPYOrfpBCmLK2g9QKqIfIAAALCFdwnh5P7HoEqYs9+9SB0DeqyeS0V9QOgRAqZTtBwBAMjokLe69fLHqkDQuHSHOnTvXmjVrVu6Fwv9aoAAA4CcLy/BS4kTdJ0vdCqxFixYuALrkkktsxowZYU3gAQAAKlKXMKXOAXr77bddJWN9nnzySdcCSy8lPfHEE+2EE05wn8genQEAAOql4EuJSx0AHX/88e4jO3futPfffz8YED366KP266+/2uGHH27Lli2L5/ICAIAKJjcFu4QpdSXoaJQLpFdivP76664XaL2BnVZgAACguFZgVsxLiRPdCqzUdYC8gOc///mPe3GoirwOOOAAGzx4sP344482efLktGgBBgAA4vdSYuX0hNJwLIKfuOUAqa7Phx9+6CpCq9PBY4891v1t0CCxC1yRm8EDAOB3hXHsEiYuzeDfffddF+woEFJdIAU/er0EAABAResSptRFYD/99JM99NBDtt9++9ndd99tDRs2tLZt29rQoUPtmWeeca+zAAAAqAjKXQlar76YP3++6yBRLcE+/fRTa9WqlS1dutQqOorAAACoeOJWCTryDeu1a9d2nwMPPNAqV65sK1asKO/sAAAAEqbUdYCKiors448/drk9yvVR8/ft27dbo0aNXIuwKVOmuL8AAABpEwCpybsCnpycHBfo/OUvf3GVofWKDAAAgLQMgCZMmOACn0MPPTS+SwQAAJAqAdAVV1wR3yUBAABItQAIACq6eHbABqBiIQAC4Jv3EI19ebmtL9gZHKeXM445o3XCu+AHkHzlbgYPABXtJYyhwY/ozdQar+kA/IUAKMHZ7wu+/sFeXLLO/dUwgPifd8r5iXa2eeM0nfMR8BeKwBKE7HcgOVTnJzLnJzII0nSlS4X3EwFIDHKAEoDsdyB5VOE5lukApAcCoDgj+x1ILrX2imU6AOmBACiFst8BxF6nJgfa3hq6Z/xfOgD+QQAUZ2S/A8n10eotUStAhwr8XzoA/kEAFGdkvwPJteCbzTFNByA9EADFmXqaVWdrxWXBa7ymKx2AeChtT8/0CA34CQFQnKmbffU0G+3y6g1rOt3xA/FR2qbtNIEH/IUAKAHUzf7UizpaTnZ4KxMNazzd8APx0615HTtgvyolpjlwvyouHQD/oCPEBFGQc3LrHF7ECCSYclfHn9vWBs9YXGyacee2JRcW8JmMQCDA+xgibN261bKzs62goMBq1aqVnD0DIOYdkt760nLbsJWXoQLpqiz3b3KAAPgCubAAQhEAAfBVcRiVnQGkTCXoKVOmWNOmTS0rK8u6du1qCxcuLDbtsmXLrE+fPi59RkaGTZo0aY8048aNsy5duljNmjWtXr16dvbZZ9uqVavivBYAAKCiSHoANGvWLBsxYoSNGTPGFi9ebO3atbNevXpZfn5+1PQ7duyw5s2b2/jx4y0nJydqmnfeeceuuuoq++CDD+ytt96yX3/91U455RTbvn17nNcGAABUBEmvBK0cH+XWTJ482Q0XFRVZ48aNbdiwYTZy5MgSv6tcoOHDh7tPSTZt2uRyghQYHXfccXtdJipBAwBQ8ZTl/p3UHKDdu3fbokWLrGfPnv9boEqV3PCCBQti9jvaEFK7Nr0tAwCAJFeC3rx5sxUWFlr9+vXDxmt45cqVMfkN5Sgph+joo4+2Nm3aRE2za9cu9wmNIAEAQPpKeh2geFNdoKVLl9rMmTOLTaNK08oy8z4qggMAAOkrqQFQ3bp1LTMz0zZu3Bg2XsPFVXAui6FDh9orr7xic+fOtYMPPrjYdKNGjXLFZN5n7dq1+/zbAAAgdSU1AKpatap16tTJ5syZE1ZkpeG8vLxyz1f1uhX8PP/88/b2229bs2bNSkxfrVo1V1kq9AMAANJX0jtCVBP4gQMHWufOnS03N9f166Pm6oMGDXLTBwwYYI0aNXLFVF7F6eXLlwf/v27dOluyZInVqFHDWrZsGSz2euKJJ+zFF190fQFt2LDBjVfxVvXq1ZO2rgAAIDUkvRm8qAn8hAkTXKDSvn17u//++13zeDn++ONdc/fp06e74W+//TZqjk6PHj1s3rx57v/qIDGaRx55xC6++OK9Lg/N4AEAqHjKcv9OiQAo1RAAAQBQ8VSYfoAAAACSgQAIAAD4DgEQAADwnaS3AgOARCksCtjC1Vssf9tOq1czy3Kb1bbMStEbTQBIbwRAAHxh9tL1Nvbl5ba+YGdwXIPsLBtzRmvr3aZBUpcNQOJRBAbAF8HPkBmLw4If2VCw043XdAD+QgAEIO2LvZTzE62/D2+cpisdAP8gAAKQ1lTnJzLnJ5TCHk1XOgD+QQAEIK2pwnMs0wFIDwRAANKaWnvFMh2A9EAABCCtqam7WnsV19hd4zVd6QD4BwEQgLSmfn7U1L24Ks4ar+n0BwT4CwEQAADwHQIgAL5oBm8lFIHRDB7wHwIgAGmNZvAAoiEAApDWaAYPIBoCIABpjWbwAKIhAAKQ1mgGDyAaAiAAvmgGL5F9AXnDNIMH/IcACEDa692mgU29qKPlZIf39qxhjdd0AP5SOdkLAACJoCDn5NY5rlWYKkarbpCKx+gAEfAnAiAAvqFgJ69FnWQvBoAUQBEYAADwHQIgAADgOwRAAADAdwiAAACA7xAAAQAA3yEAAgAAvkMABAAAfIcACAAA+A4BEAAA8B0CIAAA4DsEQAAAwHcIgAAAgO+kRAA0ZcoUa9q0qWVlZVnXrl1t4cKFxaZdtmyZ9enTx6XPyMiwSZMm7fM8AQCAvyQ9AJo1a5aNGDHCxowZY4sXL7Z27dpZr169LD8/P2r6HTt2WPPmzW38+PGWk5MTk3kCAAB/yQgEAoFkLoByZ7p06WKTJ092w0VFRda4cWMbNmyYjRw5ssTvKodn+PDh7hOrecrWrVstOzvbCgoKrFatWvu0fgBSR2FRwBau3mL523ZavZpZltustmVWykj2YgGIkbLcvytbEu3evdsWLVpko0aNCo6rVKmS9ezZ0xYsWJAy8wRQ8c1eut7Gvrzc1hfsDI5rkJ1lY85obb3bNEjqsgHwWRHY5s2brbCw0OrXrx82XsMbNmxI2Dx37drlosbQD4D0Cn6GzFgcFvzIhoKdbrymA0hcTuyCr3+wF5esc381nAxJzQFKFePGjbOxY8cmezEAxIEursr5iXaJ1TgVgGn6ya1zKA4DfJQTm9QcoLp161pmZqZt3LgxbLyGi6vgHI95qrhM5YXeZ+3ateX6bQCpR3V+InN+IoMgTVc6AP7JiU1qAFS1alXr1KmTzZkzJzhOFZY1nJeXl7B5VqtWzVWWCv0ASA+q8BzLdABinxMrmp7I4rCkF4GpufrAgQOtc+fOlpub6/r12b59uw0aNMhNHzBggDVq1MgVU3mVnJcvXx78/7p162zJkiVWo0YNa9myZanmCcA/1NorlukAxDcnNq9FHfNFANS3b1/btGmTjR492lVSbt++vc2ePTtYiXnNmjWuFZfn+++/tw4dOgSHJ06c6D49evSwefPmlWqeAPxDTd1Vx0DZ7NGeLVUHKCf7/zeJB+CfnNik9wOUiugHCEjPugcSesHzegCaelFHmsIDcaTWXv0f/mCv6Z68rNs+5QCV5f6d9J6gASDe1LpEQY5yekJpmOAHSFxObHHdjmp8gwTnxCa9CAwAEhUEqak7PUEDiace19XUXTmxGcXkxGp6IntmpwgsCorAAACoeP0AVZhXYQAAAP/onUI5sQRAAAAgYRTsJKqpe0moBA0AAHyHAAgAAPgOARAAAPAdAiAAAOA7BEAAAMB3CIAAAIDvEAABAADfIQACAAC+QwAEAAB8hwAIAAD4DgEQAADwHQIgAADgOwRAAADAdwiAAACA7xAAAQAA3yEAAgAAvkMABAAAfIcACAAA+A4BEAAA8B0CIAAA4DsEQAAAwHcIgAAAgO9UTvYCAAAA/ygsCtjC1Vssf9tOq1czy3Kb1bbMShkJXw4CIB/udAAAkmH20vU29uXltr5gZ3Bcg+wsG3NGa+vdpkFCl4UAyIc7HQCAZNwHh8xYbIGI8RsKdrrxUy/qmND7IXWAErjTQ4Of0J2u6QAApHMJyNiXl+8R/Ig3TtOVLlEIgHy40wEASCRV/4jMBAilO6CmK12iEAD5cKcDAJBIqvsay3SxQB0gH+50wK9oiAAkR72aWTFNlzY5QFOmTLGmTZtaVlaWde3a1RYuXFhi+qefftoOP/xwl75t27b22muvhU3/+eefbejQoXbwwQdb9erVrXXr1jZt2jRLhlTc6YAfqa7dMXe/bf0f/sCumbnE/dUwdfCA+FOrZzX8Ka7ds8ZrutL5JgCaNWuWjRgxwsaMGWOLFy+2du3aWa9evSw/Pz9q+vfff9/69+9vl156qX3yySd29tlnu8/SpUuDaTS/2bNn24wZM2zFihU2fPhwFxC99NJLlmipuNMBv6EhApBcmZUyXKtnibwfesOansiuYTICgUBSa98qx6dLly42efJkN1xUVGSNGze2YcOG2ciRI/dI37dvX9u+fbu98sorwXHdunWz9u3bB3N52rRp49LdcsstwTSdOnWyU0891e644469LtPWrVstOzvbCgoKrFatWjG7+EroxvZ2c6Kb/gF+K/ZSTk9xdfF0HuZkZ9n8m06kXy6ggncJU5b7d1JzgHbv3m2LFi2ynj17/m+BKlVywwsWLIj6HY0PTS/KMQpN3717d5fbs27dOlN8N3fuXPviiy/slFNOsWTQTlWQo4tsKA0T/ADxRUMEIHX0btPAPWw8eVk3+2u/9u6vhpORCZDUStCbN2+2wsJCq1+/fth4Da9cuTLqdzZs2BA1vcZ7HnjgAbv88stdHaDKlSu7oOrhhx+24447Luo8d+3a5T6hEWSsaeee3DqHnqCBBKMhApBaMitlWF6LOslejPRsBaYA6IMPPnC5QE2aNLH//Oc/dtVVV1nDhg33yD2ScePG2dixY32z0wE/oSECgJQLgOrWrWuZmZm2cePGsPEazsnJifodjS8p/S+//GI333yzPf/883baaae5cUcddZQtWbLEJk6cGDUAGjVqlKs4HZoDpHpIACo+ryGCel4PlFAHiIYIgL8ktQ5Q1apVXeXkOXPmBMepErSG8/Lyon5H40PTy1tvvRVM/+uvv7qPir1CKdDSvKOpVq2aqywV+gGQHlKx9QmA5Et6M3jlvKh+zqOPPuqarA8ZMsS18ho0aJCbPmDAAJdD47nmmmtcE/d7773X1RO69dZb7eOPP3bN3EXBS48ePeyGG26wefPm2erVq2369On22GOP2TnnnJO09QSQPDREAJBydYDUXH3Tpk02evRoV5FZzdkV4HgVndesWROWm6MWXk888YT9+c9/dkVdrVq1shdeeME1fffMnDnTBU0XXnihbdmyxdUDuvPOO23w4MFJWUcAyUdDBAAp1Q9QKop1P0AAACD+Kkw/QAAAAMlAAAQAAHyHAAgAAPgOARAAAPAdAiAAAOA7SW8GDwCJfDO8Xo6q94PpFRnq/ZkOEAF/IgAC4Auzl663sS8vt/UFO4Pj9IoM9QKdjDdRA0guisAA+CL4GTJjcVjwI3o/mMZrOgB/IQACkPbFXsr5idbjqzdO05UOgH8QAAFIa6rzE5nzE0phj6YrHQD/IAACkNZU4TmW6QCkBwIgAGlNrb1imQ5AeiAAApDW1NRdrb0yipmu8ZqudAD8gwAIQFpTPz9q6i6RQZA3rOn0BwT4CwEQgLSnfn6mXtTRcrLDi7k0rPH0AwT4Dx0hAvAFBTknt86hJ2gADgEQAN9QMVdeizrJXgzA1wpT5JU0BEAAAMB3r6ShDhAAAPDdK2kIgAAAgO9eSUMABAAAfPdKGgIgAADgu1fSUAnahzXfAQDw+ytpCIB8WPMdAIBkvJJGFZ6j1fLJ+L+OSRP5ShqKwHxY8x3wcy7sgq9/sBeXrHN/E1nhEvCzzBR8JQ05QEmu+a5drenqoZbiMCB+9KBx60vLbMPWXcFxObWq2a1nHkkuLJDAV9Lc+tJy27D1fxkCyvmhH6A0lIo13wE/Bj+DZywOC35EwxpPLiyQOIFAUdhwUVH4cKJQBObDmu+A33JhRz73eYlpNJ3iMCAxDyIbt+0OG6/hZDyIEADFWd39q8U0HYCy+eDrH+ynHb+WmEbTlQ6Afx5ECIDirbT1uWgND8TF+19vjmk6AOnxIEIAFGebf94V03QAyub7n36JaToA6fEgQgDkw86fAD9peGD1mKYDkB4PIgRACer8qbgSLo1vkODOnwA/6d68bkzTAUiPBxECIB92/gT4SbcWdeyA/aqUmEbTlQ6Afx5EUiIAmjJlijVt2tSysrKsa9eutnDhwhLTP/3003b44Ye79G3btrXXXnttjzQrVqywM88807Kzs23//fe3Ll262Jo1ayyZnT+ps6dQGtZ4XoUBxI8eLsaf27bENJrOQwjgrweRpAdAs2bNshEjRtiYMWNs8eLF1q5dO+vVq5fl5+dHTf/+++9b//797dJLL7VPPvnEzj77bPdZunRpMM3XX39txxxzjAuS5s2bZ5999pndcsstLmBKFgU582860Z68rJv9tV9791fDBD9AYs6/aXoIqRXe3YSGNZ7zEPDfg0hGIBBI6stwlOOj3JnJkycHe4Rs3LixDRs2zEaOHLlH+r59+9r27dvtlVdeCY7r1q2btW/f3qZNm+aG+/XrZ1WqVLF//etf5VqmrVu3upyjgoICq1WrVrnXDUBqUR8j6nVdHY+q4YHq3pHzA6TPK2nKcv9O6rvAdu/ebYsWLbJRo0YFx1WqVMl69uxpCxYsiPodjVeOUSjlGL3wwgvBAOrVV1+1G2+80Y1XLlGzZs3cbyinCIB/KdjJo64PkDQKcvTuy1R4EElqEdjmzZutsLDQ6tevHzZewxs2bIj6HY0vKb2Kzn7++WcbP3689e7d2958800755xz7Nxzz7V33nkn6jx37drlosbQDwAAiN+DyFntG7m/ycqFTbu3wXsvVTvrrLPs2muvdf9X8ZjqDqmIrEePHnt8Z9y4cTZ27NiELysAAEiOpOYA1a1b1zIzM23jxo1h4zWck5MT9TsaX1J6zbNy5crWuvX/b3ruOeKII4ptBabiMZUXep+1a9fu45oBAIBUltQAqGrVqtapUyebM2dOWA6OhvPy8qJ+R+ND08tbb70VTK95qlL1qlWrwtJ88cUX1qRJk6jzrFatmqssFfoBAADpK+lFYKrQPHDgQOvcubPl5ubapEmTXCuvQYMGuekDBgywRo0auWIqueaaa1wx1r333munnXaazZw50z7++GN76KGHgvO84YYbXGux4447zk444QSbPXu2vfzyy65JPAAAQNIDIAUqmzZtstGjR7uKzKqvo4DFq+isYiu1DPN0797dnnjiCfvzn/9sN998s7Vq1cq1AGvTpk0wjSo9q76Pgqarr77aDjvsMHv22Wdd30AAAABJ7wcoFdEPEAAAFU9Z7t9J7wkaAAAg0QiAAACA7xAAAQAA30l6JehU5FWLokdoAAAqDu++XZrqzQRAUWzbts391UtZAQBAxbuPqzJ0SWgFFoU6Y/z++++tZs2alpGREfPoVIGVeptOxw4XWb+Kj31Y8bEPK7Z033/xXEfl/Cj4adiwYVgXOtGQAxSFNtrBBx9s8ZTuPU6zfhUf+7DiYx9WbOm+/+K1jnvL+fFQCRoAAPgOARAAAPAdAqAE04tXx4wZ4/6mI9av4mMfVnzsw4ot3fdfqqwjlaABAIDvkAMEAAB8hwAIAAD4DgEQAADwHQIgAADgOwRAZTRlyhRr2rSpZWVlWdeuXW3hwoXFpp0+fbrrSTr0o+9F9lo5evRoa9CggVWvXt169uxpX375ZViaLVu22IUXXug6izrggAPs0ksvtZ9//jnl1+/XX3+1m266ydq2bWv777+/65lzwIABrpftUPq9yPmMHz8+LusX63WUiy++eI80vXv3Tot9KJHTvc+ECROSsg/Lsn7y008/2VVXXeXOMbU4OfTQQ+21114r0zx37tzp5lGnTh2rUaOG9enTxzZu3BiX9SvN8pR1HceNG2ddunRxvdvXq1fPzj77bFu1alXYPI4//vg99uHgwYMrxPrdeuuteyz74YcfnrR9GOv1i3Z+6aPvJGP/lXUdoy2bPqeddlpy74UBlNrMmTMDVatWDfzzn/8MLFu2LHDZZZcFDjjggMDGjRujpn/kkUcCtWrVCqxfvz742bBhQ1ia8ePHB7KzswMvvPBC4NNPPw2ceeaZgWbNmgV++eWXYJrevXsH2rVrF/jggw8C7777bqBly5aB/v37p/z6/fTTT4GePXsGZs2aFVi5cmVgwYIFgdzc3ECnTp3C5tOkSZPAbbfdFjafn3/+OebrF491lIEDB7p9FJpmy5YtYWkq6j6U0Gn6aN4ZGRmBr7/+OuH7sKzrt2vXrkDnzp0Dv/vd7wLz588PrF69OjBv3rzAkiVLyjTPwYMHBxo3bhyYM2dO4OOPPw5069Yt0L1795ivX7zWsVevXm5fL1261I1X2kMOOSRsH/Xo0cP9Vug+LCgoqBDrN2bMmMCRRx4ZtuybNm0Km0+i9mE81i8/Pz9s3d566y296TMwd+7chO+/8qzjDz/8ELZcOg4zMzPdMZnMeyEBUBno5n3VVVcFhwsLCwMNGzYMjBs3Lmp67Vzt0OIUFRUFcnJyAhMmTAgLGqpVqxZ48skn3fDy5cvdgf7RRx8F07z++uvuBrRu3bpAKq9fNAsXLnTr891334XdPP/yl78EEiEe66gA6Kyzzip2errtQ63riSeeGDYuUfuwrOs3derUQPPmzQO7d+8u9zx1TlapUiXw9NNPB9OsWLHC7VMF9RVhHSPphqrlf+edd8JuoNdcc00g3uKxfgqAdGMsTiL3YSL2n/ZTixYt3D0k0fuvPOsYSdeKmjVrBgPwZN0LKQIrpd27d9uiRYtctlzoO8M0vGDBgmK/p+y5Jk2auJe+nXXWWbZs2bLgtNWrV9uGDRvC5ql3mCg70Zun/iqrr3PnzsE0Sq/f/vDDD1N6/aIpKChwWZ9ap1AqLlHWdIcOHVzRym+//WaxFs91nDdvnitaOOyww2zIkCH2ww8/BKel0z5UkcGrr77qsp4jxXsflmf9XnrpJcvLy3NFBfXr17c2bdrYXXfdZYWFhaWep6arODc0jYpXDjnkkBK3a6qsY3HnodSuXTts/OOPP25169Z18xg1apTt2LHDKsr6qbhExezNmzd3xSRr1qwJTkvUPkzE/tNvzJgxwy655JI9XtYd7/23L9eZUP/4xz+sX79+rmpEMu+FvAy1lDZv3uwOSB2goTS8cuXKqN/RzfCf//ynHXXUUe6CM3HiROvevbu7wehlq9rh3jwi5+lN01/dWMN2WuXK7sLlpUnV9YukMnjVCerfv3/Yy++uvvpq69ixo1un999/352469evt/vuuy9m6xfPdVR9n3PPPdeaNWtmX3/9td1888126qmnuhM2MzMzrfbho48+6uqRaH1DJWIflmf9vvnmG3v77bfdDVF1Kr766iu78sor3c1QvdCWZp7aR1WrVt0jaA89T1N5HSMVFRXZ8OHD7eijj3Y3Ss/vf/97FwgriPjss8/cuap6Qs8991zKr59ulKrPpuNZx93YsWPt2GOPtaVLl7rjNVH7MBH774UXXnB1hlT3MFQi9l951zGU6gppvygI8iTrXkgAFEeK6vXx6MZyxBFH2IMPPmi33367+Wn9dDJfcMEFrqLb1KlTw6aNGDEi+H/diHWhuuKKK1zFzWR3BV+addSTjEcVvrUOLVq0cLlCJ510kqXTMapgSRfqyIrSqboPdbPXRfOhhx5ywWinTp1s3bp1Locq2s2lIirrOiqnQTeg+fPnh42//PLLw45jVUbV8augXsdzKq+fHjhCjz8FRAoGnnrqqai5lRV5/ylw0Poq0KkI+y/a8mv5cnNzLdkoAislZSvq4IxsNaDhnJycUs2jSpUqrnhAEb543ytpnvqbn58fNl1FC6oNX9rfTdb6RQY/3333nb311lthuT/R6OKldfz2228tluK5jqGUBa/fCt3PFX0fyrvvvuueKP/4xz/udT7x2IflWT/dBNSiRt/zKMDTE6Oy8kszT/1VWj11l/Z3U2kdQw0dOtReeeUVmzt3btQcvsh9KCUd66m2fh7l9Og7oedgIvZhvNdP19B///vfpT4HY73/9vU6s337dps5c+YeQWmy7oUEQKWkJ1pF5nPmzAmL3DUc+gRdEmUbfv755+6AFxWZaMeFznPr1q2uPNObp/7qpFWZq0fZpfpt7wBP1fULDX5UPq8TV3VE9mbJkiWuXDcyuzNV1zHSf//7X1cHyEtT0fdh6JOb5t+uXbuk7MPyrJ+KeXQDUDrPF1984dZP8yvNPDVdgWFoGgWCqmNS2u2azHUU5bwq+Hn++efdsadrT2n2oZR0rKfK+kWr16acD2/ZE7UP471+jzzyiDunQpuPJ3L/7et15umnn7Zdu3bZRRddFDY+affCclWd9ik1/VOt9OnTp7sa6Zdffrlr+uc1G/7DH/4QGDlyZDD92LFjA2+88YZrLrxo0aJAv379AllZWa7ZYGjTP83jxRdfDHz22WeuhU20pn8dOnQIfPjhh66ZZKtWreLWhDqW66dWDWrKePDBB7smnaHNINX0U95//33XIkDTNZ8ZM2YEDjrooMCAAQNivn7xWMdt27YFrr/+eteSRM1X//3vfwc6duzo9tHOnTsr/D70qDntfvvt51qsRErkPizr+q1Zs8a1Nhk6dGhg1apVgVdeeSVQr169wB133FHqeXpNqNVs/O2333ZNqPPy8twnHuKxjkOGDHGt/dS8OvQ83LFjh5v+1VdfuW4MtG46jnU9Usuk4447rkKs33XXXefWTcv+3nvvue436tat61q7JXofxmP9vJZWWv6bbrppj99M5P4rzzp6jjnmmEDfvn0D0STjXkgAVEYPPPCAOwjVB4KaAqo/gtBmiGoS7Rk+fHgwbf369V0/D4sXLw6bn5r/3XLLLW66DqiTTjrJnQSRfShoJ9eoUcP12TJo0CB340319dOJqBg72sfrv0I33a5du7qLs268RxxxROCuu+4KCx5SeR11AznllFPcDV/NbNUcXH1iRPalU1H3oefBBx8MVK9e3TVNjZTofViW9fMCNC2fzi/dFO68887Ab7/9Vup5ii7CV155ZeDAAw90geA555zjAoh4ifU6Fnceev2w6Casm2Xt2rXdPNS/yg033BC3fmRivX66qTZo0MDNr1GjRm5YQUGy9mE8jlE9qGifRd4fkrH/yrOO6gtOy//mm28GoknGvTBD/5Qv7wgAAKBiog4QAADwHQIgAADgOwRAAADAdwiAAACA7xAAAQAA3yEAAgAAvkMABAAAfIcACEBMZWRkuDdWp6qmTZvapEmTkr0YAJKMAAhAmVx88cV29tlnFzt9/fr1YW/njrXjjz/eBVnFfTQdAPam8l5TAEAZxPoN6ZGee+654Fuy165da7m5ue5Fu0ceeaQbV9wLMmNFvx3v3wAQf+QAAYhbEdi3337rhhW0nHDCCbbffvu5t8kvWLAg7Dvz58+3Y4891qpXr26NGze2q6++2rZv3x51/rVr13ZBlj4HHXSQG1enTp3guLlz57pgqFq1aq6469577y1xefWG6T/+8Y9uXrVq1bITTzzRPv300+D0W2+91dq3b29///vf3Vurs7Ky3PjZs2fbMcccYwcccID7/dNPP929gdxT2nV/7733XK6Vph944IHWq1cv+/HHH900vel63Lhx7ne1bfT9Z555pox7BEA0BEAA4u5Pf/qTXX/99bZkyRI79NBDrX///vbbb7+5aQoaevfubX369LHPPvvMZs2a5QKioUOHlvl3Fi1aZBdccIH169fPPv/8cxe83HLLLTZ9+vRiv3P++edbfn6+vf766+77HTt2tJNOOsm2bNkSTPPVV1/Zs88+64IZrYMoQBsxYoR9/PHHNmfOHKtUqZKdc845Lmgp7bprnH6rdevWLjDSep9xxhlWWFjopiv4eeyxx2zatGm2bNkyu/baa+2iiy6yd955p8zbBkCEcr9GFYAv6S3PZ511VrHTdVl5/vnn3f9Xr17thv/+978Hpy9btsyNW7FihRu+9NJLA5dffnnYPN59991ApUqV3Bu8S+LN/5NPPnHDv//97wMnn3xyWBq9Fbt169bB4SZNmgT+8pe/BH9Hb5WOfHN9ixYtAg8++KD7/5gxYwJVqlQJ5Ofnl7gsmzZtcsvy+eefl3rd9Wbro48+Our8tEx6a7neFB5K20vfA7BvyAECEHdHHXVU8P8NGjRwf5XrIipuUg5NjRo1gh8VAyknZfXq1WX6nRUrVtjRRx8dNk7DX375ZTBXJZR+++eff3ZFWKG/r98NLc5q0qRJsLjNo3kqN6d58+au6EzFbbJmzZpSr7uXAxSNcp127NhhJ598ctiyKUcodNkAlA+VoAHEXZUqVYL/V70Y8YqKFIBcccUVrt5PpEMOOSSuy6XfVlAyb968Paapbo9n//3332O6iqoUGD388MPWsGFDtz5t2rQJVtAuzbqrXk9JyyavvvqqNWrUKGya6jcB2DcEQACSSnVuli9fbi1bttzneR1xxBGuUnEoDavuTWZmZtTf3rBhg1WuXDmYg1MaP/zwg61atcoFP6q8Laq/U1bKHVL9obFjx+4xTfWCFOgoR6lHjx5lnjeAkhEAASizgoKCYGVgj4qR1IKrrG666Sbr1q2bq/Ss1ljKbVFA9NZbb9nkyZPLNK/rrrvOunTpYrfffrv17dvXVSzWPP72t79FTd+zZ0/Ly8tz/Rrdc889LlD6/vvvXa6LKjR37tw56vfUWkvr+9BDD7kcJAUpI0eOLPO6jxo1ytq2bWtXXnmlDR482DWvVys2VcyuW7euqzytis/KMVKLM213BXQqchs4cGCZfw/A/xAAASgzFRl16NAhbNyll17qmoqXJxdErZrUWkq5KapH3aJFCxfAlJVydJ566ikbPXq0C4IUnNx2222u88ZoVCT12muvud8eNGiQbdq0yTWlP+6446x+/frF/o5afM2cOdMV26nY67DDDrP777+/zJ0wKuB688037eabb3b9GalIrGvXrq5ukWgdVPdIrcG++eYbVyyndVR6APsmQzWh93EeAAAAFQqtwAAAgO8QAAEAAN8hAAIAAL5DAAQAAHyHAAgAAPgOARAAAPAdAiAAAOA7BEAAAMB3CIAAAIDvEAABAADfIQACAAC+QwAEAAB85/8B/0Z12r7meb8AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl8AAAHHCAYAAACBYj2uAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAARQVJREFUeJzt3QmYFNW5//F3GJZhHTZhAFEEFBxRkNUxrhEEFwTjgkSEcBXjhiaoEVwYlySooCFRxBWNer3y1xC3IC4gBgVFQRTEDQUBZVVkEAV0pv7P79xbne6me6YHeqq7p7+f52mYrjrdderU9vapc07leJ7nGQAAAAJRI5jFAAAAgOALAAAgYNR8AQAABIjgCwAAIEAEXwAAAAEi+AIAAAgQwRcAAECACL4AAAACRPAFAACQbcHX999/bxdccIEVFBRYTk6O/e53v3PTN2zYYGeeeaY1a9bMTZ88ebJlinjrVF1onW688UbLRMcdd5x7oWpp/9B+kk1mzZpl3bp1s7y8PLfu3333nZv+2GOPWefOna1WrVrWuHHjvdoPM/nYC9JvfvMba9CgQaqzAQQbfD3yyCPuJBHv9dZbb4XS/vnPf3bpL774YneSOu+889z03//+9/bSSy/ZuHHj3PQBAwYkPZ9a9jPPPFMl3xtrnWJdnCp6JTNQeOKJJ1IaxH799dduvZcsWVKly1m+fLlbzqpVq6p0OYDvm2++sbPPPtvq1q1rU6ZMccd9/fr17eOPP3aBQIcOHeyBBx6w+++/P+0LLdXnifLs2LHD/vKXv1ifPn0sPz/fBboHHXSQXXbZZfbpp59adXDPPfe460eQ2rVrF/caVBXX3mTQ+T08nzVq1LCmTZvaSSedZAsWLEjr8s+pqmc7KuMjR460m2++2Q444IDd5mtjNm/e3P19xBFHWM2aNe2NN96ISKNao759+9rjjz9uVUW/jFS7luyCjrdO4T744AP3Cq8tU7B2+umn269+9avQ9JYtW1q/fv2Skq9TTz3Vli1bttdBiXb04uLiSv8Cf/fdd61Xr1728MMPuwtSVXn66aftrLPOstdee2234HXXrl3u/9q1a1fZ8mH2888/u5cujtlS66WT/iuvvOLOW757773XHdefffaZdezYca/3QwUfOrfoVVWSdZ5Its2bN7trx6JFi1weVc46h3/yySf25JNP2vr160PlqvOLzgM6r2aaLl26uOvj3LlzAw2+mjRpYldeeeVu81q3bm2//OUvLd2sWrXKxRdDhw61k08+2UpLS10AruDpxx9/tHfeeccOPfTQtCz/qjt6/49ORj179iw3zcaNG62wsDDmdL+KPtPEW6dwhx12mHuFn1h0kta0YcOGBZDL7ETQFYyqDhDS8ZiX6HNWvOl7uh9mSzAbiwKq9957zwVVZ5xxRsS8W265xa677rpA81NWVuaCvUzYJvohpPyWt9+1adNmj64927dvd7W8VVE+2+N8d7ju3btH5Pvoo492scfUqVNdIJaWvCry8MMPq0bNe+edd+Kmee2111ya6Jf/2eiXb8uWLd4VV1zh7bvvvl7t2rW9Dh06eLfeeqtXWloa8f16P3nyZK9Lly5enTp1vObNm3v9+/cP5SnWMkaMGFHuem3YsMH7r//6L69FixbuOw877DDvkUceqXCdVq5cWWGZbdq0yaUtLi6OmP7RRx95Z5xxhtekSRO3zB49enjPPvtsRJ60bscee6xXVlYWmv7ZZ5959erV884++2z3XvOj87X//vuXm6cdO3Z4v/vd79z3N2jQwBs4cKC3Zs2amPlcu3atN3LkSFc22i6FhYXeQw89lND29r311ltuGzVq1MirW7eud8wxx3hvvPHGbvnSsrQdWrVq5ZbVrl0776KLLvJ27twZd//R8v1y0Ksy21W0DfU9EydO9O677z6vffv2btk9e/b0Fi5c6CWion1X2++4445z5a08+bRe2o+1zO+//95NU/krP9o/zjrrLK9hw4Ze06ZNvcsvv9z78ccfI5Y7bdo07/jjj/f22Wcft9yDDz7Yu+eee3bLn/aHU045xZs3b57Xq1cvVxYHHHCA9/e//z0i3a5du7wbb7zR69ixo0uj5f7iF7/wXn755VAaP3/hfvrpJ+/mm28OlZ2WN27cOLef7Uk+4qno2K9MXmTmzJneUUcd5Y4nHQcnn3yyt2zZstD8WMeWziX6zujp/nETaz/UdtP8Aw880OW7oKDAO/30070VK1aE0uzJsRd+/E2fPt374x//6LVp08Yt45e//KU7V5S3LhWdJ4LYrjo3KC+jRo3yEqHyr1+/viubQYMGub+1H1x55ZXezz//HJFWx3RRUZHbj/Py8rzu3bt7Tz311G7fqeVfeuml3uOPP+7KuGbNmt4///nPSn2HPPbYY279dY5r3Lixd/TRR3svvfRSqIyiyz98P0nk+hd+rvrLX/7itkuNGjW89957L255+dsm0XLVPnnSSSe540HlW1H5LF682BswYIA7T9WvX9/tdwsWLIj4bv/cPXfuXO/iiy925yuVTzzh6xlO50hNP/HEEyt9HkxG+SeiyoOvV1991QUV4a/Nmze7NOvXr3c7oQ6Ibt26ub/10klN/+vz/fr1C02X7du3uwtjs2bNvGuvvda79957veHDh3s5OTmuQML95je/cd+hHUQn4kmTJrmd5K677nLz9Z06+LXj+8uYP39+3HX64Ycf3MaqVauW9/vf/97729/+5j6rZej7y1sn/4JZ2eBLZZGfn+925Ntuu827++67XUCi9Z0xY0YonQ5yffavf/2re68dQRfDli1bhspbF0blSXnz8+UfGPEMGzbMfe+vf/1rt+xf/epXrvyj86n11s7Ytm1bdxKeOnWqd9ppp7l0Ovj9NJqnaRdeeGEoD59//rmbP3v2bLcz6wR2xx13uM9pWZr29ttvh5b11Vdfea1bt3YXQgWG2gduuOEGt210YOj7FIBoOdpH/OVo+bEueols1/AD/fDDD3dBh7bH7bff7spT666ApDyJ7rtffPGFO6HpousbO3asS/f666/vFtwceuihLijW9vG313nnnRexbJ3odTyoTLX/66SkdPpM9ImnU6dObr9RHjVfFxEtOzzY0DxN04XwgQcecNtr6NCh7iQUnb/oE7emnXnmmd6UKVPc+uv94MGD9ygf8VR07FcmL48++qhbri4c+ry2u4J9XRT8H1U6trRP6/Pax/1ziY4vbUdN1zGh6e+//37M/VABwQknnODSnnPOOW6dJ0yY4C5SzzzzTCjdnhx74cGX9l/9gNM8BdA6jnr37h1KtyfniSC2q9LrO//973+Xmy48TwqCDjnkEPfDSuWiH7H6jugLrsrvkksucfm58847XXko3QsvvBCRTtN0rtDF+6abbnLr6gc0iX6HylzTjzzySBc06Jyt8+s111zj5qus9V2dO3cOlb//oybRc4h/rtJ1Q4GXjktt7y+//DJueWnb6LwQfb3WS+fI8HLVdVNBh/5WHnSMlFc+2rYKuPRj+ZZbbnH5UdCt71FQHR03KN86NnS8hZ9TEg2+tDxNHzJkSKXPg8ko/7QIvmK9VOCJRNx+FB1OG04b8dNPP42YrotTbm6ut3r1avd+zpw57vO6CEcLrx3Sd1VU2+XTSVzfqajepwuuggVdLEtKSipcp8oGXzoZ6+Ia/gtS+deBq1/H4XTx04lUZaOdUd8VftIW5amiX7G+JUuWuO/QCSWcThTR+Tz//PPdgeUHej5dRBQ8+gevah6ia7v8ddL6qHYifPvoczpIFYT7tLPrV1ysWlX/s34w6td2hYu+6CW6Xf0DXQfet99+G0qrWkhNf/7558stz0T3XVHNmp8nnZw0X4FmOD+40YU2nLaXpvsXeb8co6msdWKO9asv/AK3ceNGd8yqxsDXtWvXCvfv6ODL358uuOCCiHRXXXWVm65jtrL5iCWRYz/RvGzbts0FWdG1LQp4tF+HT49X2++Xg47v8vZD/SpXOl244+Vb9vTY84MvXRxVk+rTxV/Tly5dulfniarern4Qqx9YifADQgWk4fzgM1z08aHjX7WmCnzD6ft07vnwww93W14i36EaRn1e6xJdUxK+jRUwRteKVuYc4p+rdAdB5ZuIWDU+/ks/AqLLVcuMFq98FITrR7T/Q1u+/vprVwumyoToY0i1zNG1k7H466lAT8eXjku/VlXTo2seEz0P7m35J6LKh5pQrx81QA1/vfjii3v8fU899ZS7n6uGgWoj5b/U8FKN7f7973+7dP/4xz9CjcKj7Wn395kzZ7pOAGrc51PX8csvv9w16nz99dctmb799lubM2eO60G1bdu20LqqV1X//v1dA96vvvoqlP7uu+92vX/UgeCGG25wPSwHDRq0x8vX+orWL1z0sBk65lTeAwcOdH+Hbxflc+vWrbZ48eJyl6Xej1qfX//61279/M/rfv8JJ5zgtqvaD+il3qlaVqy2hHuybSu7XYcMGeL2P5/2R/niiy+Ssu/KhRde6Mpu9OjRbjuqp5x60MZy6aWXRrzXZ/z18qkHnk/bQ8s99thjXZ71PpzaKvrrJPvss4916tQpYv3UfunDDz902yxRfn7GjBkTMd1v4Puvf/2r0vmIJZFjP9G86Hyl4SK0b4Rvs9zcXNfbTh06kkX5ViNff/vFyne0PTn21BEqvN1PovtvqrdrSUmJ+79hw4aVyt9FF10U8V7Ljl5W+PGxZcsWV25KF+u8peMmVnveRL5D5y6dw8aPH+965lX23FWZc4ioXZzKN1Hap6Ov13qFnxt9ap8cS3T5KF8vv/yyDR482Nq3bx+a3qpVK3e+V6c0f9v6Ro0a5Y6xROlY13rqPK7y+eijj+yOO+5w18JwlTkPJqP8y1PlrWF79+5dYYP7ytDJXj0E4+1QfuPWzz//3PXQULfTZPnyyy/twAMP3O2gOfjgg0Pzk2nFihXuhKpASq9466tGkqJ1/dvf/uZ6+amHpP7eG1ofrasu/OF0ogy3adMmd4FSF/p43ej97RKPfxEfMWJE3DQ6ONR4UweqeqOkarvut99+Ee/9QEwn3GTsu76HHnrIlb0+N3/+/IgTRzjlPZw+o3UJ76n25ptvuhOUul//8MMPu5WrgvZ46+evY/j6qRezAnt18de2UA80BYnhHUji7U/hPf5EJ0wFcxWVc6x8xJLIsZ9oXvz9Ml5Pr0aNGlmyKN86tirTSWFPjr093X9TvV39stYP0UQ7Yqmhd/TxFmtZL7zwgv3xj390PwJ37txZbkAUq/d+ot+hbayyqqgzVrLOIfHyGo+C//CeuvFoH913331jzotepvZRnXOirxv+OVbB6Jo1a+yQQw6xPc23fqzquqeewKqw0LVPwVC0ypwHk1H+5cm4rkjaUBp24Q9/+EPM+boYVBdaV7nqqqvcr9hYok94GhdNdHJZu3ZtIL1F/Xyqt0m84Km8i3L4d0ycONENUhmLupSrNjDV4v0iq2jUlsruu+rm7J/Ely5dakVFRQnlL/qCoRO+ag81yOedd95pbdu2dTUfqrHQeEl+2Vdm/Y455hj3vc8++6z7Vfvggw+679KwChpcuDL5S3Y5V0ZFefHLRmN2KZiIlurenHty7FVVuVb1dtX+6x8L4TVne7KscPPmzbPTTjvN7dPqGacaGdV8azgcjXcWLdaPoMp+x56q7Dkk3g+2vVWnTp3dfqwmc5l1K/kd+gHqB40agkTbfezYsXb88ceHKn8qex6s6vgj44Iv/arXraCKonOlUyCii3V5v4Arc5tq//33d1GvNkD4jqdBFP35yeRX0eogTuTXiMYZ0kVQO8Z///d/u5Px22+/HXGBqOz6al39X+Q+jakTTr8CdCtAvzQqyme85fu1a/p1W953aFlKozGI9mQ5qdyuie67sm7dOnf76cQTT3QnCD8Aj5UX/RoL/6WoGlOti8btkeeff94Fcc8991xErcPe3jLTcaVbWHppvXTh0bhv8YIvf39Sfv1aRf9JFqq9SWY5V3TsJ5oXf79s0aJFQtttb/Ot4/Wnn35yx3wiKnPsVcaenCeqervq1uqECRPcuI+JBl+J0G1b1ZBpn1FQ4VPglOzv0DZWWWkQ6Hg/Mis6TyZ6DkkX2kfr1au323XDP8fqnKtAKJk05IgGNL7++uvddbGy58Egyj8tHi9UGWr/pCpDv4YnnA50jWXi3+vWL6mbbrqp3F9YGj/EfwRIRTSImwbxmz59emialnfXXXe5WhndO04mnfA1QOh9993nLsbRVJ3r0zrooqfbvGobpCBMbQ2i2wlpfRO5ty0aJ0Wib19Gj3ytXxkqb52AYgVF4fn0x2uJLvMePXq4HXvSpEkxB0X0v0MHqtoO6EDSgK3xtm285aRyuya67/ptHnSS1q1H3U5SAH3++efHrB1Qu8pwynf49vN//Yd/VvtAZS4u0dQuL5zKSbWw4bdbYpVzrP1Hv0LllFNOsWRI5NhPNC8KeBXs6zhSUFTevp2MfKv9iNpuxst3tMoce5VRmfNEUNtVNb+6va1zW6ynkqhJgn6kVJbKUBfb8NtUumVfmSefJPodOnfpHKbb9tE1LYlclypzDkkXKhv9iFQteXhTiA0bNrhawaOOOiqpt+9Fd3x++9vfunLyn6ZSmfNgEOVf5TVfalzv1yCEO/LIIyMa3yXq6quvdpGrqhY14J4u2mqUrapoDbynjav71qpuVBsUBQ76RaaDVju7qoc1T4+iEH3+1VdfdScKtRNRDYIaHca7r6xASMvVCMuqWdAydR9ZJ57KNgRNhC6s2jk1Sq8uyCoz7bTaAXRb8f3333fprrjiCndB1LpoJ9P6KhhTGwS1zenatWtofRVkqHGsRprXRVO/KGPRLzM1tFQ1unZSbbPZs2e7mpVot956q/sFobJTPtWmQTUPCgCVJ/92oQIsHRi6PaXy0k6uz6jcdVJVwKB7/6pNUVs2dSjQ9+rgVMAluhDqVpeCIm0T/dpWcKrGkGq8qe9X3lUOt912m8u7fo2q3Y4C2lRt10T3XZ0M1EhZT13w21UooNKtJQ0aeMkll0R878qVK90tD21z7ReqGVBDVn+b+7Vn2s46ISm41a9ClUWsoD4R2r76YaB1UO2SAmGtg39cxaL8qDZWwaROVNp+CxcutL///e/uoqTjMhkSOfYTzYv2O5W5vk8DOZ5zzjnul/zq1avdNvrFL34RM1jaE8OHD7dHH33UHZvKi2p3tH/o+NE2j9d5JtFjrzIqc54IaruKykf7s54AovzoNpLOIdrOGuFe+7N+wFWGgkOd/7Wf6LhRux2dd/VjIvwJJMn4Dr1XrYwGhNX21Xro3KSR2HX9Uc2eX/7a73T+1md0rOr8leg5ZE/pfBvriTLa/tqWe0rroYb7upZpX65Zs6Y75+rH2u23325VQddEnb91fGjfqMx5MJDy91Iw1ET0UAOVGWrC7/6tAfw01pK6r2o8Gg29oLF8wsdaUldVDbmg8TqUTmOPaNyfRYsWhdJ8/PHHrqurBrtLdJBVDWaoZeo7NQxE9LAJ5a3Tngyyqu65Gl5BAy5qLCoNjnjqqad6Tz/9dMRQBxprKZyGSFA+NCyAXy4ab0xDRaj7vD5TUXdyDfqoLvsaXkFdbMsbZFVlo+2l8YaUT+VXQ2Xcf//9EemUX38Avuh9QWPCaCwxLU/dz5U/DRKrMcDCabwalYm2qdKpq7CWHd6FXuNPabq6ACcyyGpF2zXemDISqzxiqWjfVdlqeACVczR1T9c20Dhg4UMYLF++3I2vpG7bGoj3sssu222Q1eeee86NT6NxjzRGlcaq8oc2CB8AON5+G11mGqRT4xhpP9Kxo2PsT3/6U8TxF2+QVXUL1/Ah2ke0r5Q3GGdF+YgnkWM/0byI9h11Sde2URlqjCONF/Tuu+8mbagJvyv8ddddF8qTjiFt2/Au+nt67PlDTUR3v/f36/D9vbLniaC2q19GOl40nICGgtH21TA1o0ePjhiM1h8MNFqs/VID0voD22qfUVnEShfvmlSZ7xAdexryQml1zGrdX3nlldB8DZmgctIxrc+Hl00i17/yzlV7MtRE+PaPV64VlY8GWdUxpG1Wr149N9hp9LiaiQzOHq6i9dQxqvO/v18keh7c2/JPRJU92xFA1VL7Kt1a062lvfm1CwAIVsa1+QIAAMhkBF8AAAAEXwAAANUTbb4AAAACxG1HAACAABF8AQAABCjjHi+0tzTY4tdff+0GzqzMIzQAAEDqeJ7nHqyuAWnjPVsyU2Rd8KXAK9nPkQIAAMFYs2ZN6OkfmSrrgi//UTHaeMl+nhQAAKgaJSUlrvKkKh7lF7SsC778W40KvAi+AADILDnVoMlQZt80BQAAyDAEXwAAAAEi+AIAAAgQwRcAAECACL4AAAACRPAFAAAQIIIvAACAABF8AQAABIjgCwAAIEBZN8I9gOqptMyzhSu/tY3bdliLhnnW+4Cmllsj80fCBlD9EHwByHizlq2zm55fbuu27ghNa5WfZ8UDC21Al1YpzRsAROO2I4CMD7wufnxxROAl67fucNM1HwDSCcEXgIy+1agaLy/GPH+a5isdAKQLgi8AGUttvKJrvMIp5NJ8pQOAdEHwBSBjqXF9MtMBQBAIvgBkLPVqTGY6AAgCwReAjKXhJNSrMd6AEpqu+UoHAOmC4AtAxtI4XhpOQqIDMP+95jPeF4B0QvAFIKNpHK+pw7pby0Z1IqbrvaYzzheAdEPwBaCaiFf3BQDpJS2CrylTpli7du0sLy/P+vTpYwsXLoyb9pFHHrGcnJyIlz4HILsHWV1fEtmjcUMJg6wCSE8pD76mT59uY8aMseLiYlu8eLF17drV+vfvbxs3boz7mUaNGtm6detCry+//DLQPANIDwyyCiATpTz4uvPOO23UqFE2cuRIKywstHvvvdfq1atn06ZNi/sZ1XYVFBSEXi1btgw0zwDSA4OsAshEKQ2+du3aZYsWLbK+ffv+J0M1arj3CxYsiPu577//3vbff39r27atDRo0yD788MOAcgwgnTDIKoBMlNLga/PmzVZaWrpbzZXer1+/PuZnOnXq5GrFnn32WXv88cetrKzMjjzySFu7dm3M9Dt37rSSkpKIF4DqgUFWAWSilN92rKyioiIbPny4devWzY499libMWOG7bPPPnbffffFTD9hwgTLz88PvVRbBqB6YJBVAJkopcFX8+bNLTc31zZs2BAxXe/VlisRtWrVssMPP9xWrFgRc/64ceNs69atodeaNWuSkncAqccgqwAyUUqDr9q1a1uPHj1s9uzZoWm6jaj3quFKhG5bLl261Fq1ahVzfp06dVzvyPAXgOo3yGpBfuSQM3rPIKsA0lHNVGdAw0yMGDHCevbsab1797bJkyfb9u3bXe9H0S3GNm3auNuHcvPNN9sRRxxhHTt2tO+++84mTpzohpq44IILUrwmAFIZgPUrLHC9H9UIX23BdEuSxwoBSEcpD76GDBlimzZtsvHjx7tG9mrLNWvWrFAj/NWrV7sekL4tW7a4oSmUtkmTJq7mbP78+W6YCgDZS4FWUYdmqc4GAFQox/M8z7KIejuq4b3af3ELEgCAzFBSja7fGdfbEQAAIJMRfAEAAASI4AsAACBABF8AAAABIvgCAAAIEMEXAABAgAi+AAAAAkTwBQAAECCCLwAAgAARfAEAAASI4AsAACBABF8AAAABIvgCAAAIEMEXAABAgAi+AAAAAkTwBQAAECCCLwAAgAARfAEAAASI4AsAACBABF8AAAABIvgCAAAIEMEXAABAgAi+AAAAAkTwBQAAECCCLwAAgAARfAEAAASI4AsAACBABF8AAAABIvgCAAAIEMEXAABAgAi+AAAAAkTwBQAAECCCLwAAgAARfAEAAASI4AsAACBABF8AAAABIvgCAAAIEMEXAABAgAi+AAAAAkTwBQAAECCCLwAAgAARfAEAAASI4AsAACBANYNcGABUldIyzxau/NY2btthLRrmWe8DmlpujRwKHEDaIfgCkPFmLVtnNz2/3NZt3RGa1io/z4oHFtqALq1SmjcAiMZtRwAZH3hd/PjiiMBL1m/d4aZrPgCkE4IvABl9q1E1Xl6Mef40zVc6AEgXBF8AMpbaeEXXeIVTyKX5SgcA6YLgC0DGUuP6ZKYDgCAQfAHIWOrVmMx0ABAEgi8AGUvDSahXY7wBJTRd85UOANIFwReAjKVxvDSchEQHYP57zWe8LwDphOALQEbTOF5Th3W3gvzIW4t6r+mM8wUg3TDIKoCMpwCrX2EBI9wDyAgEXwCqBd1aLOrQLNXZAIAKcdsRAAAg24KvKVOmWLt27SwvL8/69OljCxcuTOhzTz75pOXk5NjgwYOrPI8AAADVIviaPn26jRkzxoqLi23x4sXWtWtX69+/v23cuLHcz61atcquuuoqO/roowPLKwAAQMYHX3feeaeNGjXKRo4caYWFhXbvvfdavXr1bNq0aXE/U1paaueee67ddNNN1r59+0DzCwAAkLHB165du2zRokXWt2/f/2SoRg33fsGCBXE/d/PNN1uLFi3s/PPPr3AZO3futJKSkogXAABAVgZfmzdvdrVYLVu2jJiu9+vXr4/5mTfeeMMeeughe+CBBxJaxoQJEyw/Pz/0atu2bVLyDgAAkJG3HStj27Ztdt5557nAq3nz5gl9Zty4cbZ169bQa82aNVWeTwAAgLQc50sBVG5urm3YsCFiut4XFBTslv7zzz93De0HDhwYmlZWVub+r1mzpn3yySfWoUOHiM/UqVPHvQAAACzba75q165tPXr0sNmzZ0cEU3pfVFS0W/rOnTvb0qVLbcmSJaHXaaedZscff7z7m1uKAAAg3aV8hHsNMzFixAjr2bOn9e7d2yZPnmzbt293vR9l+PDh1qZNG9d2S+OAdenSJeLzjRs3dv9HTweQXUrLPB4vBCAjpDz4GjJkiG3atMnGjx/vGtl369bNZs2aFWqEv3r1atcDEgDimbVsnd30/HJbt3VHaFqr/DwrHljIg7UBpJ0cz/M8yyIaakK9HtX4vlGjRqnODoAkBF4XP77Yok9kOf/3/9Rh3QnAgGqgpBpdv6lSApDRtxpV4xXrF6Q/TfOVDgDSBcEXgIy1cOW3Ebcaoynk0nylA4B0QfAFIGNt3LYjqekAIAgEXwAyVouGeUlNBwBBIPgCkLF6H9DU9Wr0G9dH03TNVzoASBcEXwAyVm6NHDechEQHYP57zVc6AEgXBF8AMtqALq3ccBIF+ZG3FvWeYSYApKOUD7IKAMkIwPoVFjDCPYCMQPAFoFrQrcWiDs1SnQ0AqBC3HQEAAAJE8AUAABAggi8AAIAAEXwBAAAEiOALAAAgQARfAAAAASL4AgAACBDBFwAAQIAIvgAAAAJE8AUAABAggi8AAIAAEXwBAAAEiOALAAAgQARfAAAAASL4AgAACBDBFwAAQIAIvgAAAAJE8AUAABAggi8AAIAAEXwBAAAEiOALAAAgQARfAAAAASL4AgAACBDBFwAAQIAIvgAAAAJE8AUAABAggi8AAIAAEXwBAAAEiOALAAAgQARfAAAAASL4AgAACBDBFwAAQIAIvgAAAAJE8AUAABAggi8AAIAAEXwBAAAEiOALAAAgQARfAAAAASL4AgAACBDBFwAAQIAIvgAAAAJE8AUAABAggi8AAIAAEXwBAAAEiOALAAAgQARfAAAAASL4AgAAyLbga8qUKdauXTvLy8uzPn362MKFC+OmnTFjhvXs2dMaN25s9evXt27dutljjz0WaH4BAAAyNviaPn26jRkzxoqLi23x4sXWtWtX69+/v23cuDFm+qZNm9p1111nCxYssA8++MBGjhzpXi+99FLgeQcAAKisHM/zPEsh1XT16tXL7r77bve+rKzM2rZta6NHj7axY8cm9B3du3e3U045xW655ZYK05aUlFh+fr5t3brVGjVqtNf5BwAAVa+kGl2/U1rztWvXLlu0aJH17dv3PxmqUcO9V81WRRQ3zp492z755BM75phjYqbZuXOn22DhLwAAgKwMvjZv3mylpaXWsmXLiOl6v379+rifU9TboEEDq127tqvxuuuuu6xfv34x006YMMFFyv5LtWoAAABZ2+ZrTzRs2NCWLFli77zzjv3pT39ybcbmzp0bM+24ceNcsOa/1qxZE3h+AQAAfDUthZo3b265ubm2YcOGiOl6X1BQEPdzujXZsWNH97d6O3700Ueuhuu4447bLW2dOnXcCwAAwLK95ku3DXv06OHabfnU4F7vi4qKEv4efUZtuwAAANJdSmu+RLcMR4wY4cbu6t27t02ePNm2b9/uho+Q4cOHW5s2bVzNluh/pe3QoYMLuGbOnOnG+Zo6dWqK1wQAACADgq8hQ4bYpk2bbPz48a6RvW4jzpo1K9QIf/Xq1e42o0+B2SWXXGJr1661unXrWufOne3xxx933wMAAJDuUj7OV9Cq0zghAABki5JqdP3OyN6OAAAAmYrgCwAAIEAEXwAAAAEi+AIAAAgQwRcAAECmBl87duywSZMmJfMrAQAAsjv40phcL7zwgr388svuodjy008/2V//+ldr166d3XrrrVWRTwAAgOwbZPWNN96wU0891Y21kZOT40aaf/jhh23w4MFWs2ZNu/HGG91o9QAAAEhCzdf1119vJ598sn3wwQfusUDvvPOOnX766fbnP//Zli9fbhdddJEbdR4AAABJGOG+WbNmNm/ePCssLLQff/zRGjRoYDNmzLBBgwZZpqhOI+QCAJAtSqrR9btSNV9btmyx5s2bu79Vw1WvXj3r0qVLVeUNAACg2qn0g7V1e1EPwBZVmn3yySfuYdfhDjvssOTlEAAAIFtvO9aoUcM1tI/1EX+6/vd7Qaaj6lRtCQBAtiipRtfvStV8rVy5supyAgAAkAUqFXztv//+VZcTAACALFCpBve333676+Xoe/PNN23nzp2h99u2bbNLLrkkuTkEAADI1jZfubm5tm7dOmvRooV7r3uuS5Yssfbt27v3GzZssNatW9PmCwAAJFVJNWrzVamar+g4rRJxGwAAAJL9YG0AAACUj+ALAAAgnQdZffDBB91jheTnn3+2Rx55JDTqvRrcAwAAIEkN7tu1a+cGUc3k8cCqU4M9AACyRUk1un5XquZr1apVVZcTAACALFCpNl9z5syxwsJCF31GUyR6yCGH2Lx585KZPwAAgOwNviZPnmyjRo2KWd2nqsDf/va3dueddyYzfwAAANkbfL3//vs2YMCAuPNPPPFEW7RoUTLyBQAAUC1VKvjSCPa1atWKO79mzZq2adOmZOQLAACgWqpU8NWmTRtbtmxZ3PkffPCBtWrVKhn5AgAAqJYqFXydfPLJdsMNN9iOHTt2m6cHbhcXF9upp56azPwBAABk7zhfuu3YvXt394Dtyy67zDp16uSmf/zxxzZlyhT3QO3Fixdby5YtLV1Vp3FCAADIFiXZOs6Xgqr58+fbxRdfbOPGjQs9WFsDr/bv398FYOkceAEAAGTc44X2339/mzlzpm3ZssVWrFjhArADDzzQmjRpUjU5BAAAyObgy6dgq1evXsnNDQAAQDVXqQb3AAAA2DsEXwAAAAEi+AIAAAgQwRcAAECACL4AAAACRPAFAAAQIIIvAACAABF8AQAABIjgCwAAIEAEXwAAAAEi+AIAAAgQwRcAAECACL4AAAACRPAFAAAQIIIvAACAABF8AQAABIjgCwAAIEAEXwAAAAEi+AIAAAgQwRcAAECACL4AAAACRPAFAACQbcHXlClTrF27dpaXl2d9+vSxhQsXxk37wAMP2NFHH21NmjRxr759+5abHgAAIJ2kPPiaPn26jRkzxoqLi23x4sXWtWtX69+/v23cuDFm+rlz59rQoUPttddeswULFljbtm3txBNPtK+++irwvANIH6Vlni34/Bt7dslX7n+9B4B0lON5XkrPUKrp6tWrl919993ufVlZmQuoRo8ebWPHjq3w86Wlpa4GTJ8fPnx4helLSkosPz/ftm7dao0aNUrKOgBIrVnL1tlNzy+3dVt3hKa1ys+z4oGFNqBLq5TmDUBylFSj63dKa7527dplixYtcrcOQxmqUcO9V61WIn744Qf76aefrGnTpjHn79y5022w8BeA6hV4Xfz44ojAS9Zv3eGmaz4ApJOUBl+bN292NVctW7aMmK7369evT+g7rrnmGmvdunVEABduwoQJLlL2X6pVA1A96NaiarxiVd/70zSfW5AA0knK23ztjVtvvdWefPJJ++c//+ka68cybtw4V0Xpv9asWRN4PgFUjYUrv92txis6ANN8pQOAdFEzlQtv3ry55ebm2oYNGyKm631BQUG5n500aZILvl599VU77LDD4qarU6eOewGofjZu25HUdABQ7Wu+ateubT169LDZs2eHpqnBvd4XFRXF/dztt99ut9xyi82aNct69uwZUG4BpJsWDfOSmg4Aqn3Nl2iYiREjRrggqnfv3jZ58mTbvn27jRw50s1XD8Y2bdq4tlty22232fjx4+2JJ55wY4P5bcMaNGjgXgCyR+8DmrpejWpcH6vdV46ZFeTnuXQAkC5S3uZryJAh7haiAqpu3brZkiVLXI2W3wh/9erVtm7df3orTZ061fWSPPPMM61Vq1ahl74DQHbJrZHjhpPwA61w/nvNVzoASBcpH+craNVpnBAA/4txvoDqr6QaXb9TftsRAPaWBlLtV1jgejWqcb3aeOlWIzVeANIRwReAakGBVlGHZqnOBgCkf5svAACAbELwBQAAECCCLwAAgAARfAEAAASI4AsAACBABF8AAAABIvgCAAAIEMEXAABAgAi+AAAAAkTwBQAAECCCLwAAgAARfAEAAASI4AsAACBABF8AAAABIvgCAAAIEMEXAABAgAi+AAAAAkTwBQAAECCCLwAAgAARfAEAAASI4AsAACBABF8AAAABIvgCAAAIEMEXAABAgAi+AAAAAkTwBQAAECCCLwAAgAARfAEAAASI4AsAACBABF8AAAABIvgCAAAIEMEXAABAgAi+AAAAAkTwBQAAECCCLwAAgAARfAEAAASI4AsAACBABF8AAAABIvgCAAAIEMEXAABAgAi+AAAAAkTwBQAAEKCaQS4MAKpKaZlnC1d+axu37bAWDfOs9wFNLbdGDgUOIO0QfAHIeLOWrbObnl9u67buCE1rlZ9nxQMLbUCXVinNGwBE47YjgIwPvC5+fHFE4CXrt+5w0zUfANIJwReAjL7VqBovL8Y8f5rmKx0ApAuCLwAZS228omu8wink0nylA4B0QfAFIGOpcX0y0wFAEAi+AGQs9WpMZjoACALBF4CMpeEk1Ksx3oASmq75SgcA6YLgC0DG0jheGk5CogMw/73mM94XgHRC8AUgo2kcr6nDultBfuStRb3XdMb5ApBuGGQVQMZTgNWvsIAR7gFkBIIvANWCbi0WdWiW6mwAQPrfdpwyZYq1a9fO8vLyrE+fPrZw4cK4aT/88EM744wzXPqcnBybPHlyoHkFAADI6OBr+vTpNmbMGCsuLrbFixdb165drX///rZx48aY6X/44Qdr37693XrrrVZQUBB4fgEAADI6+Lrzzjtt1KhRNnLkSCssLLR7773X6tWrZ9OmTYuZvlevXjZx4kQ755xzrE6dOoHnFwAAIGODr127dtmiRYusb9++/8lMjRru/YIFC5K2nJ07d1pJSUnECwAAIOuCr82bN1tpaam1bNkyYrrer1+/PmnLmTBhguXn54debdu2Tdp3AwAAZFyD+6o2btw427p1a+i1Zs2aVGcJAABksZQNNdG8eXPLzc21DRs2REzX+2Q2plfbMNqHAQAAy/aar9q1a1uPHj1s9uzZoWllZWXufVFRUaqyBQAAUH0HWdUwEyNGjLCePXta79693bhd27dvd70fZfjw4damTRvXbstvpL98+fLQ31999ZUtWbLEGjRoYB07dkzlqgAAAKR/8DVkyBDbtGmTjR8/3jWy79atm82aNSvUCH/16tWuB6Tv66+/tsMPPzz0ftKkSe517LHH2ty5c1OyDgAAAJWR43meZ1lEQ02o16Ma3zdq1CjV2QEAAFl2/a72vR0BAADSCcEXAABAgAi+AAAAAkTwBQAAECCCLwAAgAARfAEAAASI4AsAACBbBlkFgGTZ9XOZPbZglX357Q+2f9N6dl5RO6tdk9+XANIPwReAjDdh5nJ7YN5KKwsbMvpPMz+yUUcfYONOLkxl1gBgNwRfADI+8Lrv3yt3m65AzJ9OAAYgnVAnDyCjbzXeP2/3wCuc5isdAKQLgi8AGevv81dZRU+n1XylA4B0QfAFIGO9s+qbpKYDgCAQfAHIWPVq1UxqOgAIAsEXgIx1UEGDpKYDgCAQfAHIWB+v35bUdAAQBIIvABnr6+9+TGo6AAgCwReAjNWmcb2kpgOAIBB8AchYZ/bYN6npACAIBF8AMtaRHZtbvdq55aapXzvXpQOAdEHwBSBj5dbIsTvP7lpumjvO7urSAUC6IPgCkNEGdGll9w7rbi0b1omYXtCojpuu+QCQThh5EEDGU4DVr7DAFq781jZu22EtGuZZ7wOaUuMFIC0RfAGoFnRrsahDs1RnAwAqxG1HAACAAFHzBaBa+HFXqf155nJb9c0P1q5ZPbv25EKrW0FPSABIBYIvABlv1KPv2CvLN4bez/vM7LG3Vlu/whb2wPBeKc0bAETjtiOAahV4hdN0zQeAdELwBSCjbzXGC7x8mq90AJAuCL4AZCy18UpmOgAIAsEXgIylxvXJTAcAQSD4ApCx1KsxmekAIAgEXwAy1jUDDk5qOgAIAsEXgIy19KutSU0HAEEg+AKQsfQcx2SmA4AgEHwByFh6gHYy0wFAEAi+AGSs3gc0tVb5eZYTZ76ma77SAUC6IPgCkLFya+RY8cBC93d0AOa/13ylA4B0QfAFIKMN6NLKpg7rbgX5kbcW9V7TNR8A0gkP1gaQ8RRg9SsssIUrv3WN69XGS7caqfECkI4IvgBUCwq0ijo0S3U2AKBC3HYEAAAIEMEXAABAgAi+AAAAAkTwBQAAECCCLwAAgADR2xFAtTD3gw32myfeDb1/5Nc97bjDWqY0TwAQC8EXgIzXbuy/dpvmArEnzFbdekpK8gQA8XDbEUC1C7wqMx8AgkbwBSCjbzUmMx0ABIHgC0DGCm/jlYx0ABAEgi8AAIAAEXwBAAAEiOALAAAgQARfADLWtHN6JDUdAGRN8DVlyhRr166d5eXlWZ8+fWzhwoXlpn/qqaesc+fOLv2hhx5qM2fODCyvANLHL7sVJDUdAGRF8DV9+nQbM2aMFRcX2+LFi61r167Wv39/27hxY8z08+fPt6FDh9r5559v7733ng0ePNi9li1bFnjeAaReRYOoMsgqgHST43mel8oMqKarV69edvfdd7v3ZWVl1rZtWxs9erSNHTt2t/RDhgyx7du32wsvvBCadsQRR1i3bt3s3nvvrXB5JSUllp+fb1u3brVGjRoleW0ApMqcJevtv55cFHGrkRovoPooqUbX75Q+XmjXrl22aNEiGzduXGhajRo1rG/fvrZgwYKYn9F01ZSFU03ZM888U+X5BZC+FGit6sajhACkv5QGX5s3b7bS0lJr2TLy4bd6//HHH8f8zPr162Om1/RYdu7c6V7hkTMAAEDWtvmqahMmTHDVlP5LtzQBAACyMvhq3ry55ebm2oYNkc9d0/uCgti9kzS9Mul1S1P3h/3XmjVrkrgGAAAAGRR81a5d23r06GGzZ88OTVODe70vKiqK+RlND08vr7zyStz0derUcQ3zwl8AAABZ2eZL1Hh+xIgR1rNnT+vdu7dNnjzZ9WYcOXKkmz98+HBr06aNu30oV1xxhR177LF2xx132CmnnGJPPvmkvfvuu3b//feneE0AAAAyIPjS0BGbNm2y8ePHu0bzGjJi1qxZoUb1q1evdj0gfUceeaQ98cQTdv3119u1115rBx54oOvp2KVLlxSuBQAAQIaM8xW06jROCAAA2aKkGl2/q31vRwAAgHRC8AUAAJBNbb6C5t9lZbBVAAAyR8n/DZJeHVpLZV3wtW3bNvc/g60CAJCZ1/H8/HzLZFnX4F7jiH399dfWsGFDy8nJsWynXxIKRDX4bKY3YExnlDPlXJ2wP1PWqeB5ngu8WrduHTEKQibKupovbbB999031dlIOwxASzlXJ+zPlHN1wz79vzK9xsuX2aEjAABAhiH4AgAACBDBV5bTsy+Li4vd/6CcMx37M+Vc3bBPV09Z1+AeAAAglaj5AgAACBDBFwAAQIAIvgAAAAJE8AUAABAggq9q7ttvv7Vzzz3XDdDXuHFjO//88+37778v9zM7duywSy+91Jo1a2YNGjSwM844wzZs2BAz7TfffOMGrdXTAr777jvLVlVRzu+//74NHTrUPYGgbt26dvDBB9tf//pXyzZTpkyxdu3aWV5envXp08cWLlxYbvqnnnrKOnfu7NIfeuihNnPmzIj56mM0fvx4a9WqlSvXvn372meffWbZLpnl/NNPP9k111zjptevX9+NSD58+HD3dJFsl+z9OdxFF13kzsWTJ0+ugpwjqdTbEdXXgAEDvK5du3pvvfWWN2/ePK9jx47e0KFDy/3MRRdd5LVt29abPXu29+6773pHHHGEd+SRR8ZMO2jQIO+kk05Sj1lvy5YtXraqinJ+6KGHvMsvv9ybO3eu9/nnn3uPPfaYV7duXe+uu+7yssWTTz7p1a5d25s2bZr34YcfeqNGjfIaN27sbdiwIWb6N99808vNzfVuv/12b/ny5d7111/v1apVy1u6dGkoza233url5+d7zzzzjPf+++97p512mnfAAQd4P/74o5etkl3O3333nde3b19v+vTp3scff+wtWLDA6927t9ejRw8vm1XF/uybMWOGOwe1bt3a+8tf/hLA2mBvEHxVYzpYFRS98847oWkvvviil5OT43311VcxP6OTpg7up556KjTto48+ct+jE2i4e+65xzv22GNd8JDNwVdVl3O4Sy65xDv++OO9bKEL9qWXXhp6X1pa6i4uEyZMiJn+7LPP9k455ZSIaX369PF++9vfur/Lysq8goICb+LEiRHbok6dOt7//M//eNkq2eUcy8KFC93+/eWXX3rZqqrKee3atV6bNm28ZcuWefvvvz/BVwbgtmM1tmDBAncLrGfPnqFpusWi51u+/fbbMT+zaNEid8tA6Xyq8t5vv/3c9/mWL19uN998sz366KMZ/4DTdC7naFu3brWmTZtaNti1a5crp/AyUpnqfbwy0vTw9NK/f/9Q+pUrV9r69esj0uhZcbr9U165V2dVUc7x9l3dEtOxko2qqpzLysrsvPPOs6uvvtoOOeSQKlwDJFN2XzWrOV1kWrRoETGtZs2a7uKtefE+U7t27d1OkC1btgx9ZufOna4t0sSJE12wkO2qqpyjzZ8/36ZPn24XXnihZYPNmzdbaWmpK5NEy0jTy0vv/1+Z76zuqqKcY7VvVBswnTfULjIbVVU533bbbe58c/nll1dRzlEVCL4y0NixY90vyPJeH3/8cZUtf9y4ca7x97Bhw6w6S3U5h1u2bJkNGjTIPQrqxBNPDGSZQDKohvfss892HR2mTp1KoSaRatLUCeeRRx5x5yNkjpqpzgAq78orr7Tf/OY35aZp3769FRQU2MaNGyOm//zzz65nnubFoumqHlfPxfBaGfXC8z8zZ84cW7p0qT399NPuvf+EqubNm9t1111nN910U7XYrKku5/BbvCeccIKr8br++ustW2h/ys3N3a2nbawy8ml6een9/zVNvR3D03Tr1s2yUVWUc3Tg9eWXX7rzRrbWelVVOc+bN8+de8LvQKh2Tecu9XhctWpVlawLkiDVjc5Q9Q3B1ZPO99JLLyXUEPzpp58OTVNvpfCG4CtWrHC9bfyXeu5o/vz58+P22qnOqqqcRQ1oW7Ro4V199dVetjZQvuyyyyIaKKthcXkNlE899dSIaUVFRbs1uJ80aVJo/tatW2lwn+Ryll27dnmDBw/2DjnkEG/jxo2V3vbVUbLLefPmzRHnYr3UgP+aa65x5xOkL4KvLBgC4fDDD/fefvtt74033vAOPPDAiCEQ1EumU6dObn74EAj77befN2fOHBdQ6GDXK57XXnstq3s7VlU560S6zz77eMOGDfPWrVsXemXThUxd89UT8ZFHHnFB7oUXXui65q9fv97NP++887yxY8dGdM2vWbOmC67Ue7S4uDjmUBP6jmeffdb74IMP3HApDDWR3HJW4KUhPPbdd19vyZIlEfvvzp07vWxVFftzNHo7ZgaCr2rum2++cUFAgwYNvEaNGnkjR470tm3bFpq/cuVKFzgpgPJpvCMNadCkSROvXr163umnn+5OmvEQfFVNOetEq89Ev3RyzSYa10xBqsZHUs2BxlLzaaiTESNGRKT/f//v/3kHHXSQS69al3/9618R81X7dcMNN3gtW7Z0F8ITTjjB++STT7xsl8xy9vf3WK/wYyAbJXt/jkbwlRly9E8ybl8CAACgYvR2BAAACBDBFwAAQIAIvgAAAAJE8AUAABAggi8AAIAAEXwBAAAEiOALAAAgQARfAPaIHuYb/lzKbKSHGT/zzDOBLlPP69NylyxZslff065dO/f8v3RbPyAbEHwBKaaHd+sip1etWrWsZcuW1q9fP5s2bZqVlZVV6rtuvPHGKnlAdKwL9ZAhQ+zTTz+1qnbccceFykcvlc9ZZ53lHtYc1DKjX5oPAHuK4AtIAwMGDLB169a5Wo0XX3zRjj/+eLviiivs1FNPtZ9//tnSUd26da1FixaBLGvUqFGufL7++mt79tlnbc2aNTZs2LAqW96MGTPc8vRauHChm/bqq6+Gpmn+ntADRdJ1ewIIDsEXkAbq1KljBQUF1qZNG+vevbtde+21LshQIKbbe77vvvvOLrjgAttnn32sUaNG9stf/tLef/99N0/pbrrpJvfer6HxP1ve53zPP/+89erVy/Ly8qx58+Z2+umnu+mq5VEt0+9///vQ98a77Th16lTr0KGD1a5d2zp16mSPPfZYxHx99sEHH3TfXa9ePTvwwAPtueeeq7B8lFbl06pVKzviiCPssssus8WLF0ekef311613796uLJVu7NixoUDn0UcftQYNGthnn30WSn/JJZdY586d7YcffthteU2bNnXL00tlJs2aNQtN03zf5s2b467P3Llz3TprO/bo0cPl7Y033nA1mhMmTLADDjjABbFdu3a1p59+OvS5LVu22LnnnuuWrfn63ocffjgij1988YUL0rVcfX7BggUR8//xj3/YIYcc4papmss77rij3DJW2RxzzDFu+xcWFtorr7xS4XYBsIdS/XBJINvpQbqDBg2KOa9r167eSSedFHrft29fb+DAgd4777zjffrpp96VV17pNWvWzD3Y+4cffnDv9fBdPaBbL02r6HPywgsveLm5ud748eO95cuXe0uWLPH+/Oc/u3lKs++++3o333xz6Hvl4Ycf9vLz80N5mzFjhlerVi1vypQp7kHVd9xxh/vOOXPmhNLolKPveuKJJ7zPPvvMu/zyy93DyP18xKKHDV9xxRWh90qrdTn++OND09auXeseTq4HlX/00UfeP//5T6958+bu4eS+s846y+vVq5f3008/ufVVXt99990Kt4//kOj33ntvt3kVrY//0PnDDjvMe/nll70VK1a4eX/84x+9zp07e7NmzfI+//xzV5Z6yPfcuXPd5y699FKvW7dubntp+a+88or33HPPReRHn9d6qKzPPPNM90BlrZtovWrUqOG2mebr++vWrev+j/UA5tLSUq9Lly7uIePa9q+//rp3+OGHu+WoLAEkF8EXkMbB15AhQ7yDDz7Y/T1v3jyvUaNG3o4dOyLSdOjQwbvvvvvc3wo2FLCFS+RzRUVF3rnnnhs3j+EXal908HXkkUd6o0aNikijgOfkk08OvdfF/Prrrw+9//777920F198sdzgS4FS/fr1XYCl9AcddJALQnzXXnut16lTJ6+srCw0TUGgAiEFFvLtt9+6QOniiy/2WrZs6f3pT3/yElFR8FXe+vjB1zPPPBNKo+2g9Zg/f37Ed51//vne0KFD3d8KLkeOHFlufh588MHQtA8//NBNU+Apv/71r71+/fpFfO7qq6/2CgsLY27Tl156yatZs6b31VdfheZrHQi+gKrBbUcgjen67t/m023C77//3t3+0i00/7Vy5Ur7/PPP435HIp9Tz7kTTjhhr/L60Ucf2S9+8YuIaXqv6eEOO+yw0N/169d3t0E3btxY7nfrFpzyqHXRbbuOHTvaiSeeaNu2bQstu6ioKFRW/rK13mvXrnXvmzRpYg899FDo1qhuSyZDIuvTs2fP0N8rVqxwtzrVqSJ8e+jWqL89Lr74YnvyySdd54k//OEPNn/+/HKXq9us4i833rbQrcXS0tLdvkvp27Zta61btw5NU3kCqBo1q+h7ASSBLopqFyQKJHSRVTuiaOUN+ZDI59SuKCjq0RlOAVNFvTrz8/NdwCX6X0GU1mn69OmuLVui/v3vf1tubq5rNL99+3Zr2LChBbE+CsrCt4f861//cm38wql9lpx00kmund3MmTNd2ysFxpdeeqlNmjQp5nL9oLOyvWMBpAY1X0CamjNnji1dutTOOOMM914N8devX281a9Z0AUj4Sw3kRQ3do2s2EvmcalFmz54dNy+xvjfawQcfbG+++WbENL1X4+1kUwAlP/74Y2jZanD+v3cC/7NsBVf77ruve6/ao9tuu811LFBNkxrtp4LKQ0HW6tWrd9seqn3yqbH9iBEj7PHHH3fDfNx///0JLyPetjjooINCZRedXj1IFZT63nrrrT1eRwDlo+YLSAM7d+50AZICnA0bNtisWbNcbzgNNTF8+HCXpm/fvu5W0ODBg+322293F1INvaAaFPW2060t9WrT7UTdolPQoeAjkc8VFxe72hXdjjvnnHNcL0HVulxzzTVu2fpe1RppngIHP2gLd/XVV9vZZ59thx9+uFumghwNyaAhGvaWbtOpfETlc8stt7heebr16PdcVIAyevRoF1R98sknbp3GjBljNWrUcLcnzzvvPLv88stdrZLKRj07Bw4caGeeeaYFSdvkqquucr1HVVN11FFH2datW11wpFuWCrjGjx/vekeqt6L2jRdeeMEFSIm68sor3fqpnDQemwLTu+++2+65556Y6bW9tF9o2RMnTrSSkhK77rrrkrjWACJUUVsyAJVocK9DUS81et5nn31c78Rp06aFGov7SkpKvNGjR3utW7d2jdDbtm3rGsqvXr061Jj7jDPO8Bo3buy+z+/dVtHn5B//+IfrYVe7dm3XU/BXv/pVaN6CBQtcjz31yPNPG9EN7uWee+7x2rdv75ahRvGPPvpoxPxYDbj1HeG98GI1uPfLR68mTZq4aeG9KEU9BdWbUfkvKCjwrrnmmlDvPzVeP/TQQyM6Hag3ZtOmTV1Pyb1pcF/e+vgN7rds2RKRRh0DJk+e7DoJqKy0zfv37+96Gcott9ziOlqoh6LyqA4ZX3zxRdz86Ps1TcvzPf30066Bvb5/v/328yZOnFhuJwr1ijzqqKNc+WnbqScmDe6BqpGjfyLDMQAAAFQV2nwBAAAEiOALAAAgQARfAAAAASL4AgAACBDBFwAAQIAIvgAAAAJE8AUAABAggi8AAIAAEXwBAAAEiOALAAAgQARfAAAAASL4AgAAsOD8fwmFacFWnIU4AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -2539,27 +2495,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmgAAAHHCAYAAAALTaTvAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAU3lJREFUeJzt3Ql8FPX9//FPCEI4o4AQQOT2QBDkNGjFA8SLeqAilYLUakVFELWCVZBqCyoqtSCoVVGpP/ir9YAqSkE8sVQiVi5PKIgc4kEQ5GiY/+P9bWe7WTbJJuxmZ3dfz8djITszOzv3fPZ7fCbL8zzPAAAAEBhVkr0AAAAAKI4ADQAAIGAI0AAAAAKGAA0AACBgCNAAAAAChgANAAAgYAjQAAAAAoYADQAAIGAI0AAAAAImZQK0H374wX75y19aXl6eZWVl2ciRI93wzZs324UXXmj169d3wydPnmypvk7pQut0++23Wyo6+eST3QuJpeNDx0kmmTdvnnXq1MlycnLcun///fdu+FNPPWVHHXWUHXTQQXbwwQcf0HGYyudeZbrsssusdu3ayV4MIHgB2owZM9yFpKTXe++9F5r297//vZt+2LBh7kL285//3A2//vrr7dVXX7UxY8a44WeccUbcl1Pf/cILLyRkvtHWKdoNrKxXPIOJp59+OqmB7ldffeXWe9myZQn9npUrV7rvWbt2bUK/B/B98803dvHFF1uNGjVs6tSp7ryvVauWrV692gULrVu3tkceecQefvjhwG+0ZF8nSrNr1y67//77rUePHpabm+uC4SOOOMKuvfZa++STTywdPPjgg+7+UZlatGhR4j0oEffeeND1PXw5q1SpYvXq1bMzzzzTFi9eHOjtn5XMZ3Fq5YYOHWq//e1vrWXLlvuN1w5v0KCB+/v444+3qlWr2ttvv11sGpU+9e7d22bOnJmw5dQvLJXSxXtnlLRO4f75z3+6V3ipmwK6888/3y644ILQ8EaNGlmfPn3islznnHOOLV++/IADF50M48aNK/cv+ffff9+6detmjz/+uLtpJcqzzz5rF110kb3++uv7Bbh79uxx/1erVi1h3w+zf//73+6lG2imlJ7pxjB//nx33fJNnz7dndeffvqptWnT5oCPQwUourbolSjxuk7E29atW929Y+nSpW4ZtZ11Df/4449t1qxZtmnTptB21fVF1wFdV1NN+/bt3f1x0aJFlRqgHXLIIXbDDTfsN65JkyZ26qmnWtCsXbvWxRcDBw60s846y4qKilyQrgDrxx9/tH/84x/WoUOHQG7/xJ295aALVteuXUudZsuWLdauXbuow/3qgFRT0jqFO/bYY90r/OKjC7mGDRo0qBKWMjMRmFWORAcRQTznJfKaVdLwih6HmRLwRqOg64MPPnCBV//+/YuNu+OOO+w3v/lNpS7Pvn37XECYCvtEP5a0vKUdd02bNq3QvWfHjh2utDgR22dHCfMO17lz52LL/ZOf/MTFHtOmTXPBWiB5SfT444+r9M77xz/+UeI0r7/+upsm8uV/NvLl++6777wRI0Z4hx12mFetWjWvdevW3sSJE72ioqJi89f7yZMne+3bt/eqV6/uNWjQwOvbt29omaJ9x5AhQ0pdr82bN3u/+MUvvIYNG7p5Hnvssd6MGTPKXKc1a9aUuc2+/vprN+24ceOKDV+1apXXv39/75BDDnHf2aVLF+/FF18stkxat169enn79u0LDf/000+9mjVrehdffLF7r/GRy9W8efNSl2nXrl3eyJEj3fxr167t9evXz1u/fn3U5fzyyy+9oUOHum2j/dKuXTvv0UcfjWl/+9577z23j+rWrevVqFHDO+mkk7y33357v+XSd2k/NG7c2H1XixYtvKuuusrbvXt3icePvt/fDnqVZ7+K9qHmc88993gPPfSQ16pVK/fdXbt29ZYsWeLFoqxjV/vv5JNPdttby+TTeuk41nf+8MMPbpi2v5ZHx8dFF13k1alTx6tXr5533XXXeT/++GOx733ssce8U045xTv00EPd9x599NHegw8+uN/y6Xg4++yzvbfeesvr1q2b2xYtW7b0nnjiiWLT7dmzx7v99tu9Nm3auGn0vSeccIL32muvhabxly/c3r17vd/+9rehbafvGzNmjDvOKrIcJSnr3C/PssjLL7/snXjiie580nlw1llnecuXLw+Nj3Zu6VqieUYO98+baMeh9pvGt23b1i13Xl6ed/7553ufffZZaJqKnHvh59/s2bO9O++802vatKn7jlNPPdVdK0pbl7KuE5WxX3Vt0LJcccUVXiy0/WvVquW2zbnnnuv+1nFwww03eP/+97+LTatzOj8/3x3HOTk5XufOnb1nnnlmv3nq+6+55hpv5syZbhtXrVrVe/7558s1D3nqqafc+usad/DBB3s/+clPvFdffTW0jSK3f/hxEsv9L/xadf/997v9UqVKFe+DDz4ocXv5+ybW7apj8swzz3Tng7ZvWdunoKDAO+OMM9x1qlatWu64W7x4cbF5+9fuRYsWecOGDXPXK22fkoSvZzhdIzX89NNPL/d1MB7bPxaBCND+9re/ucAj/LV161Y3zaZNm9yBqpOmU6dO7m+9dOHT//p8nz59QsNlx44d7uZZv35975ZbbvGmT5/uDR482MvKynIbLdxll13m5qGDSBfrSZMmuQPpj3/8oxuveeoCoZPD/4533323xHXauXOn26EHHXSQd/3113sPPPCA+6y+Q/MvbZ38m2p5AzRti9zcXHew33XXXd6UKVNc0KL1/ctf/hKaThcCffYPf/iDe6+DRTfMRo0ahba3bp5aJi2bv1z+yVOSQYMGufn+7Gc/c999wQUXuO0fuZxabx2wzZo1cxfqadOmeT/96U/ddLpA+NNonIZdeeWVoWX4/PPP3fgFCxa4A14XuXvvvdd9Tt+lYX//+99D37VhwwavSZMm7map4FHHwG233eb2jU4ezU9Bir5Hx4j/Pfr+aDfGWPZr+MXguOOOc4GJ9sfdd9/ttqfWXUFLaWI9dr/44gt30dON2Td69Gg33RtvvLFfANShQwcXOGv/+Pvr5z//ebHv1s1A54O2qY5/Xbg0nT4TeXE68sgj3XGjZdR43Wj03eEBicZpmG6WjzzyiNtfAwcOdBeqyOWLvLhr2IUXXuhNnTrVrb/en3feeRVajpKUde6XZ1mefPJJ9726uejz2u/6QaAbh//DS+eWjml9Xse4fy3R+aX9qOE6JzT8ww8/jHocKmg47bTT3LSXXHKJW+cJEya4G9kLL7wQmq4i5154gKbjVz/yNE5Bts6j7t27h6aryHWiMvarptc833zzzVKnC18mBUrHHHOM+/Gl7aIfuppH5E1Z2+/qq692y3Pfffe57aHp5s6dW2w6DdO1Qjf48ePHu3X1g55Y56FtruE9e/Z0gYWu2bq+3nzzzW68trXmddRRR4W2v//DJ9ZriH+t0n1DwZnOS+3vf/3rXyVuL+0bXRci79d66RoZvl1131Rgor+1DDpHSts+2rcKyvSD+o477nDLo8Bc81HgHRk3aLl1buh8C7+mxBqg6fs0fMCAAeW+DsZj+6dMgBbtpZ0SS+TuR+PhtHO1oz/55JNiw3UDy87O9tatW+feL1y40H1eN+pI4aVMmldZpWY+Xeg1T/068OmmrIBCN9TCwsIy16m8AZou2LoBh/8S1fLr5Nav7HC6Qepiq22jA1bzCr+wi5aprF/DvmXLlrl56KITTheTyOW8/PLL3cnnB4M+3WgUYPonuEowIkvN/HXS+qiUI3z/6HM6kRWo+3RC6NdgtNJZ/7N+wOqXmoWLvDHGul/9i4FOzm+//TY0rUozNXzOnDmlbs9Yj11RCZ2/TLqAabyC0XB+AKSbcTjtLw33AwF/O0bSttbFO9qvx/Cb4JYtW9w5q5IHX8eOHcs8viMDNP94+uUvf1lsuhtvvNEN1zlb3uWIJpZzP9Zl2b59uwvEIkttFBTpuA4fXlKtgb8ddH6Xdhzq172m0829pOWWip57foCmG6hKZH0KEDT8o48+OqDrRKL3qx/o6kdYLPygUUFrOD9ADRd5fuj8V+mrguNwmp+uPStWrNjv+2KZh0oq9XmtS2SJS/g+VlAZWbpanmuIf61STYS2byyilRz5L/1QiNyu+s5IJW0fBer6oe3/GJevvvrKlaapwCHyHFJpdWQpZzT+eioY1Pml89IvndXwyBLMWK+DB7r9YxGINBvqzaRGs+GvV155pcLze+aZZ1z9shozqs2W/1JjUTUQfPPNN910zz33XKghe6SKdv1/+eWXXccFNUj0qdv8dddd5xqivvHGGxZP3377rS1cuND1DNu+fXtoXdVbrG/fvq7R8YYNG0LTT5kyxfVqUqeH2267zfUcPffccyv8/Vpf0fqFi0wZovNS27tfv37u7/D9ouXctm2bFRQUlPpd6tWp9fnZz37m1s//vNofnHbaaW6/qj2DXup1q++K1raxIvu2vPt1wIAB7vjz6XiUL774Ii7Hrlx55ZVu2w0fPtztR/UAVM/gaK655ppi7/UZf7186lno0/7Q9/bq1csts96HU9tJf53k0EMPtSOPPLLY+qk91YoVK9w+i5W/PKNGjSo23G+U/Ne//rXcyxFNLOd+rMui65VSZejYCN9n2dnZrhehOqHEi5ZbDZP9/RdtuSNV5NxT563wdkixHr/J3q+FhYXu/zp16pRr+a666qpi7/Xdkd8Vfn589913brtpumjXLZ030doXxzIPXbt0DRs7dqzrcVjea1d5riGidnravrHSMR15v9Yr/NroU3vpaCK3j5brtddes/POO89atWoVGt64cWN3vVdHOn/f+q644gp3jsVK57rWU9dxbZ9Vq1bZvffe6+6F4cpzHYzH9i9NIFrndu/evcxOAuWhG4J6PpZ00PkNcj///HPX80RdbuPlX//6l7Vt23a/E+voo48OjY+nzz77zF10FWzpVdL6qmGnaF0feOAB13tRPT/194HQ+mhdFRyE08U03Ndff+1uYkofUFIKAX+/lMS/0Q8ZMqTEaXQCqcGpTmb1sknWfj388MOLvfeDNV2U43Hs+h599FG37fW5d999t9jFJZyWPZw+o3UJ74H3zjvvuIuYup7v3Llzv+2qwL6k9fPXMXz91Dtbwb/SG2hfqGedAsnwTi8lHU/hPRlFF1UFfGVt52jLEU0s536sy+IflyX1YKtbt67Fi5Zb51Z5OlZU5Nyr6PGb7P3qb2v9WI2185gap0eeb9G+a+7cuXbnnXe6H4q7d+8uNWiKlpUg1nloH2tbldWBLF7XkJKWtST6gRDeA7kkOkYPO+ywqOMiv1PHqK45kfcN/xqrgHX9+vV2zDHHWEWXWz9odd9TD2cVaujep4ApUnmug/HY/oEP0OJNO1MpJ379619HHa8bRjqtq9x4443u13A0kRdF5Y0TXYC+/PLLSukF6y+netGUFGCVduMOn8c999zjEn1Go+70KlVMtpJ+2ZWV1aa8x666ePsX+o8++sjy8/NjWr7Im4puCiqFVKLU++67z5o1a+ZKUFTyoXxS/rYvz/qddNJJbr4vvvii+3X8pz/9yc1LKSWUoLk8yxfv7VweZS2Lv22U00wBR6Rk91KtyLmXqO2a6P2q49c/F8JL4CryXeHeeust++lPf+qOafX4U8mOStCVCkj54CJF+6FU3nlUVHmvISX9qDtQ1atX3+8HbTy/s0Y556EfqX5gqfQr2u+jR4+2U045JVRAVN7rYKLjj7QM0FQ6oGqnsqJ8TadgRTf00n5Jl6dKrHnz5i561k4KPziViNIfH09+cbBO9Fh+1SgPk26UOnj+/Oc/uwv23//+92I3kfKur9bV/2XvU86hcPo1oWoH/WIpazlL+n6/lE6/kkubh75L0yhHU0W+J5n7NdZjVzZu3Oiquk4//XR3EfGD9GjLol914b84VfKqdVFeI5kzZ44L9F566aVipRcHWj2n80rVZXppvXRzUl68kgI0/3jS8vqlk/4TQ1QKFM/tXNa5H+uy+Mdlw4YNY9pvB7rcOl/37t3rzvlYlOfcK4+KXCcSvV9VjTthwgSXFzPWAC0WqiJWSZuOGQUePgVX8Z6H9rG2lRJpl/RDtKzrZKzXkKDQMVqzZs397hv+NVbXXAVL8aR0K0oKfeutt7r7Ynmvg5Wx/QPRBi3e1B5LxZN+SVE4XQyU68Wve9cvsvHjx5f6S035VfzHsZRFifCUCHH27NmhYfq+P/7xj650R3XZ8aSbgpKsPvTQQ+6GHUlFxz6tg26MqlJWWyUFamr7ENluSesbS127KI+MRFaVRmYY168VbW9dpKIFTuHL6eezidzmXbp0cQf/pEmToiaW9Oehk1ltGXSyKeltSfu2pO9J5n6N9dj122DoQq5qTlVdKci+/PLLo5YyqJ1nOC13+P7zSxHCP6tjoDw3oEhqJxhO20mlueFVO9G2c7TjR79m5eyzz7Z4iOXcj3VZFBTrB4HOIwVOpR3b8VhutWdRW9KSljtSec698ijPdaKy9qtKkFWVrmtbtKe/qPmDfsiUl7ahbsjhVWJqHlCeJ8zEOg9du3QNUxOByBKbWO5L5bmGBIW2jX5oqrQ9vNnF5s2bXeniiSeeGNemAqKao1/96lduO/lPrSnPdbAytn8gStDUIcAviQjXs2fPYg0GY3XTTTe5CFjFmEpaqBu7GpKr2FvJC3UAqB5dRZtqE6PgQr/sdGLrhFBRtMbpsSCiz//tb39zFxO1W1FJhBpKllTPrWBJ36tM1iqh0HeqXlsXp/I2Xo2Fbr46gJUNWTdtbTMd2DpIVIX54YcfuulGjBjhbppaFx2IWl8FbGoTobZCHTt2DK2vAhE16FVGf91Y9cs0Gv3CU+NQFdnrQNY+W7BggSuhiTRx4kT3S0TbTsupNhYqwVCQqGXyqyYVhOnkUVWYtpdOBH1G210XXgUVaougUhm1rVMnCM1XJ7CCMtHNUtVqCpy0T/SrXQGsGnCqwanmr2XXdrjrrrvcsutXrdoRKehN1n6N9djVBUMNq/V0C7+dh4IuVWMp8eLVV19dbL5r1qxx1Sva5zouVMKgxrf+PvdL4bSfddFSAKxfl9oW0QL/WGj/6seD1kGlVAqWtQ7+eRWNlkelugo4dTHT/luyZIk98cQT7sal8zIeYjn3Y10WHXfa5pqfkmFecsklrkRg3bp1bh+dcMIJUQOqihg8eLA9+eST7tzUsqiUSMeHzh/t85I6/MR67pVHea4TlbVfRdtHx7OetKLlUZWVriHaz3qSgI5n/cgrDwWQuv7rONF5o3ZEuu7qB0f4k17iMQ+9V+mOkupq/2o9dG1Sxnvdf1RC6G9/HXe6fuszOld1/Yr1GlJRut5Ge3KP9r/2ZUVpPdTZQPcyHctVq1Z111z9oLv77rstEXRP1PVb54eOjfJcBytl+3sBTbMRmWahPGk2/K7vSoKoXFTquqt8PUo7oVxH4bmo1E1X6SaUz0TTKTeL8iItXbo0NM3q1atdN18lDIw1Ua0SQuo7NU+lwIhMGVHaOlUkUa26Jiu1hJJWKleXEkyec8453rPPPlsszYNyUYVTeggth1Ii+NtF+diUJkOpA/SZsrrSK3Gm0hUotYS6F5eWqFbbRvtL+Zi0nFpepQl5+OGHi02n5fWTGEYeC8qZo1xr+j51vdfyKdGucqSFUz4fbRPtU02nbtL67vD0AcrPpeHq/hxLotqy9mtJOXck2vaIpqxjV9tWqRG0nSOpa772gfKkhadvWLlypcs/pS7rSmZ87bXX7peo9qWXXnL5e5QXSjm8lMvLT+sQnkS5pOM2cpsp0anyPOk40rmjc+x3v/tdsfOvpES16hKv1Ck6RnSslJbQtKzlKEks536syyI6dtQdX/tG21A5oJRP6f33349bmg0/DcBvfvOb0DLpHNK+DU9PUNFzz0+zEZl6wD+uw4/38l4nKmu/+ttI54tSKSgNjvavUvQMHz68WEJfP6FqpGjHpZL6+smBdcxoW0SbrqR7UnnmITr3lO5D0+qc1brPnz8/NF7pIrSddE7r8+HbJpb7X2nXqoqk2Qjf/yVt17K2jxLV6hzSPqtZs6ZLGBuZdzSWBPfhylpPnaO6/vvHRazXwQPd/rFI6rM4ASSW2nupGk/VWAfyqxkAULnSsg0aAABAKiNAAwAACBgCNAAAgIChDRoAAEDAUIIGAAAQMARoAAAAAROIRLVBo4SVX331lUs+Wp7HmQAAgOTxPM+2b9/ukvqW9CzQVEGAFoWCs3g/9wsAAFSO9evXh56ykqoI0KLwH9ujHRzv538BAIDEKCwsdAUsiXisYmUjQIvCr9ZUcEaABgBAaslKg+ZJqV1BCwAAkIYI0AAAAAKGAA0AACBgCNAAAAAChgANAAAgYAjQAAAAAoYADQAAIGAI0AAAAAKGAA0AACBgeJIAAARc0T7Plqz51rZs32UN6+RY95b1LLtK6mdKB1AyAjQACLB5yzfa+DkrbeO2XaFhjXNzbFy/dnZG+8ZJXTYAiUMVJwAEODgbNrOgWHAmm7btcsM1HkB6IkADgIBWa6rkzIsyzh+m8ZoOQPohQAOAAFKbs8iSs3AKyzRe0wFIPwRoABBA6hAQz+kApBYCNAAIIPXWjOd0AFILARoABJBSaai3ZknJNDRc4zUdgPRDgAYAAaQ8Z0qlIZFBmv9e48mHBqQnAjQACCjlOZs2qLPl5RavxtR7DScPGpC+SFQLAAGmIKxPuzyeJIBieLpE+iNAA4CAUzVmfuv6yV4MBARPl8gMVHECAJAieLpE5iBAAwAgBfB0icxCgAYAQArg6RKZhQANAIAUwNMlMgsBGgAAKYCnS2QWAjQAAFIAT5fILARoAACkAJ4ukVkI0AAASBE8XSJzkKgWAIAUwtMlMgMBGgAAKYanS6Q/qjgBAAAChgANAAAgYAjQAAAAAoYADQAAIGAI0AAAAAKGAA0AACBgCNAAAAACJhAB2tSpU61FixaWk5NjPXr0sCVLlpQ47SOPPGI/+clP7JBDDnGv3r177ze953k2duxYa9y4sdWoUcNN8+mnn1bCmgAAAKRBgDZ79mwbNWqUjRs3zgoKCqxjx47Wt29f27JlS9TpFy1aZAMHDrTXX3/dFi9ebM2aNbPTTz/dNmzYEJrm7rvvtgceeMCmT59uf//7361WrVpunrt27arENQMAAKiYLE/FTUmkErNu3brZlClT3Pt9+/a5oGv48OE2evToMj9fVFTkStL0+cGDB7vSsyZNmtgNN9xgN954o5tm27Zt1qhRI5sxY4ZdcsklZc6zsLDQcnNz3efq1q0bh7UEAACJVphG9++klqDt2bPHli5d6qogQwtUpYp7r9KxWOzcudP27t1r9erVc+/XrFljmzZtKjZP7SwFgiXNc/fu3W6nhr8SoWifZ4s//8ZeXLbB/a/3AAAAgXoW59atW10JmEq3wun96tWrY5rHzTff7ErM/IBMwZk/j8h5+uMiTZgwwcaPH2+JNG/5Rhs/Z6Vt3Pa/atbGuTk2rl879+BbAACAwLRBOxATJ060WbNm2fPPP+86GFTUmDFjXHGo/1q/fn3cg7NhMwuKBWeyadsuN1zjAQAAAhGgNWjQwLKzs23z5s3Fhut9Xl5eqZ+dNGmSC9Bee+01O/bYY0PD/c+VZ57Vq1d3ddXhr3hRNaZKzqJVZvrDNJ7qTgAAEIgArVq1atalSxdbsGBBaJg6Ceh9fn5+iZ9TL8077rjD5s2bZ127di02rmXLli4QC5+n2pSpN2dp80yUJWu+3a/kLDJI03hNBwAAkPQ2aKIUG0OGDHGBVvfu3W3y5Mm2Y8cOGzp0qBuvnplNmzZ17cTkrrvucjnOnn76aZc7zW9XVrt2bffKysqykSNH2p133mlt27Z1Adttt93m2qmdd955lb5+W7bviut0AAAg/SU9QBswYIB9/fXXLuhSsNWpUydXMuY38l+3bp3r2embNm2a6/154YUXFpuP8qjdfvvt7u9f//rXLsi78sor7fvvv7cTTzzRzfNA2qlVVMM6OXGdDgAApL+k50FL9zwqalt24l0LXYeAaBs6S+3mcnPs7ZtPtewqegcAACqCPGiImYIupdKQyPDLf6/xBGcAACAt0mykCuU5mzaosyspC6f3Gk4eNAAAEKg2aJlCQVifdnmut6Y6BKjNWfeW9Sg5AwAA+yFAq0SqxsxvXb8yvxIAAKQgqjgBAAAChgANAAAgYAjQAAAAAoYADQAAIGDoJAAAAaLk1vT2BkCABgABMW/5Rhs/Z6Vt3Pa/Z/M2zs1xyazJlwhkFqo4ASAgwdmwmQXFgjPRY+I0XOMBZA4CNAAIQLWmSs6iPa/XH6bxmg5AZiBAA4AkU5uzyJKzcArLNF7TAcgMBGgAkGR6/Fs8pwOQ+gjQACDJ9GzeeE4HIPURoAFAknVvWc/11swqYbyGa7ymA5AZCNAAIMmyq2S5VBoSGaT57zVe0wHIDARoABAAynM2bVBny8stXo2p9xpOHjQgs5CoFgACQkFYn3Z5PEkAAAEaAASJqjHzW9dP9mIASDJK0IBKwPMVAQDlQYAGJBjPVwQAlBedBIAE4vmKAICKIEADEoTnKwIAKooADUgQnq8IAKgoAjQgQXi+IgCgogjQgATh+YoAgIoiQAMShOcrAgAqigANSBCerwgAqCgCNCCBeL4iAKAiSFQLJBjPVwQAlBcBGlAJeL4iAKA8qOIEAAAIGAI0AACAgEl6gDZ16lRr0aKF5eTkWI8ePWzJkiUlTrtixQrr37+/mz4rK8smT5683zRFRUV22223WcuWLa1GjRrWunVru+OOO8zzvASvCQAAQBoEaLNnz7ZRo0bZuHHjrKCgwDp27Gh9+/a1LVu2RJ1+586d1qpVK5s4caLl5eVFneauu+6yadOm2ZQpU2zVqlXu/d13321//OMfE7w2AAAA8ZHlJbFoSSVm3bp1c8GU7Nu3z5o1a2bDhw+30aNHl/pZlaKNHDnSvcKdc8451qhRI3v00UdDw1TqptK0mTNnxrRchYWFlpuba9u2bbO6detWaN0AAEDlKkyj+3fSStD27NljS5cutd69e/9vYapUce8XL15c4fn27NnTFixYYJ988ol7/+GHH9rbb79tZ555Zomf2b17t9up4S8AAICMS7OxdetW115MpV3h9H716tUVnq9K3hRgHXXUUZadne2+43e/+51deumlJX5mwoQJNn78+Ap/JwAAQFp1Eoi3//f//p/9+c9/tqefftq1a3viiSds0qRJ7v+SjBkzxhWH+q/169dX6jIDAAAEogStQYMGroRr8+bNxYbrfUkdAGJx0003uVK0Sy65xL3v0KGD/etf/3KlZEOGDIn6merVq7sXAABARpegVatWzbp06eLai/nUSUDv8/PzKzxf9fRUW7ZwCgQ1bwAAgFSQ1Ec9KcWGSrW6du1q3bt3d3nNduzYYUOHDnXjBw8ebE2bNnWlX37HgpUrV4b+3rBhgy1btsxq165tbdq0ccP79evn2pwdfvjhdswxx9gHH3xg9913n/3iF79I4poCAACkSJoNUYqNe+65xzZt2mSdOnWyBx54wKXfkJNPPtml05gxY4Z7v3btWpeANlKvXr1s0aJF7u/t27e7RLXPP/+8y6fWpEkTGzhwoI0dO9aV2mVaN10AADJFYRrdv5MeoAVROu1gAAAyRWEa3b/TrhcnAABAqiNAAwAACBgCNAAAgIAhQAMAAAgYAjQAAICAIUADAAAIGAI0AACAgCFAAwAACBgCNAAAgIAhQAMAAAgYAjQAAICAIUADAAAIGAI0AACAgCFAAwAACBgCNAAAgIAhQAMAAAgYAjQAAICAIUADAAAIGAI0AACAgCFAAwAACBgCNAAAgIAhQAMAAAgYAjQAAICAIUADAAAIGAI0AACAgCFAAwAACBgCNAAAgIAhQAMAAAgYAjQAAICAIUADAAAIGAI0AACAgCFAAwAACBgCNAAAgIAhQAMAAAiYpAdoU6dOtRYtWlhOTo716NHDlixZUuK0K1assP79+7vps7KybPLkyVGn27Bhgw0aNMjq169vNWrUsA4dOtj777+fwLUAAABIkwBt9uzZNmrUKBs3bpwVFBRYx44drW/fvrZly5ao0+/cudNatWplEydOtLy8vKjTfPfdd3bCCSfYQQcdZK+88oqtXLnS7r33XjvkkEMSvDYAAADxkeV5nmdJohKzbt262ZQpU9z7ffv2WbNmzWz48OE2evToUj+rUrSRI0e6Vzh97p133rG33nqrwstVWFhoubm5tm3bNqtbt26F5wMAACpPYRrdv5NWgrZnzx5bunSp9e7d+38LU6WKe7948eIKz/ell16yrl272kUXXWQNGza04447zh555JFSP7N79263U8NfAAAAGRegbd261YqKiqxRo0bFhuv9pk2bKjzfL774wqZNm2Zt27a1V1991YYNG2bXXXedPfHEEyV+ZsKECS7i9l8qxQMAAMjYTgLxpmrSzp072+9//3tXenbllVfaFVdcYdOnTy/xM2PGjHHFof5r/fr1lbrMAAAAgQjQGjRoYNnZ2bZ58+Ziw/W+pA4AsWjcuLG1a9eu2LCjjz7a1q1bV+Jnqlev7uqqw18AAAAZF6BVq1bNunTpYgsWLChW+qX3+fn5FZ6venB+/PHHxYZ98skn1rx58wNaXgAAgMpS1ZJIKTaGDBniGvV3797d5TXbsWOHDR061I0fPHiwNW3a1LUR8zsWKG2G/7fynS1btsxq165tbdq0ccOvv/5669mzp6vivPjii11etYcffti9AABIB0X7PFuy5lvbsn2XNayTY91b1rPsKlnJXiykS5oNUYqNe+65x3UM6NSpkz3wwAMu/YacfPLJLp3GjBkz3Pu1a9day5Yt95tHr169bNGiRaH3c+fOde3KPv30Uze9AkG1Q8vEbroAgPQyb/lGGz9npW3ctis0rHFujo3r187OaN/YMllhGt2/kx6gBVE67WAAQHoFZ8NmFljkjdsvO5s2qHNGB2mFaXT/TrtenAAApGu1pkrOopWq+MM0XtMh9RGgAQCQAtTmLLxaM5LCMo3XdEh9BGgAAKQAdQiI53QINgI0AABSgHprxnM6BFtS02wAAFIL6R2SR6k01Ftz07ZdUduhqaNAXu5/Um4g9RGgAQBiQnqH5FKeM6XSUC9OBWNelF6cGk8+tPRAFScAIOb0DpGN1FWao+Eaj8RTCg2l0lBJWTi9z/QUG+mGEjQAwAGld1Dpjcb3aZdH6U0lUBCmbc2TBNIbARoAIG7pHfJb12drVgJVY7Kt0xtVnACAUpHeAah8BGgAgFKR3gGofARoAICY0jv4PQUjabjGk94BiB8CNABATOkdJDJII70DkBgEaACAMpHeAahc9OIEAMSE9A5A5SFAAwDEjPQOQOWgihMAACBgCNAAAAAChgANAAAgYAjQAAAAAoYADQAAIGAI0AAAAAKGAA0AACBgCNAAAAAChgANAAAgYHiSAJAiivZ5tmTNt7Zl+y5rWCfHures57K6AwDSDwEakALmLd9o4+estI3bdoWGNc7NsXH92rnnIwIA0gtVnEAKBGfDZhYUC85k07ZdbrjGAwDSCwEaEPBqTZWceVHG+cM0XtMBANIHARoQYGpzFllyFk5hmcZrOgDxpR8+iz//xl5ctsH9zw8hVCbaoAEBpg4B8ZwOQGxo94m0KkHbtWuXTZo0KZ6zBDKaemvGczoAZaPdJ1IyQPv6669t7ty59tprr1lRUZEbtnfvXvvDH/5gLVq0sIkTJyZiOYGMpFQa6q1ZUjINDdd4TQfgwNHuEykZoL399tvWtm1b++lPf2pnnnmm9ezZ01auXGnHHHOMPfTQQ3b77bfb+vXrE7e0QIZRnjOl0pDIIM1/r/HkQwPig3afSMkA7dZbb7WzzjrL/vnPf9qoUaPsH//4h51//vn2+9//3gVqV111ldWoUaPcCzF16lRX+paTk2M9evSwJUuWlDjtihUrrH///m76rKwsmzx5cqnzVomephs5cmS5lwsIAuU5mzaos+XlFq/G1HsNJw8aED+0+0RKdhL46KOP7MEHH7R27drZb3/7W7vvvvvs7rvvtnPPPbfCCzB79mwX7E2fPt0FZwq4+vbtax9//LE1bNhwv+l37txprVq1sosuusiuv/76UuetAFIle8cee2yFlw8IAgVhfdrl8SQBIMFo95l4PBUlAQHad999Zw0aNHB/q6SsZs2a1r59ezsQCvKuuOIKGzp0qHuvQO2vf/2rPfbYYzZ69Oj9pu/WrZt7SbTxvh9++MEuvfRSe+SRR+zOO+88oGUEgkDVmPmt6yd7MYCMaPepRNDRsgtm/bf0mnafFUPv2AR2ElBVpqo49fI8z5V0+e/9V6z27NljS5cutd69e/9vgapUce8XL15sB+Kaa66xs88+u9i8S7J7924rLCws9gIAZB7afSYOvWMTnAfttNNOc4GZ75xzznH/q52Xhut/v3dnWbZu3eqmbdSoUbHher969WqrqFmzZllBQYGr4ozFhAkTbPz48RX+PgBA+rX7jHz+rUrOeP5tYnrHqmRS49WUg05PFQjQ1qxZY0GnXqQjRoyw+fPnu04HsRgzZoxrB+dTCVqzZs0SuJQAgCCj3WfyesfSlKMCAVrz5s0tntSeLTs72zZv3lxsuN7n5eVVaJ6qMt2yZYt17tw5NEyldG+++aZNmTLFVWfqO8NVr17dvQAA8NHuM37oHZvgNmjqsfnjjz+G3r/zzjsu4PFt377drr766pjnV61aNevSpYstWLAgNGzfvn3ufX5+vlWEqmDV23TZsmWhV9euXV2HAf0dGZwBAIDEondsggM0VQUqCPMpWe2GDRuKpcBQWovyUNWielo+8cQTtmrVKhs2bJjt2LEj1Ktz8ODB7nvDOxb4gZf+1vfr788++8yNr1OnjutZGv6qVauW1a9f/4B7nAIA0h8PSY8/noqS4CrO8M4B0d5XxIABA9zjo8aOHWubNm2yTp062bx580IdB9atW+d6dvq++uorO+6440Lv9exPvXr16mWLFi064OUBAGQu0kAktnfssJkFrkNAePTAU1Giy/LKEWUpUFIQ5SeQVWnVhx9+6BLH+m3HmjRpEnMvzqBSJ4Hc3Fzbtm2b1a1bN9mLAwCoxDQQkTdFP4DgyR3x2caRvWMbx7F3bGEa3b/LnWYDAIB0QxqIykHv2AQGaH/605+sdu3a7u9///vfNmPGjNDTBcLbpwEAkCpIA1F56B2bgADt8MMPdw36fUqF8dRTT+03DQAAqYQ0EEjpAG3t2rWJWxIAAJKENBBI6TQbCxcutHbt2kV9VqUa5B1zzDH21ltvxXP5AABIONJAIKUDtMmTJ9sVV1wRtWeEek386le/svvuuy+eywcAQMLxkHSkdICmlBpnnHFGieNPP/1096glAABS9SHpeih6OL0nxQYC3QZNec4OOuigkmdWtapLOgsAQCoiDQRSMkBr2rSpLV++3Nq0aRN1/D//+U9r3PjAE80BAJAspIFAylVxnnXWWXbbbbfZrl3/ywDs00PUx40bZ+ecc048lw8AACDjlOtRT6ri7Ny5s2VnZ9u1115rRx55pBu+evVqmzp1qnvEU0FBQeg5mqkqnR4VAQBApihMo/t3uao4FXi9++67NmzYMBszZkzoYelZWVnWt29fF6SlenAGAACQco96at68ub388sv23Xff2WeffeaCtLZt29ohhxySmCUEAADIMBV+WLoCsm7dusV3aQAAAFC+TgIAAABIPAI0AACAdKniBAAAqa1on2dL1nxrW7bvcg+M1zNJlQcOyUeABgBABpq3fKONn7PSNm77X27Txrk5Nq5fO/dEBSQXVZwAAGRgcDZsZkGx4Ew2bdvlhms8kosALQnFyYs//8ZeXLbB/a/3AABU5n1IJWfR7j7+MI3n/pRcVHFWIoqTAQDJpjZnkSVnkUGaxmu6/Nb1Y5onbdnijwCtkouTI3+x+MXJ0wZ1ps4fQOBxI0596hAQz+kofEgMArQAFCerv4zG92mXR+8ZAIHFjTg9qLdmvKaj8CFxaIMWsOJkAAgiGpWnD6XSUG/NkpJpaLjGa7rS0JYtsQjQUrA4GQAqEzfi9KI8Z0qlIZFBmv9e48vKh0bhQ2IRoKVYcTIAVDZuxOlHec7U9jkvt/h9R+9jbRNN4UNi0QatEouT1SEgWju0rP+eFGUVJwNAMnAjTk8KwtT2uaJPEqDwIbEoQUuh4mQASAZuxOlL9x2l0ji3U1P3f3nuQ/Fqy4boCNBSqDgZAJKBGzGiofAhsbI8zyOVfYTCwkLLzc21bdu2Wd26deO6wckhBCCVe3FK+E3DLz3hh2bmClL6lcIE3r8rGwFamu9gAEjHGzGCJSiFD4VpdP8mQEvzHQwA6XgjBtL9/k0vTgBAuRuVA8iATgJTp061Fi1aWE5OjvXo0cOWLFlS4rQrVqyw/v37u+mzsrJs8uTJ+00zYcIE69atm9WpU8caNmxo5513nn388ccJXgsAAIA0CdBmz55to0aNsnHjxllBQYF17NjR+vbta1u2bIk6/c6dO61Vq1Y2ceJEy8vLizrNG2+8Yddcc4299957Nn/+fNu7d6+dfvrptmPHjgSvDQAAQBq0QVOJmUq7pkyZ4t7v27fPmjVrZsOHD7fRo0eX+lmVoo0cOdK9SvP111+7kjQFbieddFJG1WEDAJApCtPo/p3UErQ9e/bY0qVLrXfv3v9boCpV3PvFixfH7Xu0o6RePZLlAQCA4EtqJ4GtW7daUVGRNWrUqNhwvV+9enVcvkMlciphO+GEE6x9+/ZRp9m9e7d7hUfgAAAAGdsGLdHUFm358uU2a9asEqdRpwIVifovVbECAABkZIDWoEEDy87Ots2bNxcbrvcldQAoj2uvvdbmzp1rr7/+uh122GElTjdmzBhXDeq/1q9ff8DfDQAAkJIBWrVq1axLly62YMGCYlWSep+fn1/h+arfg4Kz559/3hYuXGgtW7Ysdfrq1au7xoThLwAAgIxNVKsUG0OGDLGuXbta9+7dXV4zpcMYOnSoGz948GBr2rSpq4b0OxasXLky9PeGDRts2bJlVrt2bWvTpk2oWvPpp5+2F1980eVC27Rpkxuu6ssaNWokbV0BAABSIs2GKMXGPffc4wKpTp062QMPPODSb8jJJ5/s0mnMmDHDvV+7dm3UErFevXrZokWL3N9KYBvN448/bpdddllGddMFACBTFKbR/TsQAVrQpNMOBgAgUxSm0f077XtxAgAApBoCNAAAgIAhQAMAAAiYpPfiBAAgExTt82zJmm9ty/Zd1rBOjnVvWc+yq0Tv1AYQoAEAkGDzlm+08XNW2sZtu0LDGufm2Lh+7eyM9o3Z/tgPVZwAACQ4OBs2s6BYcCabtu1ywzUeiESABgBAAqs1VXIWLZ+VP0zjNR0QjgANAIAEUZuzyJKzcArLNF7TAeEI0AAASBB1CIjndMgcBGgAACSIemvGczpkDnpxAkAKIVVDalEqDfXWVIeAaK3MlGQjL/c/KTeAcARoAJAiSNWQepTnTKk01FtTwVh4kOZnQNN48qEhElWcAJACSNWQupTnbNqgzq6kLJzeazh50BANJWgAkOKpGlQSo/F92uVREhNQCsK0f3iSAGJFgAYAaZSqIb91/UpdNsRO1ZjsH8SKKk4ACDhSNQCZhwANAAKOVA1A5iFAA4AUSdXg9/qLpOEaT6oGIH0QoAFAiqRqkMggjVQNQHoiQAOAFECqBiCz0IsTAFIEqRqAzEGABgAphFQNQGagihMAACBgCNAAAAAChgANAAAgYAjQAAAAAoYADQAAIGAI0AAAAAKGAA0AACBgCNAAAAAChgANAAAgYAjQAAAAAoYADQAAIGAI0AAAAAImEAHa1KlTrUWLFpaTk2M9evSwJUuWlDjtihUrrH///m76rKwsmzx58gHPEwAAIEiSHqDNnj3bRo0aZePGjbOCggLr2LGj9e3b17Zs2RJ1+p07d1qrVq1s4sSJlpeXF5d5AgAABEmW53leMhdApVvdunWzKVOmuPf79u2zZs2a2fDhw2306NGlflYlZCNHjnSveM1TCgsLLTc317Zt22Z169Y9oPUDAKSWon2eLVnzrW3Zvssa1smx7i3rWXaVrGQvFmKQTvfvqsn88j179tjSpUttzJgxoWFVqlSx3r172+LFiwMzTwBAZpi3fKONn7PSNm7bFRrWODfHxvVrZ2e0b5zUZUNmSWoV59atW62oqMgaNWpUbLjeb9q0qdLmuXv3bhd1h78AINGlNIs//8ZeXLbB/a/3SH5wNmxmQbHgTDZt2+WGazyQESVoQTFhwgQbP358shcDQIaglCZ4FCCr5CxamKxhquDU+D7t8qjuRPqXoDVo0MCys7Nt8+bNxYbrfUkdABIxT1WHqr7af61fv75C3w0AZaGUJpjU5iyy5CwySNN4TQekfYBWrVo169Kliy1YsCA0TA369T4/P7/S5lm9enXXmDD8BQCVXUojGk91Z+VTh4B4TgekfBWn0mEMGTLEunbtat27d3d5zXbs2GFDhw514wcPHmxNmzZ11ZB+J4CVK1eG/t6wYYMtW7bMateubW3atIlpngAQ9FKa/Nb1K3XZMp16a8ZzOiDlA7QBAwbY119/bWPHjnWN+Dt16mTz5s0LNfJft26d64Xp++qrr+y4444LvZ80aZJ79erVyxYtWhTTPAEgGSilCS6l0lBvTXUIiFbCqTZoebn/SbkBZEQetCBKpzwqAIJDvTUHPvJemdP93xXHU4KWxPaBEn5j9DOgTRvUmVQbAVeYRvfvpD9JAAAyrZSmpJSnGq7xlNIkh/KcKQhTSVk4vSc4Q8ZVcQJAplA2eiU8VSlNVgmlNBpP1vrkBmlKpcGTBJBsVHGmeREpgOAhDxqQGIVpdP+mBA0AKhmlNADKQoAGAEmgakxSaQAoCZ0EAAAAAoYADQAAIGAI0AAAAAKGAA0AACBgCNAAAAAChgANAAAgYAjQAAAAAoYADQAAIGAI0AAAAAKGAA0AACBgCNAAAAAChgANAAAgYAjQAAAAAoYADQAAIGAI0AAAAAKGAA0AACBgCNAAAAAChgANAAAgYAjQAAAAAoYADQAAIGAI0AAAAAKGAA0AACBgqiZ7AQAAFVO0z7Mla761Ldt3WcM6Oda9ZT3LrpLF5gTSAAEaAKRgYDZl4af2+Dtr7fsf94aGN87NsXH92tkZ7RsndfkAHDiqOAEghcxbvtG63Dnf7v/bp8WCM9m0bZcNm1ngpgGQ2gjQACBFKPBSAPb9zuKBmc/77//j56x0pWwAUhcBGgCkAAVcCrzKCrs0fuO2Xa5tGoDURYAGAClAAZcCr1ip4wCA1EUnAQBIgZ6T5Q24tGwAUlcgStCmTp1qLVq0sJycHOvRo4ctWbKk1OmfeeYZO+qoo9z0HTp0sJdffrnY+B9++MGuvfZaO+yww6xGjRrWrl07mz59eoLXAkAmtAE78a6FNvCR92zErGXuf72vjEb55Qm41JtTgSOA1JX0AG327Nk2atQoGzdunBUUFFjHjh2tb9++tmXLlqjTv/vuuzZw4EC7/PLL7YMPPrDzzjvPvZYvXx6aRvObN2+ezZw501atWmUjR450AdtLL71UiWsGIB0b6EdWM1ZWz0kFXAq8YimrU6oN8qEBqS3L87ykdvVRiVm3bt1sypQp7v2+ffusWbNmNnz4cBs9evR+0w8YMMB27Nhhc+fODQ07/vjjrVOnTqFSsvbt27vpbrvtttA0Xbp0sTPPPNPuvPPOMpepsLDQcnNzbdu2bVa3bt04rSmAVK7WVElZSW3AFDTl5ebY2zefmtDAyA8SJdqF++CaB9nECzqQBw0ZqzCN7t9JLUHbs2ePLV261Hr37v2/BapSxb1fvHhx1M9oePj0ohK38Ol79uzpSss2bNhgij9ff/11++STT+z0009P4NoASFdlNdCvrJ6TSkA7bVBnFwxGBmbX9z7Clt7ah+AMSBNJ7SSwdetWKyoqskaNGhUbrverV6+O+plNmzZFnV7DfX/84x/tyiuvdG3Qqlat6oK+Rx55xE466aSo89y9e7d7hUfgAFDeBvqV0XNSQVqfdnk84glIc2nZi1MB2nvvvedK0Zo3b25vvvmmXXPNNdakSZP9St9kwoQJNn78+KQsK4Dgi7WBfmX1nFQ1an7r+pXyXQAyMEBr0KCBZWdn2+bNm4sN1/u8vLyon9Hw0qb/8ccf7ZZbbrHnn3/ezj77bDfs2GOPtWXLltmkSZOiBmhjxoxxHQvCS9DUDg4Awhvoq0OAV0obNHpOAkiLNmjVqlVzjfcXLFgQGqZOAnqfn58f9TMaHj69zJ8/PzT93r173UvVmuEUCGre0VSvXt01Jgx/AUDo+lEly/WMlMguAP57ek4CSKs0Gyq5UvuwJ554wqXEGDZsmOulOXToUDd+8ODBroTLN2LECJdC495773Xt1G6//XZ7//33XRoNUXDVq1cvu+mmm2zRokW2Zs0amzFjhj355JN2/vnnJ209AaS2khro672GazwApE0bNKXD+Prrr23s2LGuob/SZSgA8zsCrFu3rlhpmHpoPv3003brrbe6qsy2bdvaCy+84FJr+GbNmuWCuksvvdS+/fZb1w7td7/7nV111VVJWUcA6YEG+gAyJg9aEKVTHhUAADJFYRrdv5NexQkAAIDiCNAAAAAChgANAAAgYAjQAAAAAoYADQAAIGCSnmYDAHDgivZ5PJ8TSCMEaACQ4uYt32jj56y0jdv+97B2PZpKTzcggS6QmqjiBIAUD86GzSwoFpyJnhuq4RoPIPUQoAFACldrquQsWrZxf5jGazoAqYUADQBS1JI13+5XchZOYZnGazoAqYUADQBS1Jbtu+I6HYDgIEADgBTVsE5OXKcDEBwEaACQorq3rOd6a2aVMF7DNV7TAUgtBGgAkKKyq2S5VBoSGaT57zVe0wFILQRoAJDClOds2qDOlpdbvBpT7zWcPGhAaiJRLQCkOAVhfdrl8SQBII0QoAGVhEfxIJFUjZnfuj4bGUgTBGhAJeBRPACA8qANGpBgPIoHAFBeBGhAAvEoHgBARRCgAQnEo3gAABVBgAYkEI/iAQBUBJ0EkDSZ0KuRR/EAACqCAA1JkSm9Gv1H8Wzatsu8KOOz/ptQlEfxAADCUcWJSi0xW/z5N3bHnBV21cyCYsGZKIgZNrPABW/pgkfxAAAqghK0DFaRKsaKVktGKzGLpBImzUnTKSt6PKo7g1CN6j+KJ3L989KwxBAAEB8EaCki3oFGRaoYK1ot6ecBi1bFF0nTaP5aV63jgaxzkKpReRQPAKA8sjzPi+W+mVEKCwstNzfXtm3bZnXr1k324sQ90CgpYPJDn2gPWK7IZ/zA8sS7FpZachbNL05oYa8s31ThdS5teb3/zl+ldOnYMQEAMlVhwO7fB4I2aBmWhb4iiVMPJNlqWXnASvLYO2srvM6xLK/mP/CR91zwmE5t3gAA6YEALcOy0FckceqBJFuNNQ9YuJIKtGJd5/IEhenYMQEAkPoI0DIsC31FEqceSLLVWPOAiR+XlRZvxrLO5QkKKxroAgCQSARoGZaFviKJUw8k2aqfByyWVl7q1Xj5CS0OeJ3LExRWNNAFACCRCNAyLAt9WQGThjeOSJxakc+UJw+YGuz/3xXH29s3n2q92+Ud8DqXJyg80OpYAAASgQAtwA4kMIpn4tQDTbbq5wFTCVk4vZ8+qLON7XeM5beu7z4fj3UubXlLU96SNwAA0jpAmzp1qrVo0cJycnKsR48etmTJklKnf+aZZ+yoo45y03fo0MFefvnl/aZZtWqV/fSnP3XdbWvVqmXdunWzdevWWSpJVBb60gKmktJlVOQzkZ9XCZlKyv5wSadQiVnk5+K1ziUtb7wCXQAA0joP2uzZs23w4ME2ffp0F5xNnjzZBWAff/yxNWzYcL/p3333XTvppJNswoQJds4559jTTz9td911lxUUFFj79u3dNJ9//rl1797dLr/8chs4cKDLhbJixQo7/vjjo84z6HlUEpVwtTKfJJCsdfaX928rN9mj76zdb3xZedwAAKmjMGD375QO0BSUqXRrypQp7v2+ffusWbNmNnz4cBs9evR+0w8YMMB27Nhhc+fODQ1T4NWpUycX5Mkll1xiBx10kD311FNps4OD8MiiTHx6AgAgdRQG8P6dko962rNnjy1dutTGjBkTGlalShXr3bu3LV68OOpnNHzUqFHFhvXt29deeOGFUID317/+1X7961+74R988IG1bNnSfcd5551nqUqBidppZZJ4rzOPWwIApIqktkHbunWrFRUVWaNGjYoN1/tNmzZF/YyGlzb9li1b7IcffrCJEyfaGWecYa+99pqdf/75dsEFF9gbb7wRdZ67d+92UXf4C+kd9J3bqWmoYwIAAEGTdg9LVwmanHvuuXb99de7v1X9qbZrqgLt1avXfp9Re7bx48dX+rICAAAErgStQYMGlp2dbZs3by42XO/z8qLnw9Lw0qbXPKtWrWrt2v2nJ6Dv6KOPLrEXp6o/VV/tv9avX3+AawYAAJCiAVq1atWsS5cutmDBgmIlYHqfn58f9TMaHj69zJ8/PzS95qlOB+oFGu6TTz6x5s2bR51n9erVXWPC8BcAAEDGVnGqwf+QIUOsa9euLjWG0myol+bQoUPdeKXgaNq0qauGlBEjRrhqynvvvdfOPvtsmzVrlr3//vv28MMPh+Z50003ud6eSsdxyimn2Lx582zOnDm2aNGipK0nAABAygRoCqS+/vprGzt2rGvor/ZiCqj8jgCqllTPTl/Pnj1d7rNbb73VbrnlFmvbtq3rwennQBN1ClB7MwV11113nR155JH23HPP2YknnpiUdQQAAEipPGhBlE55VAAAyBSFaXT/DsSjngAAAPA/BGgAAAABQ4AGAAAQMEnvJBBEfrM8nigAAEDqKPzvk4DSoXk9AVoU27dvd//roe0AACD17uO5ubmWyujFGYWS5X711VdWp04dy8rKiltUr4BPTylI9Z4l5cF6s78zQaYe55m87qx3MPe353kuOGvSpEmxFF2piBK0KLRTDzvssIRs8Ex9UgHrnVnY35mHfZ5Zgry/c1O85MyX2uElAABAGiJAAwAACBgCtEqiB7KPGzfO/Z9JWG/2dybI1OM8k9ed9c6s/Z0MdBIAAAAIGErQAAAAAoYADQAAIGAI0AAAAAKGAA0AACBgCNDi4M0337R+/fq5zMV68sALL7xQ6vR/+ctfrE+fPnbooYe6RH/5+fn26quvWrqv99tvv20nnHCC1a9f32rUqGFHHXWU3X///ZaKyrvu4d555x2rWrWqderUydJ9vRctWuSmi3xt2rTJ0n1/7969237zm99Y8+bNXY+/Fi1a2GOPPWbpvN6XXXZZ1P19zDHHWLrv7z//+c/WsWNHq1mzpjVu3Nh+8Ytf2DfffGPpvt5Tp061o48+2l3TjzzySHvyyScrZVkzAQFaHOzYscOdmDpQYz0JFKC9/PLLtnTpUjvllFPcSfHBBx9YOq93rVq17Nprr3Xrv2rVKrv11lvd6+GHH7ZUU951933//fc2ePBgO+200ywVVXS9P/74Y9u4cWPo1bBhQ0v39b744ottwYIF9uijj7r1/7//+z93A0vn9f7DH/5QbD/r8U/16tWziy66yNJ5vfWjS+f15ZdfbitWrLBnnnnGlixZYldccYWl83pPmzbNxowZY7fffrtb7/Hjx9s111xjc+bMSfiyZgQPcaVN+vzzz5f7c+3atfPGjx+fcet9/vnne4MGDfJSWXnWfcCAAd6tt97qjRs3zuvYsaOX7uv9+uuvu+m+++47L13Est6vvPKKl5ub633zzTdeuqjIOa7ps7KyvLVr13rpvN733HOP16pVq2LDHnjgAa9p06ZeOq93fn6+d+ONNxYbNmrUKO+EE05I8NJlBkrQAvJwdj3cVb80M4lKDN99913r1auXZYLHH3/cvvjiC5fUM9OoOlfVPio5VmlDunvppZesa9eudvfdd1vTpk3tiCOOsBtvvNF+/PFHyyQqPezdu7er5k1naqai0kLViii22bx5sz377LN21llnWTpTNX5OTk6xYarqVOnh3r17k7Zc6YIALQAmTZpkP/zwg6sSyQR6EL3a5OgGpuLwX/7yl5buPv30Uxs9erTNnDnTtT/LFArKpk+fbs8995x7NWvWzE4++WQrKCiwdKZAXG0uly9fbs8//7xNnjzZ3bCvvvpqyxRfffWVvfLKKxlxfqttrdqgDRgwwKpVq2Z5eXnugd3lbQqQavr27Wt/+tOfXFMdBabvv/++e6/gbOvWrclevJSXOXeKgHr66addvf2LL76Ycu1yKuqtt95yAel7773ngpY2bdrYwIEDLV0VFRXZz372M7efVZKSSdTmKrzdVc+ePe3zzz93nUOeeuopS+dScTWy1k1bN2q577777MILL7QHH3zQlTKkuyeeeMIOPvhgO++88yzdrVy50kaMGGFjx451QYva391000121VVXuVLEdHXbbbe5Dj/HH3+8C9AaNWpkQ4YMcSXHVapQ/nOgCNCSaNasWe7XpRqUqhogU7Rs2dL936FDB1cVoAam6RygqfpavyxVpatOEv4NXBc0laa99tprduqpp1qm6N69uytdSveSQ1Vt+sGZqKeb9vmXX35pbdu2tXSm9VSP1Z///OeuRCndTZgwwZWiKSiTY4891nWK+slPfmJ33nmnOx7SkX5oaD8/9NBD7lqu9VSnrzp16rgsBTgwBGhJoh5d6oatIO3ss8+2TKVARe0Y0plSqXz00UfFhqkUZeHCha7ayw9YM8WyZcvS9obl081aP7xUUly7dm037JNPPnGlCqriT3dvvPGGffbZZ65XYybYuXPnfk0XsrOz3f//aW+f3g466KDQca172jnnnEMJWhwQoMWBLsK6GPnWrFnjbkJq9H/44Ye7bsgbNmwI5YdRtaaKgdUlvUePHqGcUPo1Ev6LO93WW+0xNFz5z0TpNtT+7rrrrrNUU5511025ffv2xT6v6mw1ro0cnm77XG2vFIAqD9auXbtc+xQFpio1TOf1VpX2HXfcYUOHDnVV22qPo9IV/ShLperN8q63T9V6ural2vFd0fVWmiSl1FDaCb+Kc+TIka60WDnF0nW99aNDHQK0r7/77jtXja92l6reRhwkuxtpOvBTCUS+hgwZ4sbr/169eoWm19+lTZ+u661u58ccc4xXs2ZNr27dut5xxx3nPfjgg15RUZGXasq77pFSNc1Gedf7rrvu8lq3bu3l5OR49erV804++WRv4cKFXibs71WrVnm9e/f2atSo4R122GEu/cDOnTu9dF/v77//3q3zww8/7KWqiqy3rm9Kl6R1b9y4sXfppZd6X375pZfO671y5UqvU6dObp11TT/33HO91atXJ3EN0kuW/olHoAcAAID4oJsFAABAwBCgAQAABAwBGgAAQMAQoAEAAAQMARoAAEDAEKABAAAEDAEaAABAwBCgAUiYGTNmuAdmZzI9NP2FF16o1O9cu3at+15lgT8QLVq0cE+DCNr6AZmAAA1IAZdddpm7Eeql5941atTI+vTp4x5UrOeZloceTt+pU6e4L2O0m/mAAQPc42AS7eSTTw5tH720fS666CL717/+VWnfGfnSeACoKAI0IEWcccYZ7hl/Kh155ZVX7JRTTrERI0a4BxP/+9//tiDScyf13NHKoGchavt89dVX9uKLL9r69ett0KBBCfu+v/zlL+779NLzCOVvf/tbaJjGV4Qe7hLU/Qmg8hCgASmievXqlpeXZ02bNrXOnTvbLbfc4gIRBWuqSvR9//339stf/tIOPfRQq1u3rp166qn24YcfunGaTg/v1nu/pMf/bGmf882ZM8e6devmHvTeoEEDO//8891wlRaptOr6668PzbekKk49ULp169ZWrVo1O/LII+2pp54qNl6f1UPVNe+aNWta27Zt7aWXXipz+2habZ/GjRvb8ccfb9dee60VFBQUm+aNN95wD7DWttR0o0ePDgVDegB07dq17dNPPw1Nf/XVV9tRRx1lO3fu3O/79ABpfZ9e2mZSv3790DCN9+lh6SWtz6JFi9w6az926dLFLdvbb7/tSkYnTJjgHjavQLdjx4727LPPhj6nh1Nfeuml7rs1XvN9/PHHiy3jF1984QJ5fa8+v3jx4mLjn3vuOfcge32nSkDvvffeUrexts1JJ53k9n+7du1s/vz5Ze4XABWU7IeBAiibHlKsBxFHo4eun3nmmaH3ekB3v379vH/84x/eJ5984t1www1e/fr1vW+++cY9rFvv9dD6jRs3upf/AO/SPidz5871srOzvbFjx7qHJC9btsz7/e9/78ZpGj0Q/Le//W1ovvL44497ubm5oWX7y1/+4h100EHe1KlTvY8//ti799573TzDH6Cuy5Lm9fTTT3uffvqpd91113m1a9cOLUc0eoDziBEjQu81rdbllFNOCQ3Tg6tr1qzpXX311e5B5s8//7zXoEED9+B630UXXeR169bN27t3r1tfLev7779f5v5Zs2aNW+4PPvhgv3FlrY//gOpjjz3We+2117zPPvvMjbvzzju9o446yps3b573+eefu21ZvXp1b9GiRe5z11xzjXtQtfaXvn/+/PneSy+9VGx59Hmth7b1hRde6DVv3tytm2i9qlSp4vaZxmv+eui1/vdp+vvvv9/9XVRU5LVv39477bTT3L5/4403vOOOO859j7YlgPgiQANSPEAbMGCAd/TRR7u/33rrLa9u3brerl27ik3TunVr76GHHnJ/KyBRUBculs/l5+d7l156aYnLGH4z90UGaD179vSuuOKKYtMoKDrrrLNC73XDv/XWW0Pvf/jhBzfslVdeKTVAUzBVq1YtF4Rp+iOOOMIFKr5bbrnFO/LII719+/aFhilQVLCk4EO+/fZbF0wNGzbMa9Sokfe73/3Oi0VZAVpp6+MHaC+88EJoGu0Hrce7775bbF6XX365N3DgQPe3AtChQ4eWujx/+tOfQsNWrFjhhik4lZ/97Gdenz59in3upptu8tq1axd1n7766qte1apVvQ0bNoTGax0I0IDEoIoTSHGKAfwqRVVJ/vDDD66qTdV1/mvNmjX2+eeflziPWD6nHoGnnXbaAS3rqlWr7IQTTig2TO81PNyxxx4b+rtWrVquynXLli2lzlvVfVpGrYuqCNu0aWOnn366bd++PfTd+fn5oW3lf7fW+8svv3TvDznkEHv00UdD1bCqAo2HWNana9euob8/++wzV62qjiDh+0PVsP7+GDZsmM2aNct1+Pj1r39t7777bqnfqypd8b+3pH2hasyioqL95qXpmzVrZk2aNAkN0/YEkBhVEzRfAJVEN061UxIFG7oRq11TpNLSXcTyObVzqizqqRpOQVVZvVVzc3NdUCb6X4GW1mn27NmubV2s3nzzTcvOznYN/Xfs2GF16tSxylgfBW7h+0P++te/ujaH4dReTM4880zX7u/ll192bcEUPF9zzTU2adKkqN/rB6bl7fULIDkoQQNS2MKFC+2jjz6y/v37u/fqPLBp0yarWrWqC1LCX2rUL2qcH1lCEsvnVBqzYMGCEpcl2nwjHX300fbOO+8UG6b3anAebwqy5Mcffwx9txrJ/6fW8X/frQDssMMOc+9VCnXXXXe5zhAqsVJHg2TQ9lAgtm7duv32h0qxfOogMGTIEJs5c6ZLcfLwww/H/B0l7YsjjjgitO0ip1fPWAWuvvfee6/C6wigdJSgASli9+7dLohSELR582abN2+e6+WnNBuDBw920/Tu3dtVO5133nl29913u5ut0k6oJEa9CFWNpt56qrpUdaACEwUosXxu3LhxrpRGVX+XXHKJ6/2o0pubb77Zfbfmq9InjVNw4Qd24W666Sa7+OKL7bjjjnPfqUBI6SiUnuJAqUpQ20e0fe644w7X21DVnH6PTAUxw4cPd4HXxx9/7NZp1KhRVqVKFVcV+vOf/9yuu+46VzqlbaMeq/369bMLL7zQKpP2yY033uh6xarE68QTT7Rt27a5AErVowrKxo4d63p9qhemjo25c+e6ICpWN9xwg1s/bSflq1PwOmXKFHvwwQejTq/9peNC333PPfdYYWGh/eY3v4njWgMoJkFt2wDEuZOATle91FD70EMPdb0uH3vssVADd19hYaE3fPhwr0mTJq7hfLNmzVzj/nXr1oUaoPfv3987+OCD3fz8XntlfU6ee+4513OwWrVqrgfkBRdcEBq3ePFi1xNRPQ39S0tkJwF58MEHvVatWrnvUEP+J598stj4aI3ONY/w3oXROgn420evQw45xA0L7x0q6gGpXppa/ry8PO/mm28O9WpUg/sOHToU6yihXqb16tVzPUAPpJNAaevjdxL47rvvik2jzgyTJ092HRu0rbTP+/bt63pPyh133OE6h6jnpZZRnUi++OKLEpdH89cwfZ/v2WefdZ0CNP/DDz/cu+eee0rt+KHenieeeKLbftp36mFKJwEgMbL0T/GQDQAAAMlEGzQAAICAIUADAAAIGAI0AACAgCFAAwAACBgCNAAAgIAhQAMAAAgYAjQAAICAIUADAAAIGAI0AACAgCFAAwAACBgCNAAAgIAhQAMAALBg+f+nH+GwHCu6HgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAARx9JREFUeJzt3QmcVXX9//HPMMgqDJswAxGrSqiAgCAmagECueFSgBlLpoZlPwVT0WQJ/4FISgZiYoZKKWakWYYkSqmhGEgoW0AYogybMmwO6HD+j/f315nfvZd7Z+4d7jb3vJ6Px4U553zvuWc/n/PdTp7neZ4BAAAESI1MLwAAAEC6EQABAIDAIQACAACBQwAEAAAChwAIAAAEDgEQAAAIHAIgAAAQOARAAAAgcAiAAABA4BAAJdmBAwfsO9/5jhUWFlpeXp7dfPPNbvyOHTvsqquusqZNm7rxM2fOtOq+Tsg+bdu2tVGjRsWV9oILLnCfbFv+iy++2HJ1ed5//313Ds2bN6/StNqP+v3qaNKkSW49d+/enelFAWIiAIqDLlY6mWN93nzzzfK0P/nJT1z6MWPG2JNPPmnf+ta33PhbbrnFXnrpJRs/frwbP2jQIEs2/fZzzz2XkvlGW6doF7zKPsm84f7mN7+pVoFkJqxdu9btG914s0U2LhPiU1ZWZr/61a/cedykSROrXbu2C9JGjx5t//jHP3JiM2biuqLtGeua2alTJ8tWeRHL2rBhQzv//PPtT3/6U7XY/jXT8is54sc//rG1a9fumPEdO3Ys//uVV16xs88+2yZOnBiWRuMvu+wyu/XWW1O2fApUlMs0ZMiQpM431jqFuuKKK8K2g3KNFDBdfvnlbpqvRYsWSVsunSjvvfceOVIhNmzYYDVq1AgLNiZPnuwusJG5CYsXL7ZMqGiZkL0+/fRTdy4vWrTIzjvvPLvzzjtdEKRA9plnnrHHH3/ctm7dal/4whesOsvUdUXbberUqceMLygosGw2YMAAGzFihOm1ov/5z39szpw5dskll9if//xnGzhwYFZvfwKgBAwePNh69uxZYZqdO3da586do45v1KiRVUex1ilUly5d3MenrG8FQBp3zTXXWDY6evSoHTlyxOrUqWO5Qk/k8apVq5blkoMHD1r9+vUzvRg564c//KELfh544IFjbk56ONL4dNINt7S01OrWrWvZLp5rjQKdqlwrYx33ydg+paWl7joR+lAV6ZRTTglb7iuvvNLdL372s59VKQBKJ4rAkmTp0qUuC3DLli0u+8/PEvSLz3Qwzp49u3y8b+/eve5i0rp1a3fzUi7Kvffe606YUBrWAXXGGWe4k+ikk05yxWh+trPmqRNBT2H+b1RWF0SBzbXXXutyZTTPrl27uu9Xtk7HU3Sxfv16l0ulJ0f9pgLKP/zhD2HLpHVT7oC2mW/Tpk3uJB86dKgb1nQtk544/OWqLDdBab7//e/br3/9azvttNPc9tYFXT788EP79re/7baFxmv6Y489FvWCoOIbnfRa/qKiIvdUvHnz5vI02g/jxo0r36ennnqqzZgxI2x9/CfqH/zgB9asWTNr0KCBXXrppW45tJz6jcjiRW0D7VMF0rpYqtjh0KFDMesA6dj7+te/7v7+yle+Ur6dtF/9bRhZJFnZMRFaj0Xr9Mgjj1iHDh3cep511ln29ttvV7gPKlsm3+uvv269evVyy9C+fXt74oknjpmPvvfXv/7VbrzxRmvevHlYzoOePvv27euOGW3biy66yNasWRM2j+LiYrcN9T0tv/alcmmjHd+VLY/8+9//duumY7tevXou1zTeogAVXZ9++ulu/vr/97//vSXioYceKj+mW7Zsad/73vfctSWU9rXmrRw4bXstY6tWrWz69OmVzn/btm32i1/8wj3tR3syz8/Pd7nbkbk/WobKjlkVqX31q191+1DLr5unchFi1cdSVQJdN3Rj1zIlMg//2FAxjY4LFdnouFWuQzzXlcOHD7tgT9dp/Y7O8dtuu82Nj/daczz8a4H24dVXX22NGze2c889t9LtE8+xufS/1/unn37afvSjH7ljQ2n37duX0DJ+6Utfcte00GuiPP/88+481PGp7aHrxpQpU1yxqi9Z2z9e5AAloKSk5JhKfdpBqtisna76Marro4uAboBy5plnlteb8bMKfboQ6ETUTe+GG26wL37xi/b3v//d1RPavn17WDmobkq66CsXShWSP//8c3vttddc/SMd7PoNjddF+vrrr3ff0QEWi26+Oth0U9WJqqK93/72t+5ipYvW//zP/8RcJwUoVaEb0Je//GV3Yt1xxx3u5qSscxXZ/e53v3PFZbqA6cKlk/XnP/+5CxAU/Gm5dMHShV7uuusutz90YfafPE888cS4ivP0m1pnnaQ6uVRBXRcE/6Kl9dNFUttcJ79/wdeJqgvMkiVLbNiwYW4b7d+/3/7yl7+4LFttbwU5CmReffVV9/1u3bq5C5KenrWfQ5+StU5aFh0b+n3dzHWBiOUb3/iG20/KJl+5cqU9+uijbnspYI5GxRTafg8++KArrtD+FP//qhwToXTT0Prr2NW2041UwaAutieccEKVl0m/ryBZ22/kyJEuENUy9OjRw91MQin40f6aMGGCCzxFx6y+p6dPbRudZzqmdKN45513yi+oelLVMXnTTTe5cQr+tC9VjBN60Y1neXQMnXPOOe63tH66Jihw1LHw7LPPumM7FhVF+k/N2rd79uwpD8zivSmqSLF///4u11XFoFpfBaNvvPFG2L745JNP3IOT9pOOJy3b7bff7h6sdG2JReeDrjnR6v9VJJ5jVsuq7ahtVbNmTXvhhRfcftV5r0AulNZt+PDh7pi77rrr3MNFIvPQNVQPOkqr66wCMx0TCk4UUFR0XdG8NH8Fw7rG6ph99913Xbp//etfx9S/jHatqYiuL9EqjSuQiczh0fXx5JNPdtUeQh+som2fRI/NKVOmuFwfBbQKLBLNKdb203EWef/Rtte2HDt2rPtf20fnra6x9913n0uTzO0fFw+V+tWvfqUjLOqndu3aYWnbtGnjXXTRRcfMQ2m/973vhY2bMmWKV79+fe9f//pX2Pg77rjDy8/P97Zu3eqGX3nlFff9H/zgB8fM9+jRo+V/a14jR46Ma4/OnDnTzXP+/Pnl444cOeL16dPHO/HEE719+/ZVuk4V2bVrl5v/xIkTy8f169fPO+OMM7zS0tKw5T/nnHO8k08+Oez7w4cP9+rVq+e2zX333efm9dxzz4Wl0TJp2eKledSoUcNbs2ZN2Phrr73WKyoq8nbv3h02ftiwYV5BQYF36NAhN/zYY4+5edx///0x94OWUWnuueeesOlXXXWVl5eX523atMkNr1ixwqW7+eabw9KNGjXqmO2mvzXu29/+dljayy+/3GvatGnYOG2P0GPgt7/9rfvuq6++eswyn3/++e6T6DGxZcsWl06//fHHH5enff755934F154watIRcuk5de0v/3tb+Xjdu7c6c6zcePGHXNOnnvuud7nn39ePn7//v1eo0aNvOuuuy5svsXFxW5f+uM/+eQT930dWxWJd3m0H5XutddeC1uWdu3aeW3btvXKysrCtp2W39etWzd3/O3du7d83OLFi126yo5vLUutWrW8Cy+8sPw3ZNasWe77OmZ92tca98QTT5SPO3z4sFdYWOhdeeWVFf7OLbfc4r77zjvvePFI5Jj1z69QAwcO9Nq3bx91XyxatOiY9PHMQ9u3QYMGXu/evb1PP/005nU01nXlySefdNeP0H0sDz/8sFuuN954o9JrTSz+von2ueGGG47Zrro+Roq1feI9Nl999VWXTtss2vaMRul1/dT1XsfiP/7xD2/QoEFRz61o89S66Tofek9IxvaPF0VgCVARlp4QQz96MqoqPV0rm17ZmIr8/Y+e5PQ08Le//c2lU+6InrCjVUIOLU5LxIsvvuiatetpwacnRT0hqAKzciOS6eOPP3YRv54IlWvgr6uedvWkvnHjRpdD4ps1a5bLMteT99133+2ePFU8cbyU4xZan0nnsLavKu3p79D9oOXS04ieXEXp9CSnHINY+0HbVcUB2o6hlHum+fvHi58drqfUUNHm7fvud78bNqxjR9sv0SzqZB0TKo7UsRu6PKIcoOOh/ePPS5TDoyfZaPPVU662t0/npHKrtA6h+1Jpevfu7XLm/KdqPdkq219Pq8e7PNp2yn31iyP8J1c9qapITUUW0Sind9WqVS5nKbSyq3KLK6t3Jy+//LKrW6JcytB6GtouKt6JLObQMoXW19A20HJXts/8Y0y5sImI55gNraPi57LrPNUyaTiUcpOi1SuJZx46NnTtUe5zZF2ceK6jul4r10GtskKPLRW9iX9sxbrWVEY5RJH3F32iFTlGbteKtk+ix+bIkSMTqjf0y1/+0p0TytlTaYRyyFUspZyeUKHz9O8BOh6UM6WqEcne/vGgCCwBOogqqwSdCN30V69eHbNISVnyorJUlZuq/DZZVMaqLNTIym1+UYSmJ5OKERQAKJjRJ9b6qnhMtK4qJlFWr+qj6O9kiGzFt2vXLnfDVF0WfWItl78fdONTFnss2m7aV5E3isjtqv+17SOXJ7QlXSQVkYbygw/dwHWzS/cxUdHyHI/I+frzjjbfyO2nc0r8i2Ikfzup/oCKYRSY6vhSEaSKN1VErSAw0eXRtlGAFSl026n+TSR/m2q7R9Kx5gffsfjf94uCQgMb1VWK3GcqVou82WtddB2qiL/ddONKRDzHrIrp9HC3bNmyY+oHKXgJDQyjtcKNdx5+nZRo+yEeOrbWrVtX6fW6smWNRcVceviNR6x5Rxuf6LHZLsHl1oOpivkUiKvYVcVy2geR1xEVN6tukR6EIx/aIgPdZGz/eBAAZZDKNPWkp2g5GlW0zRV+pW6VK8dqGRB581fdGf9iqTLhZLSii3yy8ZdLT8V68okmtHVbJoXmdISKrFxd3ZcnkfnG2p+qBxQZyEho8Kona+X8qe6AjjUF5qqrogu06u5VZXmyXVXXxe+LRnUuVK8tWb+noKRfv35u/vfff7+r1KrgTbkWqtsR2RgkWs5EovOoKs1HdaX0G9Hodytb1mSJNe9k/GbdBOehoNoP3L72ta+5XHIFRKpo73eBoodM5Ygp6FV3MqofpFw4BfiqgxbPPkp0+8eDACiDdBCoaKGyqF/pdIFWMVJFuUCJFIe1adPGPfXpoAqN1P2sSE1PJj2N+kUq8TzlqIhIFSYVHKolhYKTt956K+wGVtXiv1B6mlBujYoc49kPWobPPvssZiVfbTcVS+hJOTQXKHK76n9te7WwC336V05ZMmXjMZGM/RaLX/FS2fHxHGdKr1wgffSEqZv7T3/6U5s/f35Cv6ttowqokSrbdv54P+cqVLT5xfq+0vrnmOhpXMdWvDkKlVEFaQUz2i6JVoSuiCorq6KtWoKG5hYlUpwR7zz8Y0MNFirKaY11fOr7//znP12wlcpjONmqemxWlSpgK/BUbo8qWPutPFX0uXDhQtcQwqdjNJPbnzpAGaT6MMqy9XM6QiliVqsLUQsRPTGppUdFT27KQo1s+hqLInU1A16wYEH5OP2eWl6pfFjRejLphqQWRmqWqXoPkVQU5dM6+C3alJ2qQEhPCvo7lNY3nqzTiuiiru2r+j26MFa0XEqnMmfVT4q1H7RdFUxFptEFQSet39LGzwXzW7X5tP2TyW89Es9xka5jIpFlSpS2q54ydawoUI21P5VFry4NIi+wClqr0qRW22758uXufPapVZqKVVW3I1ZdEDW9V9ClVjmhx7LqfsSqNxRKAY5yO1REHHotUL0Mza+iVoWJ0NO16hWpxVq0Y1RBswJH5dQmws8hCl12LbeatSd7HhdeeKHbv8rli9z3kdfRaNcVXa9VT3Hu3LlRW1D6rRCzTVWPzarSQ6oeKFRcpabvsfaRgvTI61+6tz85QAlQBdZolbXUxDD06SteahqtpxbVPfCb1WonKptZzRNVQU3ZicpK1FOXLnJ6UlQzVl1w1Axe05TdKPq+ch+URah6KCrLjVb2K6oAp2BEv7tixQp3Iug3VZau5veJVnaMtxK5KuIpG1MXU20zNdHUiakLp6J7UXNrPS1oXXTiaH0VEN1zzz2uvFl90/jrq5u1KtupLw/dpFWkkahp06a5p0VtKy2XLgjKbVPQpWXQ36L6Ier/Rb+nC4oq8Gl/KY0qM2vZ9PvaJ2rOqf2nZdVNQxcCFbn4T6FadgVU2tZaV78ZvJpzSrKecHRz1TZUfRddVFT3xe8vJVPHRCLLlCgFP2oSrfOle/furrsC5fKpabsqBKsbBgWn2s56ktRFVftbF231vaPjUd9JlCrWPvXUUy7AVaVx5dQqqNETroLrijqS0w1ZgYrODTXR1vGmIENNtZVDXBGtm5pz6+FI54maCetpXzcWnRPJ7IRUAY6Km7R+epLXdUt1erRtVUFV18ZEt52CEgVwOm+Uc6D11Q1Ox0K0B6XjmYeODT2I6FqibeP3o6PrjgJiv7+rWNcVHVNq1q4KyLpe6FjSw47WW+P9/neqSudCrJzH49mPx3NsVpWuIWrirnNc3ZzoHqltrZx8LYOubyqmjlb0mtbtn3C7sQCqqBl8ZJPWRJrB+80Rx48f73Xs2NE1Z23WrJlrFj5jxgzXBNmnpr5qVtipUyeX7qSTTvIGDx7smlP71q9f75133nle3bp13e9V1iR+x44d3ujRo91vap5qoh66LpWtU6LN4GXz5s3eiBEjXNPbE044wWvVqpV38cUXe88++2xYU+qf/vSnYd9TE2wtR9euXcu3y4EDB7yrr77aNXuOp8lwrH3gbwtNa926tVsuLZ+a7T/yyCPHNOW86667XBNSP52auGu9Qvepmg23bNnSpVETf+270Ka2cvDgQfebTZo0cc3MhwwZ4m3YsMEt57Rp045p+qptGu24VNPqWM3gZe7cua5pq7pWCG1+HtkMPt5jwm/KHa0JebR9Hk2sZYp1rEUuq7/ub7/9dtT5a35qBq2m73Xq1PE6dOjguhhQM11Rlwfa9jqf1H2E0ql59DPPPBM2n3iXR3QM6FjQ8ajf7NWrl/fHP/4xLE20ZvDyu9/9zvvSl77kmtd37tzZW7hwoduP8XbzoGbvWhcdby1atPDGjBnjmvpHLvNpp512zHcT+R1dhx599FGvb9++bpvp9/RdHTOhTeQTOWb/8Ic/eF26dHHbTM2y77333vIuJyKP7VjXoXjn4afVNVbXyYYNG7r99NRTT5VPr+i6omuP5q3tqH3VuHFjr0ePHt7kyZO9kpKSuK41iTaDD71Nx9qulW2feI7NV//bDF7dVMSrovWcNGlS2LmtZupnn3222+66Nt52223eSy+9dEyXGMnY/vHK++9KAMgCahKtCrh6EvzmN7+Z6cUBgJxFHSAgQ1RuHUlFTcqSDq0oCABIPuoAARmiV0eoro3qDKkOiuqY6aO6OFVp0gkAiB9FYECGqKWPKq+qtY8qbqoJryr6qQJ1RZ0tAgCOHwEQAAAIHOoAAQCAwCEAAgAAgUNFgyjUyeBHH33kOn6rTl2eAwAQZJ7nuVcRqTPgyjp5JACKQsEPrXAAAKiePvjgA/ei1ooQAEXhd/mvDaju0wEAQPbbt2+fy8CI59U9BEBR+MVeCn4IgAAAqF7iqb5CJWgAABA4BEAAACBwCIAAAEDgEAABAIDAIQACAACBQwAEAAAChwAIAAAEDgEQAAAIHAIgAAAQOPQEDSAwyo56tnzLx7Zzf6k1b1DHerVrYvk1eOExEEQEQAACYdF7223yC2tte0lp+biigjo28ZLONuj0oowuG4D0owgMQCCCnzHzV4YFP1JcUurGazqAYCEAApDzxV7K+fGiTPPHabrSAQgOAiAAOU11fiJzfkIp7NF0pQMQHARAAHKaKjwnMx2A3EAABCCnqbVXMtMByA0EQABympq6q7VXrMbuGq/pSgcgOAiAAOQ09fOjpu4SGQT5w5pOf0BAsBAAAch56udnzjXdrbAgvJhLwxpPP0BA8NARIoBAUJAzoHMhPUEDcAiAAASGirn6dGia6cUAkAUoAgMAAIFDAAQAAAKHAAgAAAQOARAAAAgcAiAAABA4BEAAACBwCIAAAEDgEAABAIDAIQACAACBQwAEAAACh1dhAACAtCg76mXN+/gIgAAAQMotem+7TX5hrW0vKS0fV1RQxyZe0tm9rDjdKAIDAAApD37GzF8ZFvxIcUmpG6/p6UYABCBQ2e/LNu+x51d96P7XMIDU0nmmnJ9oZ5s/TtPTfT5SBAYgELIt+x0IiuVbPj4m5yeUwh5NV7o+HZqmbbnIAQKQ87Ix+x0Iip37S5OaLlkIgADktGzNfgeConmDOklNlywEQAByWiLZ7wCST03dVdwcq7G7xmu60qUTARCAnJat2e9AUOTXyHN17SQyCPKHNT3d/QERAAHIadma/Q4EyaDTi2zONd2tsCD8PNOwxmeiIQKtwAAEIvtdFZ6j1fLJ++9FON3Z70DQDDq9yAZ0LsyanqCzIgdo9uzZ1rZtW6tTp4717t3bli9fHjPtwoULrWfPntaoUSOrX7++devWzZ588smwNKNGjbK8vLywz6BBg9KwJgCyTbZmvwNBlF8jzzV1v6xbK/d/Js+7jAdACxYssLFjx9rEiRNt5cqV1rVrVxs4cKDt3LkzavomTZrYXXfdZcuWLbPVq1fb6NGj3eell14KS6eAZ/v27eWfp556Kk1rBCDbZGP2O4DMyvM8L6NtP5Xjc9ZZZ9msWbPc8NGjR61169Z200032R133BHXPLp3724XXXSRTZkypTwHaO/evfbcc89VaZn27dtnBQUFVlJSYg0bNqzSPABkn2x6ESOA5Evk/p3RHKAjR47YihUrrH///v+3QDVquGHl8FRGsduSJUtsw4YNdt5554VNW7p0qTVv3txOPfVUGzNmjO3ZsyfmfA4fPuw2WugHQO7Jpux3AJmV0UrQu3fvtrKyMmvRokXYeA2vX78+5vcU2bVq1coFLvn5+fbQQw/ZgAEDwoq/rrjiCmvXrp1t3rzZ7rzzThs8eLALqpQ+0tSpU23y5MlJXjsAAJCtqmUrsAYNGtiqVavswIEDLgdIdYjat29vF1xwgZs+bNiw8rRnnHGGdenSxTp06OByhfr163fM/MaPH+/m4VMOkIrhAABAbspoANSsWTOXI7Njx46w8RouLCyM+T0Vk3Xs2NH9rVZg69atc7k4fgAUScGRfmvTpk1RA6DatWu7DwAACIaM1gGqVauW9ejRw+Xi+FQJWsN9+vSJez76jorDYtm2bZurA1RUREsPAACQBUVgKnoaOXKk69unV69eNnPmTDt48KBr2i4jRoxw9X2UwyP6X2lVpKWg58UXX3T9AM2ZM8dNV7GY6vNceeWVLhdJdYBuu+02l2Ok5vUAAAAZD4CGDh1qu3btsgkTJlhxcbEr0lq0aFF5xeitW7e6Ii+fgqMbb7zR5erUrVvXOnXqZPPnz3fzERWpqX+gxx9/3DWFb9mypV144YWuiTzFXAAAICv6AcpG9AMEAEBu378zngMEAACCoSyLOiMlAAIAACm36L3tNvmFtba9pLR8nF5UrHfxZeJ1NBl/FxgAAMj94GfM/JVhwY8Ul5S68ZqebgRAAAAgpcVeyvmJVuHYH6fpSpdOBEAAACBlVOcnMucnlMIeTVe6dCIAAgAAKaMKz8lMlywEQAAAIGXU2iuZ6ZKFAAgAAKSMmrqrtVesxu4ar+lKl04EQAAAIGXUz4+auktkEOQPa3q6+wMiAAIAACmlfn7mXNPdCgvCi7k0rPGZ6AeIjhABAEDKKcgZ0LmQnqABAECw5NfIsz4dmlo2oAgMAAAEDgEQAAAIHAIgAAAQOARAAAAgcGgFBgAA0kIvPNU7v/TaC/X8rM4P093/j48ACAAApNyi97a7t76HvhhVPUCrE8RM9ANEERgAAEh58DNm/spj3gpfXFLqxmt6uhEAAQCAlBZ7KefHizLNH6fpSpdOBEAAACBlVOcnMucnlMIeTVe6dCIAAgAAKaMKz8lMlywEQAAAIGXU2iuZ6ZKFAAgAAKSMmrqrtVesxu4ar+lKl04EQAAAIGXUz4+auktkEOQPa3q6+wMiAAIAACmlfn7mXNPdCgvCi7k0rPGZ6AeIjhABAEDKKcgZ0LmQnqABAECw5NfIsz4dmlo2oAgMAAAEDgEQAAAIHOoAAQiMbHoTNYDMIgACEAjZ9iZqAJlFERiAnJeNb6IGkFkEQAByWra+iRpAZhEAAchp2fomagCZRQAEIKdl65uoAWQWARCAnJatb6IGkFkEQAByWra+iRpAZhEAAchp2fomagCZRQAEIOdl45uoAWQWHSECCIRsexM1gMwiAAIQGNn0JmoAmUURGAAACBwCIAAAEDgEQAAAIHAIgAAAQOAQAAEAgMAhAAIAAIFDAAQAAAKHAAgAAAQOHSECAIC0KDvqZU1v7ARAAAAg5Ra9t90mv7DWtpeUlo8rKqjjXkaciffxUQQGAABSHvyMmb8yLPiR4pJSN17T040ACAAApLTYSzk/XpRp/jhNV7p0IgACAAApozo/kTk/oRT2aLrSpRMBEAAASBlVeE5mumQhAAIAACmj1l7JTJcstAILaPM/AADSQfc6tfZShedotXx0Fyws+N97YjoRAAW0+R8AAOmgB33d69TaS8FOaBDkZwFoerozBCgCC2jzPwAA0kUP+nOu6e5yekJpWOMzkRFADlCGm/8p3tX0AZ0LKQ4DAOSsQacXuXtdtlQFIQDKouZ/fTo0TfXiAACQMQp2suVeRwAU0OZ/AAAEuTEQAVBAm/8BABDkxkBZUQl69uzZ1rZtW6tTp4717t3bli9fHjPtwoULrWfPntaoUSOrX7++devWzZ588smwNJ7n2YQJE6yoqMjq1q1r/fv3t40bN1omm//Fim81vigDzf8AAAhyY6CMB0ALFiywsWPH2sSJE23lypXWtWtXGzhwoO3cuTNq+iZNmthdd91ly5Yts9WrV9vo0aPd56WXXipPM336dHvwwQft4YcftrfeessFSppnaWlpxpr/SWQQlMnmfwAABPldYHmesksySDk+Z511ls2aNcsNHz161Fq3bm033XST3XHHHXHNo3v37nbRRRfZlClTXO5Py5Ytbdy4cXbrrbe66SUlJdaiRQubN2+eDRs2rNL57du3zwoKCtz3GjZsaLmY9QcAQDos27zHhs99s9J0T1139nFXkE7k/p3ROkBHjhyxFStW2Pjx48vH1ahRwxVZKYenMgp2XnnlFduwYYPde++9btyWLVusuLjYzcOnjaFAS/OMFgAdPnzYfUI3YK43/wMAIMiNgTIaAO3evdvKyspc7kwoDa9fvz7m9xTZtWrVygUt+fn59tBDD9mAAQPcNAU//jwi5+lPizR16lSbPHmyBan5HwAAQW4MlPE6QFXRoEEDW7Vqlb399tv2//7f/3N1iJYuXVrl+SkHSkGV//nggw+SurwAAARVryxtDJTRHKBmzZq5HJwdO3aEjddwYWFhzO+pmKxjx47ub7UCW7duncvFueCCC8q/p3moFVjoPJU2mtq1a7sPAABILt4FFkWtWrWsR48etmTJkvJxqgSt4T59+sS9cfUdvw5Pu3btXBAUOk/V6VFrsETmCQAAkoN3gUWh4quRI0e6vn169eplM2fOtIMHD7qm7TJixAhX30c5PKL/lbZDhw4u6HnxxRddP0Bz5sxx0/Py8uzmm2+2e+65x04++WQXEN19992uZdiQIUOStCsBAEB1bgyU8Z6ghw4dart27XIdF6qSsoqpFi1aVF6JeevWra7Iy6fg6MYbb7Rt27a5Tg47depk8+fPd/Px3XbbbS7d9ddfb3v37rVzzz3XzVMdLQIAgMzIpsZAGe8HKBuloh8gAACQWtWmH6CgyaaXwAEAEGQEQGlCT9AAAGSPatkPUHWTjS+BAwAgyAiAAvoSOAAAgowAKMVU5ycy5yeUwh5NVzoAAHJZ2VHPvRz1+VUfuv8z+fBPHaCAvgQOAIAg14UlByigL4EDACDIdWEJgAL6EjgAAIJcF5YAKE0vgZPIIMgf1nT6AwIA5KLlWVoXlgAooC+BAwAgyHVhqQQd0JfAAQAQ5LqwBEABfQkcAADprAurCs/Ravnk/bdEJN11YSkCAwAAgasLSwAEAAACVxeWIjAAABC4urAEQAAAIHB1YSkCAwAAgUMABAAAAociMACBoa72s6X+AYDMIgACEAjZ9iZqAJlFERiAnJeNb6IGkFkEQAAC/SZqL0NvogaQWQRAAAL9JmrL0JuoAWQWARCAnFa8rzSp6QDkBgIgADnt4wOHk5oOQG4gAAKQ05rUr5XUdAByAwEQgJxWWFA3qekA5AYCIAA5TZ0dqr+fimi60gEIDgIgADlNPT2rs8NY/T1rvKbTIzQQLARAAHKeenqec033Y3KCNKzx9AQNBA+vwgAQCApyBnQu5F1gABwCIACBoWKuPh2aZnoxAGQBisAAAEDgEAABAIDAIQACAACBQwAEAAAChwAIAAAEDgEQAAAIHAIgAAAQOARAAAAgcJIWAJWWltqMGTOSNTsAAIDsCIB27dplf/zjH23x4sVWVlbmxn322Wf2s5/9zNq2bWvTpk1L1XICAACk/1UYr7/+ul188cW2b98+y8vLs549e9qvfvUrGzJkiNWsWdMmTZpkI0eOTN6SAQAAZDoH6Ec/+pF97Wtfs9WrV9vYsWPt7bfftssvv9x+8pOf2Nq1a+273/2u1a1bN1XLCQAAkDR5nud58SRs2rSpvfbaa9a5c2f79NNP7cQTT7SFCxfaZZddZrlGuVwFBQVWUlJiDRs2zPTiAACAJN+/484B+uSTT6xZs2bub+X01KtXz04//fR4vw4AAFD96gCJirqKi4vd38o42rBhgx08eDAsTZcuXZK7hAAAICeUHfVs+ZaPbef+UmveoI71atfE8mvkZXcRWI0aNVzl52jJ/fH6328dVp1RBAYAQHItem+7TX5hrW0vKS0fV1RQxyZe0tkGnV6U9vt33DlAW7ZsScayAQCAAAY/Y+avtMgslOKSUjd+zjXdkxYExSvuAKhNmzapXRIAAJCTxV6TX1h7TPAjGqcCME0f0LkwrcVhcVeCnj59umv95XvjjTfs8OHD5cP79++3G2+8MflLCAAAqq3lWz4OK/aKFgRputKlU9wB0Pjx412Q4xs8eLB9+OGH5cOHDh2yX/ziF8lfQgAAUG3t3F+a1HRpD4AiKz/HWXcaAAAEWPMGdZKaLll4GzwAAEgZNXVXa69YtXs0XtOVLp0IgAAAQMqoYrOauktkEOQPa3q6+wNKqCPERx991L0CQz7//HObN29eee/QofWDAAAAfGrirqbukf0AFSa5H6CUdITYtm1b19FhEPoLoiNEAACqX0/QKekI8dVXX7V27dolY/kAAEAA5dfIsz4dmlo2iLsOUIcOHVwA9O1vf9vmz58f1gQeAACgOok7B+iVV16xpUuXus9TTz1lR44csfbt29tXv/pV+8pXvuI+LVq0SO3SAgAApLMOUKjS0lL7+9//Xh4QLV++3D777DPr1KmTrVmzxqo76gABAJDb9+8qBUA+5QLplRh//vOfXS/QBw4c4G3wAAJbARNAZqWkErQf8Lz55puuQrRyft566y1r3bq1nXfeeTZr1iw7//zzj3fZASBlb6OObIJblMEmuAAyK+4cINX1UcCjitAKdPr27ev+LyrKvQsHRWBA7gU/Y+avPOZt1H7ej/onIQgCgnX/jrsV2GuvvWZNmzZ1gVC/fv1swIABORn8AMi9Yi/l/ER70vPHabrSAUgtnWfLNu+x51d96P7P5HkXdwC0d+9ee+SRR6xevXp27733WsuWLe2MM86w73//+/bss8/arl27qrwQs2fPdh0t1qlTx3r37u0qVccyd+5cl/vUuHFj9+nfv/8x6UeNGuU6bQz9DBo0qMrLB6D6Up2f0GKvSLr8arrSAUhtTuy5975iw+e+af/z9Cr3v4Y1PqsDoPr167sgYtq0aa4obPfu3TZ9+nQXEOn/L3zhC3b66acnvAALFiywsWPH2sSJE23lypXWtWtXGzhwoO3cuTNqetU9Gj58uKuHtGzZMlcH6cILLzymXyIt6/bt28s/aroPIHhU4TmZ6QBUvRg68mGkuKTUjc9EEFTll6EqIGrSpIn7KCemZs2atm7duoTnc//999t1111no0ePts6dO9vDDz/sgqrHHnssavpf//rXduONN1q3bt1cs3u9n+zo0aO2ZMmSsHS1a9e2wsLC8o+WEUDwqLVXMtMByI1i6LgDIAUZKmpSbs/gwYOtUaNGds4559hDDz3kAgwVY/373/+2RFuVrVixwhVjlS9QjRpuWLk78Th06JDrg0iBWGROUfPmze3UU0+1MWPG2J49e2LO4/Dhw67iVOgHQG5QU3e19orV2F3jNV3pAASnGDruZvAKeA4ePOiCHfX6/MADD9gFF1zgXpFRVSpGKysrO6YHaQ2vX78+rnncfvvtrj5SaBCl4q8rrrjCtVjbvHmz3XnnnS5oU1CVn59/zDymTp1qkydPrvJ6AMhe6udHTd2Vza5gJ/QZ0w+KNJ3+gIBgFUPHHQDdd999LvA55ZRTLFuoPtLTTz/tcntUgdo3bNiw8r9VUbtLly4uUFM6tWCLNH78eFcPyaccINUtApAb1MRdTd0j+wEqpB8gILDF0HEHQDfccEPSf7xZs2YuR2bHjh1h4zWsnKaKzJgxwwVAL7/8sgtwKqJ3lum3Nm3aFDUAUn0hfQDkdhA0oHMhPUEDGSqGLi4pjVoPKO+/DyPpLoauciXoZKhVq5b16NEjrAKzX6G5T58+Mb+nekhTpkyxRYsWWc+ePSv9nW3btrk6QPRbBASbirn6dGhql3Vr5f6n2AtIXzG0RNbFy2QxdEYDIFHRk/r2efzxx10rMlVYVl0jtQqTESNGuCIqn/oguvvuu10rMfUdVFxc7D56D5no/x/+8IfulR3vv/++C6Yuu+wy69ixo2teDwAAMlMMrZyeUBrOVE/sCb0LLBWGDh3qOlGcMGGCC2TUvF05O37F6K1bt7qWYb45c+a41mNXXXVV2HzUj9CkSZNckdrq1atdQKXOG1VBWv0EKceIYi4AADIj24qhj+tt8LmKd4EBAFD9pORdYAAAALmCAAgAAAQOARAAAAgcAiAAABA4BEAAACBwCIAAAEDgZLwfIAAAEAxlR72s6QeIAAgAAKTcove2H/NCYr0jTK/ByERP0BSBAQCAlAc/Y+avDAt+RC9I1XhNTzcCIAAAkNJiL+X8RHvthD9O05UunQiAAABAyqjOT2TOTyiFPZqudOlEAAQAAFJGFZ6TmS5ZCIAAAEDKqLVXMtMlCwEQAABImR5tGltlLd01XenSiQAIAACkzIr/fGKV1W/WdKVLJwIgAACQMtQBAgAAgdOcOkAAACBoerVr4np8jlUNSOM1XenSiSIwAACQMnrXl153IZFBkD+s6el+JxgBEAAASCm962vONd2tsCC8qbuGNT4T7wLjZagAACDlFOQM6FzI2+ABAECw5NfIsz4dmlo2oAgMAAAEDgEQAAAIHAIgAAAQOARAAAAgcAiAAABA4BAAAQCAwCEAAgAAgUMABAAAAocACAAABA4BEAAACBwCIAAAEDgEQAAAIHAIgAAAQOAQAAEAgMCpmekFCJKyo54t3/Kx7dxfas0b1LFe7ZpYfo28TC8WAACBQwCUJove226TX1hr20tKy8cVFdSxiZd0tkGnF6VrMQAAAEVg6Qt+xsxfGRb8SHFJqRuv6QAAIH2oA5SGYi/l/HhRpvnjNF3pAABAehAApZjq/ETm/IRS2KPpSgcAANKDACjFVOE5mekAAMDxIwBKMbX2SmY6AABw/AiAUkxN3RvVO6HCNJqudAAAID0IgNLgyOdHK5z+WSXTAQBAchEApdibm/fYoSNlFaY5eKTMpQOQWmptuWzzHnt+1Yfuf1pfAsFFR4gptuzfu+NO9+WTm6V6cYDAojNSAKHIAUq5eF91wSsxgFShM1IAkQiAUqxPh6ZJTQcgMXRGCiAaAqAUO7t900pbgTWud4JLByD56IwUQDQEQCmmt71Pu+KMCtNMveIM3goPpAidkQKIhgAoDfS294ev6W6FDcM7O9Tb4DWet8EDqUNnpACioRVYmijIGdC50GXH64lUF2V1fqgcIgCpo/NMDxvFJaVRX0qsM7Cw4H/PRwDBQQCURgp2qOwMpP+8m3hJZxszf6ULdkKDIP/xQ9N5GAGChSIwAIHIgZ2jYuiC8GJoDWs8xdBA8JADBCAQKIYGsqNbiuVZUhWEAAhAYFAMDWTOove22+QX1tr2ktLycaqfpyLoTOTCUgQGAAAC1xs7ARAAAAhcb+wEQAAAIHC9sRMAAQCAwPXGTgAEAAAC1xs7ARAAAEh5b+yxGrtrfFEGemMnAAIAACnvjV0ig6BM9saeFQHQ7NmzrW3btlanTh3r3bu3LV++PGbauXPnWt++fa1x48bu079//2PSe55nEyZMsKKiIqtbt65Ls3HjxjSsCQAAqA69sWe8I8QFCxbY2LFj7eGHH3bBz8yZM23gwIG2YcMGa968+THply5dasOHD7dzzjnHBUz33nuvXXjhhbZmzRpr1aqVSzN9+nR78MEH7fHHH7d27drZ3Xff7ea5du1a9x0AABDs3tjzPGWXZJCCnrPOOstmzZrlho8ePWqtW7e2m266ye64445Kv19WVuZygvT9ESNGuNyfli1b2rhx4+zWW291aUpKSqxFixY2b948GzZsWKXz3LdvnxUUFLjvNWzYMAlrCQAAUi2R+3dGi8COHDliK1ascEVU5QtUo4YbXrZsWVzzOHTokH322WfWpMn/Vp7asmWLFRcXh81TG0OBVrzzBAAAuS2jRWC7d+92OTjKnQml4fXr18c1j9tvv93l+PgBj4Iffx6R8/SnRTp8+LD7hEaQAAAgd2VFJeiqmjZtmj399NP2+9///rjq9kydOtXlEvkfFcEBAIDcldEAqFmzZpafn287duwIG6/hwsLCCr87Y8YMFwAtXrzYunTpUj7e/14i8xw/frwrL/Q/H3zwwXGsFQAAyHYZDYBq1aplPXr0sCVLlpSPUyVoDffp0yfm99TKa8qUKbZo0SLr2bNn2DS1+lKgEzpPFWm99dZbMedZu3ZtV1kq9AMAAHJXxpvBqwn8yJEjXSDTq1cv1wz+4MGDNnr0aDddLbvUvF3FVKJm7+rj5ze/+Y3rO8iv13PiiSe6T15ent188812zz332Mknn1zeDF71hIYMGZLRdQUAANkh4wHQ0KFDbdeuXS6oUTDTrVs3l7PjV2LeunWraxnmmzNnjms9dtVVV4XNZ+LEiTZp0iT392233eaCqOuvv9727t1r5557rpsnfQABAICs6AcoG9EPEAAA1U+16QcIAAAgEwiAAABA4BAAAQCAwCEAAgAAgUMABAAAAocACAAABA4BEAAACBwCIAAAEDgEQAAAIHAIgAAAQOAQAAEAgMAhAAIAAIFDAAQAAAKHAAgAAAQOARAAAAgcAiAAABA4BEAAACBwCIAAAEDgEAABAIDAIQACAACBQwAEAAAChwAIAAAEDgEQAAAIHAIgAAAQOARAAAAgcAiAAABA4BAAAQCAwCEAAgAAgUMABAAAAocACAAABA4BEAAACBwCIAAAEDgEQAAAIHAIgAAAQOAQAAEAgMAhAAIAAIFDAAQAAAKHAAgAAAQOARAAAAgcAiAAABA4BEAAACBwCIAAAEDgEAABAIDAqZnpBQiSsqOeLd/yse3cX2rNG9SxXu2aWH6NvEwvFgAAgUMAlCaL3ttuk19Ya9tLSsvHFRXUsYmXdLZBpxelazEAAABFYOkLfsbMXxkW/EhxSakbr+kAAAShJGTZ5j32/KoP3f8azhRygFJMO1c5P9F2scapAEzTB3QupDgMAJCzFmVZSQiVoFNMdX4ic34igyBNVzoAAHLRoiwsCSEASjFVeE5mOgAAcqkkRDQ93cVhBEApptZeyUwHAEB1sjxLS0IIgFJMTd1VxhmrsbvGa7rSAQCQa3ZmaUkIAVCKqZ8fVfCSyCDIH9Z0+gMCAOSi5llaEkIAlAaq3T7nmu5WWBC+czWs8fQDBADIVb2ytCSEZvBpoiBHTd3pCRoAEMSSkDHzV7pgx8uSkpA8z/My1wtRltq3b58VFBRYSUmJNWzYMNOLAwBAtbcoDf0AJXL/JgcIAAAEriSEAAhAYPBCYiCz8mvkWZ8OTbNiNxAAAQiEbOuGH0Bm0QosoC+BA4IkG7vhB5BZ5AClCU+fQGbwQmIA0ZADlMGnTw3z9AkEsxt+AJlFAJTBp0/xMvQSOCAosrUbfgCZRQCU4adP4ekTCF43/AAyiwAoxYpLPk1qOgBV64a/IryQGAgeAqAU+/jgkaSmA5B4vyOXdq24mbum80JiIFgyHgDNnj3b2rZta3Xq1LHevXvb8uXLY6Zds2aNXXnllS59Xl6ezZw585g0kyZNctNCP506dbJMaXJi7aSmA5AY1a/7wz8rbuau6dTDA4LVHUxGm8EvWLDAxo4daw8//LALfhTQDBw40DZs2GDNmzc/Jv2hQ4esffv29vWvf91uueWWmPM97bTT7OWXXy4frlkzc6vZvEHtpKYDkLp6eNnSQy2QixZlWWekGc0Buv/+++26666z0aNHW+fOnV0gVK9ePXvssceipj/rrLPsvvvus2HDhlnt2rEDBgU8hYWF5Z9mzZpZxsQb3NIIDEgJWoEBmbcoCzsjzVgAdOTIEVuxYoX179///xamRg03vGzZsuOa98aNG61ly5Yut+ib3/ymbd26tcL0hw8fdm+QDf0ky+6Dh5OaDkBiaAUGZHdnpJah7mAyFgDt3r3bysrKrEWLFmHjNVxcXFzl+aoobd68ebZo0SKbM2eObdmyxfr27Wv79++P+Z2pU6daQUFB+ad169aWLFx8gczq0aaxVfayaU1XOgDB6Yw045Wgk23w4MGujlCXLl1cfaIXX3zR9u7da88880zM74wfP95KSkrKPx988EHSm+DGuv5qPE1wgdRZ8Z9PrLIHS01XOgDBKYbOWACkejn5+fm2Y8eOsPEaVr2dZGnUqJGdcsoptmnTpphpVJ+oYcOGYZ9kUdNaVfCSyCDIH9Z0muACwbr4AkHRPEs7I81YAFSrVi3r0aOHLVmypHzc0aNH3XCfPn2S9jsHDhywzZs3W1FR+muY+1S7fc413a0wojM2DWt8Jmq/A0GRrRdfICh6ZWlJSEabwasJ/MiRI61nz57Wq1cv1wz+4MGDrlWYjBgxwlq1auXq6PgVp9euXVv+94cffmirVq2yE0880Tp27OjG33rrrXbJJZdYmzZt7KOPPrKJEye6nKbhw4dncE3/Nwga0LnQlXHqSVMXW+1scn6A9Fx81drEi3HxLczAxRcIivz/loSotZfONy9LSkIyGgANHTrUdu3aZRMmTHAVn7t16+YqL/sVo9V6Sy3DfApozjzzzPLhGTNmuM/5559vS5cudeO2bdvmgp09e/bYSSedZOeee669+eab7u9M086lnxEg/eddNl58gSAZ9N+SkMh+gAoz2A9Qnud59EATQc3g1RpMFaKTWR8IQOZkWydsQBCVHfVSWhKSyP2bAOg4NyCA6iPVF18A1ef+ndEiMABIJ4qhAeRsP0AAAACVIQACAACBQwAEAAAChwAIAAAEDgEQAAAIHAIgAAAQOARAAAAgcAiAAABA4BAAAQCAwKEn6Cj816OpS20AAFA9+PfteF5zSgAUxf79+93/rVu3Tva+AQAAabiP651gFeFlqFEcPXrUPvroI2vQoIHl5eUlPTpVYPXBBx/k5ItWWb/qj31YveX6/gvCOrJ+VaecHwU/LVu2tBo1Kq7lQw5QFNpoX/jCFyyVdNLm4onrY/2qP/Zh9Zbr+y8I68j6VU1lOT8+KkEDAIDAIQACAACBQwCUZrVr17aJEye6/3MR61f9sQ+rt1zff0FYR9YvPagEDQAAAoccIAAAEDgEQAAAIHAIgAAAQOAQAAEAgMAhADpOs2fPtrZt21qdOnWsd+/etnz58grT//a3v7VOnTq59GeccYa9+OKLx/RiOWHCBCsqKrK6deta//79bePGjZYr6zdq1CjXu3boZ9CgQZZJiazjmjVr7Morr3TptewzZ8487nlWt/WbNGnSMftQ+zyTElnHuXPnWt++fa1x48buo3MsMn11Pg/jWb9sOw8TWb+FCxdaz549rVGjRla/fn3r1q2bPfnkk1m9/1KxjtV5H4Z6+umn3bIPGTIk/fvQQ5U9/fTTXq1atbzHHnvMW7NmjXfdddd5jRo18nbs2BE1/RtvvOHl5+d706dP99auXev96Ec/8k444QTv3XffLU8zbdo0r6CgwHvuuee8f/7zn96ll17qtWvXzvv0009zYv1GjhzpDRo0yNu+fXv55+OPP/YyJdF1XL58uXfrrbd6Tz31lFdYWOg98MADxz3P6rZ+EydO9E477bSwfbhr1y4vUxJdx6uvvtqbPXu2984773jr1q3zRo0a5c65bdu25cR5GM/6ZdN5mOj6vfrqq97ChQvdNWbTpk3ezJkz3XVn0aJFWbn/UrWO1Xkf+rZs2eK1atXK69u3r3fZZZd5odKxDwmAjkOvXr28733ve+XDZWVlXsuWLb2pU6dGTf+Nb3zDu+iii8LG9e7d27vhhhvc30ePHnU3nfvuu698+t69e73atWu7G1J1Xz//pI080DMp0XUM1aZNm6gBwvHMszqsnwKgrl27etnieLf3559/7jVo0MB7/PHHc+I8rGz9su08TMb5cuaZZ7oHrmzcf6lYx1zYh59//rl3zjnneI8++ugx65KufUgRWBUdOXLEVqxY4bLlQt8hpuFly5ZF/Y7Gh6aXgQMHlqffsmWLFRcXh6XRO02UnRhrntVp/XxLly615s2b26mnnmpjxoyxPXv2WCZUZR0zMc+qSuWyKCtaLxts3769ffOb37StW7daJiRjHQ8dOmSfffaZNWnSJCfOw8rWL5vOw+NdPz3EL1myxDZs2GDnnXde1u2/VK1jLuzDH//4x27Zr7322mOmpWsf8jLUKtq9e7eVlZVZixYtwsZreP369VG/ox0aLb3G+9P9cbHSVOf1E5VRX3HFFdauXTvbvHmz3XnnnTZ48GB3UOfn51u2r2Mm5llVqVoWXYTmzZvnLrrbt2+3yZMnuzon7733njVo0MCq2zrefvvtLpjzL7bV/TysbP2y6Tys6vqVlJRYq1at7PDhw255H3roIRswYEDW7b9UrWN134evv/66/fKXv7RVq1ZFnZ6ufUgAhLQaNmxY+d+qJN2lSxfr0KGDe5Lp168fe6Ma0EXWp/2ngKhNmzb2zDPPRH2ay2bTpk1zlTB1/KnyZq6JtX7V/TxUoK2b54EDB1zuyNixY11u5AUXXGC5orJ1rK77cP/+/fatb33LVdZv1qxZRpeFIrAq0o5TlL1jx46w8RouLCyM+h2Nryi9/38i86xO6xeNTmj91qZNmyzdqrKOmZhnVaVrWdRS5ZRTTql2+3DGjBkuQFi8eLG7efiq+3lY2fpl03lY1fVTEUvHjh1d66hx48bZVVddZVOnTs26/ZeqdazO+3Dz5s32/vvv2yWXXGI1a9Z0nyeeeML+8Ic/uL81PV37kACoimrVqmU9evRwkbnv6NGjbrhPnz5Rv6PxoenlL3/5S3l6ZWVq54am2bdvn7311lsx51md1i+abdu2uXJrNXVMt6qsYybmWVXpWhY9oeqiVZ324fTp023KlCm2aNEi19w4VHU/Dytbv2w6D5N1jOo7KirKtv2XqnWszvuwU6dO9u6777rcLf9z6aWX2le+8hX3d+vWrdO3D5NWnTqA1PRPtdLnzZvnmitef/31rulfcXGxm/6tb33Lu+OOO8KaidesWdObMWOGa56q1jTRmsFrHs8//7y3evVqVzM+k81vk7l++/fvd02sly1b5po/vvzyy1737t29k08+2SstLU37+lVlHQ8fPuyaF+tTVFTk1kd/b9y4Me55Vvf1GzdunLd06VK3D7XP+/fv7zVr1szbuXNn2tevKuuoc0xNdp999tmwJsQ6PnPhPKxs/bLtPEx0/X7yk594ixcv9jZv3uzS63qj687cuXOzcv+lYh2r+z6MFK1FWzr2IQHQcfr5z3/uffGLX3QXHDUFfPPNN8unnX/++W7HhnrmmWe8U045xaVXXyp/+tOfwqar+d/dd9/ttWjRwh1Q/fr18zZs2ODlwvodOnTIu/DCC72TTjrJBUZqZq3+IjIRGFR1HXWx0XND5Efp4p1ndV+/oUOHuuBI81MfHhpWXyWZlMg66riLto4K2HPhPKxs/bLxPExk/e666y6vY8eOXp06dbzGjRt7ffr0cTfgUNm2/5K9jtV9H8YTAKVjH+bpn+TlJwEAAGQ/6gABAIDAIQACAACBQwAEAAAChwAIAAAEDgEQAAAIHAIgAAAQOARAAAAgcAiAACRVXl6ePffcc1m7Vdu2bWszZ87M9GIAyDACIAAJGTVqlA0ZMiTm9O3bt4e9MT7Z9DZsBVmxPrn0RnAAqVMzhfMGEECpfuP2woUL7ciRI+7vDz74wHr16mUvv/yynXbaaeUvZ0wl/XaqfwNA6pEDBCBlRWDvv/++G1bQorc916tXz7p27WrLli0L+87rr79uffv2tbp167q3Qf/gBz+wgwcPRp1/kyZNXJClz0knneTGNW3atHzcq6++6oKh2rVru+Kun/70pxUu7969e+073/mOm1fDhg3tq1/9qv3zn/8snz5p0iTr1q2bPfroo+4t1XXq1HHj9ab1c8891xo1auR+/+KLL7bNmzeXfy/edX/jjTdcrpWmN27c2AYOHGiffPJJ+Vu1p06d6n5X20bff/bZZxPcIwCiIQACkHJ33XWX3XrrrbZq1So75ZRTbPjw4fb555+7aQoaBg0aZFdeeaWtXr3aFixY4AKi73//+wn/zooVK+wb3/iGDRs2zN59910XvNx99902b968mN/5+te/bjt37rQ///nP7vvdu3e3fv362ccff1yeZtOmTfa73/3OBTNaB1GANnbsWPvHP/5hS5YssRo1atjll1/ugpZ4113j9FudO3d2gZHW+5JLLrGysjI3XcHPE088YQ8//LCtWbPGbrnlFrvmmmvsr3/9a8LbBkCEpL5aFUDOi/bm5lC6rPz+978Pe7v8o48+Wj59zZo1bty6devc8LXXXutdf/31YfN47bXXvBo1aniffvpphcviz/+dd95xw1dffbU3YMCAsDQ//OEPvc6dO5cP683ZDzzwQPnvNGzY0CstLQ37TocOHbxf/OIX7m+9RV1v3N65c2eFy7Jr1y63LO+++27c6z58+HDvy1/+ctT5aZnq1avn/f3vfw8br+2l7wE4PuQAAUi5Ll26lP9dVFTk/leui6i4STk0J554YvlHxUDKSdmyZUtCv7Nu3Tr78pe/HDZOwxs3bizPVQml3z5w4IArwgr9ff1uaHFWmzZtyovbfJqncnPat2/vis5U3CZbt26Ne939HKBolOt06NAhGzBgQNiyKUcodNkAVA2VoAGk3AknnFD+t+rFiF9UpADkhhtucPV+In3xi19M6XLptxWULF269Jhpqtvjq1+//jHTVVSlwGju3LnWsmVLtz6nn356eQXteNZd9XoqWjb505/+ZK1atQqbpvpNAI4PARCAjFKdm7Vr11rHjh2Pe15f+tKXXKXiUBpW3Zv8/Pyov11cXGw1a9Ysz8GJx549e2zDhg0u+FHlbVH9nUQpd0j1hyZPnnzMNNULUqCjHKXzzz8/4XkDqBgBEICElZSUlFcG9qkYSS24EnX77bfb2Wef7So9qzWWclsUEP3lL3+xWbNmJTSvcePG2VlnnWVTpkyxoUOHuorFmsdDDz0UNX3//v2tT58+rl+j6dOnu0Dpo48+crkuqtDcs2fPqN9Tay2t7yOPPOJykBSk3HHHHQmv+/jx4+2MM86wG2+80b773e+65vVqxaaK2c2aNXOVp1XxWTlGanGm7a6ATkVuI0eOTPj3APwfAiAACVOR0Zlnnhk27tprr3VNxauSC6JWTWotpdwU1aPu0KGDC2ASpRydZ555xiZMmOCCIAUnP/7xj13njdGoSOrFF190vz169GjbtWuXa0p/3nnnWYsWLWL+jlp8Pf30067YTsVep556qj344IMJd8KogGvx4sV25513uv6MVCTWu3dvV7dItA6qe6TWYP/+979dsZzWUekBHJ881YQ+znkAAABUK7QCAwAAgUMABAAAAocACAAABA4BEAAACBwCIAAAEDgEQAAAIHAIgAAAQOAQAAEAgMAhAAIAAIFDAAQAAAKHAAgAAAQOARAAAAic/w+eXT215tdFTQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAARx9JREFUeJzt3QmcVXX9//HPMMgqDJswAxGrSqiAgCAmagECueFSgBlLpoZlPwVT0WQJ/4FISgZiYoZKKWakWYYkSqmhGEgoW0AYogybMmwO6HD+j/f315nfvZd7Z+4d7jb3vJ6Px4U553zvuWc/n/PdTp7neZ4BAAAESI1MLwAAAEC6EQABAIDAIQACAACBQwAEAAAChwAIAAAEDgEQAAAIHAIgAAAQOARAAAAgcAiAAABA4BAAJdmBAwfsO9/5jhUWFlpeXp7dfPPNbvyOHTvsqquusqZNm7rxM2fOtOq+Tsg+bdu2tVGjRsWV9oILLnCfbFv+iy++2HJ1ed5//313Ds2bN6/StNqP+v3qaNKkSW49d+/enelFAWIiAIqDLlY6mWN93nzzzfK0P/nJT1z6MWPG2JNPPmnf+ta33PhbbrnFXnrpJRs/frwbP2jQIEs2/fZzzz2XkvlGW6doF7zKPsm84f7mN7+pVoFkJqxdu9btG914s0U2LhPiU1ZWZr/61a/cedykSROrXbu2C9JGjx5t//jHP3JiM2biuqLtGeua2alTJ8tWeRHL2rBhQzv//PPtT3/6U7XY/jXT8is54sc//rG1a9fumPEdO3Ys//uVV16xs88+2yZOnBiWRuMvu+wyu/XWW1O2fApUlMs0ZMiQpM431jqFuuKKK8K2g3KNFDBdfvnlbpqvRYsWSVsunSjvvfceOVIhNmzYYDVq1AgLNiZPnuwusJG5CYsXL7ZMqGiZkL0+/fRTdy4vWrTIzjvvPLvzzjtdEKRA9plnnrHHH3/ctm7dal/4whesOsvUdUXbberUqceMLygosGw2YMAAGzFihOm1ov/5z39szpw5dskll9if//xnGzhwYFZvfwKgBAwePNh69uxZYZqdO3da586do45v1KiRVUex1ilUly5d3MenrG8FQBp3zTXXWDY6evSoHTlyxOrUqWO5Qk/k8apVq5blkoMHD1r9+vUzvRg564c//KELfh544IFjbk56ONL4dNINt7S01OrWrWvZLp5rjQKdqlwrYx33ydg+paWl7joR+lAV6ZRTTglb7iuvvNLdL372s59VKQBKJ4rAkmTp0qUuC3DLli0u+8/PEvSLz3Qwzp49u3y8b+/eve5i0rp1a3fzUi7Kvffe606YUBrWAXXGGWe4k+ikk05yxWh+trPmqRNBT2H+b1RWF0SBzbXXXutyZTTPrl27uu9Xtk7HU3Sxfv16l0ulJ0f9pgLKP/zhD2HLpHVT7oC2mW/Tpk3uJB86dKgb1nQtk544/OWqLDdBab7//e/br3/9azvttNPc9tYFXT788EP79re/7baFxmv6Y489FvWCoOIbnfRa/qKiIvdUvHnz5vI02g/jxo0r36ennnqqzZgxI2x9/CfqH/zgB9asWTNr0KCBXXrppW45tJz6jcjiRW0D7VMF0rpYqtjh0KFDMesA6dj7+te/7v7+yle+Ur6dtF/9bRhZJFnZMRFaj0Xr9Mgjj1iHDh3cep511ln29ttvV7gPKlsm3+uvv269evVyy9C+fXt74oknjpmPvvfXv/7VbrzxRmvevHlYzoOePvv27euOGW3biy66yNasWRM2j+LiYrcN9T0tv/alcmmjHd+VLY/8+9//duumY7tevXou1zTeogAVXZ9++ulu/vr/97//vSXioYceKj+mW7Zsad/73vfctSWU9rXmrRw4bXstY6tWrWz69OmVzn/btm32i1/8wj3tR3syz8/Pd7nbkbk/WobKjlkVqX31q191+1DLr5unchFi1cdSVQJdN3Rj1zIlMg//2FAxjY4LFdnouFWuQzzXlcOHD7tgT9dp/Y7O8dtuu82Nj/daczz8a4H24dVXX22NGze2c889t9LtE8+xufS/1/unn37afvSjH7ljQ2n37duX0DJ+6Utfcte00GuiPP/88+481PGp7aHrxpQpU1yxqi9Z2z9e5AAloKSk5JhKfdpBqtisna76Marro4uAboBy5plnlteb8bMKfboQ6ETUTe+GG26wL37xi/b3v//d1RPavn17WDmobkq66CsXShWSP//8c3vttddc/SMd7PoNjddF+vrrr3ff0QEWi26+Oth0U9WJqqK93/72t+5ipYvW//zP/8RcJwUoVaEb0Je//GV3Yt1xxx3u5qSscxXZ/e53v3PFZbqA6cKlk/XnP/+5CxAU/Gm5dMHShV7uuusutz90YfafPE888cS4ivP0m1pnnaQ6uVRBXRcE/6Kl9dNFUttcJ79/wdeJqgvMkiVLbNiwYW4b7d+/3/7yl7+4LFttbwU5CmReffVV9/1u3bq5C5KenrWfQ5+StU5aFh0b+n3dzHWBiOUb3/iG20/KJl+5cqU9+uijbnspYI5GxRTafg8++KArrtD+FP//qhwToXTT0Prr2NW2041UwaAutieccEKVl0m/ryBZ22/kyJEuENUy9OjRw91MQin40f6aMGGCCzxFx6y+p6dPbRudZzqmdKN45513yi+oelLVMXnTTTe5cQr+tC9VjBN60Y1neXQMnXPOOe63tH66Jihw1LHw7LPPumM7FhVF+k/N2rd79uwpD8zivSmqSLF///4u11XFoFpfBaNvvPFG2L745JNP3IOT9pOOJy3b7bff7h6sdG2JReeDrjnR6v9VJJ5jVsuq7ahtVbNmTXvhhRfcftV5r0AulNZt+PDh7pi77rrr3MNFIvPQNVQPOkqr66wCMx0TCk4UUFR0XdG8NH8Fw7rG6ph99913Xbp//etfx9S/jHatqYiuL9EqjSuQiczh0fXx5JNPdtUeQh+som2fRI/NKVOmuFwfBbQKLBLNKdb203EWef/Rtte2HDt2rPtf20fnra6x9913n0uTzO0fFw+V+tWvfqUjLOqndu3aYWnbtGnjXXTRRcfMQ2m/973vhY2bMmWKV79+fe9f//pX2Pg77rjDy8/P97Zu3eqGX3nlFff9H/zgB8fM9+jRo+V/a14jR46Ma4/OnDnTzXP+/Pnl444cOeL16dPHO/HEE719+/ZVuk4V2bVrl5v/xIkTy8f169fPO+OMM7zS0tKw5T/nnHO8k08+Oez7w4cP9+rVq+e2zX333efm9dxzz4Wl0TJp2eKledSoUcNbs2ZN2Phrr73WKyoq8nbv3h02ftiwYV5BQYF36NAhN/zYY4+5edx///0x94OWUWnuueeesOlXXXWVl5eX523atMkNr1ixwqW7+eabw9KNGjXqmO2mvzXu29/+dljayy+/3GvatGnYOG2P0GPgt7/9rfvuq6++eswyn3/++e6T6DGxZcsWl06//fHHH5enff755934F154watIRcuk5de0v/3tb+Xjdu7c6c6zcePGHXNOnnvuud7nn39ePn7//v1eo0aNvOuuuy5svsXFxW5f+uM/+eQT930dWxWJd3m0H5XutddeC1uWdu3aeW3btvXKysrCtp2W39etWzd3/O3du7d83OLFi126yo5vLUutWrW8Cy+8sPw3ZNasWe77OmZ92tca98QTT5SPO3z4sFdYWOhdeeWVFf7OLbfc4r77zjvvePFI5Jj1z69QAwcO9Nq3bx91XyxatOiY9PHMQ9u3QYMGXu/evb1PP/005nU01nXlySefdNeP0H0sDz/8sFuuN954o9JrTSz+von2ueGGG47Zrro+Roq1feI9Nl999VWXTtss2vaMRul1/dT1XsfiP/7xD2/QoEFRz61o89S66Tofek9IxvaPF0VgCVARlp4QQz96MqoqPV0rm17ZmIr8/Y+e5PQ08Le//c2lU+6InrCjVUIOLU5LxIsvvuiatetpwacnRT0hqAKzciOS6eOPP3YRv54IlWvgr6uedvWkvnHjRpdD4ps1a5bLMteT99133+2ePFU8cbyU4xZan0nnsLavKu3p79D9oOXS04ieXEXp9CSnHINY+0HbVcUB2o6hlHum+fvHi58drqfUUNHm7fvud78bNqxjR9sv0SzqZB0TKo7UsRu6PKIcoOOh/ePPS5TDoyfZaPPVU662t0/npHKrtA6h+1Jpevfu7XLm/KdqPdkq219Pq8e7PNp2yn31iyP8J1c9qapITUUW0Sind9WqVS5nKbSyq3KLK6t3Jy+//LKrW6JcytB6GtouKt6JLObQMoXW19A20HJXts/8Y0y5sImI55gNraPi57LrPNUyaTiUcpOi1SuJZx46NnTtUe5zZF2ceK6jul4r10GtskKPLRW9iX9sxbrWVEY5RJH3F32iFTlGbteKtk+ix+bIkSMTqjf0y1/+0p0TytlTaYRyyFUspZyeUKHz9O8BOh6UM6WqEcne/vGgCCwBOogqqwSdCN30V69eHbNISVnyorJUlZuq/DZZVMaqLNTIym1+UYSmJ5OKERQAKJjRJ9b6qnhMtK4qJlFWr+qj6O9kiGzFt2vXLnfDVF0WfWItl78fdONTFnss2m7aV5E3isjtqv+17SOXJ7QlXSQVkYbygw/dwHWzS/cxUdHyHI/I+frzjjbfyO2nc0r8i2Ikfzup/oCKYRSY6vhSEaSKN1VErSAw0eXRtlGAFSl026n+TSR/m2q7R9Kx5gffsfjf94uCQgMb1VWK3GcqVou82WtddB2qiL/ddONKRDzHrIrp9HC3bNmyY+oHKXgJDQyjtcKNdx5+nZRo+yEeOrbWrVtX6fW6smWNRcVceviNR6x5Rxuf6LHZLsHl1oOpivkUiKvYVcVy2geR1xEVN6tukR6EIx/aIgPdZGz/eBAAZZDKNPWkp2g5GlW0zRV+pW6VK8dqGRB581fdGf9iqTLhZLSii3yy8ZdLT8V68okmtHVbJoXmdISKrFxd3ZcnkfnG2p+qBxQZyEho8Kona+X8qe6AjjUF5qqrogu06u5VZXmyXVXXxe+LRnUuVK8tWb+noKRfv35u/vfff7+r1KrgTbkWqtsR2RgkWs5EovOoKs1HdaX0G9Hodytb1mSJNe9k/GbdBOehoNoP3L72ta+5XHIFRKpo73eBoodM5Ygp6FV3MqofpFw4BfiqgxbPPkp0+8eDACiDdBCoaKGyqF/pdIFWMVJFuUCJFIe1adPGPfXpoAqN1P2sSE1PJj2N+kUq8TzlqIhIFSYVHKolhYKTt956K+wGVtXiv1B6mlBujYoc49kPWobPPvssZiVfbTcVS+hJOTQXKHK76n9te7WwC336V05ZMmXjMZGM/RaLX/FS2fHxHGdKr1wgffSEqZv7T3/6U5s/f35Cv6ttowqokSrbdv54P+cqVLT5xfq+0vrnmOhpXMdWvDkKlVEFaQUz2i6JVoSuiCorq6KtWoKG5hYlUpwR7zz8Y0MNFirKaY11fOr7//znP12wlcpjONmqemxWlSpgK/BUbo8qWPutPFX0uXDhQtcQwqdjNJPbnzpAGaT6MMqy9XM6QiliVqsLUQsRPTGppUdFT27KQo1s+hqLInU1A16wYEH5OP2eWl6pfFjRejLphqQWRmqWqXoPkVQU5dM6+C3alJ2qQEhPCvo7lNY3nqzTiuiiru2r+j26MFa0XEqnMmfVT4q1H7RdFUxFptEFQSet39LGzwXzW7X5tP2TyW89Es9xka5jIpFlSpS2q54ydawoUI21P5VFry4NIi+wClqr0qRW22758uXufPapVZqKVVW3I1ZdEDW9V9ClVjmhx7LqfsSqNxRKAY5yO1REHHotUL0Mza+iVoWJ0NO16hWpxVq0Y1RBswJH5dQmws8hCl12LbeatSd7HhdeeKHbv8rli9z3kdfRaNcVXa9VT3Hu3LlRW1D6rRCzTVWPzarSQ6oeKFRcpabvsfaRgvTI61+6tz85QAlQBdZolbXUxDD06SteahqtpxbVPfCb1WonKptZzRNVQU3ZicpK1FOXLnJ6UlQzVl1w1Axe05TdKPq+ch+URah6KCrLjVb2K6oAp2BEv7tixQp3Iug3VZau5veJVnaMtxK5KuIpG1MXU20zNdHUiakLp6J7UXNrPS1oXXTiaH0VEN1zzz2uvFl90/jrq5u1KtupLw/dpFWkkahp06a5p0VtKy2XLgjKbVPQpWXQ36L6Ier/Rb+nC4oq8Gl/KY0qM2vZ9PvaJ2rOqf2nZdVNQxcCFbn4T6FadgVU2tZaV78ZvJpzSrKecHRz1TZUfRddVFT3xe8vJVPHRCLLlCgFP2oSrfOle/furrsC5fKpabsqBKsbBgWn2s56ktRFVftbF231vaPjUd9JlCrWPvXUUy7AVaVx5dQqqNETroLrijqS0w1ZgYrODTXR1vGmIENNtZVDXBGtm5pz6+FI54maCetpXzcWnRPJ7IRUAY6Km7R+epLXdUt1erRtVUFV18ZEt52CEgVwOm+Uc6D11Q1Ox0K0B6XjmYeODT2I6FqibeP3o6PrjgJiv7+rWNcVHVNq1q4KyLpe6FjSw47WW+P9/neqSudCrJzH49mPx3NsVpWuIWrirnNc3ZzoHqltrZx8LYOubyqmjlb0mtbtn3C7sQCqqBl8ZJPWRJrB+80Rx48f73Xs2NE1Z23WrJlrFj5jxgzXBNmnpr5qVtipUyeX7qSTTvIGDx7smlP71q9f75133nle3bp13e9V1iR+x44d3ujRo91vap5qoh66LpWtU6LN4GXz5s3eiBEjXNPbE044wWvVqpV38cUXe88++2xYU+qf/vSnYd9TE2wtR9euXcu3y4EDB7yrr77aNXuOp8lwrH3gbwtNa926tVsuLZ+a7T/yyCPHNOW86667XBNSP52auGu9Qvepmg23bNnSpVETf+270Ka2cvDgQfebTZo0cc3MhwwZ4m3YsMEt57Rp045p+qptGu24VNPqWM3gZe7cua5pq7pWCG1+HtkMPt5jwm/KHa0JebR9Hk2sZYp1rEUuq7/ub7/9dtT5a35qBq2m73Xq1PE6dOjguhhQM11Rlwfa9jqf1H2E0ql59DPPPBM2n3iXR3QM6FjQ8ajf7NWrl/fHP/4xLE20ZvDyu9/9zvvSl77kmtd37tzZW7hwoduP8XbzoGbvWhcdby1atPDGjBnjmvpHLvNpp512zHcT+R1dhx599FGvb9++bpvp9/RdHTOhTeQTOWb/8Ic/eF26dHHbTM2y77333vIuJyKP7VjXoXjn4afVNVbXyYYNG7r99NRTT5VPr+i6omuP5q3tqH3VuHFjr0ePHt7kyZO9kpKSuK41iTaDD71Nx9qulW2feI7NV//bDF7dVMSrovWcNGlS2LmtZupnn3222+66Nt52223eSy+9dEyXGMnY/vHK++9KAMgCahKtCrh6EvzmN7+Z6cUBgJxFHSAgQ1RuHUlFTcqSDq0oCABIPuoAARmiV0eoro3qDKkOiuqY6aO6OFVp0gkAiB9FYECGqKWPKq+qtY8qbqoJryr6qQJ1RZ0tAgCOHwEQAAAIHOoAAQCAwCEAAgAAgUNFgyjUyeBHH33kOn6rTl2eAwAQZJ7nuVcRqTPgyjp5JACKQsEPrXAAAKiePvjgA/ei1ooQAEXhd/mvDaju0wEAQPbbt2+fy8CI59U9BEBR+MVeCn4IgAAAqF7iqb5CJWgAABA4BEAAACBwCIAAAEDgEAABAIDAIQACAACBQwAEAAAChwAIAAAEDgEQAAAIHAIgAAAQOPQEDSAwyo56tnzLx7Zzf6k1b1DHerVrYvk1eOExEEQEQAACYdF7223yC2tte0lp+biigjo28ZLONuj0oowuG4D0owgMQCCCnzHzV4YFP1JcUurGazqAYCEAApDzxV7K+fGiTPPHabrSAQgOAiAAOU11fiJzfkIp7NF0pQMQHARAAHKaKjwnMx2A3EAABCCnqbVXMtMByA0EQABympq6q7VXrMbuGq/pSgcgOAiAAOQ09fOjpu4SGQT5w5pOf0BAsBAAAch56udnzjXdrbAgvJhLwxpPP0BA8NARIoBAUJAzoHMhPUEDcAiAAASGirn6dGia6cUAkAUoAgMAAIFDAAQAAAKHAAgAAAQOARAAAAgcAiAAABA4BEAAACBwCIAAAEDgEAABAIDAIQACAACBQwAEAAACh1dhAACAtCg76mXN+/gIgAAAQMotem+7TX5hrW0vKS0fV1RQxyZe0tm9rDjdKAIDAAApD37GzF8ZFvxIcUmpG6/p6UYABCBQ2e/LNu+x51d96P7XMIDU0nmmnJ9oZ5s/TtPTfT5SBAYgELIt+x0IiuVbPj4m5yeUwh5NV7o+HZqmbbnIAQKQ87Ix+x0Iip37S5OaLlkIgADktGzNfgeConmDOklNlywEQAByWiLZ7wCST03dVdwcq7G7xmu60qUTARCAnJat2e9AUOTXyHN17SQyCPKHNT3d/QERAAHIadma/Q4EyaDTi2zONd2tsCD8PNOwxmeiIQKtwAAEIvtdFZ6j1fLJ++9FON3Z70DQDDq9yAZ0LsyanqCzIgdo9uzZ1rZtW6tTp4717t3bli9fHjPtwoULrWfPntaoUSOrX7++devWzZ588smwNKNGjbK8vLywz6BBg9KwJgCyTbZmvwNBlF8jzzV1v6xbK/d/Js+7jAdACxYssLFjx9rEiRNt5cqV1rVrVxs4cKDt3LkzavomTZrYXXfdZcuWLbPVq1fb6NGj3eell14KS6eAZ/v27eWfp556Kk1rBCDbZGP2O4DMyvM8L6NtP5Xjc9ZZZ9msWbPc8NGjR61169Z200032R133BHXPLp3724XXXSRTZkypTwHaO/evfbcc89VaZn27dtnBQUFVlJSYg0bNqzSPABkn2x6ESOA5Evk/p3RHKAjR47YihUrrH///v+3QDVquGHl8FRGsduSJUtsw4YNdt5554VNW7p0qTVv3txOPfVUGzNmjO3ZsyfmfA4fPuw2WugHQO7Jpux3AJmV0UrQu3fvtrKyMmvRokXYeA2vX78+5vcU2bVq1coFLvn5+fbQQw/ZgAEDwoq/rrjiCmvXrp1t3rzZ7rzzThs8eLALqpQ+0tSpU23y5MlJXjsAAJCtqmUrsAYNGtiqVavswIEDLgdIdYjat29vF1xwgZs+bNiw8rRnnHGGdenSxTp06OByhfr163fM/MaPH+/m4VMOkIrhAABAbspoANSsWTOXI7Njx46w8RouLCyM+T0Vk3Xs2NH9rVZg69atc7k4fgAUScGRfmvTpk1RA6DatWu7DwAACIaM1gGqVauW9ejRw+Xi+FQJWsN9+vSJez76jorDYtm2bZurA1RUREsPAACQBUVgKnoaOXKk69unV69eNnPmTDt48KBr2i4jRoxw9X2UwyP6X2lVpKWg58UXX3T9AM2ZM8dNV7GY6vNceeWVLhdJdYBuu+02l2Ok5vUAAAAZD4CGDh1qu3btsgkTJlhxcbEr0lq0aFF5xeitW7e6Ii+fgqMbb7zR5erUrVvXOnXqZPPnz3fzERWpqX+gxx9/3DWFb9mypV144YWuiTzFXAAAICv6AcpG9AMEAEBu378zngMEAACCoSyLOiMlAAIAACm36L3tNvmFtba9pLR8nF5UrHfxZeJ1NBl/FxgAAMj94GfM/JVhwY8Ul5S68ZqebgRAAAAgpcVeyvmJVuHYH6fpSpdOBEAAACBlVOcnMucnlMIeTVe6dCIAAgAAKaMKz8lMlywEQAAAIGXU2iuZ6ZKFAAgAAKSMmrqrtVesxu4ar+lKl04EQAAAIGXUz4+auktkEOQPa3q6+wMiAAIAACmlfn7mXNPdCgvCi7k0rPGZ6AeIjhABAEDKKcgZ0LmQnqABAECw5NfIsz4dmlo2oAgMAAAEDgEQAAAIHAIgAAAQOARAAAAgcGgFBgAA0kIvPNU7v/TaC/X8rM4P093/j48ACAAApNyi97a7t76HvhhVPUCrE8RM9ANEERgAAEh58DNm/spj3gpfXFLqxmt6uhEAAQCAlBZ7KefHizLNH6fpSpdOBEAAACBlVOcnMucnlMIeTVe6dCIAAgAAKaMKz8lMlywEQAAAIGXU2iuZ6ZKFAAgAAKSMmrqrtVesxu4ar+lKl04EQAAAIGXUz4+auktkEOQPa3q6+wMiAAIAACmlfn7mXNPdCgvCi7k0rPGZ6AeIjhABAEDKKcgZ0LmQnqABAECw5NfIsz4dmlo2oAgMAAAEDgEQAAAIHOoAAQiMbHoTNYDMIgACEAjZ9iZqAJlFERiAnJeNb6IGkFkEQAByWra+iRpAZhEAAchp2fomagCZRQAEIKdl65uoAWQWARCAnJatb6IGkFkEQAByWra+iRpAZhEAAchp2fomagCZRQAEIOdl45uoAWQWHSECCIRsexM1gMwiAAIQGNn0JmoAmUURGAAACBwCIAAAEDgEQAAAIHAIgAAAQOAQAAEAgMAhAAIAAIFDAAQAAAKHAAgAAAQOHSECAIC0KDvqZU1v7ARAAAAg5Ra9t90mv7DWtpeUlo8rKqjjXkaciffxUQQGAABSHvyMmb8yLPiR4pJSN17T040ACAAApLTYSzk/XpRp/jhNV7p0IgACAAApozo/kTk/oRT2aLrSpRMBEAAASBlVeE5mumQhAAIAACmj1l7JTJcstAILaPM/AADSQfc6tfZShedotXx0Fyws+N97YjoRAAW0+R8AAOmgB33d69TaS8FOaBDkZwFoerozBCgCC2jzPwAA0kUP+nOu6e5yekJpWOMzkRFADlCGm/8p3tX0AZ0LKQ4DAOSsQacXuXtdtlQFIQDKouZ/fTo0TfXiAACQMQp2suVeRwAU0OZ/AAAEuTEQAVBAm/8BABDkxkBZUQl69uzZ1rZtW6tTp4717t3bli9fHjPtwoULrWfPntaoUSOrX7++devWzZ588smwNJ7n2YQJE6yoqMjq1q1r/fv3t40bN1omm//Fim81vigDzf8AAAhyY6CMB0ALFiywsWPH2sSJE23lypXWtWtXGzhwoO3cuTNq+iZNmthdd91ly5Yts9WrV9vo0aPd56WXXipPM336dHvwwQft4YcftrfeessFSppnaWlpxpr/SWQQlMnmfwAABPldYHmesksySDk+Z511ls2aNcsNHz161Fq3bm033XST3XHHHXHNo3v37nbRRRfZlClTXO5Py5Ytbdy4cXbrrbe66SUlJdaiRQubN2+eDRs2rNL57du3zwoKCtz3GjZsaLmY9QcAQDos27zHhs99s9J0T1139nFXkE7k/p3ROkBHjhyxFStW2Pjx48vH1ahRwxVZKYenMgp2XnnlFduwYYPde++9btyWLVusuLjYzcOnjaFAS/OMFgAdPnzYfUI3YK43/wMAIMiNgTIaAO3evdvKyspc7kwoDa9fvz7m9xTZtWrVygUt+fn59tBDD9mAAQPcNAU//jwi5+lPizR16lSbPHmyBan5HwAAQW4MlPE6QFXRoEEDW7Vqlb399tv2//7f/3N1iJYuXVrl+SkHSkGV//nggw+SurwAAARVryxtDJTRHKBmzZq5HJwdO3aEjddwYWFhzO+pmKxjx47ub7UCW7duncvFueCCC8q/p3moFVjoPJU2mtq1a7sPAABILt4FFkWtWrWsR48etmTJkvJxqgSt4T59+sS9cfUdvw5Pu3btXBAUOk/V6VFrsETmCQAAkoN3gUWh4quRI0e6vn169eplM2fOtIMHD7qm7TJixAhX30c5PKL/lbZDhw4u6HnxxRddP0Bz5sxx0/Py8uzmm2+2e+65x04++WQXEN19992uZdiQIUOStCsBAEB1bgyU8Z6ghw4dart27XIdF6qSsoqpFi1aVF6JeevWra7Iy6fg6MYbb7Rt27a5Tg47depk8+fPd/Px3XbbbS7d9ddfb3v37rVzzz3XzVMdLQIAgMzIpsZAGe8HKBuloh8gAACQWtWmH6CgyaaXwAEAEGQEQGlCT9AAAGSPatkPUHWTjS+BAwAgyAiAAvoSOAAAgowAKMVU5ycy5yeUwh5NVzoAAHJZ2VHPvRz1+VUfuv8z+fBPHaCAvgQOAIAg14UlByigL4EDACDIdWEJgAL6EjgAAIJcF5YAKE0vgZPIIMgf1nT6AwIA5KLlWVoXlgAooC+BAwAgyHVhqQQd0JfAAQAQ5LqwBEABfQkcAADprAurCs/Ravnk/bdEJN11YSkCAwAAgasLSwAEAAACVxeWIjAAABC4urAEQAAAIHB1YSkCAwAAgUMABAAAAociMACBoa72s6X+AYDMIgACEAjZ9iZqAJlFERiAnJeNb6IGkFkEQAAC/SZqL0NvogaQWQRAAAL9JmrL0JuoAWQWARCAnFa8rzSp6QDkBgIgADnt4wOHk5oOQG4gAAKQ05rUr5XUdAByAwEQgJxWWFA3qekA5AYCIAA5TZ0dqr+fimi60gEIDgIgADlNPT2rs8NY/T1rvKbTIzQQLARAAHKeenqec033Y3KCNKzx9AQNBA+vwgAQCApyBnQu5F1gABwCIACBoWKuPh2aZnoxAGQBisAAAEDgEAABAIDAIQACAACBQwAEAAAChwAIAAAEDgEQAAAIHAIgAAAQOARAAAAgcJIWAJWWltqMGTOSNTsAAIDsCIB27dplf/zjH23x4sVWVlbmxn322Wf2s5/9zNq2bWvTpk1L1XICAACk/1UYr7/+ul188cW2b98+y8vLs549e9qvfvUrGzJkiNWsWdMmTZpkI0eOTN6SAQAAZDoH6Ec/+pF97Wtfs9WrV9vYsWPt7bfftssvv9x+8pOf2Nq1a+273/2u1a1bN1XLCQAAkDR5nud58SRs2rSpvfbaa9a5c2f79NNP7cQTT7SFCxfaZZddZrlGuVwFBQVWUlJiDRs2zPTiAACAJN+/484B+uSTT6xZs2bub+X01KtXz04//fR4vw4AAFD96gCJirqKi4vd38o42rBhgx08eDAsTZcuXZK7hAAAICeUHfVs+ZaPbef+UmveoI71atfE8mvkZXcRWI0aNVzl52jJ/fH6328dVp1RBAYAQHItem+7TX5hrW0vKS0fV1RQxyZe0tkGnV6U9vt33DlAW7ZsScayAQCAAAY/Y+avtMgslOKSUjd+zjXdkxYExSvuAKhNmzapXRIAAJCTxV6TX1h7TPAjGqcCME0f0LkwrcVhcVeCnj59umv95XvjjTfs8OHD5cP79++3G2+8MflLCAAAqq3lWz4OK/aKFgRputKlU9wB0Pjx412Q4xs8eLB9+OGH5cOHDh2yX/ziF8lfQgAAUG3t3F+a1HRpD4AiKz/HWXcaAAAEWPMGdZKaLll4GzwAAEgZNXVXa69YtXs0XtOVLp0IgAAAQMqoYrOauktkEOQPa3q6+wNKqCPERx991L0CQz7//HObN29eee/QofWDAAAAfGrirqbukf0AFSa5H6CUdITYtm1b19FhEPoLoiNEAACqX0/QKekI8dVXX7V27dolY/kAAEAA5dfIsz4dmlo2iLsOUIcOHVwA9O1vf9vmz58f1gQeAACgOok7B+iVV16xpUuXus9TTz1lR44csfbt29tXv/pV+8pXvuI+LVq0SO3SAgAApLMOUKjS0lL7+9//Xh4QLV++3D777DPr1KmTrVmzxqo76gABAJDb9+8qBUA+5QLplRh//vOfXS/QBw4c4G3wAAJbARNAZqWkErQf8Lz55puuQrRyft566y1r3bq1nXfeeTZr1iw7//zzj3fZASBlb6OObIJblMEmuAAyK+4cINX1UcCjitAKdPr27ev+LyrKvQsHRWBA7gU/Y+avPOZt1H7ej/onIQgCgnX/jrsV2GuvvWZNmzZ1gVC/fv1swIABORn8AMi9Yi/l/ER70vPHabrSAUgtnWfLNu+x51d96P7P5HkXdwC0d+9ee+SRR6xevXp27733WsuWLe2MM86w73//+/bss8/arl27qrwQs2fPdh0t1qlTx3r37u0qVccyd+5cl/vUuHFj9+nfv/8x6UeNGuU6bQz9DBo0qMrLB6D6Up2f0GKvSLr8arrSAUhtTuy5975iw+e+af/z9Cr3v4Y1PqsDoPr167sgYtq0aa4obPfu3TZ9+nQXEOn/L3zhC3b66acnvAALFiywsWPH2sSJE23lypXWtWtXGzhwoO3cuTNqetU9Gj58uKuHtGzZMlcH6cILLzymXyIt6/bt28s/aroPIHhU4TmZ6QBUvRg68mGkuKTUjc9EEFTll6EqIGrSpIn7KCemZs2atm7duoTnc//999t1111no0ePts6dO9vDDz/sgqrHHnssavpf//rXduONN1q3bt1cs3u9n+zo0aO2ZMmSsHS1a9e2wsLC8o+WEUDwqLVXMtMByI1i6LgDIAUZKmpSbs/gwYOtUaNGds4559hDDz3kAgwVY/373/+2RFuVrVixwhVjlS9QjRpuWLk78Th06JDrg0iBWGROUfPmze3UU0+1MWPG2J49e2LO4/Dhw67iVOgHQG5QU3e19orV2F3jNV3pAASnGDruZvAKeA4ePOiCHfX6/MADD9gFF1zgXpFRVSpGKysrO6YHaQ2vX78+rnncfvvtrj5SaBCl4q8rrrjCtVjbvHmz3XnnnS5oU1CVn59/zDymTp1qkydPrvJ6AMhe6udHTd2Vza5gJ/QZ0w+KNJ3+gIBgFUPHHQDdd999LvA55ZRTLFuoPtLTTz/tcntUgdo3bNiw8r9VUbtLly4uUFM6tWCLNH78eFcPyaccINUtApAb1MRdTd0j+wEqpB8gILDF0HEHQDfccEPSf7xZs2YuR2bHjh1h4zWsnKaKzJgxwwVAL7/8sgtwKqJ3lum3Nm3aFDUAUn0hfQDkdhA0oHMhPUEDGSqGLi4pjVoPKO+/DyPpLoauciXoZKhVq5b16NEjrAKzX6G5T58+Mb+nekhTpkyxRYsWWc+ePSv9nW3btrk6QPRbBASbirn6dGhql3Vr5f6n2AtIXzG0RNbFy2QxdEYDIFHRk/r2efzxx10rMlVYVl0jtQqTESNGuCIqn/oguvvuu10rMfUdVFxc7D56D5no/x/+8IfulR3vv/++C6Yuu+wy69ixo2teDwAAMlMMrZyeUBrOVE/sCb0LLBWGDh3qOlGcMGGCC2TUvF05O37F6K1bt7qWYb45c+a41mNXXXVV2HzUj9CkSZNckdrq1atdQKXOG1VBWv0EKceIYi4AADIj24qhj+tt8LmKd4EBAFD9pORdYAAAALmCAAgAAAQOARAAAAgcAiAAABA4BEAAACBwCIAAAEDgZLwfIAAAEAxlR72s6QeIAAgAAKTcove2H/NCYr0jTK/ByERP0BSBAQCAlAc/Y+avDAt+RC9I1XhNTzcCIAAAkNJiL+X8RHvthD9O05UunQiAAABAyqjOT2TOTyiFPZqudOlEAAQAAFJGFZ6TmS5ZCIAAAEDKqLVXMtMlCwEQAABImR5tGltlLd01XenSiQAIAACkzIr/fGKV1W/WdKVLJwIgAACQMtQBAgAAgdOcOkAAACBoerVr4np8jlUNSOM1XenSiSIwAACQMnrXl153IZFBkD+s6el+JxgBEAAASCm962vONd2tsCC8qbuGNT4T7wLjZagAACDlFOQM6FzI2+ABAECw5NfIsz4dmlo2oAgMAAAEDgEQAAAIHAIgAAAQOARAAAAgcAiAAABA4BAAAQCAwCEAAgAAgUMABAAAAocACAAABA4BEAAACBwCIAAAEDgEQAAAIHAIgAAAQOAQAAEAgMCpmekFCJKyo54t3/Kx7dxfas0b1LFe7ZpYfo28TC8WAACBQwCUJove226TX1hr20tKy8cVFdSxiZd0tkGnF6VrMQAAAEVg6Qt+xsxfGRb8SHFJqRuv6QAAIH2oA5SGYi/l/HhRpvnjNF3pAABAehAApZjq/ETm/IRS2KPpSgcAANKDACjFVOE5mekAAMDxIwBKMbX2SmY6AABw/AiAUkxN3RvVO6HCNJqudAAAID0IgNLgyOdHK5z+WSXTAQBAchEApdibm/fYoSNlFaY5eKTMpQOQWmptuWzzHnt+1Yfuf1pfAsFFR4gptuzfu+NO9+WTm6V6cYDAojNSAKHIAUq5eF91wSsxgFShM1IAkQiAUqxPh6ZJTQcgMXRGCiAaAqAUO7t900pbgTWud4JLByD56IwUQDQEQCmmt71Pu+KMCtNMveIM3goPpAidkQKIhgAoDfS294ev6W6FDcM7O9Tb4DWet8EDqUNnpACioRVYmijIGdC50GXH64lUF2V1fqgcIgCpo/NMDxvFJaVRX0qsM7Cw4H/PRwDBQQCURgp2qOwMpP+8m3hJZxszf6ULdkKDIP/xQ9N5GAGChSIwAIHIgZ2jYuiC8GJoDWs8xdBA8JADBCAQKIYGsqNbiuVZUhWEAAhAYFAMDWTOove22+QX1tr2ktLycaqfpyLoTOTCUgQGAAAC1xs7ARAAAAhcb+wEQAAAIHC9sRMAAQCAwPXGTgAEAAAC1xs7ARAAAEh5b+yxGrtrfFEGemMnAAIAACnvjV0ig6BM9saeFQHQ7NmzrW3btlanTh3r3bu3LV++PGbauXPnWt++fa1x48bu079//2PSe55nEyZMsKKiIqtbt65Ls3HjxjSsCQAAqA69sWe8I8QFCxbY2LFj7eGHH3bBz8yZM23gwIG2YcMGa968+THply5dasOHD7dzzjnHBUz33nuvXXjhhbZmzRpr1aqVSzN9+nR78MEH7fHHH7d27drZ3Xff7ea5du1a9x0AABDs3tjzPGWXZJCCnrPOOstmzZrlho8ePWqtW7e2m266ye64445Kv19WVuZygvT9ESNGuNyfli1b2rhx4+zWW291aUpKSqxFixY2b948GzZsWKXz3LdvnxUUFLjvNWzYMAlrCQAAUi2R+3dGi8COHDliK1ascEVU5QtUo4YbXrZsWVzzOHTokH322WfWpMn/Vp7asmWLFRcXh81TG0OBVrzzBAAAuS2jRWC7d+92OTjKnQml4fXr18c1j9tvv93l+PgBj4Iffx6R8/SnRTp8+LD7hEaQAAAgd2VFJeiqmjZtmj399NP2+9///rjq9kydOtXlEvkfFcEBAIDcldEAqFmzZpafn287duwIG6/hwsLCCr87Y8YMFwAtXrzYunTpUj7e/14i8xw/frwrL/Q/H3zwwXGsFQAAyHYZDYBq1aplPXr0sCVLlpSPUyVoDffp0yfm99TKa8qUKbZo0SLr2bNn2DS1+lKgEzpPFWm99dZbMedZu3ZtV1kq9AMAAHJXxpvBqwn8yJEjXSDTq1cv1wz+4MGDNnr0aDddLbvUvF3FVKJm7+rj5ze/+Y3rO8iv13PiiSe6T15ent188812zz332Mknn1zeDF71hIYMGZLRdQUAANkh4wHQ0KFDbdeuXS6oUTDTrVs3l7PjV2LeunWraxnmmzNnjms9dtVVV4XNZ+LEiTZp0iT392233eaCqOuvv9727t1r5557rpsnfQABAICs6AcoG9EPEAAA1U+16QcIAAAgEwiAAABA4BAAAQCAwCEAAgAAgUMABAAAAocACAAABA4BEAAACBwCIAAAEDgEQAAAIHAIgAAAQOAQAAEAgMAhAAIAAIFDAAQAAAKHAAgAAAQOARAAAAgcAiAAABA4BEAAACBwCIAAAEDgEAABAIDAIQACAACBQwAEAAAChwAIAAAEDgEQAAAIHAIgAAAQOARAAAAgcAiAAABA4BAAAQCAwCEAAgAAgUMABAAAAocACAAABA4BEAAACBwCIAAAEDgEQAAAIHAIgAAAQOAQAAEAgMAhAAIAAIFDAAQAAAKHAAgAAAQOARAAAAgcAiAAABA4BEAAACBwCIAAAEDgEAABAIDAqZnpBQiSsqOeLd/yse3cX2rNG9SxXu2aWH6NvEwvFgAAgUMAlCaL3ttuk19Ya9tLSsvHFRXUsYmXdLZBpxelazEAAABFYOkLfsbMXxkW/EhxSakbr+kAAAShJGTZ5j32/KoP3f8azhRygFJMO1c5P9F2scapAEzTB3QupDgMAJCzFmVZSQiVoFNMdX4ic34igyBNVzoAAHLRoiwsCSEASjFVeE5mOgAAcqkkRDQ93cVhBEApptZeyUwHAEB1sjxLS0IIgFJMTd1VxhmrsbvGa7rSAQCQa3ZmaUkIAVCKqZ8fVfCSyCDIH9Z0+gMCAOSi5llaEkIAlAaq3T7nmu5WWBC+czWs8fQDBADIVb2ytCSEZvBpoiBHTd3pCRoAEMSSkDHzV7pgx8uSkpA8z/My1wtRltq3b58VFBRYSUmJNWzYMNOLAwBAtbcoDf0AJXL/JgcIAAAEriSEAAhAYPBCYiCz8mvkWZ8OTbNiNxAAAQiEbOuGH0Bm0QosoC+BA4IkG7vhB5BZ5AClCU+fQGbwQmIA0ZADlMGnTw3z9AkEsxt+AJlFAJTBp0/xMvQSOCAosrUbfgCZRQCU4adP4ekTCF43/AAyiwAoxYpLPk1qOgBV64a/IryQGAgeAqAU+/jgkaSmA5B4vyOXdq24mbum80JiIFgyHgDNnj3b2rZta3Xq1LHevXvb8uXLY6Zds2aNXXnllS59Xl6ezZw585g0kyZNctNCP506dbJMaXJi7aSmA5AY1a/7wz8rbuau6dTDA4LVHUxGm8EvWLDAxo4daw8//LALfhTQDBw40DZs2GDNmzc/Jv2hQ4esffv29vWvf91uueWWmPM97bTT7OWXXy4frlkzc6vZvEHtpKYDkLp6eNnSQy2QixZlWWekGc0Buv/+++26666z0aNHW+fOnV0gVK9ePXvssceipj/rrLPsvvvus2HDhlnt2rEDBgU8hYWF5Z9mzZpZxsQb3NIIDEgJWoEBmbcoCzsjzVgAdOTIEVuxYoX179///xamRg03vGzZsuOa98aNG61ly5Yut+ib3/ymbd26tcL0hw8fdm+QDf0ky+6Dh5OaDkBiaAUGZHdnpJah7mAyFgDt3r3bysrKrEWLFmHjNVxcXFzl+aoobd68ebZo0SKbM2eObdmyxfr27Wv79++P+Z2pU6daQUFB+ad169aWLFx8gczq0aaxVfayaU1XOgDB6Yw045Wgk23w4MGujlCXLl1cfaIXX3zR9u7da88880zM74wfP95KSkrKPx988EHSm+DGuv5qPE1wgdRZ8Z9PrLIHS01XOgDBKYbOWACkejn5+fm2Y8eOsPEaVr2dZGnUqJGdcsoptmnTpphpVJ+oYcOGYZ9kUdNaVfCSyCDIH9Z0muACwbr4AkHRPEs7I81YAFSrVi3r0aOHLVmypHzc0aNH3XCfPn2S9jsHDhywzZs3W1FR+muY+1S7fc413a0wojM2DWt8Jmq/A0GRrRdfICh6ZWlJSEabwasJ/MiRI61nz57Wq1cv1wz+4MGDrlWYjBgxwlq1auXq6PgVp9euXVv+94cffmirVq2yE0880Tp27OjG33rrrXbJJZdYmzZt7KOPPrKJEye6nKbhw4dncE3/Nwga0LnQlXHqSVMXW+1scn6A9Fx81drEi3HxLczAxRcIivz/loSotZfONy9LSkIyGgANHTrUdu3aZRMmTHAVn7t16+YqL/sVo9V6Sy3DfApozjzzzPLhGTNmuM/5559vS5cudeO2bdvmgp09e/bYSSedZOeee669+eab7u9M086lnxEg/eddNl58gSAZ9N+SkMh+gAoz2A9Qnud59EATQc3g1RpMFaKTWR8IQOZkWydsQBCVHfVSWhKSyP2bAOg4NyCA6iPVF18A1ef+ndEiMABIJ4qhAeRsP0AAAACVIQACAACBQwAEAAAChwAIAAAEDgEQAAAIHAIgAAAQOARAAAAgcAiAAABA4BAAAQCAwKEn6Cj816OpS20AAFA9+PfteF5zSgAUxf79+93/rVu3Tva+AQAAabiP651gFeFlqFEcPXrUPvroI2vQoIHl5eUlPTpVYPXBBx/k5ItWWb/qj31YveX6/gvCOrJ+VaecHwU/LVu2tBo1Kq7lQw5QFNpoX/jCFyyVdNLm4onrY/2qP/Zh9Zbr+y8I68j6VU1lOT8+KkEDAIDAIQACAACBQwCUZrVr17aJEye6/3MR61f9sQ+rt1zff0FYR9YvPagEDQAAAoccIAAAEDgEQAAAIHAIgAAAQOAQAAEAgMAhADpOs2fPtrZt21qdOnWsd+/etnz58grT//a3v7VOnTq59GeccYa9+OKLx/RiOWHCBCsqKrK6deta//79bePGjZYr6zdq1CjXu3boZ9CgQZZJiazjmjVr7Morr3TptewzZ8487nlWt/WbNGnSMftQ+zyTElnHuXPnWt++fa1x48buo3MsMn11Pg/jWb9sOw8TWb+FCxdaz549rVGjRla/fn3r1q2bPfnkk1m9/1KxjtV5H4Z6+umn3bIPGTIk/fvQQ5U9/fTTXq1atbzHHnvMW7NmjXfdddd5jRo18nbs2BE1/RtvvOHl5+d706dP99auXev96Ec/8k444QTv3XffLU8zbdo0r6CgwHvuuee8f/7zn96ll17qtWvXzvv0009zYv1GjhzpDRo0yNu+fXv55+OPP/YyJdF1XL58uXfrrbd6Tz31lFdYWOg98MADxz3P6rZ+EydO9E477bSwfbhr1y4vUxJdx6uvvtqbPXu2984773jr1q3zRo0a5c65bdu25cR5GM/6ZdN5mOj6vfrqq97ChQvdNWbTpk3ezJkz3XVn0aJFWbn/UrWO1Xkf+rZs2eK1atXK69u3r3fZZZd5odKxDwmAjkOvXr28733ve+XDZWVlXsuWLb2pU6dGTf+Nb3zDu+iii8LG9e7d27vhhhvc30ePHnU3nfvuu698+t69e73atWu7G1J1Xz//pI080DMp0XUM1aZNm6gBwvHMszqsnwKgrl27etnieLf3559/7jVo0MB7/PHHc+I8rGz9su08TMb5cuaZZ7oHrmzcf6lYx1zYh59//rl3zjnneI8++ugx65KufUgRWBUdOXLEVqxY4bLlQt8hpuFly5ZF/Y7Gh6aXgQMHlqffsmWLFRcXh6XRO02UnRhrntVp/XxLly615s2b26mnnmpjxoyxPXv2WCZUZR0zMc+qSuWyKCtaLxts3769ffOb37StW7daJiRjHQ8dOmSfffaZNWnSJCfOw8rWL5vOw+NdPz3EL1myxDZs2GDnnXde1u2/VK1jLuzDH//4x27Zr7322mOmpWsf8jLUKtq9e7eVlZVZixYtwsZreP369VG/ox0aLb3G+9P9cbHSVOf1E5VRX3HFFdauXTvbvHmz3XnnnTZ48GB3UOfn51u2r2Mm5llVqVoWXYTmzZvnLrrbt2+3yZMnuzon7733njVo0MCq2zrefvvtLpjzL7bV/TysbP2y6Tys6vqVlJRYq1at7PDhw255H3roIRswYEDW7b9UrWN134evv/66/fKXv7RVq1ZFnZ6ufUgAhLQaNmxY+d+qJN2lSxfr0KGDe5Lp168fe6Ma0EXWp/2ngKhNmzb2zDPPRH2ay2bTpk1zlTB1/KnyZq6JtX7V/TxUoK2b54EDB1zuyNixY11u5AUXXGC5orJ1rK77cP/+/fatb33LVdZv1qxZRpeFIrAq0o5TlL1jx46w8RouLCyM+h2Nryi9/38i86xO6xeNTmj91qZNmyzdqrKOmZhnVaVrWdRS5ZRTTql2+3DGjBkuQFi8eLG7efiq+3lY2fpl03lY1fVTEUvHjh1d66hx48bZVVddZVOnTs26/ZeqdazO+3Dz5s32/vvv2yWXXGI1a9Z0nyeeeML+8Ic/uL81PV37kACoimrVqmU9evRwkbnv6NGjbrhPnz5Rv6PxoenlL3/5S3l6ZWVq54am2bdvn7311lsx51md1i+abdu2uXJrNXVMt6qsYybmWVXpWhY9oeqiVZ324fTp023KlCm2aNEi19w4VHU/Dytbv2w6D5N1jOo7KirKtv2XqnWszvuwU6dO9u6777rcLf9z6aWX2le+8hX3d+vWrdO3D5NWnTqA1PRPtdLnzZvnmitef/31rulfcXGxm/6tb33Lu+OOO8KaidesWdObMWOGa56q1jTRmsFrHs8//7y3evVqVzM+k81vk7l++/fvd02sly1b5po/vvzyy1737t29k08+2SstLU37+lVlHQ8fPuyaF+tTVFTk1kd/b9y4Me55Vvf1GzdunLd06VK3D7XP+/fv7zVr1szbuXNn2tevKuuoc0xNdp999tmwJsQ6PnPhPKxs/bLtPEx0/X7yk594ixcv9jZv3uzS63qj687cuXOzcv+lYh2r+z6MFK1FWzr2IQHQcfr5z3/uffGLX3QXHDUFfPPNN8unnX/++W7HhnrmmWe8U045xaVXXyp/+tOfwqar+d/dd9/ttWjRwh1Q/fr18zZs2ODlwvodOnTIu/DCC72TTjrJBUZqZq3+IjIRGFR1HXWx0XND5Efp4p1ndV+/oUOHuuBI81MfHhpWXyWZlMg66riLto4K2HPhPKxs/bLxPExk/e666y6vY8eOXp06dbzGjRt7ffr0cTfgUNm2/5K9jtV9H8YTAKVjH+bpn+TlJwEAAGQ/6gABAIDAIQACAACBQwAEAAAChwAIAAAEDgEQAAAIHAIgAAAQOARAAAAgcAiAACRVXl6ePffcc1m7Vdu2bWszZ87M9GIAyDACIAAJGTVqlA0ZMiTm9O3bt4e9MT7Z9DZsBVmxPrn0RnAAqVMzhfMGEECpfuP2woUL7ciRI+7vDz74wHr16mUvv/yynXbaaeUvZ0wl/XaqfwNA6pEDBCBlRWDvv/++G1bQorc916tXz7p27WrLli0L+87rr79uffv2tbp167q3Qf/gBz+wgwcPRp1/kyZNXJClz0knneTGNW3atHzcq6++6oKh2rVru+Kun/70pxUu7969e+073/mOm1fDhg3tq1/9qv3zn/8snz5p0iTr1q2bPfroo+4t1XXq1HHj9ab1c8891xo1auR+/+KLL7bNmzeXfy/edX/jjTdcrpWmN27c2AYOHGiffPJJ+Vu1p06d6n5X20bff/bZZxPcIwCiIQACkHJ33XWX3XrrrbZq1So75ZRTbPjw4fb555+7aQoaBg0aZFdeeaWtXr3aFixY4AKi73//+wn/zooVK+wb3/iGDRs2zN59910XvNx99902b968mN/5+te/bjt37rQ///nP7vvdu3e3fv362ccff1yeZtOmTfa73/3OBTNaB1GANnbsWPvHP/5hS5YssRo1atjll1/ugpZ4113j9FudO3d2gZHW+5JLLrGysjI3XcHPE088YQ8//LCtWbPGbrnlFrvmmmvsr3/9a8LbBkCEpL5aFUDOi/bm5lC6rPz+978Pe7v8o48+Wj59zZo1bty6devc8LXXXutdf/31YfN47bXXvBo1aniffvpphcviz/+dd95xw1dffbU3YMCAsDQ//OEPvc6dO5cP683ZDzzwQPnvNGzY0CstLQ37TocOHbxf/OIX7m+9RV1v3N65c2eFy7Jr1y63LO+++27c6z58+HDvy1/+ctT5aZnq1avn/f3vfw8br+2l7wE4PuQAAUi5Ll26lP9dVFTk/leui6i4STk0J554YvlHxUDKSdmyZUtCv7Nu3Tr78pe/HDZOwxs3bizPVQml3z5w4IArwgr9ff1uaHFWmzZtyovbfJqncnPat2/vis5U3CZbt26Ne939HKBolOt06NAhGzBgQNiyKUcodNkAVA2VoAGk3AknnFD+t+rFiF9UpADkhhtucPV+In3xi19M6XLptxWULF269Jhpqtvjq1+//jHTVVSlwGju3LnWsmVLtz6nn356eQXteNZd9XoqWjb505/+ZK1atQqbpvpNAI4PARCAjFKdm7Vr11rHjh2Pe15f+tKXXKXiUBpW3Zv8/Pyov11cXGw1a9Ysz8GJx549e2zDhg0u+FHlbVH9nUQpd0j1hyZPnnzMNNULUqCjHKXzzz8/4XkDqBgBEICElZSUlFcG9qkYSS24EnX77bfb2Wef7So9qzWWclsUEP3lL3+xWbNmJTSvcePG2VlnnWVTpkyxoUOHuorFmsdDDz0UNX3//v2tT58+rl+j6dOnu0Dpo48+crkuqtDcs2fPqN9Tay2t7yOPPOJykBSk3HHHHQmv+/jx4+2MM86wG2+80b773e+65vVqxaaK2c2aNXOVp1XxWTlGanGm7a6ATkVuI0eOTPj3APwfAiAACVOR0Zlnnhk27tprr3VNxauSC6JWTWotpdwU1aPu0KGDC2ASpRydZ555xiZMmOCCIAUnP/7xj13njdGoSOrFF190vz169GjbtWuXa0p/3nnnWYsWLWL+jlp8Pf30067YTsVep556qj344IMJd8KogGvx4sV25513uv6MVCTWu3dvV7dItA6qe6TWYP/+979dsZzWUekBHJ881YQ+znkAAABUK7QCAwAAgUMABAAAAocACAAABA4BEAAACBwCIAAAEDgEQAAAIHAIgAAAQOAQAAEAgMAhAAIAAIFDAAQAAAKHAAgAAAQOARAAAAic/w+eXT215tdFTQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAR1hJREFUeJzt3QmcE/X9//HPshwrAsslLFDk9EIEFARREbVQrLc/bfEEqVrr1SraClVBxAqKB61QDxSx8q9iKa1aLR4IrSgWBalcYkEUVJZDZLkEdJn/4/3VWZOQ7Ca7ySaZvJ6PR1gymUy+8813vvOZ7zHJ8zzPMwAAgICoke4EAAAAJBPBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwU0Ctm/fbpdffrkVFRVZXl6eXX/99W75+vXr7bzzzrMmTZq45ePHj7ds3ydknrZt29qll14a17onnniie2Ra+k8//XQLano+/vhjdwxNmTKlwnX1Perzs9Htt9/u9nPTpk3pTgoQU84HN6qIdKDGerz99ttlmXXXXXe59a+66ip76qmn7JJLLnHLb7jhBnv55Zdt+PDhbvkpp5xiyabP/vvf/56S7Ubbp2iVWUWPZJ5M//znP2dVkJgOy5Ytc9+NTqqZIhPThPiUlpbaE0884Y7jxo0bW506dVwANmTIEHv33XcDkY3pqFeUn7HqzEMPPdQyVV5EWhs0aGB9+/a1F198MSvyv2a1fEoWuOOOO6xdu3b7LO/YsWPZ/19//XU75phjbOTIkWHraPlZZ51lN910U8rSpyBErUNnn312Urcba59C/d///V9YPqi1R8HQOeec417zNW/ePGnp0kGwZMkSWpJCrFixwmrUqBEWSIwaNcpVnpGtAK+88oqlQ3lpQub66quv3LE8c+ZMO+GEE+y3v/2tC3AUpD777LP25JNP2po1a+wHP/iBZbN01SvKtzFjxuyzvLCw0DJZ//79bdCgQaafoPzkk0/soYcesjPOOMP++c9/2oABAzI6/wluvvPjH//YevToUW5mbdiwwTp16hR1ecOGDS0bxdqnUF26dHEPn5qjFdxo2cUXX2yZaO/evbZnzx4rKCiwoNCVdLxq165tQbJjxw7bf//9052MwPr1r3/tApsHHnhgnxOPLny0vDrpZLpr1y7bb7/9LNPFU9coiKlMXRmr3Ccjf3bt2uXqidALpkgHH3xwWLrPPfdcd774/e9/X6ngpjrlfLdUPObMmeOa5VavXu2a5PxmOr9LSwVt4sSJZct9W7ZscRVF69at3YlJrR933323OxhC6bkKyxFHHOEOkAMOOMB1bflNwdqmCrmunvzPqGjshYKWyy67zLWmaJtdu3Z1769on6rSnfDBBx+41iVd8ekzFSw+//zzYWnSvumqPvTH6FeuXOkO4IEDB7rnel1p0pWCn66KWgG0zrXXXmv/7//9Pzv88MNdfquyls8++8x+9rOfubzQcr0+efLkqAe7ulR0QCv9LVq0cFezq1atKltH38ONN95Y9p0ecsghdu+994btj38l/Mtf/tKaNm1q9evXtzPPPNOlQ+nUZ0R2+SkP9J0qSFZFqK6AnTt3xhxzo7L3k5/8xP3/pJNOKssnfa9+HkZ2E1ZUJkLHjWifHn30UevQoYPbz6OPPtreeeedcr+DitLkmzt3rvXs2dOloX379vanP/1pn+3off/617/s6quvtmbNmoW1GOiqsU+fPq7MKG9PO+00W7p0adg2iouLXR7qfUq/vku1rkYr3xWlRz766CO3byrbdevWda2d8TbPqzu5c+fObvv6+7e//c0S8cc//rGsTLds2dKuueYaV7eE0netbavlTHmvNLZq1cruueeeCrf/6aef2iOPPOKu0qNdUefn57tW6chWG6WhojKrbq6TTz7ZfYdKv06MuvqPNf5J3fuqN3TSVpoS2YZfNtR1onKhbhSVW7UWxFOv7N692wVyqqf1OTrGf/Ob37jl8dY1VeHXBfoOL7zwQmvUqJEdf/zxFeZPPGVzznf1/TPPPGO33nqrKxtad+vWrQml8bDDDnN1WmidKM8995w7DlU+lR+qN0aPHu26On3Jyv940XLznZKSkn0GyCnzNUhYX6jGo2hsjQ5wndzkyCOPLBun4jff+XSQ6yDTCe3KK6+0Aw880N566y03LmfdunVh/Y464ahCV+uRBvd+88039sYbb7jxPirI+gwtVwX885//3L1HhScWnVhVkHTC1EGo7ra//OUvriJShfSrX/0q5j4p+KgMnVyOO+44d9AMGzbMnXjUnK1utL/+9a+uC0uVkyolHYgPPvigO/krsFO6VBmpEpdbbrnFfR+qdP0rxnr16sXVxabP1D7rANSBo8HeOtj9Ckn7pwpQea4D26/MdRCq8pg1a5adf/75Lo+2bdtmr776qmtGVX4rgFGQMnv2bPf+bt26ucpGV736nkOvbrVPSovKhj5fJ2od/LH89Kc/dd+Tmq4XLlxojz32mMsvBcPRqOtA+feHP/zBdSHo+xT/b2XKRCidELT/KrvKO50kFeipIq1Vq1al06TPVwCs/Bs8eLALMpWG7t27uxNFKAU2+r5GjBjhgkpRmdX7dNWovNFxpjKlk8B7771XVlnqClNl8rrrrnPLFNjpu1TXSmiFGk96VIaOPfZY91naP9UJCgpVFqZPn+7KdizqHvSvdvXdfvHFF2VBV7wnPHXz9evXz7WWqmtS+6tA88033wz7Lr788kt3UaTvSeVJabv55pvdRZPqllh0PKjOiTberjzxlFmlVfmovKpZs6a98MIL7nvVca8gLZT27YILLnBl7oorrnAXDolsQ3WoLmK0rupZBV0qEwo8FCyUV69oW9q+Al3VsSqzixcvdut9+OGH+4x3jFbXlEf1S7QB2ApSIltmVD8edNBBbihC6EVTtPxJtGyOHj3atdYoWFXQkGgLr/JP5Szy/KO8V14OHTrU/VX+6LhVHTtu3Di3TjLzPy5ejnviiSdUeqI+6tSpE7ZumzZtvNNOO22fbWjda665JmzZ6NGjvf3339/78MMPw5YPGzbMy8/P99asWeOev/766+79v/zlL/fZ7t69e8v+r20NHjw4rn0aP3682+bUqVPLlu3Zs8fr3bu3V69ePW/r1q0V7lN5Nm7c6LY/cuTIsmU//OEPvSOOOMLbtWtXWPqPPfZY76CDDgp7/wUXXODVrVvX5c24cePctv7+97+HraM0KW3x0jZq1KjhLV26NGz5ZZdd5rVo0cLbtGlT2PLzzz/fKyws9Hbu3OmeT5482W3j/vvvj/k9KI1a58477wx7/bzzzvPy8vK8lStXuucLFixw611//fVh61166aX75Jv+r2U/+9nPwtY955xzvCZNmoQtU36EloG//OUv7r2zZ8/eJ819+/Z1j0TLxOrVq916+uzNmzeXrfvcc8+55S+88IJXnvLSpPTrtX//+99lyzZs2OCOsxtvvHGfY/L444/3vvnmm7Ll27Zt8xo2bOhdccUVYdstLi5236W//Msvv3TvV9kqT7zp0feo9d54442wtLRr185r27atV1paGpZ3Sr+vW7durvxt2bKlbNkrr7zi1quofCsttWvX9n70ox+VfYZMmDDBvV9l1qfvWsv+9Kc/lS3bvXu3V1RU5J177rnlfs4NN9zg3vvee+958UikzPrHV6gBAwZ47du3j/pdzJw5c5/149mG8rd+/fper169vK+++ipmPRqrXnnqqadc/RH6HcvDDz/s0vXmm29WWNfE4n830R5XXnnlPvmq+jFSrPyJt2zOnj3brac8i5af0Wh91Z+q71UW3333Xe+UU06JemxF26b2TfV86DkhGfkfL7qlvqNuJV3ZhT50RVNZuipW07maFhWx+w9dgSmK//e//+3WU6uGroyjDegN7eJKxEsvveSmdivK9+kKT5G9BgOrFSGZNm/e7CJ1Xcnpat/fV12l6gr7f//7n2vZ8E2YMME1Y+uK+bbbbnNXjOoyqCq1lIWOH9LxqfzVADj9P/R7ULp0FaErTtF6ugLTlX6s70H5qiZ65WMotXpp+3558ZuodXUZKtq2fb/4xS/CnqvsKP8SbTZOVplQF6HKbmh6RC03VaHvx9+WqGVGV6DRtqurU+W3T8ekWpm0D6Hfpdbp1auXa1Hzr4Z1RaqmeF1lVjU9yju1mvpdBP4Vp64w1c2lboRo1EK7aNEi1yIUOnBUrbwVjXOT1157zY3lUOti6LgI5Yu6XCK7HpSm0PERygOlu6LvzC9jaj1NRDxlNnRMiN86ruNUadLzUGoFijaOI55tqGyo7lGrceTYl3jqUdXXai3Q7KXQsqXuMPHLVqy6piJq2Yk8v+gRrRswMl/Ly59Ey+bgwYMTGqfz+OOPu2NCLXLqRVDLtrqK1EITKnSb/jlA5UEtShqukOz8jwfdUt9RAaloQHEidEJ///33Y3bzqJlc1Hepfkr1lyaL+jTVrBk5UMzvHtDryaSmfZ3cFajoEWt/1WUl2ld1Xaj5VeM/9P9kiJzttnHjRncy1NgRPWKly/8edFJTs3csyjd9V5Engch81V/lfWR6QmecRVK3ZSg/sNDJWSey6i4T5aWnKiK362872nYj80/HlPgVXiQ/n9Rfr64RBZ0qX+oWVJejuo0V4CWaHuWNgqdIoXmn8S6R/DxVvkdSWfMD61j89/vdM6FBi8YGRX5n6uqKPJFrX1QPlcfPN52UEhFPmVXXmS7c5s2bt894HAUmoUFftNmq8W7DHwMS7XuIh8rW8uXLK6yvK0prLOp60oVtPGJtO9ryRMtmuwTTrYtOdb0pyFZXqLrK9B1E1iPqAtZYHl3kRl6QRQaxycj/eBDcpIj6EHWFpig3Gg1aDQp/gLT6cWONoI88sWusil8Rqg82GbPNIq9I/HTpalZXLNGEzgJLp9AWilCRA5WzPT2JbDfW96lxN5FBioQGproiVoud+upV1hR0a2yIKl+NlatMejJdZffFv9eKxjhoHFmyPk8Bxw9/+EO3/fvvv98NEFVgptYGjaWInFgRrUUh0W1UlrajsUn6jGj0uRWlNVlibTsZn7lfgttQwOwHZaeeeqpr3Vawo0Hr/m1AdAGpliwFtLqlisbjqPVMwbvGfMXzHSWa//EguEkRfcFq7q8oWtd6qnzVtVNe600iXVRt2rRxV2sqMKERtt88qNeTSVeRfjdHPFcn6rbR4EMFfppxoMDjP//5T9jJqbJdcqF0FaBWFnUDxvM9KA1ff/11zAGzyjd1FegKN7T1JjJf9Vd5r5looVftauFKpkwsE8n43mLxBzGqiTyecqb11Xqjh64MdeK+7777bOrUqQl9rvJGgzkjVZR3/nK/xSlUtO3Fer/W9Y8x0VW0yla8LQEV0WBjBSrKl0QHFZdHA381aFUzJkNbeRLpYoh3G37Z0OD/8lpIY5VPvf+///2vC6RSWYaTrbJls7I0mFlBpVppNFjZnw2p7sgZM2a4SQU+ldF05j9jblJE40/UjOq3UIRSpKvZCaKZFLrS0YyI8q641KwZOf0zFkXYmgo7bdq0smX6PM1QUn+souxk0slGM3E0NVHjDCKpe8inffBnfqmJU0GOInz9P5T2N57mzPKowlb+ajyNKr3y0qX11Mer8UCxvgflqwKlyHV0sOuA9Gek+K1X/uwvn/I/mfxZFvGUi+oqE4mkKVHKV10dqqwoCI31farZXNP6IytPBaSVmVaqvJs/f747nn2avaWuTo2liDX2QtPPFVBp9kpoWdZYi1jjdEIpeFErhbptQ+sCjYPQ9sqbfZcIXRVrHI9mdkUrowqIFRSqhTURfstOaNqVbk3tTvY2fvSjH7nvV61zkd99ZD0arV5Rfa1xgZMmTYo609CfrZdpKls2K0sXoLpYUBeSpn/H+o4UgEfWf9Wd/7TcfEeDQaMNfNI0u9CrpnhperCuNtTX708t1Rekpl9N0dNgLzXxqXlPV0uqwHSFp6mcqkw0FVyvqQlQ9H61GqjZTuM+1Hcara9VNJhMgYY+d8GCBa6Q6zPVd60p6IkOHIx3QLYGtalpURWl8kzTFHXQqVJUVC6acqwoX/uig0L7q2DnzjvvdP27uveKv786EWvgmu5VoROwuhkSNXbsWHeVp7xSunSwq5VMAZXSoP+LxmPo/ib6PFUWGgyn70vraGCw0qbP13eiKY36/pRWnRB0kKsbxL96VNoVLCmvta/+VHBNaZRkXZnoxKk81PgSVRgaa+LfDyRdZSKRNCVKgY2mBet4Oeqoo9yUfbXOaXq3BtfqVgQKPJXPugJUhanvWxWy7i2j8qj3JEqDVJ9++mkXvGoAtlpYFbDoylSBc3k3QdPJVkGIjg1NU1Z5UwCh6cpq2S2P9k1TmnXho+NEU2V1la6Tho6JZN5AU8GLuoC0f7oCV72lMTTKWw32VN2YaN4p4FBwpuNGV/zaX528VBaiXQRVZRsqG7rIUF2ivPHvE6N6R8Gufz+nWPWKypSmdmswr+oLlSVdyGi/tdy/v0xl6ViI1WJYle+xKmWzslSHaJq3jnHd6kPnSOW1WuCVBtVv6jqO1h1arfnv5bjypoJHTutMZCq4PyVv+PDhXseOHd2UzqZNm7qp0ffee6+bhuvTdFdNrTv00EPdegcccID34x//2E0p9n3wwQfeCSec4O23337u8yqaFr5+/XpvyJAh7jO1TU3TDt2XivYp0angsmrVKm/QoEFu+mmtWrW8Vq1aeaeffro3ffr0sOnE9913X9j7NA1Z6ejatWtZvmzfvt278MIL3dTfeKbNxvoO/LzQa61bt3bpUvo0df3RRx/dZzrjLbfc4qZR+utpmrf2K/Q71dTZli1bunU0zV3fXeh0U9mxY4f7zMaNG7up1meffba3YsUKl86xY8fuM/1TeRqtXGp6cayp4DJp0iQ3vVO3Fwidgh05FTzeMuFPZ442jTradx5NrDTFKmuRafX3/Z133om6fW1PU4E1/bugoMDr0KGDm2avqaqiaf/Kex1PuoWC1tMU4WeffTZsO/GmR1QGVBZUHvWZPXv29P7xj3+ErRNtKrj89a9/9Q477DA3xbxTp07ejBkz3PcY760ONPVb+6Ly1rx5c++qq65y090j03z44Yfv895EPkf10GOPPeb16dPH5Zk+T+9VmQmdJp5ImX3++ee9Ll26uDzT1OS777677LYLkWU7Vj0U7zb8dVXHqp5s0KCB+56efvrpstfLq1dU92jbykd9V40aNfK6d+/ujRo1yispKYmrrkl0KnjoKThWvlaUP/GUzdnfTQXXrRriVd5+3n777WHHtqZqH3PMMS7fVTf+5je/8V5++eV9bguRjPyPV953OwEgxTQtWINZdQV30UUXkd8AkCKMuQFSQP3EkdT9o2bi0EF3AIDkY8wNkAL6uQKNbdEYHY350JguPTT2pTLTGgEA8aNbCkgBzYjRQFDNitEgSE1j1aA5DUYu70aBAICqI7gBAACBwpgbAAAQKAQ3AAAgUHKu8183yPv888/dTcuy6TbbAADkMs/z3M/f6Ea2Fd2gMOeCGwU2zFYBACA7rV271v2oZ3lyLrjxbzOvzNEtuwEAQObbunWra5yI5+dici648buiFNgQ3AAAkF3iGVLCgGIAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACJe3BzcSJE61t27ZWUFBgvXr1svnz55e7/pYtW+yaa66xFi1aWJ06dezggw+2l156qdrSCwAAMlta73Mzbdo0Gzp0qD388MMusBk/frwNGDDAVqxYYc2aNdtn/T179lj//v3da9OnT7dWrVrZJ598Yg0bNkxL+gEAQObJ8/RjDWmigOboo4+2CRMmlP3uk+4+eN1119mwYcP2WV9B0Lhx4+yDDz6wWrVqVfoOh4WFhVZSUsJN/AAAyBKJnL/T1i2lVpgFCxZYv379vk9MjRru+bx586K+5/nnn7fevXu7bqnmzZtb586d7a677rLS0tKYn7N7926XIaEPoDqU7vVs3qov7LlFn7m/eg4ACHC31KZNm1xQoiAllJ6rZSaajz76yF5//XW76KKL3DiblStX2tVXX21ff/21jRw5Mup7xowZY6NGjUrJPgCxzFyyzka9sMzWlewqW9aisMBGntHJTuncgowDgCAPKE6Euq003ubRRx+17t2728CBA+2WW25x3VWxDB8+3DVh+Q/9YCaQ6sDmqqkLwwIbKS7Z5ZbrdQBAAFtumjZtavn5+bZ+/fqw5XpeVFQU9T2aIaWxNnqf77DDDrPi4mLXzVW7du193qMZVXoA1UFdT2qxidYBpWX6uTe93r9TkeXXqPjH3wAAWdRyo0BErS+zZs0Ka5nRc42riea4445zXVFaz/fhhx+6oCdaYANUt/mrN+/TYhMZ4Oh1rQcACGC3lKaBT5o0yZ588klbvny5XXXVVbZjxw4bMmSIe33QoEGuW8mn1zdv3my/+tWvXFDz4osvugHFGmAMZIIN23YldT0AQJbd50ZjZjZu3GgjRoxwXUvdunWzmTNnlg0yXrNmjZtB5dM08ZdfftluuOEG69Kli7vPjQKdm2++OY17AXyvWf2CpK4HAMiy+9ykA/e5QarH3Bx/9+tu8HC0A0ujbIoKC2zuzScz5gYAgnafGyCINEhY070lcriw/1yvM5gYAFKH4AZIMt3H5qGLj3ItNKH0XMu5zw0ABHjMDRBUCmA03VuzojR4WGNserZrTIsNAFQDghsgRdT11LtDE/IXAKoZ3VIAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAEClPBgTh/VoF71gBAdiC4ASowc8k6G/XCMltX8v0vebcoLHA/o8DdhgEg89AtBVQQ2Fw1dWFYYCP6YUwt1+sAgMxCcAOU0xWlFptov+7tL9PrWg8AkDkIboAYNMYmssUmlEIava71AACZg+AGiEE/eJnM9QAA1YPgBohBv+SdzPUAANWD4AaIoWe7xm5WVF6M17Vcr2s9AEDmILgBYsivkeeme0tkgOM/1+taDwCQOQhugHLoPjYPXXyUFRWGdz3puZZznxsAyDzcxA+ogAKY/p2KuEMxAGQJghsgDup66t2hCXkFAFmAbikAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAESs10JwAAgExRutez+as324Ztu6xZ/QLr2a6x5dfIS3eykCCCGwAAzGzmknU26oVltq5kV1l+tCgssJFndLJTOrcgj7II3VIAgJynwOaqqQvDAhspLtnllut1ZA+CGwCA5XpXlFpsvCiv+cv0utZDdsiI4GbixInWtm1bKygosF69etn8+fNjrjtlyhTLy8sLe+h9AABUhsbYRLbYhFJIo9e1HrJD2oObadOm2dChQ23kyJG2cOFC69q1qw0YMMA2bNgQ8z0NGjSwdevWlT0++eSTak0zACA4NHg4mesh/dIe3Nx///12xRVX2JAhQ6xTp0728MMPW926dW3y5Mkx36PWmqKiorJH8+bNqzXNAIDg0KyoZK6HHA9u9uzZYwsWLLB+/fp9n6AaNdzzefPmxXzf9u3brU2bNta6dWs766yzbOnSpTHX3b17t23dujXsAQCAT9O9NSsq1oRvLdfrWg/ZIa3BzaZNm6y0tHSflhc9Ly4ujvqeQw45xLXqPPfcczZ16lTbu3evHXvssfbpp59GXX/MmDFWWFhY9lBABACAT/ex0XRviQxw/Od6nfvdZI+0d0slqnfv3jZo0CDr1q2b9e3b12bMmGEHHHCAPfLII1HXHz58uJWUlJQ91q5dW+1pBgBkNt3H5qGLj7KiwvCuJz3Xcu5zk13SehO/pk2bWn5+vq1fvz5suZ5rLE08atWqZUceeaStXLky6ut16tRxDwAAyqMApn+nIu5QHABpbbmpXbu2de/e3WbNmlW2TN1Meq4WmnioW2vx4sXWogV3jwQAVI26nnp3aGJndWvl/tIVlZ3S/vMLmgY+ePBg69Gjh/Xs2dPGjx9vO3bscLOnRF1QrVq1cmNn5I477rBjjjnGOnbsaFu2bLFx48a5qeCXX355mvcEAABkgrQHNwMHDrSNGzfaiBEj3CBijaWZOXNm2SDjNWvWuBlUvi+//NJNHde6jRo1ci0/b731lptGDgAAkOd5Xk7dT1pTwTVrSoOLdTNAAAAQrPN31s2WAgAAKA/BDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIlJrpTgAAAFVRutez+as324Ztu6xZ/QLr2a6x5dfII1NzGMENACBrzVyyzka9sMzWlewqW9aisMBGntHJTuncIq1pQ/rQLQUAyNrA5qqpC8MCGyku2eWW63XkJoIbAEBWdkWpxcaL8pq/TK9rPeQeghsAQNbRGJvIFptQCmn0utZD7iG4AQBkHQ0eTuZ6CBaCGwBA1tGsqGSuh2AhuAEAZB1N99asqFgTvrVcr2s95B6CGwBA1tF9bDTdWyIDHP+5Xud+N7mJ4AYAkJV0H5uHLj7KigrDu570XMu5z03u4iZ+AICspQCmf6ci7lCMMAQ3AICspq6n3h2apDsZyCB0SwEAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAIlI4KbiRMnWtu2ba2goMB69epl8+fPj+t9zzzzjOXl5dnZZ5+d8jQCAIDskPbgZtq0aTZ06FAbOXKkLVy40Lp27WoDBgywDRs2lPu+jz/+2G666Sbr06dPtaUVAABkvrQHN/fff79dccUVNmTIEOvUqZM9/PDDVrduXZs8eXLM95SWltpFF11ko0aNsvbt21dregEAQGZLa3CzZ88eW7BggfXr1+/7BNWo4Z7Pmzcv5vvuuOMOa9asmV122WUVfsbu3btt69atYQ8AABBcaQ1uNm3a5FphmjdvHrZcz4uLi6O+Z+7cufb444/bpEmT4vqMMWPGWGFhYdmjdevWSUk7AADITGnvlkrEtm3b7JJLLnGBTdOmTeN6z/Dhw62kpKTssXbt2pSnEwAApE/NNH62C1Dy8/Nt/fr1Ycv1vKioaJ/1V61a5QYSn3HGGWXL9u7d6/7WrFnTVqxYYR06dAh7T506ddwDAADkhrS23NSuXdu6d+9us2bNCgtW9Lx37977rH/ooYfa4sWLbdGiRWWPM88800466ST3f7qcAABAWltuRNPABw8ebD169LCePXva+PHjbceOHW72lAwaNMhatWrlxs7oPjidO3cOe3/Dhg3d38jlAAAgN6U9uBk4cKBt3LjRRowY4QYRd+vWzWbOnFk2yHjNmjVuBhUAAEA88jzP8yyHaCq4Zk1pcHGDBg3SnRwAAJDk8zdNIgAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIlKQFN7t27bJ77703WZsDAABIfXCzceNG+8c//mGvvPKKlZaWumVff/21/f73v7e2bdva2LFjK5cKAACAJKkZ74pz5861008/3bZu3Wp5eXnWo0cPe+KJJ+zss8+2mjVr2u23326DBw9OVroAAABS23Jz66232qmnnmrvv/++DR061N555x0755xz7K677rJly5bZL37xC9tvv/0qlwoAAIAkyfM8z4tnxSZNmtgbb7xhnTp1sq+++srq1atnM2bMsLPOOsuyiVqeCgsLraSkxBo0aJDu5AAAgCSfv+Nuufnyyy+tadOm7v9qoalbt6517tw53rcDAABk1pgbUfdTcXGx+78afFasWGE7duwIW6dLly7JTSEAAEAquqVq1KjhBhJHW91frr/+LKpMRbcUAADZJ5Hzd9wtN6tXr05G2gAAAFIq7uCmTZs2qU0JAABAEsQ9oPiee+5xs6R8b775pu3evbvs+bZt2+zqq69ORpoAAABSP+YmPz/f1q1bZ82aNXPP1d+1aNEia9++vXu+fv16a9myJWNuAABAdkwFj4yB4oyJAAAAqhW/Cg4AAAKF4AYAAOTuTfwee+wx97ML8s0339iUKVPK7lqsAcUAAABZM6C4bdu27iZ92X4/HG7iBwBA9knJTfxmz55t7dq1S0b6AAAA0j/mpkOHDi64+dnPfmZTp061zz77LHWpAgAAqKS4W25ef/11mzNnjns8/fTTtmfPHnePm5NPPtlOOukk92jevHll0wEAAFC9Y25C7dq1y956662yYGf+/Pn29ddf26GHHmpLly61TMaYGwAAsk8i5+9KBTc+td7oZxj++c9/2iOPPGLbt2/nDsUAACA7BhT7wczbb7/tBherxeY///mPtW7d2k444QSbMGGC9e3bt6ppBwAAqJK4gxuNrVEwo0HFCmKuvPJK+/Of/2wtWrSoWgoAAADSEdy88cYbLpBRkHPiiSe6AKdJkybJTAsAAED1TQXfsmWLPfroo1a3bl27++673S+AH3HEEXbttdfa9OnTbePGjVVPDQAAQBVVekCxfm5h7ty5ZeNv/vvf/9pBBx1kS5YssUzGbCkAALJPIufvSv9w5v7772+NGzd2j0aNGlnNmjVt+fLlld0cAABA9Y652bt3r7377ruulUatNZoCvmPHDmvVqpW7gd/EiRPdXwAAgKwIbho2bOiCmaKiIhfEPPDAA25gsX6WAQAAIOuCm3Hjxrmg5uCDD05tigAAAKojuNF9bQAAADJdpQcUAwAAZCKCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAiUjAhu9KObbdu2tYKCAuvVq5fNnz8/5rozZsywHj16uN+60i+Td+vWzZ566qlqTS8AAMhcaQ9upk2bZkOHDrWRI0fawoULrWvXrjZgwADbsGFD1PUbN25st9xyi82bN8/ef/99GzJkiHu8/PLL1Z52AACQefI8z/PSmQC11Bx99NE2YcIE93zv3r3WunVru+6662zYsGFxbeOoo46y0047zUaPHl3hulu3brXCwkIrKSmxBg0aVDn9AAAg9RI5f6e15WbPnj22YMEC69ev3/cJqlHDPVfLTEUUl82aNctWrFhhJ5xwQopTCwD7Kt3r2bxVX9hziz5zf/UcQJb8KngqbNq0yUpLS6158+Zhy/X8gw8+iPk+RW2tWrWy3bt3W35+vv3xj3+0/v37R11X6+gRGvkBQDLMXLLORr2wzNaV7Cpb1qKwwEae0clO6dyCTAZydcxNZdSvX98WLVpk77zzjv3ud79zY3bmzJkTdd0xY8a4Ziz/oS4vAEhGYHPV1IVhgY0Ul+xyy/U6gBwMbpo2bepaXtavXx+2XM+Liopivk9dVx07dnQzpW688UY777zzXBATzfDhw11Lj/9Yu3Zt0vcDQG5R15NabKJ1QPnL9DpdVEAOBje1a9e27t27u3EzPg0o1vPevXvHvR29J7TrKVSdOnXcwKPQBwBUxfzVm/dpsYkMcPS61gOQY2NuRF1KgwcPdveu6dmzp40fP9527NjhpnfLoEGD3Pgav2VGf7Vuhw4dXEDz0ksvufvcPPTQQ2neEwC5YsO2XUldD0DAgpuBAwfaxo0bbcSIEVZcXOy6mmbOnFk2yHjNmjWuG8qnwOfqq6+2Tz/91Pbbbz879NBDberUqW47AFAdmtUvSOp6AAJ2n5vqxn1uAFSVxtIcf/frbvBwtAo0z8yKCgts7s0nW34NPQOQM/e5AYBspIBF070lMnTxn+t1AhsgPQhuAKASdB+bhy4+yrXQhNJzLec+N0AOj7kBgGylAKZ/pyI3K0qDhzXGpme7xrTYAGlGcAMAVaCup94dmpCHQAahWwoAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoNRMdwIAINOV7vVs/urNtmHbLmtWv8B6tmts+TXy0p0sADEQ3ABAOWYuWWejXlhm60p2lS1rUVhgI8/oZKd0bkHeARmIbikAKCewuWrqwrDARopLdrnleh1A5iG4AYAYXVFqsfGivOYv0+taD0BmIbgBgCg0xiayxSaUQhq9rvUAZBaCGwCIQoOHk7kegOpDcAMAUWhWVDLXA1B9CG4AIApN99asqFgTvrVcr2s9AJmF4AYAotB9bDTdWyIDHP+5Xud+N0DmIbgBgBh0H5uHLj7KigrDu570XMu5zw2QmbiJHwCUQwFM/05F3KEYyCIENwBQAXU99e7QhHwCsgTdUgAAIFAIbgAAQKAQ3AAAgEAhuAEAAIGSEcHNxIkTrW3btlZQUGC9evWy+fPnx1x30qRJ1qdPH2vUqJF79OvXr9z1AQBAbkl7cDNt2jQbOnSojRw50hYuXGhdu3a1AQMG2IYNG6KuP2fOHLvgggts9uzZNm/ePGvdurX96Ec/ss8++6za0w4AADJPnud5+nHbtFFLzdFHH20TJkxwz/fu3esCluuuu86GDRtW4ftLS0tdC47eP2jQoArX37p1qxUWFlpJSYk1aNAgKfsAAABSK5Hzd1pbbvbs2WMLFixwXUtlCapRwz1Xq0w8du7caV9//bU1bhz99112797tMiT0AQAAgiutwc2mTZtcy0vz5s3Dlut5cXFxXNu4+eabrWXLlmEBUqgxY8a4SM9/qFUIAAAEV9rH3FTF2LFj7ZlnnrG//e1vbjByNMOHD3dNWP5j7dq11Z5OAACQIz+/0LRpU8vPz7f169eHLdfzoqKict977733uuDmtddesy5dusRcr06dOu4BAAByQ1pbbmrXrm3du3e3WbNmlS3TgGI97927d8z33XPPPTZ69GibOXOm9ejRo5pSCwAAskHafzhT08AHDx7sgpSePXva+PHjbceOHTZkyBD3umZAtWrVyo2dkbvvvttGjBhhf/7zn929cfyxOfXq1XMPAACQ29Ie3AwcONA2btzoAhYFKt26dXMtMv4g4zVr1rgZVL6HHnrIzbI677zzwraj++Tcfvvt1Z5+AACQWdJ+n5vqxn1uAADIPllznxsAAIBkI7gBAACBkvYxNwAApErpXs/mr95sG7btsmb1C6xnu8aWXyOPDA84ghsAQCDNXLLORr2wzNaV7Cpb1qKwwEae0clO6dwirWlDatEtBQAIZGBz1dSFYYGNFJfscsv1OoKL4AYAELiuKLXYRJsK7C/T61oPwUS3FAKBfnUgt5R3zGt5ZItNKIU0el3r9e7QpBpTjepCcIOsR786kFsqOuYV8MQj3vWQfeiWQlajXx3ILfEc82rJiUe86yH7ENwga9GvDuSWeI/57m0auZacWBO+tVyvqysLwURwg6yVSL86gNw55hd88qXropLIAMd/rteTfb8bBV/zVn1hzy36zP1lwHL6MOYGWSvV/eoMUgay95g/q1sre+jio/YZm1OUovvcMPYvsxDcIGulsl+diir5CBZR3ce8Apj+nYpSfodifxxQZHeZPw5IQVZ13jSwlLsyE9wge6mSUr+5KpBoffB5312lJdqvnmkVVRAQLCJdx7wCmVRO965oHJDSpNcVZFXHzz5wrH2LMTfIWqookt2vziDl5GNGGzL5mA/S2D+Ote8R3CCrqQVFLSm6Wgul55VpYcmkiioICBaR6cd8VWXKPXU41sIx5gZZL5n96plSUQUFd4pFKlTXWJp4ZMo9dTjWwhHcIBCS1a+eKRVVUBAsIlVSPZYm3WP/EsWxFo5uKSBKRcXNv5KDYBFBlynjgDjWwhHcABlYUQUFwSJyQSaMA+JYC5fneV5O/eb71q1brbCw0EpKSqxBgwbpTg4yFNMpk5uXmkIvoZWNHx4ytR5Bke77ywT9WNuawPmb4AbI0IoqSAgWAY61qiK4SVLmAEgegkWgepQG9MIskfM3s6UAVItMmd0CBF0+xxoDigEAQLAwWwoAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECj+/gJwT1N9dAeIp8033r+N+JnrT9t2U/4ArzeG6juAGOYVfp0auiVbmQ7UoLLCRZ3SyUzq3qPa0IXVmRvnec+m7plsKOXWwXzV14T6VfHHJLrdcrwO5UOZDUf6DZyZ1HcENcqd5VlcxXpTX/GV6XesBQS/zoSj/wUJd9y1abpAT1O9c3tWrKni9rvWAXCjzoSj/wUFd9y2CG+QEDahL5npApqtMWab8Zz/qum8R3CAnaKZAMtcDMl1lyjLlP/tR132L4AY5QVMgNVMg1iRILdfrWg/IhTIfivIfHNR13yK4QU7QvR00BVIiK3v/uV7PlXtAILfLfCjKf7BQ132L4AY5Q/d2eOjio6yoMLy5Xs+1PBfu/YDcEqvMh6L8B88p1HWW53leTs193bp1qxUWFlpJSYk1aNAg3clBGuTyXTuRm7hDcW4qDVhdl8j5mzsUI+fo4O7doUm6kwFUG8p8bsrP4bqObikAABAoBDcAACBQCG4AAECgENwAAIBAYUAxAKDaBW0mT2WRD6lBcJPGApqsQs3BASCbzFyyzv1ieegPe+puyrrpYC7db4p8SB3uc5OmApqsQs3BASCbqM66aupC90vkofzLuly5oSb5kNr73DDmJkkFNDRIET3Xcr0e73uKy3lPIp+d6HaQWdQSN2/VF/bcos/cXz0HgkBlWRd10Uq0v0yvB73Mkw+pR7dUigqoaLle79+pyD1XF1Tx1l02+h9LYx7ceSHvKa+LqqKDI97t+Nui7zsz0BKHIFM9E3kxFll36XWtF+Sbz5EPqUdwk8ICKnp9wusr7Zl31lS4biIHd7IOjmScTMsLjgicqt5M7bfEVbW5nu8iuVKRn6n+jqqjDJT3GVoWj8j1/G0Wl3xlm3fsscb16lhRg8TSX9G+J5o3sX7Somm9Oq4C3rRjd8ztVDYf0qU0Cy+ACW6qQAdaPB547cOEt11RoU7GwZGMk2l5wZEwaDA+yWyJS/R7yoXxDcmWivxM9XdUHWWgos/QiTEeoetF22ai6a8oXYnmTXlpqiiNOtY3bdttieZDtABDQpd1b9PIFnzy5T5BSMxALOT/oevv+WavPfnWx/bOx1/Ylp1f24frt9mWr74pS0vD/WrZkOPa2rUnH7RPgPj2qi9s3kebXK2lC+tj2jdJSyCU9gHFEydOtHHjxllxcbF17drVHnzwQevZs2fUdZcuXWojRoywBQsW2CeffGIPPPCAXX/99Wn74czH3/jIRr+43FLh6SuOKbfFRWMxLpj0dqW3o0J4/N2vxzw48777teC5N58cs2CWNyAuVqHKtUGD8arq95lpAxez8UovnfmZ6u+oOspAPJ+h4Lz7na+6E2Y89U6sbUa+p7z0V5Sun5/Qzh799+q48yaeNMXajsQTFPn58K9fn2TvrN5sT/3nY5v9wQbb/c33n1q4X03Ly8uLmZdS1KCOndG1pf114WeuxSueQKxzqwb22vINFk9k0LBuLRv7f0eUBYjDZizeJz2h6+TMgOJp06bZ0KFDbeTIkbZw4UIX3AwYMMA2bNgQdf2dO3da+/btbezYsVZU9O04lnRS02iy5X1XwPyoPBa9rvXyKrmdRLq1KjsgLtZ2c2XQYCJS1UydjoGLquQUOCtY+9Uzi9xfPQ/CAPdU5Geqv6PqKAPxfsbLS4rLPRlrXbVy+K0N5Y1pDBUr/fGka9IbqytMt7/tRNIUuR2d+KNNAInk1+lndm1hPe96zS56/D82c8n6sMBGSr76pty8lOKtu93+xRPYiNL26rL4AhvR52ufxry0zH4xdWHU9GiZXqvu4z+twc39999vV1xxhQ0ZMsQ6depkDz/8sNWtW9cmT54cdf2jjz7atfKcf/75VqdO8gOLRKnPN5n8Qu0f3OXR637XT14ltlPVk2k8440qGzjloso018ejqkFsooI+gy8V+Znq76g6ykC8n3Hrc0vK3U6jurXCJmAkOk6xMukqL6aL3HZl6z3vu5N8PDGDWmzUmvTIv1dXGLxkAu+7ALEi1X1Bm7bgZs+ePa57qV+/ft8npkYN93zevHlJ+5zdu3e7pqzQR7L4rSfJokKdSPOw1tP6el+i26nqyTQZA90yZbBcJqhqS1ws1TlwMRemt6YiP1P9HVVHGYj3vRW1IHy58+uyQCLR9ERbP1l1jL+dVNdZt512mOuKem7R55ZN9sZxSFf3BW3aBhRv2rTJSktLrXnz5mHL9fyDDz5I2ueMGTPGRo0aZangt57oilS8KONO1N9YEiNi1zqN969tt552mBUV7lepcQkKYHSlk+j4Bv9kqivqWGkrKudkmmgLQqq2ERShZSlyzFIiLXrV1SKUq9NbU5Gfqf6OqqMMJPNY9gOIRLcZbf1kpcvfTqrrrKb167gBwepOCqIN1XhBG/ib+A0fPtwNPvIfa9euTer2y2s9efjio9xAqvK6jn53Tmc756gfuMq+sgMu9T69/6xureLeTlW7tSpqaShPZVshgq4qLXHV3SIUTbZNb62MVORnqr+j6igD8XxG4/1rxbUtP4CIt2W8vPTHk67yqsvIbVel3ot337P5+MikC9q0BTdNmza1/Px8W79+fdhyPU/mYGGNzdGo6tBHsumko9H9msny+/O7ub96ruWpOGElM92VTVs8wVF5r1WmFSIXlFeWKqOqQWymthKlSyryM9XfUXWUgXg+486zOicUZPnbjCdVsdIfT7qu6NPO/T+evClve7H466kVP559z7bjI6+CANFX3Re0aZ0K3qtXLzftW9O/Ze/evXbggQfatddea8OGDSv3vW3btnXTwNM5FTwoU2Orkjbuc5MdquMeJ/7tBSrq6izv9gLZgvvcVC5f/AHnFqPrNdpFVVDucyPx7LuOo+PGzsqKrqm87/76A6DLo56MqtY1iZy/0xrcaCr44MGD7ZFHHnFBzvjx4+3ZZ591Y2409mbQoEHWqlUrN27GH4S8bNky9/9TTz3VLrroIveoV6+edezYMaODmyDjDsXZoToC7MqcvLIVdyiuXL5UJjAMyh2K4913rafp09WtRTn3ualVI89q1axhO/eUxgwQo93nRjPgxqThPjdpv4nfhAkTym7i161bN/vDH/7gWnTkxBNPdC00U6ZMcc8//vhja9eu3T7b6Nu3r82ZMyeuzyO4AVKLuyEjm1uyUy3efY8VLIQGDed1/4E9PX+tbd/9/d2DQzWs++04p9BtNKpb0wb3bmvtDqgX1x2K69auaece9QM7tmNT9/6KAsRU3qE4q4Kb6kZwA6ReLp+8gGTxg4W3Ptpkn23e6QKGVo32c4GGHzSEBhSakt2obm0368pv2ZKgHIsEN0nKHAAAkBmy5ucXAAAAko3gBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKlpuUY/9cmdKdDAACQHfzzdjy/GpVzwc22bdvc39atW6c7KQAAoBLncf0MQ3ly7ocz9+7da59//rnVr1/f8vKS90ulCpbWrl2bs79Xlet5kOv7L+QBeUA5oAyksi5QuKLApmXLllajRvmjanKu5UYZ8oMf/CAl29aXmKsnNl+u50Gu77+QB+QB5YAykKq6oKIWGx8DigEAQKAQ3AAAgEAhuEmCOnXq2MiRI93fXJXreZDr+y/kAXlAOaAMZEpdkHMDigEAQLDRcgMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDdxmjhxorVt29YKCgqsV69eNn/+/HLX/8tf/mKHHnqoW/+II46wl156yXIpD5YuXWrnnnuuW193gh4/frzl0v5PmjTJ+vTpY40aNXKPfv36VVhmgpYHM2bMsB49eljDhg1t//33t27dutlTTz1luVYX+J555hl3LJx99tmWS3kwZcoUt9+hD70vl8rAli1b7JprrrEWLVq4GUQHH3xw1p8TJiaQByeeeOI+ZUCP0047LXUJ1GwplO+ZZ57xateu7U2ePNlbunSpd8UVV3gNGzb01q9fH3X9N99808vPz/fuueceb9myZd6tt97q1apVy1u8eHHO5MH8+fO9m266yXv66ae9oqIi74EHHvCyWaL7f+GFF3oTJ0703nvvPW/58uXepZde6hUWFnqffvqplyt5MHv2bG/GjBnuGFi5cqU3fvx4d1zMnDnTy5U88K1evdpr1aqV16dPH++ss87yslmiefDEE094DRo08NatW1f2KC4u9nJl/3fv3u316NHDO/XUU725c+e6sjBnzhxv0aJFXq7kwRdffBH2/S9ZssTVBSobqUJwE4eePXt611xzTdnz0tJSr2XLlt6YMWOirv/Tn/7UO+2008KW9erVy7vyyiu9XMmDUG3atMn64KYq+y/ffPONV79+fe/JJ5/0cjUP5Mgjj3TBfi7lgb77Y4891nvssce8wYMHZ31wk2ge6ASmwD4oEt3/hx56yGvfvr23Z88eLyh6VrEu0PlA9eH27dtTlka6pSqwZ88eW7BggetWCP19Kj2fN29e1Pdoeej6MmDAgJjrBzEPgiQZ+79z5077+uuvrXHjxpaLeaALqVmzZtmKFSvshBNOsFzKgzvuuMOaNWtml112mWW7yubB9u3brU2bNu7HFM866yzXbZ0r+//8889b7969XbdU8+bNrXPnznbXXXdZaWmp5Wp9+Pjjj9v555/vuqtTheCmAps2bXKFUIUylJ4XFxdHfY+WJ7J+EPMgSJKx/zfffLP7JdvIoDfoeVBSUmL16tWz2rVru/71Bx980Pr372+5kgdz5851FbnGYAVBZfLgkEMOscmTJ9tzzz1nU6dOtb1799qxxx5rn376qeXC/n/00Uc2ffp09z6Ns7ntttvsvvvuszvvvNNysT6cP3++LVmyxC6//PIUpjIHfxUcqG5jx451g0nnzJmT9QMpE1W/fn1btGiRu3JXy83QoUOtffv2boBh0G3bts0uueQSF9g0bdrUcpVaLfTwKbA57LDD7JFHHrHRo0db0CmYU8vdo48+avn5+da9e3f77LPPbNy4ce4nCnLN448/7ibZ9OzZM6WfQ3BTAVVKKpDr168PW67nRUVFUd+j5YmsH8Q8CJKq7P+9997rgpvXXnvNunTpYrmWB2qu7tixo/u/ZkstX77cxowZk5XBTaJ5sGrVKvv444/tjDPOCDvRSc2aNV0XXYcOHSzX6oJatWrZkUceaStXrrRsU5n91wwp7bPe51Nwp1YOdfGoVTNXysCOHTvchZ66alONbqkKqOAp0tZVZ2gFpeehVyOhtDx0fXn11Vdjrh/EPAiSyu7/Pffc465MZ86c6aZEZ7NklQG9Z/fu3ZYLeaBbQSxevNi1XPmPM88800466ST3f40/ycVyoC4N5YtO+rmw/8cdd5wL5PzAVj788EO3/9kW2FS1DOgWKTr+L774Yku5lA1VDhBNe6tTp443ZcoUN6315z//uZv25k9nvOSSS7xhw4aFTQWvWbOmd++997ppwCNHjgzEVPBE8kDTHzUNWo8WLVq4aeH6///+9z8vF/Z/7Nixbqrk9OnTw6ZAbtu2zctWiebBXXfd5b3yyiveqlWr3Po6HnRcTJo0ycuVPIgUhNlSiebBqFGjvJdfftmVgwULFnjnn3++V1BQ4KYQ58L+r1mzxs0Muvbaa70VK1Z4//jHP7xmzZp5d955p5drx8Hxxx/vDRw4sFrSSHATpwcffNA78MAD3QlL0+Defvvtstf69u3rKq1Qzz77rHfwwQe79Q8//HDvxRdf9HIpD3QvB8XOkQ+tlwv7r+nv0fZfgW42SyQPbrnlFq9jx47uRNaoUSOvd+/erlLMtbogaMFNonlw/fXXl63bvHlzd7+XhQsXerlUBt566y13OxAFBJoW/rvf/c7dIiCX8uCDDz5wdaAueKpDnv5JffsQAABA9WDMDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AZAQvLy8uzvf/97xuZa27Ztbfz48elOBoA0IrgBEObSSy+1s88+O2aurFu3zn784x+nLNf0o5oKoGI9svFHNwFUL34VHEBCUv1L8DNmzHC/lixr1661nj17ul9VP/zww92yVP/YYDb+UjOAcLTcAKh0t9THH3/snisg0a9d161b17p27Wrz5s0Le8/cuXOtT58+tt9++7lfw/7lL39pO3bsiLr9xo0buwBKjwMOOMAta9KkSdmy2bNnu0CnTp06rgvqvvvuKze9W7Zsscsvv9xtq0GDBnbyySfbf//737LXb7/9duvWrZs99thj1q5dOysoKHDL9Wvuxx9/vDVs2NB9/umnn26rVq0qe1+8+/7mm2+61ia93qhRIxswYIB9+eWXZb+mPGbMGPe5yhu9f/r06ZRIoIoIbgBU2S233GI33XSTLVq0yA4++GC74IIL7JtvvnGvKSA45ZRT7Nxzz7X333/fpk2b5oKda6+9NuHPWbBggf30pz+1888/3xYvXuwCk9tuu82mTJkS8z0/+clPbMOGDfbPf/7Tvf+oo46yH/7wh7Z58+aydVauXGl//etfXaCifRAFX0OHDrV3333XZs2aZTVq1LBzzjnHBSTx7ruW6bM6derkgh7t9xlnnGGlpaXudQU2f/rTn+zhhx+2pUuX2g033GAXX3yx/etf/0o4bwCEqJaf5wSQNSr65WpVG3/729/Cfv39scceK3t96dKlbtny5cvd88suu8z7+c9/HraNN954w6tRo4b31VdflZsWf/vvvfeee37hhRd6/fv3D1vn17/+tdepU6ewX2R/4IEHyj6nQYMG3q5du8Le06FDB++RRx5x/9cvtdeqVcvbsGFDuWnZuHGjS8vixYvj3vcLLrjAO+6446JuT2mqW7eu+8XoUMovvQ9A5dFyA6DKunTpUvb/Fi1auL9qLRF1AallpV69emUPdc2oBWT16tUJfc7y5cvtuOOOC1um5//73//KWkNC6bO3b9/uupVCP1+fG9rF1KZNm7IuMJ+2qVaY9u3bu+4sdYHJmjVr4t53v+UmGrUW7dy50/r37x+WNrXkhKYNQOIYUAygymrVqlX2f41DEb/7RsHFlVde6cbZRDrwwANTmvv6bAUcc+bM2ec1jaXx7b///vu8ru4jBT2TJk2yli1buv3p3Llz2WDnePZd42jKS5u8+OKL1qpVq7DXNJ4IQOUR3ABIKY1xWbZsmXXs2LHK2zrssMPcAN1Qeq6xLvn5+VE/u7i42GrWrFnW8hKPL774wlasWOECGw2EFo2XSZRadTReZ9SoUfu8pnE4CmLUEtS3b9+Etw0gNoIbAPsoKSkpG1jrU9eOZjol6uabb7ZjjjnGDSDWrCW1kijYefXVV23ChAkJbevGG2+0o48+2kaPHm0DBw50g3S1jT/+8Y9R1+/Xr5/17t3b3bfnnnvucUHQ559/7lpLNDi4R48eUd+nWU3a30cffdS1/CgAGTZsWML7Pnz4cDviiCPs6quvtl/84hduirlme2mQc9OmTd1AZA0iVkuPZmYp3xWsqRts8ODBCX8egG8R3ADYh7pxjjzyyLBll112mZsuXZnWC83+0awitYJoTHKHDh1ccJIotcQ8++yzNmLECBfgKPC444473I0Ho1E30UsvveQ+e8iQIbZx40Y3nfyEE06w5s2bx/wczYx65plnXFeauqIOOeQQ+8Mf/pDwDQQVTL3yyiv229/+1t2vR91UvXr1cmN5RPugsT6aNfXRRx+5rjLto9YHUHl5GlVchfcDAABkFGZLAQCAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAFiQ/H/glJkQUSfI3gAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -2571,22 +2507,16 @@ "source": [ "import matplotlib.pyplot as plt\n", "\n", + "plt.scatter(df[\"config/text_det_thresh\"], df[\"CER\"])\n", + "plt.xlabel(\"Detection Box Threshold\")\n", + "plt.ylabel(\"CER\")\n", + "plt.title(\"Effect of Detection pixel threshold on Character Error Rate\")\n", + "plt.show()\n", + "\n", "plt.scatter(df[\"config/text_det_box_thresh\"], df[\"CER\"])\n", "plt.xlabel(\"Detection Box Threshold\")\n", "plt.ylabel(\"CER\")\n", - "plt.title(\"Effect of Detection Threshold on Character Error Rate\")\n", - "plt.show()\n", - "\n", - "plt.scatter(df[\"config/textline_orientation\"], df[\"CER\"])\n", - "plt.xlabel(\"Detection Box Threshold\")\n", - "plt.ylabel(\"CER\")\n", - "plt.title(\"Effect of Detection Threshold on Character Error Rate\")\n", - "plt.show()\n", - "\n", - "plt.scatter(df[\"config/line_tolerance\"], df[\"CER\"])\n", - "plt.xlabel(\"Line Tolerance\")\n", - "plt.ylabel(\"WER\")\n", - "plt.title(\"Effect of Line Tolerance on Character Error Rate\")\n", + "plt.title(\"Effect of Detection box threshold on Character Error Rate\")\n", "plt.show()\n", "\n", "plt.scatter(df[\"config/text_det_unclip_ratio\"], df[\"CER\"])\n", @@ -2600,23 +2530,18 @@ "plt.ylabel(\"WER\")\n", "plt.title(\"Effect of Text recognition threshold on Character Error Rate\")\n", "plt.show()\n", - "\n", - "plt.scatter(df[\"config/text_rec_score_thresh\"], df[\"WER\"])\n", - "plt.xlabel(\"Line Tolerance\")\n", - "plt.ylabel(\"WER\")\n", - "plt.title(\"Effect of Text recognition threshold on Character Error Rate\")\n", - "plt.show()\n" + "\n" ] }, { "cell_type": "code", - "execution_count": 86, + "execution_count": 13, "id": "cc1e3d53", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAR31JREFUeJzt3Ql8FPXdx/F/CEKQIwgIAURuRVBATmPxqHKqKPUCqoI8FltU1OIFVTnEiihW2oJ4Iiqt0CqKWhqsIFYtioWiRRQBUQ4Jp4TLgCbzvL7/x9lnd7ObbJK95/N+vZawM7OzM/+ZnfnN/8xwHMcxAAAAHlIl0RsAAAAQbwRAAADAcwiAAACA5xAAAQAAzyEAAgAAnkMABAAAPIcACAAAeA4BEAAA8BwCIAAA4DkEQB528OBB84tf/MLk5OSYjIwMc+utt9rpO3bsMJdffrmpX7++nT59+nST6vvkNXPmzLH7/9VXX5lkde6555pTTz3VpPP26BhMnDixzOW0jJZF6a699lrTokULkglRQQCUpje+cK8PPvjAt+wDDzxglx81apR54YUXzDXXXGOn//rXvzaLFy8248aNs9P79+8f9e3Ud7/66qsxWW+ofQpFF1I3XapUqWLq1q1rTjvtNHP99debDz/8sFLb8dhjj9ntiLVYpWNFuDfxsl4KNJC8LrjgAnPccceZ4FGS/vOf/9jj17x58xKfWbp0qZ335JNPmmSgcyzc+deuXTuTrIK3tU6dOuacc84xf/vb3yq8zj//+c8p9RAbT1Xj+m2Im/vuu8+0bNmyxPQ2bdoEXLTOOOMMM2HChIBlNP2SSy4xt99+e0xv3MplGjRoUFTXG26fwuncubO57bbb7P8PHDhgPvvsM/PXv/7VPPXUUzYQ/N3vflfhAKhBgwb2iTWWwqWjAr8hQ4aY6tWrm3i59NJLA84v5cYpEP3Zz35m57kaNWoUt21C+fXq1cv8/e9/N2vWrLEPBK7333/fVK1a1WzevNls3brVnHDCCQHz3M8mC23flClTSkzPzs42yaxPnz5m2LBhNgD9+uuvzaxZs8zAgQPtMenXr1+FAiAdS6/mhpeGAChNDRgwwHTr1q3UZXbu3Gnat28fcrpyQ1JRuH0Kp2nTpubqq68OmDZ16lTz85//3Dz66KOmbdu29iaeajIzM+0rnjp27Ghfrt27d9u007TgNK6swsJCU61aNZtzh+hyg5j33nuvRACk3CE9ZGieAmyX3qvI/JRTTkma46pApyLn3aFDh0zNmjVLTFdAou2rUaNGTPfvpJNOCtjuyy67zF7Tfv/731coAEJ4XD08aNmyZTZ7ddOmTTZr1c1udYvP9EOfOXOmb7pr37599imiWbNmNmdBT/sKFoqLiwPWr/f6serimZWVZY4//nhbjPbvf//bztc6dZF57rnnfN9RVk6JApvrrrvO5h5onZ06dbKfL2ufKlIHRhc4FZ/Vq1fP/Pa3vw0oCtC+KTu5Q4cOdju0Pb/85S/Nt99+G1C09umnn5p33nknZLFPPNIxXB0g5Uxp2/W9TZo0MTfeeKPdnlB1YdauXWt++tOfmmOPPdYGig899JCJhbK+xz228+bNM/fcc49dRsvu37/fzldxpdJFNzxNV5GBmyPhUu6e0lzHRvvesGFD+6S9atWqcm9PJOdjaRQsdO/e3X6udevW5oknnihXeimHsmvXrvY8VS6jbpbbtm0LWEbnQa1atex05Q7q/zp/lKtbVFRU6vp79Ohhb9LBaaj3Z599tp3vP0/nqYrWzzzzTN/14ssvvzRXXHGF/Q0pHZUrG1yMU9ZxVdGuzkOlk/6+8sorJlbFtjrmeuhR0Z8bAOpcueiii2x1AD1MKr3dYxWN/YuUgkod540bNwZMX7hwobnwwgvt71jntM6lyZMnBxxf/Za1XcpJcq8R/nWojhw5YnPLdQ3SOnRNuvPOO+10LyAHKE0VFBTYJ3B/OvndpzTd4FXEo2xitwjo9NNP99WbcbNhXYcPH7Y3Fl1QdcM/8cQTzb/+9S9bT2j79u0BZcy6MegGrFwoVUj+4YcfzLvvvmsvkrqQ6Ds0XRdS1bcR/XjD+e677+wPecOGDeamm26yRXu6Cegir5v3LbfcEnafdNGvCN0wVHTzzDPP2IujggbRvmvfRowYYW6++WYbcM2YMcPWj9BN4ZhjjrFpMXr0aLuOu+++O6DYJ5HpqIv9pEmTTO/evW3OzLp162z2+kcffeTbdpcCOgUVKrq68sorzUsvvWTuuusuG4xpe6KlPN+ji7tuzLqJ6wKt/ys3QsspINCFXE/Wzz77rDnvvPNsWilt5Fe/+pVdt84fPU3v2bPHBiIq8uzSpUu5tieS8zGc//73v6Zv3772vNTx0DHVdkdaLOieewqgVLyjBgsKknX8dA7659zqRqgcg549e5pp06aZt956yzzyyCP2HCktV1MBh9JT6ePasmWLfSnI0T763+y1T7qpu4GDtknL6VzXb0TXHAWHF198sU1P/a7KOq5vvvmmL+dD+6njpf32L3Yri/Y/+BooCmSCc3gUzCi3V0XK/g88+o0MHTrU/lZHjhxpTj755KjsX3mv5Tovg3/bOhd0jRkzZoz9q9/C+PHj7bF4+OGH7TK6/ujzKrJUjrZoWTdwvfjii+1x1vVD11AdSy33xRdfJE3dwphykFaeffZZ/XpDvqpXrx6wbPPmzZ0LL7ywxDq07I033hgwbfLkyU7NmjWdL774ImD62LFjnczMTGfz5s32/dKlS+3nb7755hLrLS4u9v1f6xo+fHhE+zR9+nS7zrlz5/qmHT161MnNzXVq1arl7N+/v8x9CqWsZR999FH7vQsXLrTv3333Xfv+T3/6U8ByeXl5JaZ36NDBOeecc0qsM17p6J4HmzZtsu937tzpVKtWzenbt69TVFTkW27GjBl2udmzZ/umabs17fnnn/dNO3LkiJOTk+NcdtllTqR27dpl1zNhwoSQ8yP9nrffftsu16pVK+fw4cMB6dC2bVunX79+AWmiZVq2bOn06dPHNy07O7vEOV3R7SnP+Ri8/4MGDXKysrKcr7/+2jdt7dq19tiXdTnWdzRs2NA59dRTne+++843/Y033rCfHT9+vG+azglNu++++wLWcfrppztdu3Z1ynLHHXfYz2/dutW+f/HFF+12Kz0WLVpkt9fdT/ccev/99+37W2+91b7X78V14MABe0xatGjhO//CHVfp3Lmz07hxY2ffvn2+aW+++aZdXr/bsrjHMtTrl7/8pW85HRtNGzp0aIl16Hs0T79vf9HYv3C0/HXXXWd/O/rN/vvf/3b69+9vpz/88MMBy4Zap/bt2GOPdQoLC33TdI0LlWYvvPCCU6VKlYD9kMcffzzgeKYzisDSlIqw/vGPfwS8VImuovSEe9ZZZ9ksYj1VuS/lJuhJ65///Kdd7uWXX7Y5TaEqIVe0me+iRYtss3Y9ibmUW6GnL1W0VVFTLLhPSio+cdNAxSzKHfNPAz0ta9m33347adNRT/9Hjx61xUD+9Q/0VKuWJsHZ99of/3oIempVboqy/qOpPN8zfPjwgPoXq1evNuvXr7dFF8ohcNNSxYLnn3++TUu3WFE5Iyoq++abbyq9PRU9H3V8VZyiIinl/Ln05B1J3Q4Vfaro7YYbbrC5NC4Vg6hlU6iWQsr58qdzL5Jj6ObmKBdNlMOk81zpkZub6yv2cudpe9w6h0ofpZl/hWilq3IZVCSrHNXSjqtyQnVsNd2/wrJ+d+Wp36einuBroF6hKgMHp5NLuXvBx6ay+1cW5Torh1DFtErTJUuW2GIp5fT481+nrlE693V8lTP1+eefR3QtOuWUU+y5438tUu6pRHI9S3UUgaUp/UDLqgRdHrrRfPLJJ2GLlHRhFpVTq0xaZePRovJrZU8HVxx0K1xqfizoZia1a9f2pYGyk3VhKi0NkjEd3TRSFr4/3dBatWpVIg1V1BAcaClo07ZHU3m+J7hVo9LSvcGEo+Ol9akej5ZTHQfdyFWZV0W82vfybk9Fz8ddu3bZ4jN9NpiOi26sFTmGopuYf5GVuPXGgvfFv75aOD/5yU9sOii4UWVn/VUA4gaTCkTcafqrIjm3aEfbqWK3YP7p49/fUvBxdfczXDqFqrcVioq59GARiVAtZsNNr+z+lUUtcFW0qgcWFU+rWE5BTfD5pnqGqlukoq/gekU678uyfv16WwRc1rUonREAISJ64tPFTk8i4VoupBs1HRW3abfSQMHPn/70p5DLR1LfKFXSMVwLsuC+YeL5PcFP0W7ujuo7qDuD0nLxVJ9HT8eqSKv6JfqMKp4vWLAgoK5RvPY7HirTClD1WtygSg8CCgD9cyNVB0bzVLdEzeKvuuqqCn9XZVpVRUu4bYjGtpV3HQrC3cBNgboqQCsgUsV8tzsJ1cNSXULl3qrLE9UPUsCr4FB11oIbVIRSXFxs67aF6+pDDwvpjgAIEdEPTBfCsp6otJyy+ffu3Vtq7kV5inHU8ZouwPrB+j8Fudm8oTpmqyztq26Wugi4T3baNxUl6em4rItauP1LVDq6aaRKnf65HnrKVEXuSJ+Uk4lbKVQ3gUi2v3Hjxrb4SC893arys1r5lbdSd0XPRwXIOm/cnCt/Oi6RfK+7rFtM4f/5aP8OVMQze/ZsGzCq+E5Bj0v/f/HFF21LJ3dZ/+0MtT+R/l7d+RVNp1ir7P6Vlypgq2KycntUwVq/eaW7in0VwKtlnku/5fJciz7++GNbXOzVXsipA4SI6Al6+fLl9qYcTE8jas0iarmhp2W1NirtKVrZ08HNr8PRU1B+fr6ZP3++b5q+749//KN9wteTUDSpmEIt4RR8qBWFe3FQGuhGoFYdwbQ9/vsTbv8SlY4KEFRE8Yc//CHg86pvoOxy1SNJNSrK0kVcLZzc4srgIifRMQsuElBOnooYK9Lct6Lno3JkVJ9ErWuUa+JSMUSo8yGYirS13Y8//njAdqtun9YR7WOooEZpp/RVcZR/DqcCIKW5ulVQEOgfHCl9VqxYYc9zl+plqZdo1cspqx6PAlXl6Klllf9xU/2d4Po1iVDZ/SsvdT6pVq06xmr67p+75/9b1sOMjkcwXSNCFYldeeWVtjWqOn0NdQ3UPqU7coDSlC6KoSrC6UIVXO8hEnfccYd57bXXbL8Yau6rm49+IGo2qaafqvynrFpl0yp40I1WT3BqUqwnZVWm1Dxl5Yo+r9wUZb/qRqRy8lDl6qLKhep/Q9+7cuVKe5HRd6rugZqNu3V0KkIXgLlz59r/64KuC6wqB+oGp4uOnr5curHpvZrlqpKmmjOr8qv2U59Rc2T1yuzun5qY33///bYITTcuPbUnKh1181JTewVUWpeav+opVhdM1d+IdkeF8aAb79NPP21zcNRNgZpJq68VHVNV4FTO0Ouvv24riKpYQcdG/fUoSFGaqX6FmoWXV2XOR6V/Xl6eLY5TTpQbOGn7y6pfpXNNxXbaT52LqoTtNoPXNqgLiGhyc3V0ow/up0tFtTpPNU/FKP7N78eOHWtzh3RcVDFcOZgKZpQ7ocr9kXRyqN+YAjptw//8z//YhxE3nUIFu6Hopu/+toNV5nyPxv6Vl9JfTdx1/FWJXtdx1edSvTZtgx7S1C1GqKJaXSMUrKsStX7rOv/Vs/Q111xj/vKXv9gK4Pq9KGdbAa/uG5ru9n+U1hLdDA3xawavl+ZXpBm829Rz3LhxTps2bWyT6gYNGjhnnnmmM23aNNtE1/XDDz/YJpvt2rWzyx1//PHOgAEDnJUrV/qW+fzzz52zzz7bqVGjhv2+sprE79ixwxkxYoT9Tq3ztNNOC9iXsvYpFLeZq14ZGRlOnTp1bPP1kSNHOh9++GHYzz355JO2KbG2vXbt2nZb7rzzTuebb77xLZOfn2+3Q/O1fv8m8fFIx+Bm8C41Wdb6jjnmGKdRo0bOqFGjnG+//TZgGW2r0iGY1h1JE+TyNIOP5Hvc5sR//etfQ67nP//5j3PppZc69evXt1096LNXXnmls2TJEjtfTbfVrLtTp072eKjrAP3/scceq/B+R3o+htr/d955x54/+pyaSKvZsdscOxLz58+3zdm1r/Xq1XOuuuoqX3N1/23WfgYrz/dIkyZN7PI654NdfPHFdp7OoWAbN250Lr/8cqdu3bq2+XyPHj1sc31/ZR3Xl19+2TnllFPsfrZv395ZsGBBxOdgac3g/fffTQ+dq+W5lkRj/0IJd+2ViRMn2vlar6iZ+hlnnGF/+zpOugYtXrw4YBk5ePCg8/Of/9xua3A3AkePHnWmTp1qz3ul83HHHWfPzUmTJjkFBQVOusvQP4kOwgAAAOKJOkAAAMBzCIAAAIDnEAABAADPIQACAACeQwAEAAA8hwAIAAB4Dh0hhqAO5zRqtDo082oX4QAApBr17KPOT9UxbFmdUhIAhaDgxwsDwQEAkI62bNlie4AvDQFQCG5X9kpAdacPAACS3/79+20GRiRDJBEAheAWeyn4IQACACC1RFJ9hUrQAADAcwiAAACA5xAAAQAAzyEAAgAAnkMABAAAPIcACAAAeA4BEAAA8BwCIAAA4DkEQAAAwHPoCRrlVlTsmBWb9pqdBwpNw9pZpkfLeiazCoPGAgBSBwEQyiVvzXYz6fW1ZntBoW9a4+wsM2Fge9P/1MakJgAgJVAEhnIFP6PmrgoIfiS/oNBO13wAAFIBARAiLvZSzo8TYp47TfO1HAAAyY4ACBFRnZ/gnB9/Cns0X8sBAJDsCIAQEVV4juZyAAAkEgEQIqLWXtFcDgCARCIAQkTU1F2tvcI1dtd0zddyAAAkOwIgRET9/KipuwQHQe57zac/IABAKiAAQsTUz8+sq7uYnOzAYi6913T6AQIApAo6QkS5KMjp0z6HnqABACmNAAjlpmKu3Nb1STkAQMqiCAwAAHgOARAAAPAcAiAAAOA5BEAAAMBzCIAAAIDnEAABAADPIQACAACeQwAEAAA8hwAIAAB4DgEQAADwHIbCABCxomKHceAApAUCIAARyVuz3Ux6fa3ZXlDom9Y4O8tMGNjeDpILAKmEIjAAEQU/o+auCgh+JL+g0E7XfABIJQRAAMos9lLOjxNinjtN87UcgNjS72z5xj1m4ept9i+/u4qjCAxAqVZs2lsi58efwh7N13K5reuTmkCMUAwdXeQAASjVzgOFUV0OQPlRDB19BEAAStWwdlZUlwNQPhRDxwYBEIBS9WhZz7b2yggzX9M1X8sBSGwxNCJHAASgVJlVMmxTdwkOgtz3mq/lAEQfxdCxQQAEoEzq52fW1V1MTnZgMZfeazr9AAGxQzF0bNAKDEBEFOT0aZ9DT9BAgoqh1e9WqM4mMn58GKEYOgVzgGbOnGlatGhhsrKyTM+ePc2KFSvCLrtgwQLTrVs3U7duXVOzZk3TuXNn88ILLwQsc+2115qMjIyAV//+/eOwJ0B6UzGXmrpf0rmp/UuxFxCf3x3F0GkYAM2fP9+MGTPGTJgwwaxatcp06tTJ9OvXz+zcuTPk8vXq1TN33323Wb58ufnkk0/MiBEj7Gvx4sUByyng2b59u+/14osvxmmPAACILoqhoy/DcZyEdt+qHJ/u3bubGTNm2PfFxcWmWbNmZvTo0Wbs2LERraNLly7mwgsvNJMnT/blAO3bt8+8+uqrFdqm/fv3m+zsbFNQUGDq1KlToXUAABBtDEgcvft3QnOAjh49alauXGl69+79/xtUpYp9rxyesih2W7JkiVm3bp05++yzA+YtW7bMNGzY0Jx88slm1KhRZs+ePWHXc+TIEZto/i8AAJINxdBpUgl69+7dpqioyDRq1Chgut5//vnnYT+nyK5p06Y2cMnMzDSPPfaY6dOnT0Dx16WXXmpatmxpNm7caH7zm9+YAQMG2KBKywebMmWKmTRpUpT3DgAAJKuUbAVWu3Zts3r1anPw4EGbA6Q6RK1atTLnnnuunT9kyBDfsqeddprp2LGjad26tc0VOv/880usb9y4cXYdLuUAqRgOAACkp4QGQA0aNLA5Mjt27AiYrvc5OTlhP6disjZt2tj/qxXYZ599ZnNx3AAomIIjfdeGDRtCBkDVq1e3LwAA4A0JrQNUrVo107VrV5uL41IlaL3Pzc2NeD36jIrDwtm6dautA9S4ceNKbzMAAEh9CS8CU9HT8OHDbd8+PXr0MNOnTzeHDh2yTdtl2LBhtr6PcnhEf7WsirQU9CxatMj2AzRr1iw7X8Viqs9z2WWX2Vwk1QG68847bY6RmtcDAAAkPAAaPHiw2bVrlxk/frzJz8+3RVp5eXm+itGbN2+2RV4uBUc33HCDzdWpUaOGadeunZk7d65dj6hITf0DPffcc7YpfJMmTUzfvn1tE3mKuQAAQFL0A5SM6AcIAID0vn8nPAcI8CI6MwOAxCIAAuIsb812M+n1tWZ7QaFvmgY61Fg/jKoOAB4ZCwzwWvAzau6qgOBHNMqzpms+ACD2CICAOBZ7KecnVKU7d5rmazkAQGwRAAFxsmLT3hI5P/4U9mi+lgMAxBYBEBAnOw8URnU5AEDFEQABcdKwdlZUlwMAVBwBEBAnPVrWs629MsLM13TN13IAgNgiAALiJLNKhm3qLsFBkPte87UcACC2CICAOFI/P7Ou7mJysgOLufRe0+kHCADig44QgThTkNOnfY5t7aUKz6rzo2Ivcn4AIH4IgIAEULCT27o+aQ8ACUIRGAAA8BwCIAAA4DkEQAAAwHMIgAAAgOdQCRoAEDca7JcWkEgGBEAAgLjIW7PdTHp9bcCgwOr9XB2A0gcW4o0iMABAXIKfUXNXBQQ/kl9QaKdrPhBPBEAAgJgXeynnxwkxz52m+VoOiBcCIABATKnOT3DOjz+FPZqv5YB4IQACAMSUhnyJ5nJANBAAAQBiSuPdRXM5IBoIgAAAMaXBftXaKyPMfE3XfC0HxAsBEAAg5oP/qqm7BAdB7nvN13JAvBAAAQBiTv38zLq6i8nJDizm0ntNpx8gxBsdIQIA4kJBTp/2OfQEjaRAAAQAiBsVc+W2rk+KI+EoAgMAAJ5DAAQAADyHIjAAABAXGu5EPX6r00v1+6SuDxLV+o8ACAAAxJwGvNWYb/7Doqj/J3WBkIhWgBSBAQCAmAc/o+auKjEmXH5BoZ2u+fFGAAQAAGJa7KWcHw16G8ydpvlaLp4IgAAAQMyozk9wzo8/hT2ar+XiiQAIAADEjCo8R3O5aCEAAgAAMaPWXtFcLloIgAAAQMyoqbtae4Vr7K7pmq/l4okACAAAxIz6+VFTdwkOgtz3mh/v/oAIgAAAQEypn59ZV3cxOdmBxVx6r+mJ6AeIjhABAEDMKcjp0z6HnqABAIC3ZFbJMLmt65tkQBEYAADwHAIgAADgOQRAAADAcwiAAACA5xAAAQAAzyEAAgAAnkMABAAAPIcACAAAeA49QQMpqKjYSZreVAEgFREAASkmb812M+n1tWZ7QaFvmkZS1mCCiRhPBwBSEUVgQIoFP6PmrgoIfiS/oNBO13wAQNkIgIAUKvZSzo8TYp47TfO1HACgdARAQIpQnZ/gnB9/Cns0X8sBAEpHAASkCFV4juZyAOBlBEBAilBrr2guBwBeRiswIEWoqbtae6nCc6haPmoEn5P9f03igVig+wWkEwIgIEWonx81dVdrLwU7/kGQ2wOQ5tMfEGKB7heQbigCA1KI+vmZdXUXm9PjT+81nX6AEAt0v4B0RA4QkGIU5PRpn0NP0EiK7heU+6j5OifJfUQqIQACUpBuNLmt6yd6M+AB5el+gXMSqYQACAAQ0+4XqDyNZEQABACIWfcLVJ5GskqKStAzZ840LVq0MFlZWaZnz55mxYoVYZddsGCB6datm6lbt66pWbOm6dy5s3nhhRcClnEcx4wfP940btzY1KhRw/Tu3dusX78+DnsCAOnZ/YLb0jCYpjcO0/0ClaeRzBIeAM2fP9+MGTPGTJgwwaxatcp06tTJ9OvXz+zcuTPk8vXq1TN33323Wb58ufnkk0/MiBEj7Gvx4sW+ZR566CHzhz/8wTz++OPmww8/tIGS1llYSA+5AFCR7hckOAgqrfsFxq5DsstwlF2SQMrx6d69u5kxY4Z9X1xcbJo1a2ZGjx5txo4dG9E6unTpYi688EIzefJkm/vTpEkTc9ttt5nbb7/dzi8oKDCNGjUyc+bMMUOGDClzffv37zfZ2dn2c3Xq1KnkHgJA6itvUdbyjXvM0Kc+KHO9L448g8rTiJry3L8TWgfo6NGjZuXKlWbcuHG+aVWqVLFFVsrhKYuCnaVLl5p169aZqVOn2mmbNm0y+fn5dh0uJYYCLa0zVAB05MgR+/JPQABAxbtfYOw6JLuEBkC7d+82RUVFNnfGn95//vnnYT+nyK5p06Y2aMnMzDSPPfaY6dOnj52n4MddR/A63XnBpkyZYiZNmhSFPQKA9FWe7hcYuw7JLuF1gCqidu3aZvXq1eajjz4yv/3tb20domXLllV4fcqBUlDlvrZs2RLV7QUAr6lM5Wkg7XOAGjRoYHNwduzYETBd73NycsJ+TsVkbdq0sf9XK7DPPvvM5uKce+65vs9pHWoF5r9OLRtK9erV7QsAEB2MXYdkl9AcoGrVqpmuXbuaJUuW+KapErTe5+bmRrwefcatw9OyZUsbBPmvU3V61BqsPOsEAFQOY9chmSW8I0QVXw0fPtz27dOjRw8zffp0c+jQIdu0XYYNG2br+yiHR/RXy7Zu3doGPYsWLbL9AM2aNcvOz8jIMLfeequ5//77Tdu2bW1AdO+999qWYYMGDUrovgKA1zB2HZJVwgOgwYMHm127dtmOC1VJWcVUeXl5vkrMmzdvtkVeLgVHN9xwg9m6davt5LBdu3Zm7ty5dj2uO++80y53/fXXm3379plevXrZdaqjRQBAfDF2HZJRwvsBSkb0AwQAQOpJmX6AAABA5THgbPkRAAEAkMIYcNZD/QABAAAGnK0MAiAAAFIQA85WDgEQAAApSOOy+Q9OG0wtnDRfy8UjGFu+cY9ZuHqb/av3yY46QAAApKBkGXA2b812M+n1tQHBmIY5mTCwve0HKlmRAwQAQApKhgFn89ZsN6PmriqRE5VfUGina36yIgACACAFJXrA2aJix+b8hCrscqdpfrIWhxEAAQCQwgPOSnAQ5L7XfC2X7nWQKoIACACAFJXIAWd3JkkdpIqiEjQAACksUQPONkyCOkiVQQAEAECKS8SAsz1+rIOkCs+havlk/JgTFas6SJVFERgAAEi5OkiVRQAEAABSrg5SZVEEBgAAUq4OUmURAAEAgJSrg1RZFIEBAADPIQACAACeQxEYAABpTENRpFr9nHggAAIAIE2l6kjt8UARGBCFp6vlG/eYhau32b/JOvAfAG9J5ZHa44EcIKASeLoCkIzKGqk948eR2tV83avFYeQAARXE0xWAZJXqI7XHAwEQEIOnK9F8isMAJEKqj9QeDwRAQAXwdAUgmaX6SO3xQAAEVABPVwCSmTtSe7jaPRk/tgZL1pHa44EACKgAnq4AJLNUH6k9HgiAgArg6QpAskvlkdrjgWbwQCWertSXhp6f/CtD83QFIFmk6kjt8ZDhOA69tgXZv3+/yc7ONgUFBaZOnTpxORBITfQDBACpef8mBwioBJ6uACA1EQABlaSs5NzW9UlHAEghVIIGAACeQwAEAAA8hwAIAAB4DgEQAADwHAIgAADgOQRAAADAcwiAAACA5xAAAQAAzyEAAgAAnkMABAAAPCeqAVBhYaGZNm1aNFcJAACQ+ABo165d5o033jBvvvmmKSoqstO+//578/vf/960aNHCPPjgg9HfSgAAgEQNhvree++Ziy66yA43n5GRYbp162aeffZZM2jQIFO1alUzceJEM3z48GhuHwAAQGJzgO655x5zwQUXmE8++cSMGTPGfPTRR+ZnP/uZeeCBB8zatWvNr371K1OjRo3obyUAAEAUZTiO40S6cP369c27775r2rdvb7777jtTq1Yts2DBAnPJJZeYdKIcruzsbFNQUGDq1KmT6M0BAKS5omLHrNi01+w8UGga1s4yPVrWM5lVMhK9WWl9/y5XEdi3335rGjRoYP+vnJ5jjz3WnHrqqZXbWgAAPCxvzXYz6fW1ZntBoW9a4+wsM2Fge9P/1MYJ3bZ0Vq4ASFTUlZ+fb/+vzKN169aZQ4cOBSzTsWPH6G0hAABpHPyMmrvKBBfF5BcU2umzru5CEJQMRWBVqlSxlZ9DfcSdrr9u67BURREYACAexV69pi4NyPnxpwKwnOws895d51EclugisE2bNpVncQAAEIbq/IQLfkRZDZqv5XJb1ycdo6xcAVDz5s2j/f0AAHiSKjxHcznEsBn8Qw89ZFt/ud5//31z5MgR3/sDBw6YG264oZybAACA96i1VzSXQwwDoHHjxtkgxzVgwACzbds23/vDhw+bJ554opybAACA96ipu1p7hWvsrumar+WQ4AAouPJzOepPAwAAP+rnR03dJTgIct9rPv0BxQajwQMAkCDq50dN3dXay5/e0wQ+yfoBAgAA0Q2C+rTPoSfoZA+Ann76aTsEhvzwww9mzpw5vt6h/esHAQCAyKiYi6buSdwRYosWLWxHh+neXxAdIQIAkHpi1hHiV199VdltAwAASK1K0EuXLrUjwSvCCqZoq0OHDna0eAAAgLQJgKZPn25GjhwZMltJWU6//OUvze9+97tobh8AAEkzdtfyjXvMwtXb7F+9R+oqVxHYxx9/bKZOnRp2ft++fc20adOisV0AACTVqO2TXl8bMHaXOilUPz1qxYU0zwHasWOHOeaYY8LOr1q1qtm1a1c0tgsAgKQJfkbNXVVi4NL8gkI7XfOR5gFQ06ZNzZo1a8LO/+STT0zjxkTCAJDqKO75/3RQzk+owi53muZTHJbmAdAFF1xg7r33XlNYWHJkWg2SOmHCBHPRRReVeyNmzpxpm9hnZWWZnj17mhUrVoRd9qmnnjJnnXWWOe644+yrd+/eJZa/9tprbXN9/1f//v3LvV0A4EXK0eg1dakZ+tQH5pZ5q+1fvfdiTseKTXtL5PwEB0Gar+WQxgHQPffcY/bu3WtOOukkOzL8woUL7Uv1gk4++WQ77+677y7XBsyfP9+MGTPGBk+rVq0ynTp1Mv369TM7d+4MufyyZcvM0KFDzdtvv22WL19umjVrZuse+Q/KKgp4tm/f7nu9+OKL5douAPAiinsC7TxQGNXlkKIdIcrXX39tRo0aZRYvXuwbDFU5LApalJPTsmXLcm2Acny6d+9uZsyYYd8XFxfboGb06NFm7NixZX6+qKjI5gTp88OGDfPlAO3bt8+8+uqrpiLoCBGAF6kYRzk94XI8Mn4co+q9u87zzACdau2lHLCyvDjyDHpyTueOEKV58+Zm0aJF5ttvvzUbNmywQVDbtm1tEFJeR48eNStXrjTjxo3zTatSpYot1lLuTiQOHz5svv/+e1OvXr0SOUUNGza023XeeeeZ+++/39SvXz/kOo4cOWJfrlD9HAFAuitPcY9Xhm3o0bKebe2lCs9OKUGhloNHRoNXYKGcmx49elQo+JHdu3fbHJxGjRoFTNf7/Pz8iNZx1113mSZNmtigyb/46/nnnzdLliyxxXPvvPOOGTBggP2uUKZMmWIjRvelHCgA8BqKe0pSTpeauktwnpf7XvO9kiOWTiocACWDBx980MybN8+88sortgK1a8iQIebiiy82p512mhk0aJB54403zEcffWRzhUJRDpSyy9zXli1b4rgXAJAcGtbOiupy6UL9/My6uovN6fGn95pOP0CpqdxFYNGkUeQzMzNt/0L+9D4nJ6fUz6rDRQVAb731lunYsWOpy7Zq1cp+l4rszj///BLzq1evbl8A4GUU94SnIKdP+xxb/KecMgWBSi9yflJXQnOAqlWrZrp27WqLqlyqBK33ubm5YT+nFmiTJ082eXl5plu3bmV+z9atW82ePXvoowgASkFxT9npo7pPl3Ruav8S/KS2hBeBqQm8+vZ57rnnzGeffWZbmB06dMiMGDHCzlfLLv9K0qrTo76IZs+ebfsOUl0hvQ4ePGjn6+8dd9xhPvjgAzt6vYKpSy65xLRp08a2VAMAhEdxD7wioUVgMnjwYDt8xvjx420g07lzZ5uz41aM3rx5s20Z5po1a5ZtPXb55ZcHrEf9CE2cONEWqalHagVUagqvCtLqJ0g5RhRzAUDZKO6BF5S7HyAvoB8gAADS+/6d8CIwAACAeCMAAgAAnkMABAAAPIcACAAAeA4BEAAA8BwCIAAA4DkJ7wcIABAfRcUOQzkAPyIAAgAPyFuz3Ux6fa3ZXlDom9Y4O8uOZM5gnvAiisAAwAPBz6i5qwKCH8kvKLTTNR/wGgIgAEjzYi/l/ITq8t+dpvlaDvASAiAASGMrNu0tkfPjT2GP5ms5VJ4CyeUb95iFq7fZvwSWyYs6QACQxnYeKIzqcgiPelaphRwgAEhjDWtnRXU5hEY9q9RDAAQAaaxHy3q2tVdGmPmarvlaDhVDPavURAAEAGkss0qGbeouwUGQ+17ztRwqhnpWqYkACADSnPr5mXV1F5OTHVjMpfeaTj9AlUM9q9REJWgA8AAFOX3a59ATdAxQzyo1EQABgEeomCu3df1Eb0ba1rNSx5KhelPK+DG3jXpWyYUiMAAAKoF6VqmJAAgAgEqinlXqoQgMAIAooJ5VaiEAAgAgSqhnlTooAgMAAJ5DAAQAADyHAAgAAHgOARAAAPAcAiAAAOA5BEAAAMBzCIAAAIDnEAABAADPIQACAACeQwAEAAA8hwAIAAB4DgEQAADwHAIgAADgOQRAAADAc6omegOAaCoqdsyKTXvNzgOFpmHtLNOjZT2TWSWDRAYABCAAQtrIW7PdTHp9rdleUOib1jg7y0wY2N70P7VxQrcNAJBcKAJD2gQ/o+auCgh+JL+g0E7XfAAAXARASItiL+X8OCHmudM0X8sBACAEQEh5qvMTnPPjT2GP5ms5AACEOkBIearwHM3lACASNLpIbQRASHlq7RXN5ZB6uBEh3mh0kfoIgJDy1NRdrb1U4TlULR81gs/J/r8m8Ug/3IiQiHNOjSuCrzduo4tZV3eh5WkKoA4QUp76+VFTdwnu8cd9r/n0B5R+aP2HeKPRRfogAEJcLxzLN+4xC1dvs3+j2SpL/fzoqUs5Pf70nqex9MSNCIlAo4v0QREY0qaYQuvp0z6HnqA9ojw3otzW9eO6bUhfNLpIHwRASKvychVzcbPzBm5ESAQaXaQPisAQUxRTIFa4ESGRjS7CjTCo6ZpPo4vkRwCEmKK8HLHCjQiJQKOL9EEAhJiimAKxwo0IiUKji/RAHSDEFMUUiMeNKLiCfU6UK9gDoc49Gl2kNgIgxBSdFCLWuBEhUWh0kdoIgBCXYgq19lLlQP+WYHRSiGieZ7T+A1Ae1AFCzFFeDgBINuQAIS4opkCsMSAqgPIgAELcUEyBWGFAVADlRREYgJTGgKgAKoIACEDKoqdxABVFAAQgZdHTOICKIgACkLLoaRxARREAAUhZ9DQOoKIIgACkLAZEBVBRBEAAUhYDogJI6QBo5syZpkWLFiYrK8v07NnTrFixIuyyTz31lDnrrLPMcccdZ1+9e/cusbzjOGb8+PGmcePGpkaNGnaZ9evXx2FPAMQbPY0DSMmOEOfPn2/GjBljHn/8cRv8TJ8+3fTr18+sW7fONGzYsMTyy5YtM0OHDjVnnnmmDZimTp1q+vbtaz799FPTtGlTu8xDDz1k/vCHP5jnnnvOtGzZ0tx77712nWvXrrWfAZBe6GkcQHllOMouSSAFPd27dzczZsyw74uLi02zZs3M6NGjzdixY8v8fFFRkc0J0ueHDRtmc3+aNGlibrvtNnP77bfbZQoKCkyjRo3MnDlzzJAhQ8pc5/79+012drb9XJ06daKwlwAAINbKc/9OaBHY0aNHzcqVK20RlW+DqlSx75cvXx7ROg4fPmy+//57U69ePft+06ZNJj8/P2CdSgwFWpGuEwAApLeEFoHt3r3b5uAod8af3n/++ecRreOuu+6yOT5uwKPgx11H8DrdecGOHDliX/4RJAAASF9JUQm6oh588EEzb94888orr1Sqbs+UKVNsLpH7UhEcAABIXwkNgBo0aGAyMzPNjh07AqbrfU5OTqmfnTZtmg2A3nzzTdOxY0ffdPdz5VnnuHHjbHmh+9qyZUsl9goAACS7hAZA1apVM127djVLlizxTVMlaL3Pzc0N+zm18po8ebLJy8sz3bp1C5inVl8KdPzXqSKtDz/8MOw6q1evbitL+b8AAED6SngzeDWBHz58uA1kevToYZvBHzp0yIwYMcLOV8suNW9XMZWo2bv6+Pnzn/9s+w5y6/XUqlXLvjIyMsytt95q7r//ftO2bVtfM3jVExo0aFBC9xUAACSHhAdAgwcPNrt27bJBjYKZzp0725wdtxLz5s2bbcsw16xZs2zrscsvvzxgPRMmTDATJ060/7/zzjttEHX99debffv2mV69etl10gcQAABIin6AkhH9AAEAkHpSph8gAACARCAAAgAAnkMABAAAPIcACAAAeA4BEAAA8BwCIAAA4DkEQAAAwHMIgAAAgOcQAAEAAM8hAAIAAJ5DAAQAADyHAAgAAHgOARAAAPAcAiAAAOA5BEAAAMBzCIAAAIDnEAABAADPIQACAACeQwAEAAA8hwAIAAB4DgEQAADwHAIgAADgOQRAAADAcwiAAACA5xAAAQAAzyEAAgAAnkMABAAAPIcACAAAeA4BEAAA8BwCIAAA4DkEQAAAwHMIgAAAgOcQAAEAAM8hAAIAAJ5DAAQAADyHAAgAAHgOARAAAPAcAiAAAOA5BEAAAMBzCIAAAIDnEAABAADPIQACAACeQwAEAAA8p2qiNwAA0llRsWNWbNprdh4oNA1rZ5keLeuZzCoZid4swPMIgAAgRvLWbDeTXl9rthcU+qY1zs4yEwa2N/1PbUy6AwlEERgQhSf85Rv3mIWrt9m/eg8o+Bk1d1VA8CP5BYV2uuYDSBxygIBK4AkfoSgIVs5PqFBY01QApvl92udQHAYkCDlAQAXxhI9wVOcnOOcnOAjSfC0HIDEIgIAYPOGL5lMc5k2q8BzN5QBEHwEQUAE84aM0au0VzeUARB8BEFABPOGjNGrqrtZe4Rq7a7rmazkAiUEABFQAT/gojfr5UVN3CQ6C3PeaT39AQOIQAAEVwBM+yqJ+fmZd3cXkZAcWc+m9ptMPEJBYNIMHKvGEr/5c9ETvXxmaJ3y4FOSoqTs9QQPJJ8NxHHptC7J//36TnZ1tCgoKTJ06dRJzZJAS6AcIAFLz/k0OEFAJPOEDQGoiAAKiUByW27o+6Yi4YYBVoPIIgAAghVDsCkQHrcAAhMQgr8mH4VeA6CEHCEAJ5DIkHwZYBaKLHCCUwJO/t5HLkJwYfgWILnKAEIAnf28jlyF5MfwKEF3kACHiJ//fv7XeLFy9zSzfuIdRztMUuQzJi+FXgOgiB8hjwjWfLevJXx596wvfNA3kqJ6Q6c4/vZDLkPzDr+iBJNTvNOPHYTYYYBWIDAGQh5RWvJVdo1qJnJ/SuLlCjGmUXshlSF4MvwKkWRHYzJkzTYsWLUxWVpbp2bOnWbFiRdhlP/30U3PZZZfZ5TMyMsz06dNLLDNx4kQ7z//Vrl074/XKxWUVb721Nr9c63O3XAFVPPcDscUgr8mNAVaBNMkBmj9/vhkzZox5/PHHbfCjgKZfv35m3bp1pmHDhiWWP3z4sGnVqpW54oorzK9//euw6+3QoYN56623fO+rVq3q6crFkVRsfWX1tnKvV5/V/qhIjZ6Q04MXcxlSrVdlhl8BoiOhkcHvfvc7M3LkSDNixAj7XoHQ3/72NzN79mwzduzYEst3797dviTUfP+AJycnxyQLN/fFSVAxUiQVW/ce+t7Uq1nNfHvoaMhAKRr1RpBauQzBAXtOGtb7StVWjwy/AqRwAHT06FGzcuVKM27cON+0KlWqmN69e5vly5dXat3r1683TZo0scVqubm5ZsqUKebEE08Mu/yRI0fsy3802XRqVhxpgDKocxPz7PtflXjyj1a9EaQOL+QyJPrBBIBH6wDt3r3bFBUVmUaNGgVM1/v8/PLVR/GnorQ5c+aYvLw8M2vWLLNp0yZz1llnmQMHDoT9jAKk7Oxs36tZs2YmnZoVRxqg6Iani76e9COR8ePTMq1O0pOby3BJ56b2bzoFP5G0eqR+G5DeEl85JsoGDBjg+3/Hjh1tQNS8eXPzl7/8xVx33XUhP6NcKNVF8s8BilYQlAzNisvTfFY3Of8n/692HzKPvrXeM/VB4A3leTChfhuQnhIWADVo0MBkZmaaHTt2BEzX+2jW36lbt6456aSTzIYNG8IuU716dftK12bF5a3YGly/4OSc2p6oDwLvSIYHEwAeDYCqVatmunbtapYsWWIGDRpkpxUXF9v3N910U9S+5+DBg2bjxo3mmmuuMV7uvKwyFVu9UB8E3pIMDyYAPFwEpmKn4cOHm27dupkePXrYZvCHDh3ytQobNmyYadq0qa2j41acXrt2re//27ZtM6tXrza1atUybdq0sdNvv/12M3DgQFvs9c0335gJEybYnKahQ4carzcrrkwgQ6sTpJNkeTAB4NEAaPDgwWbXrl1m/PjxtuJz586dbeVlt2L05s2bbcswlwKa008/3fd+2rRp9nXOOeeYZcuW2Wlbt261wc6ePXvM8ccfb3r16mU++OAD+/9ESaZmxQQyQHI9mABIjAzHcejGN4gqQas1WEFBgalTp45nO1wD0l2q9gMEoPL3bwKgSiYggNTGgwngzft32jWDB4DyoFgY8KaED4YKAAAQbwRAAADAcwiAAACA5xAAAQAAzyEAAgAAnkMABAAAPIcACAAAeA4BEAAA8BwCIAAA4Dn0BB2COzyautQGAACpwb1vRzLMKQFQCAcOHLB/mzVrFu1jAwAA4nAf15hgpWEw1BCKi4vNN998Y2rXrm0yMjI8Fz0r8NuyZQsDwZKOSYFzkrRMNpyTyZuWyvlR8NOkSRNTpUrptXzIAQpBiXbCCScYL9OJGI2T0etIR9IyGXFeko7pfE6WlfPjohI0AADwHAIgAADgOQRACFC9enUzYcIE+xcVRzpGD2lJWiYbzsn0SEsqQQMAAM8hBwgAAHgOARAAAPAcAiAAAOA5BEAAAMBzCIA8YObMmaZFixYmKyvL9OzZ06xYsSKiz82bN8/2hD1o0KCA6ddee62d7v/q37+/SXflScc5c+aUSCN9LrjH0vHjx5vGjRubGjVqmN69e5v169cbL4h2WnJORvbb3rdvn7nxxhvtOadWNyeddJJZtGhRhY9NOol2Wk6cOLHEeduuXTuT7maWIx3PPffcEmmk14UXXhif66SDtDZv3jynWrVqzuzZs51PP/3UGTlypFO3bl1nx44dpX5u06ZNTtOmTZ2zzjrLueSSSwLmDR8+3Onfv7+zfft232vv3r1OOitvOj777LNOnTp1AtIoPz8/YJkHH3zQyc7Odl599VXn448/di6++GKnZcuWznfffeeks1ikJedk2el45MgRp1u3bs4FF1zgvPfee/Y3vmzZMmf16tUVPjbpIhZpOWHCBKdDhw4B5+2uXbucdDavnOm4Z8+egPRZs2aNk5mZaX/z8bhOEgCluR49ejg33nij731RUZHTpEkTZ8qUKWE/88MPPzhnnnmm8/TTT9sbS6gAKHhauitvOuoHrB9tOMXFxU5OTo7z8MMP+6bt27fPqV69uvPiiy866SzaaSmck2Wn46xZs5xWrVo5R48ejdqxSRexSEsFQJ06dXK8pEclz59HH33UqV27tnPw4MG4XCcpAktjR48eNStXrrRZhv7jnOn98uXLw37uvvvuMw0bNjTXXXdd2GWWLVtmlzn55JPNqFGjzJ49e0y6qmg6Hjx40DRv3twO9HfJJZeYTz/91Ddv06ZNJj8/P2CdGr9GWcalrTPVxSItXZyTpafja6+9ZnJzc22xTaNGjcypp55qHnjgAVNUVFSpY5PqYpGWLhXVaFDOVq1amauuusps3rzZpKujUTh/nnnmGTNkyBBTs2bNuFwnCYDS2O7du+0PUj9Qf3qvkyqU9957z56ETz31VNj1qr7P888/b5YsWWKmTp1q3nnnHTNgwIASP34vp6MCw9mzZ5uFCxeauXPnmuLiYnPmmWearVu32vnu58qzznQQi7QUzsmy0/HLL780L730kk1/1VW59957zSOPPGLuv//+Ch+bdBCLtBTdpFV/LS8vz8yaNcvezM866yw7Unk62l3J80d1hdasWWN+8Ytf+KbF+jrJaPDw0Q/zmmuuscFPgwYNwqaMInTXaaedZjp27Ghat25tn8DPP/98UtQY+3Sol0s37FNOOcU88cQTZvLkyaRRlNOSc7JsChyVa/vkk0+azMxM07VrV7Nt2zbz8MMP26EIEN201EOhS9dIBUTKxfzLX/5Sau66Vz3zzDP2ftKjR4+4fSc5QGlMQYx+nDt27AiYrvc5OTkllt+4caP56quvzMCBA03VqlXtSzk9yu7V/zU/FGXv6rs2bNhg0lF50zGUY445xpx++um+NHI/V5l1pqJYpGUonJMlqRWNWiop/V0KJPUkreKLaBybVBSLtAylbt269jNcJ0s6dOiQbXUcHBjG+jpJAJTGqlWrZp9MVFTl/+Si9/5P1C410fzvf/9rVq9e7XtdfPHF5qc//an9v+pfhKKiCNUB0kUhHZU3HUNR1rDS1k2jli1b2h+w/zr3799vPvzww4jXmYpikZahcE6W9JOf/MTefJXeri+++MKmo45LNI5NKopFWoarx6aHSK6TJf31r381R44cMVdffXXA9JhfJytdjRpJ3yxRNebnzJnjrF271rn++utts0S3GfE111zjjB07NuLWNQcOHHBuv/12Z/ny5bbp51tvveV06dLFadu2rVNYWOikq/Km46RJk5zFixc7GzdudFauXOkMGTLEycrKsk1D/Zt3ah0LFy50PvnkE5vOXmkGH8205JyMLB03b95sW9jcdNNNzrp165w33njDadiwoXP//fdHfGzSVSzS8rbbbrNN43WdfP/9953evXs7DRo0cHbu3Omkq3kVvN/06tXLGTx4cMh1xvI6SQDkAX/84x+dE0880fbPoGaKH3zwgW/eOeecY4OcSAOgw4cPO3379nWOP/5455hjjnGaN29u+3pI9wtkedPx1ltv9S3bqFEj21/IqlWrAtanJp733nuvna+Lxvnnn28vpl4QzbTknIz8t/2vf/3L6dmzpz3f1Iz7t7/9re32ItJjk86inZa6oTdu3NiuT32q6f2GDRucdPfHcqbj559/7igv5s033wy5vlheJzP0T+XzkQAAAFIHdYAAAIDnEAABAADPIQACAACeQwAEAAA8hwAIAAB4DgEQAADwHAIgAADgOQRAAGJGo2FrDCQvy8jIMK+++mpcv1Nj+ul7NYRNZbRo0cJMnz496fYPiAYCICAFXHvttfZGo5cGA23UqJHp06ePmT17dsB4RJGYOHGi6dy5c9S3MdTNcvDgwXaMpFg799xzfemjl9LniiuuMF9//XXcvjP4pfkAkhcBEJAi+vfvb7Zv326f7v/+97/bQWpvueUWc9FFF5kffvjBJKMaNWqYhg0bxuW7Ro4cadPnm2++MQsXLjRbtmwpMbhiNC1YsMB+n14rVqyw09566y3fNM2vCHXOn6zHE0gnBEBAiqhevbodGblp06amS5cu5je/+Y290SsYUlGTa9++feYXv/iFOf74402dOnXMeeedZz7++GM7T8tNmjTJvndzKtzPlvY51+uvv266d+9usrKyTIMGDczPfvYzO125Hcpt+fWvf+1bb7gisFmzZpnWrVvbUbNPPvlk88ILLwTM12effvppu+5jjz3WtG3b1rz22mtlpo+WVfpotO0zzjjD3HTTTWbVqlUBy7zzzjumR48eNi213NixY33BxvPPP29q1apl1q9f71v+hhtuMO3atTOHDx8u8X316tWz36eX0kzq16/vm6b5rt27d4fdn2XLltl91nHUqOTatvfee8/m7E2ZMsWOiK1AslOnTuall17yfe7bb781V111lf1uzdd6n3322YBt/PLLL22grO/V55cvXx4w/+WXXzYdOnSw36kcvEceeaTUNFbanH322fb4t2/f3vzjH/8o87gASSsqI4oBiKngQWn9derUyRkwYIDvvUadHjhwoPPRRx85X3zxhR2Vun79+s6ePXvswKF636FDB2f79u32pWllfU404nVmZqYzfvx4O9Lz6tWrnQceeMDO0zInnHCCc9999/nWK88++6yTnZ3t27YFCxbYQXRnzpxpBzR85JFH7DqXLl3qW0aXJa3rz3/+s7N+/Xrn5ptvdmrVquXbjlA0yOItt9zie69ltS8//elPfdO2bt3qHHvssc4NN9zgfPbZZ84rr7xiR+eeMGGCb5krrrjC6d69u/P999/b/dW2/vvf/y7z+GjEb233f/7znxLzytqft99+2y7TsWNHOyCkBszUPI0s3q5dOycvL8/ZuHGjTUsNBqkRxuXGG290OnfubI+Xvv8f//iH89prrwVsjz6v/VBaX3755XbwYu2baL+qVKlij5nma/01atSwf11a/tFHH7X/Lyoqck499VQ7GKWO/TvvvOOcfvrp9nuUlkCqIQACUjwA0ijTp5xyiv3/u+++69SpU8cpLCwMWKZ169bOE088Yf+vG76CJn+RfC43N9e56qqrwm6j/83SFRwAnXnmmc7IkSMDllHQoRHeXbqh3nPPPb73Bw8etNP+/ve/lxoAKVipWbOmDXK0/EknnWQDAddvfvMb5+STT7ajS7sUiCkY0c1d9u7da4OVUaNG2dGnNcJ3JMoKgErbHzcAevXVV33L6DhoPzTiuL/rrrvOGTp0qP2/ArwRI0aUuj1PP/20b9qnn35qpyn4k5///OdOnz59Aj53xx13OO3btw95TBcvXuxUrVrV2bZtm2++9oEACKmKIjAgxeke6xY5qcjq4MGDtihGxTnua9OmTWbjxo1h1xHJ59Si6Pzzz6/Utn722WfmJz/5ScA0vdd0fx07dvT9v2bNmrZIbufOnaWuW8VB2kbti4qQ2rRpY/r27WsOHDjg++7c3FxfWrnfrf3eunWrfX/ccceZZ555xldMpyKyaIhkf7p16+b7/4YNG2yxmyq6+x8PFdO5x2PUqFFm3rx5tkL7nXfeaf71r3+V+r0q8hP3e8MdCxVzFRUVlViXlm/WrJlp0qSJb5rSE0hVVRO9AQAqRzcm1RMR3cx1o1O9kmClNUeP5HOqZxIvaunmT0FLWa3dsrOzbdAj+qtARvs0f/58W7cpUv/85z9NZmamrch86NAhU7t2bROP/VFg5H885G9/+5ut8+VP9XVkwIABtt7VokWLbF0cBac33nijmTZtWsjvdQO/8rYaBNIVOUBAClu6dKn573//ay677DL7XpWj8/PzTdWqVW0Q4P9SpWVR5ePgJ/xIPqfchCVLloTdllDrDXbKKaeY999/P2Ca3qtCbbQpiJHvvvvO992qBPx/pVL//90KcE444QT7XrkoU6dOtZW9leOiitSJoPRQoLN58+YSx0O5MC5VgB4+fLiZO3eu7YLgySefjPg7wh2Lk046yZd2wcurZZ0CQ9cHH3xQ4X0EEo0cICBFHDlyxAYpCjJ27Nhh8vLybCshNYMfNmyYXaZ37962WGLQoEHmoYcesjczNQtXToJaIamYRa19VLSl4iLd+BUARPK5CRMm2FwGFQ0NGTLEtp5S7sNdd91lv1vrVe6J5unm7QZO/u644w5z5ZVXmtNPP91+pwINNRdX8/HKUpGR0keUPpMnT7atlVQM5rboUpAwevRoG9isW7fO7tOYMWNMlSpVbFHZNddcY26++Wabu6K0UYu3gQMHmssvv7zS21ceOia33367bVWnHJtevXqZgoICG6Co+ExBz/jx422rMbXi0rnxxhtv2CAlUrfddpvdP6WT+mtScDhjxgzz2GOPhVxex0vnhb774YcfNvv37zd33313FPcaiLNEV0ICEFklaP1c9VJF1OOPP9622po9e7avAq9r//79zujRo50mTZrYisHNmjWzlZc3b97sq2B72WWXOXXr1rXrc1v9lPU5efnll23Lo2rVqtkWVJdeeqlv3vLly21LJrVUci8twZWg5bHHHnNatWplv0MVlZ9//vmA+aEq1Wod/q2TQlWCdtNHr+OOO85O829dJmpBpVZe2v6cnBznrrvu8rWKUoXi0047LaAiuFqp1atXz7Ygq0wl6NL2x60E/e233wYso8ra06dPtxW3lVY65v369bOtr2Ty5Mm28rtabmkbVUn+yy+/DLs9Wr+m6ftcL730kq30rPWfeOKJzsMPP1xqxXa1FuvVq5dNPx07tVCjEjRSVYb+iXfQBQAAkEjUAQIAAJ5DAAQAADyHAAgAAHgOARAAAPAcAiAAAOA5BEAAAMBzCIAAAIDnEAABAADPIQACAACeQwAEAAA8hwAIAAB4DgEQAADwnP8FIQYhsp2za4gAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAARwZJREFUeJzt3Ql8FPX9//FPCELkCpcQQBQBFRE55BKqeIF4Q6sWrQpSpdbboq2gFkRa8UClFcQTrVKFqihqNR4oVgQbhdICKlZEQeRUuQU0mf/j/f39Z7sbdpPdZJPdnX09H4+F7MzszHe+Mzvz2e81OZ7neQYAABAQNVKdAAAAgGQiuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbhJE9u3b7dLLrnECgoKLCcnx6699lo3ff369Xb22WdbkyZN3PRJkyZZpu9Ttnn88cfd/n/xxReWrWnUerV+baei2rRpY6effrqli2SnJ5E8uuiii9z2UbbjjjvOvZB9CG6q4YYR6/X++++Hlr3tttvc8pdddpk9+eSTduGFF7rpv/nNb+y1116z0aNHu+knn3xy0tOpbb/wwgtVst5o+xSNLtR+vtSoUcMaNmxoRxxxhP3qV7+yf/7zn5VKx/3331+pm2qq8zGbfPTRR3bLLbekdSCISB07drQuXbrslS3PP/+8+z4fe+yxe82bNm2am/f666+nRXaGX39Kv6rimpvMYDj8utm4cWM75ZRTbMGCBWl/vaxqNVOdgGxw66232kEHHbTX9Pbt24f+fuutt+yoo46ysWPHRiyj6YMGDbLrr7++Sm/KKh0aPHhwUtcba59i6dq1q1133XXu723bttnHH39szzzzjD388MMuyLvnnnsq/GVt2rSp+7VblWLlo4K6c88912rXrm3pKl3SqOBm3Lhx7tc2JROZ4eijj7ZHH33UtmzZYvn5+aHp7733ntWsWdM++OAD++GHH2yfffaJmJebm2t9+vSxdBF+/QnXsmVLS2fnnXeenXrqqVZcXGyffvqpu94df/zxLt/1AzFdr5dVjeCmGiiS7tGjR5nLbNiwwf0CijZdpRiZKNY+xdKqVSu74IILIqbdcccd9otf/MLuvfdeO/jgg10pUKbRRVyvdJYJaayMHTt2WN26dVOdjMAGN/oBMn/+fHetCw9gfv7zn9tTTz1lCxcudD90fPPmzbPOnTtb/fr10+a4Rrv+VCYNJSUltmfPHsvLy6vS/TvyyCMj0n3MMce44zB16lQXqGQrqqVSbO7cua5IceXKlfb3v/89VMToV2npoe1TpkwJTfdt3rzZtWFp3bq1+7WtUiAFAvpChdP7P/3pTy6C15dsv/32c8WsH374oZuvdeoL9Je//CW0jfIidgUtF198sTVv3tytU0XS+nx5+1SRqoZ9993XVWmpuPWPf/yjy4/wfVMbpMMPP9ylQ+m59NJL7bvvvgsto1//y5Yts3feeSeUjvA6+OrIx1jtWXThUdq1Xf06vOKKK1x6wimtnTp1ciUa+jVWp04ddxG+884748o/bffKK6+0v/71r3booYe6tHfv3t3+8Y9/RCxXOo0qdVMx95gxYyKW041Ky+nC6VuzZo398pe/dPmvfdE+qdohUUrDOeec4/7Wvvr5qPMpnG6MvXr1cvvStm1be+KJJ6Lui4755Zdfbs2aNbP9998/NP/VV191NwDdNHRzPe2009w5Em7dunU2fPhw9zntU4sWLVwJarRzuLz0yOeff+72TeexjqFu9PpuxENVnToHtH79r+qeRFT1eabgxg9mfLt27bJFixbZz372M5cn4fM2btzoShj8z8m//vUvd0Nu0KCB1atXz0488cSIavt4jutDDz1k7dq1c9cMHY93333Xkk3faaVvxYoVrrRE58/555+/13fNz+/CwsKk7V+8dG6L0hjusccesxNOOMGtV2nTD8/w73Eyr5dpwUOVeeyxx3Qn9t58801v48aNEa9Nmza5ZdatW+c9+eSTXtOmTb2uXbu6v/VaunSp+1+fHzBgQGi67Nixw+vcubPXpEkT78Ybb/QeeOABb+jQoV5OTo53zTXXRKThoosucus45ZRTvEmTJnkTJ070Bg0a5N13331uvtZZu3Zt75hjjgltY/78+TH3aefOnd5hhx3m7bPPPt5vfvMb789//rP7rLah9Ze1T9u3b4+53gMPPNA77bTTYs6/+OKL3TaUL75LLrnEq1mzpjdixAiXBzfccINXt25dr2fPnt6ePXvcMs8//7y3//77ex06dAil4/XXX6/WfPTPg5UrV4bWN3bsWDetf//+bh1XXnmll5ubG5F2OfbYY72WLVt6rVu3dmm6//77vRNOOMF99pVXXvHKo+U6derkjsWtt97q3XHHHS6v9913X2/JkiWh5aKl8YorrnD5u3DhQvf+66+/9ho3buzSXFJSEjrWyl+lT+ufOnWqd+aZZ7p13XvvvaF1ab2apu3EsmLFCu/qq692y+l4+PmobYjSfeihh3rNmzd38ydPnuwdeeSR7niFnxf+vnTs2NHln/L39ttvd/OeeOIJt/zJJ5/spis/2rRp4zVs2DBi3/v27evl5+d7N998s/fII494t912m3f88cd777zzTmiZeNOj9GuZ+vXrezfddJN3zz33eF26dPFq1KjhzZo1q8w8eu2119xyOob6nD6vdB1++OFu++WprvNMn9U6fP/4xz/cZ3XOXHDBBd5Pf/rT0LwXXnjBzZs5c6Z7r7zS97ZFixbe+PHj3bE66KCD3Pfp/fffj+u46hhpno6brknXXnutO6Zt27aNSFcsysuTTjppr+u0Xrrm+YYNG+bS1a5dO/e3rhk6p0Tb17Vxv/3288aNG+dNmTLF+9e//pWU/YvGP1/uuuuuiOnanpl5Q4YMiZiuY67rmL6XWrf2V8vpvPUl63qZDghuqpB/skZ76cSO5+auZXWTCacviL4sn376acT0UaNGuQvXqlWr3Pu33nrLfV43jNL8m5NoXfqixkM3dq1z+vTpoWm6SPbp08erV6+et3Xr1nL3KZryltUXUtudPXu2e//uu++693/9618jlissLNxrum4E0S5w1ZWPpQOHDRs2eLVq1XIXl+Li4tByushouWnTpoWmKd2a5l9AZffu3V5BQYF31llneeXxz7cPP/wwNO3LL7/08vLyIm440YIbXczat2/v8m/Xrl3u+DRo0MB9Pjzo1EXbD9Z95557rrsJ+zeGeIIbeeaZZ9xyb7/9dtRzRPN04/QpL/Vduu666/bal6OPPtr78ccfQ9O3bdvmbngKhsMp+FBa/enfffdd1JtGRdOjG62W0zkbnhbd4BRY+edAtDzSjwPl7+bNm0PTdLPRcuUFN9V5np1zzjkuYPYDpgkTJrj9EwVKzZo1Cy17/fXXu22tWbPGvR88eLBLp4Jbn4IiBYP9+vUr97hqm1q/8kpp9j300ENu+XiDm1jXau2LT99vTdM1ojRNVyC6bNmyiOmV3b9Y/PNFgZSCMJ3HOscUxJiZ+y6FCw/SfAMHDnQBYLjKXi/TBdVS1UDVSm+88UbES0XjFaVGtip6bNSokW3atCn06t+/v2tU5lc5PPfcc65YMVqD3vAqrkS88sorrmu3GrH51FDw6quvdl2/VZxZFVSU6zc09vNAjRcHDBgQkQeqctGyb7/9dtrm45tvvunq4lW8q6of34gRI1yxdenqCu1PeJ16rVq1XLG7qjrioUabyhffAQcc4KpY1AtP+xmLqiZUVK6G3f369XPpUtsnfV50PVfenHHGGe7v8DwcOHCga2CqqolkUlG6X+wuqh5UdVu0vFB+hrcj0vdOxeo6d8PTqmV69+4dOmdUraE8VnVYeBVnRdOj74yOV3g1jI6pegKqmktVQdGsXbvWFi9ebMOGDYtoqKtzPp62bNV5nmnfvv/+e9e2RlQN1bdvX/f3T37yE1eV/d///jc0Tx0sVEWm8089ptQIX9VXPlUDqq2dqvy2bt1a5nFV1bDW/+tf/9qlObwKKTzfyqNzoPR1Wq/wa50vVts/9QwLPzbJ2L/y6Lqk807XZZ2L+r7efffdrnNDOJ3XPn03de4rvTq+ep+s62W6oEFxNdAForwGxYnQReI///mPO6Gj0Rfdr3PVBUT1/Mny5Zdfuoa94RdLOeyww0Lzq4ICJ/EbICoP9IVU/XFZeZCO+ejnkW6C4XRh1gWwdB6q3r10EKULjNIeDx2v0g455BDbuXOna/+gi2IsujHpQq4AXQGL2tb49FkFC2rroFdFj0Mi/MCqdF5EC0JK91D0b65qdxCNbviitgRqR6CeM2pHpPYxGs9m6NChe+VVPOnR8dSNs7Tw74zau5TmnwfRjp/OnfICx+o8z8Lb3Whf1bj4D3/4g5umfVPeap7aaigAGjJkSOgc0nlYOo1+/qgtx+rVq10blljHNVY+6UdXeEBRHvUQ0o26POoBFqstTOm0JWP/yqMgWe251M5JbeX+/Oc/R/3RovxXIKRu4kpTuNI93SpzvUwXBDcZSF8I/Xr73e9+F3W+blxBs3Tp0oju88oDBTZqvBdNrC9gJuZjrF9x4Y2rq8ru3btDDXoV5OmiqBId8RsR6te+SheiUY+YVOVF+C/V8PSqgXq0gE43LZ9KO1Qipca8KuH6/e9/bxMmTHA3j27dulUoPemuMvuiTgX64aGSCDW0/fbbb0MlN/ohpIBH89TgV6VJ4aVYiSp9XKubgt/SP+6SmbZE16Ggzg/KFITrOI4aNco1DPd/VOu7q0bMHTp0cENqKMhUkKtSRZXGxtMgOFOulz6CmwykC4RKMsr7laHldGHWhaasUodEqlYOPPBAF73rRA//gn/yySeh+cmmfVUPEX0h/V+72jcVu6tkobyLQaz9S1U++nm0fPnyiF+Wuuirh1k8vx4T4ZdYhFNvFQUp5QWB+qWnYu6JEyfaDTfc4C6a+mUo+qxuaPqVmKw0V7S6NB46jqKgOJ70anmV3uilPNQ4KCrunz59ekLb1fHWsS6tvO+MPz3a8Yu2vlSeZ7qhqoRLpQMKYlRSEz7GigKdmTNnhn6c+MGNziGdh7HyR9cYfe/j2U/lU3ipnMbW0X5GG2CwuiRj/xJ10003ua75N998c6i31ksvveR+qLz44osRpY3Rqu8re71MF7S5yUAaO0JFi7rhlqZqgh9//NH9fdZZZ7lfXRoUraxfY+oSW7praCz6VaZusrpQ+bS9++67z9XZRxuNtDJUj68B5hRY6Evrf/GUB7qpjh8/fq/PKD3h+xNr/1KVj7o46FeTgoTwz/sDoalrcjJpH8OrMFQMPnv2bDvppJPKrNvXyNAKalSKoRv8b3/7W5s8eXKoXZU+q7xRuxu/ZK10kXyi/DE94j0fE6FqNd10Ndiibnyx0qvSKRXxl76wK5DTDSJR+s4UFRVFjBqrYQNUlaeut7Haz6hdhgIqDS8Q3iZC7UBitdNJ5XmmgEV5qC7HKqkJ//Gj4EY3eJ13epSM/yNF55DOQ00P72avx85o2AGt068ujEWlEwoiHnjgARe4+dRerCrOo0QkY/8SpXHRLr30UnddU5stPx0Sfh7oHNCxKq2y18t0QclNNVDjYf9XWjh94ROpE/bpJqMIXEWQajSnxqK6WC5ZssSeffZZ9yVS/bGKJRUY6OKmXzUal0UlLhr/QfM0JoPo8yoFUXGl2paozjdaGwG/fvfBBx9021XduS7O2qZ+sWnMmcoMyqXxUvxfxfqFoAu4GrEpmNLNVV9Yn4IovVdVgb7AuoCojl37qc9oTBq/QZ32T+M5qA2Afjnql7t+4aUqH3Uh1uM0FCxpXWeeeaa78Gs8kp49e1ZoILGyqM2Dbuxq9K0idX9gr2jBmk83d1U1qchb4wv5y+sXoMZ/UR7pInj77be7X3/aTzWE1I1agaiCKeWF/k6Ebua6EKvNiy6+Sq8/Nkdl6Sai80DHUgOfaURmHYtVq1a5xrUqBVTwplItFeHrYq79UXWVSg51Q9JnEqXSrqefftqNc6JjoNI/BSwqVVBgGKuKQ3R+KwjRTVDtnZSf+iGhNhp+O7RYqvs880tjdAPUIzTCqVTHf+SMqvvCSwf0vVTAps9rfBflt64xCiTjGWdH33utQ9cDnStqz6O81Y07ketr+PUnnH60VWb09sruX0Vcc8017nqs7+eMGTPc9VGBrvJe+aRzR6U7+l6p4Xq4yl4v00aqu2tla1fw0l0+E+kK7nclHT16tOuqq26GGsdEYzxo/JXw8SvUpVBdWjVugZbTGAwaq8Ufu0Q++eQT1yVRXTm1vfK6ha9fv94bPny426bWecQRR0Tt4ptoV3A/XzRugrocq0uiuuf+85//jPk5dffs3r27S7u6Viotv/vd71xXS5+6SCodml+6a2h15GO0btZ+l1ytT2MGaRyUyy67zHVDDqe0Kh9K07rjGefEP3/Udf/ggw923ZS7deu2V1fr0mnUGEbq3lk679WlXGPfKK3h54O2oTFStC/qPnziiSe6Y+OLtyu4PPzww657qrYf3i081vmkPAo/pv6+fPDBB1HXr/WpC6y6f6tLvMYs0fgffnd5dWvX/ujYqOurluvdu7f3t7/9LWI98aZH1A347LPPdl3Rtc1evXp5L7/8csQysfLoueeec+On6NhpDBSNjRPv8a+u88wfOkDnhvbBHxslnMZI0TyNLVTaokWL3DHRcBJ16tRxYwqVHm+rvOOqLuf++DE9evRwXfSjHYtEu4KH77/yQ+dENLGu1cnav3jHufFddNFF7jv02WefufcvvviiOwY6/zQEgY6DhgMofW1KxvUyHeTon1QHWACqhn4ha0RalUgAQLagzQ0AAAgUghsAABAoBDcAACBQ6C0FBBhN6gBkI0puAABAoBDcAACAQMm6aikNvvb111+7weaqcqh3AACQ3Gr2bdu2uUFSyxr8MiuDGwU2yX6WBwAAqB56hEysJ7NnbXDjPx5AmZPsZ3oAAICqsXXrVlc4Ec9jfrIuuPGrohTYENwAAJBZ4mlSQoNiAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAEChZN0JxVSku8axo5be2Ydsua1Y/z3od1Nhya/BgTgAAqhvBTRIULl1r4176yNZu2RWa1iI/z8ae0dFO7tQiGZsAAABxoloqCYHNZdMXRQQ2sm7LLjdd8wEAQPUhuKlkVZRKbLwo8/xpmq/lAABA9SC4qQS1sSldYhNOIY3mazkAAFA9CG4qQY2Hk7kcAACoPIKbSlCvqGQuBwAAKo/gphLU3Vu9omJ1+NZ0zddyAACgehDcVILGsVF3bykd4PjvNZ/xbgAAqD4EN5WkcWymXnCkFeRHVj3pvabHM86NelMtWPGNzV68xv1P7yoAACqOQfySQAHMgI4FFRqhmAEAAQAIYMnNlClTrE2bNpaXl2e9e/e2oqKimMs+/vjjlpOTE/HS51JNgUyfdk1sUNdW7v94AxsGAAQAIGDBzcyZM23kyJE2duxYW7RokXXp0sUGDhxoGzZsiPmZBg0a2Nq1a0OvL7/80jINAwACABDQ4Oaee+6xESNG2PDhw61jx472wAMPWJ06dWzatGkxP6PSmoKCgtCrefPmlmkYABAAgAAGN3v27LGFCxda//79/5egGjXc+wULFsT83Pbt2+3AAw+01q1b26BBg2zZsmWWaRgAEACAAAY3mzZtsuLi4r1KXvR+3bp1UT9z6KGHulKd2bNn2/Tp062kpMT69u1rX331VdTld+/ebVu3bo14pQMGAAQAIKDVUonq06ePDR061Lp27WrHHnuszZo1y/bbbz978MEHoy4/YcIEy8/PD71U2pMOGAAQAIAABjdNmza13NxcW79+fcR0vVdbmnjss88+1q1bN/vss8+izh89erRt2bIl9Fq9erWlAwYABAAggMFNrVq1rHv37jZnzpzQNFUz6b1KaOKhaq0lS5ZYixbRB8urXbu2610V/grSAIAAACDNBvFTN/Bhw4ZZjx49rFevXjZp0iTbsWOH6z0lqoJq1aqVq16SW2+91Y466ihr3769bd682e666y7XFfySSy6xbBsAEAAApGFwM2TIENu4caONGTPGNSJWW5rCwsJQI+NVq1a5HlS+7777znUd17KNGjVyJT/z58933cgzlT8AIAAAqLwcz/M8yyLqLaWGxWp/k05VVAAAIDn374zrLQUAAFAWghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFBqpjoBSI7iEs+KVn5rG7btsmb186zXQY0tt0YO2QsAyDoENwFQuHStjXvpI1u7ZVdoWov8PBt7Rkc7uVOLlKYNAIDqRrVUAAKby6YvighsZN2WXW665gMAkE0IbjK8KkolNl6Uef40zddyAABkC4KbDKY2NqVLbMIppNF8LQcAQLYguMlgajyczOUAAAgCgpsMpl5RyVwOAIAgILjJYOrurV5RsTp8a7rmazkAALIFwU0G0zg26u4tpQMc/73mM94NACCbENxkOI1jM/WCI60gP7LqSe81nXFuAADZhkH8AkABzICOBYxQDAAAwU1wqOqpT7smqU4GAAApR7UUAAAIlLQIbqZMmWJt2rSxvLw86927txUVFcX1uRkzZlhOTo4NHjy4ytMIAAAyQ8qDm5kzZ9rIkSNt7NixtmjRIuvSpYsNHDjQNmzYUObnvvjiC7v++uvtmGOOqba0AgCA9Jfy4Oaee+6xESNG2PDhw61jx472wAMPWJ06dWzatGkxP1NcXGznn3++jRs3ztq2bVut6QUAAOktpcHNnj17bOHChda/f///JahGDfd+wYIFMT936623WrNmzeziiy8udxu7d++2rVu3RrwAAEBwpTS42bRpkyuFad68ecR0vV+3bl3Uz8ybN88effRRe/jhh+PaxoQJEyw/Pz/0at26dVLSDgAA0lPKq6USsW3bNrvwwgtdYNO0adO4PjN69GjbsmVL6LV69eoqTycAAMjSQfwUoOTm5tr69esjput9QUHBXsuvWLHCNSQ+44wzQtNKSkrc/zVr1rTly5dbu3btIj5Tu3Zt9wIAANkhpSU3tWrVsu7du9ucOXMighW979Onz17Ld+jQwZYsWWKLFy8Ovc4880w7/vjj3d9UOQEAgJQ/fkHdwIcNG2Y9evSwXr162aRJk2zHjh2u95QMHTrUWrVq5drOaBycTp06RXy+YcOG7v/S0zNZcYnHoxQAAMjU4GbIkCG2ceNGGzNmjGtE3LVrVyssLAw1Ml61apXrQZUtCpeutXEvfWRrt+wKTWuRn+ee7s1DMAEAKF+O53meZRF1BVevKTUubtCggaVbYHPZ9EVW+oDk/P//eco3ACBbbU3g/p09RSIZUBWlEptokaY/TfO1HAAAiI3gJk0Urfw2oiqqNIU0mq/lAABAbAQ3aWLDtl1JXQ4AgGxFcJMmmtXPS+pyAABkK4KbNNHroMauV5TfeLg0Tdd8LQcAAGIjuEkTuTVyXHdvKR3g+O81X8sBAIDYCG7SiMaxUXfvgvzIqie9pxs4AAAZMogf9g5wBnQsYIRiAAAqiOAmDanqqU+7JqlOBgAAGYlqKQAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABEpaBDdTpkyxNm3aWF5envXu3duKiopiLjtr1izr0aOHNWzY0OrWrWtdu3a1J598slrTCwAA0lfKg5uZM2fayJEjbezYsbZo0SLr0qWLDRw40DZs2BB1+caNG9tNN91kCxYssP/85z82fPhw93rttdeqPe0AACD95Hie56UyASqp6dmzp02ePNm9LykpsdatW9tVV11lo0aNimsdRx55pJ122mk2fvz4cpfdunWr5efn25YtW6xBgwaVTj8AAKh6idy/U1pys2fPHlu4cKH179//fwmqUcO9V8lMeRSXzZkzx5YvX279+vWLuszu3btdhoS/AABAcKU0uNm0aZMVFxdb8+bNI6br/bp162J+TlFbvXr1rFatWq7E5r777rMBAwZEXXbChAku0vNfKhUCAADBlfI2NxVRv359W7x4sX3wwQf2xz/+0bXZmTt3btRlR48e7YIh/7V69epqTy8AAKg+NS2FmjZtarm5ubZ+/fqI6XpfUFAQ83Oqumrfvr37W72lPv74Y1dCc9xxx+21bO3atd0LAABkh5SW3KhaqXv37q7djE8NivW+T58+ca9Hn1HbGgAAgJSW3IiqlIYNG+bGrunVq5dNmjTJduzY4bp3y9ChQ61Vq1auZEb0v5Zt166dC2heeeUVN87N1KlTU7wnAAAgHaQ8uBkyZIht3LjRxowZ4xoRq5qpsLAw1Mh41apVrhrKp8Dn8ssvt6+++sr23Xdf69Chg02fPt2tBwAAIOXj3FQ3xrkBACDzZMw4NwAAAMlGcAMAAAKF4AYAAARK0oKbXbt22cSJE5O1OgAAgKoPbtSr6eWXX7bXX3/dPTZBfvjhB/vTn/5kbdq0sdtvv71iqQAAAKjuruDz5s2z008/3bVWzsnJcWPNPPbYYzZ48GCrWbOm3XLLLW68GgAAgIwoubn55pvt1FNPtf/85z9u4D091+mnP/2p3XbbbfbRRx/Zr3/9azfuDAAAQEaMc9OkSRN79913rWPHjvb999+7p3LPmjXLBg0aZJmEcW4AAMg8VTLOzXfffecedCkqoalTp4516tSp8qkFAABI1eMXVP2kRySICnyWL1/uHocQrnPnzslMHwAAQNVUS+n5TmpIHG1xf7r+93tRpSuqpQAAyDyJ3L/jLrlZuXJlMtIGAABQpeIObg488MCqTQkAAEASxN2g+M4773S9pHzvvfee7d69O/R+27ZtdvnllycjTQAAAFXf5iY3N9fWrl1rzZo1c+9V37V48WJr27ate79+/Xpr2bIlbW4AAEBmdAUvHQPFGRMBAABUK54KDgAAAoXgBgAAZO8gfo888oh77IL8+OOP9vjjj4dGLVaDYgAAgIxpUNymTRs3SF+mj4fDIH4AAGSeKhnE7+2337aDDjooGekDAABIfZubdu3aueDml7/8pU2fPt3WrFlTdakCAACooLhLbt566y2bO3euez399NO2Z88eN8bNCSecYMcff7x7NW/evKLpAAAAqN42N+F27dpl8+fPDwU7RUVF9sMPP1iHDh1s2bJlls5ocwMAQOZJ5P5doeDGp9IbPYbh1VdftQcffNC2b9/OCMUAACAzGhT7wcz777/vGherxOaf//yntW7d2vr162eTJ0+2Y489trJpBwAAqJS4gxu1rVEwo0bFCmIuvfRSe+qpp6xFixaVSwEAAEAqgpt3333XBTIKco477jgX4DRp0iSZaQEAAKi+ruCbN2+2hx56yOrUqWN33HGHewL4EUccYVdeeaU9++yztnHjxsqnBgAAoJIq3KBYj1uYN29eqP3Nv//9bzv44INt6dKlls7oLQUAQOZJ5P5d4Qdn1q1b1xo3buxejRo1spo1a9rHH39c0dUBAABUb5ubkpIS+/DDD10pjUpr1AV8x44d1qpVKzeA35QpU9z/AAAAGRHcNGzY0AUzBQUFLoi59957XcNiPZYBAAAg44Kbu+66ywU1hxxySNWmCAAAoDqCG41rAwAAkO4q3KAYAAAgHRHcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACJS2CmylTplibNm0sLy/PevfubUVFRTGXffjhh+2YY46xRo0auVf//v3LXB4AAGSXlAc3M2fOtJEjR9rYsWNt0aJF1qVLFxs4cKBt2LAh6vJz58618847z95++21bsGCBtW7d2k466SRbs2ZNtacdAIBsUFzi2YIV39jsxWvc/3qfznI8z0tpClVS07NnT5s8ebJ7X1JS4gKWq666ykaNGlXu54uLi10Jjj4/dOjQcpffunWr5efn25YtW6xBgwZJ2QcAAIKqcOlaG/fSR7Z2y67QtBb5eTb2jI52cqcW1ZaORO7fKS252bNnjy1cuNBVLYUSVKOGe69SmXjs3LnTfvjhB2vcuHHU+bt373YZEv4CAADxBTaXTV8UEdjIui273HTNT0cpDW42bdrkSl6aN28eMV3v161bF9c6brjhBmvZsmVEgBRuwoQJLtLzXyoVAgAAZVPVk0psolXv+NM0Px2rqFLe5qYybr/9dpsxY4Y9//zzrjFyNKNHj3ZFWP5r9erV1Z5OAAAyTdHKb/cqsQmnkEbztVy6qZnKjTdt2tRyc3Nt/fr1EdP1vqCgoMzPTpw40QU3b775pnXu3DnmcrVr13YvAAAQvw3bdiV1uawpualVq5Z1797d5syZE5qmBsV636dPn5ifu/POO238+PFWWFhoPXr0qKbUAgCQPZrVz0vqcllTciPqBj5s2DAXpPTq1csmTZpkO3bssOHDh7v56gHVqlUr13ZG7rjjDhszZow99dRTbmwcv21OvXr13AsAAFRer4Mau15RajwcrVVNjpkV5Oe55dJNytvcDBkyxFUxKWDp2rWrLV682JXI+I2MV61aZWvX/q819tSpU10vq7PPPttatGgRemkdAAAgOXJr5Lju3n4gE85/r/laLt2kfJyb6sY4NwAABHucm5RXSwEAgPR1cqcWNqBjgesVpcbDamOjqqh0LLHxEdwAAIAyKZDp066JZYqUt7kBAABIJoIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoNVOdACAViks8K1r5rW3Ytsua1c+zXgc1ttwaORwMAAgAghtkncKla23cSx/Z2i27QtNa5OfZ2DM62smdWqQ0bQCAyqNaClkX2Fw2fVFEYCPrtuxy0zUfAJDZCG6QVVVRKrHxoszzp2m+lgMAZC6CG2QNtbEpXWITTiGN5ms5AEDmIrhB1lDj4WQuBwBITwQ3yBrqFZXM5QAA6YngBllD3b3VKypWh29N13wtBwDIXAQ3yBoax0bdvaV0gOO/13zGuwGAzEZwg6yicWymXnCkFeRHVj3pvaYzzg0AZD4G8UPWUQAzoGMBIxQDQEAR3CArqeqpT7smqU4GACCI1VJTpkyxNm3aWF5envXu3duKiopiLrts2TI766yz3PI5OTk2adKkak0rAABIfykNbmbOnGkjR460sWPH2qJFi6xLly42cOBA27BhQ9Tld+7caW3btrXbb7/dCgoKqj29AAAg/aU0uLnnnntsxIgRNnz4cOvYsaM98MADVqdOHZs2bVrU5Xv27Gl33XWXnXvuuVa7du1qTy8AAEh/KQtu9uzZYwsXLrT+/fv/LzE1arj3CxYsSNp2du/ebVu3bo14AQCA4EpZcLNp0yYrLi625s2bR0zX+3Xr1iVtOxMmTLD8/PzQq3Xr1klbNwAASD8pb1Bc1UaPHm1btmwJvVavXp3qJAEAgCB2BW/atKnl5uba+vXrI6brfTIbC6ttDu1zAADIHikrualVq5Z1797d5syZE5pWUlLi3vfp0ydVyQIAABkupYP4qRv4sGHDrEePHtarVy83bs2OHTtc7ykZOnSotWrVyrWb8Rshf/TRR6G/16xZY4sXL7Z69epZ+/btU7krAAAgTaQ0uBkyZIht3LjRxowZ4xoRd+3a1QoLC0ONjFetWuV6UPm+/vpr69atW+j9xIkT3evYY4+1uXPnpmQfAABAesnxPM9LdSKqk7qCq9eUGhc3aNAg1ckBAABJvn8HvrcUAADILgQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABEpKB/EDAMSnuMSzopXf2oZtu6xZ/TzrdVBjy62RQ/ZVAHkZfAQ3AJDmN8bCpWtt3Esf2dotu0LTWuTn2dgzOtrJnVpU6baDhrzMDoxQDABpfGPUNi+bvshKDyXvh1NTLziSAIe8zApbGaEYAKomyAgPbGTdll1uuuaXLuFZsOIbm714jftf7xOlzyiYivZJf5rmV2Td2Ya8zC5USwFAJW+MKkXR/AEdC1wVVbJKeFT9VTqYKr1tzddyfdo14ThmYV7Sfig6ghsASOKNccv3e6JWI/klPIlUI6ldTzKXy2apzsuqCEJoPxQbwQ0AJOmGt27rLruz8JO4S3jK88WmHXFtVzdLJCePqiIvqyIIidUWqyJBdBAxzg0AJOmG9+323XGX8MTzS//polXlLqebpEoBUDblkfIqVkiZU0V5mWhbrXjQfqh8BDcAkKQbY+O6tZJWEqQAaN3W3eUud27PAxjvJg4qKVNJiZQ+jv57zU9mt/6qCkISqSbNVgQ3AJCkG2NB/r5JKwmKtyqsTdM6cS0Hc9U0qq4pyI/Mf72vimqcqgpCUt1+KBPQ5gYAErgxlm47URDWdkK/wFWCoyqHaL/Fc/7/8vFUfaSyjUiQ6TipzVN1DMRYVUEI50b5CG4AIEk3Rr+ER20pNMWrRNWHXxWWjEAJkZT/1dHdu6qCEM6N8lEtBQAVuDEO6trK/V86UElW1Ucq2oggMxoxc26Uj8cvAEAaj2vCWCaZze8tZTFK8irT1ifbzo2tCTx+geAGANIco9BmtqoMQrLp3NhKcJOczAEAIBmyKQhJh/s3DYoBAAhII2b8HxoUAwCAQKHkBgCAFFQ7VWdVVXGWVYsR3AAAUM0Nhquzp1NhlvWqEqqlAACoxgdjVsXDNJOZviAguAEAoJoejFmdT/QursZtpRuCGwCoAN0QFqz4xmYvXuP+D+INAsl/MGZ1PtG7KIufHk6bGwBIUDa2YUByHoxZnU/03pDFTw+n5AYAEpCtbRiQnAdjVucTvZtl8ZPlCW4AIE7Z3IYByXkwZlU9TDOaXtW4rXRDcAMAccrmNgxIztO5q/OJ3rlZ/GR5ghsAiFM2t2FAdGpjpSd7F+RHVu3ofawnflfkMxV1cjVuK53QoBgA4pTNbRgQmwKEAR0LEhoBuCKfqaiTq3Fb6YLgBgASbMOgxsPRWtXk/P9fxEFsw4DkPxizOh+mmZtlD+6kWgoA4pTNbRiATEJwAwAJyNY2DEAmoVoKABKUjW0YgExCcAMAFZBtbRiATEK1FAAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEChtxQcPcU4Fd1aK7LdVKU1Gfy0r9vyvX27Y481rlfbChpE7kNl9y+ez5depvuBjWzhl98lNU/Dt9G0bm03yt2m7btTfszS6fwJnQ9bd9m323db47q1rCB/34w5p6vjfA7f1vsrvrEFn29yQyaqp1rPNo3jPm+r87in0zmWrftDcAMrXLrWxr30UcTTjjXEvEZarcoBySqy3VSlNRmipb30Pkhl9i+e/Im2jK5TJWHPE6hsnpa1r/GuP54bZzLSVdCgtp3X6wBr07RulQWT8aYlGfm/58cSe3LBF/bltzvtwMZ17MI+baxWzRpRA4X5KzbZ15u/dwFV47r7WNP6edasfm378YcSe/7fa2znnmIXQAzr+791+Pur9D+z8Cu3TKz0S+l9VAA37szDrWm92nEH4Cs3breH3v3cdu4pCc2f/PZnlpNj5pVz3mo9k9/6zB57b6Vt/v6HmMc9WQF+Jl+jkrE/6RII5Xhe+KkRfFu3brX8/HzbsmWLNWjQwLKdTtzLpi/a6zk5/qlYVSOuVmS7qUprMsRKezzi3b948kfiSUdl8jSefS1v/VVx44/3GCQ7mKxMHiWa/xNe+cgefndlRKCq+8qIYw6y0ad2DG171Kwltnnn/2705VEQ8atjDrJuBzQqM2itqHgC8LjS+f//9/MtkX1NRoCfydeoZOxPVQd2idy/CW6ymCLso+94K+YFxH8I4LwbTkhq5F2R7aYqrclQXtrjUd7+xZM/zRvUdn+pCiQZ26zsvsZaf1Xc+BNNV7KCyVi/bONNS4sE8l+BzYP/WBlz/qX9/i84+fX0RZZuKhKAl3de/f60w+zyp/6VlDTFc55l8jUqGftTHYFdIsENDYqzmIoOy7rA6iTVfC2X6u2mKq3JUF7a41He/sWTP+u27o47sIlnmxVJR3nr1wVVv/ziubFpOS1fFekqb/1lpbO8zyeSlnjzX1VRKrEpi+aPeWGppSM/l255cZnd8mJ8x7+sdSnfbp5duX2N5zwIl8nXqMruT2W+D1WF4CaLqU40mctV5XZTldZkSGaaYq2rKvc7kXVXJB3hn4n3xp/ojSLRdCUjmIz1+UTTEs/yamNT3n1D8zds32PpqiIBeFm+3fFDUtIU73mWydeoyu5POgZ2BDdZTI29krlcVW43VWlNhmSmKda6qnK/E1l3RdIR/pmquPFXNF1lrb8yN7JE0xLP8mo8jKoTz/HO5GtUZfcnHQM7gpssplbsqtOPVfur6Zqv5VK93VSlNRn8tFdGefsXT/6od4h6G8Vb21+RPC0vHeWtvypu/ImmK571V+ZGlkha4s1/9YrC/1G+NqlbK6nZEc/xzuRrVGX3Jx0DO4KbLKZGYH53zdInsP9e85Pd+K0i201VWpPBT3siQUWi+xdP/txy5uF2y5nRl7Ek5WlZ6Yhn/fEGgoneKOJNV7zrr8yNLDwt5aUh3vxXd+/yFtP8ZvWSe9NPpooE4NHWIeMHdapQMFuZ8yyTr1GV3Z90DOzSIriZMmWKtWnTxvLy8qx3795WVFRU5vLPPPOMdejQwS1/xBFH2CuvvFJtaQ0atV5XK3a1eg+n91XZbbEi201VWpPBT3usG7emP3DBke5V0f2LJ39iLVP6eluZPI21jXjWn0ggmOiNIp50JTOYLOvz8ZwPieS/xqBRd++yaP6tgztZdfDPZ/XQikdFAvCyzqtTO7dIKJgtK02JnGeZfI2qzP6kY2CX8q7gM2fOtKFDh9oDDzzgAptJkya54GX58uXWrFmzvZafP3++9evXzyZMmGCnn366PfXUU3bHHXfYokWLrFOn8r+4jHMTHSMUVw9GKI5vhOKqGuAu/Bio/v+LTTvt6aJVEY1Yq2Ocm6oaoTjV49wcf2hT+1W/9hHpf+U/X7ueS+ENfMsbU6a8cW7q1a5plxx9kF1+fPsyB96Ltp6G++5jRx/c1D784ruI457MgSzTZSC7ZIl3fxjnJowCmp49e9rkyZPd+5KSEmvdurVdddVVNmrUqL0yb8iQIbZjxw57+eWXQ9OOOuoo69q1qwuQykNwA2SGqhihuKztVOXjLqpTdY1Q/PV3O23xV5vdb/M2TaJvpzKP+4h4fEe92q7LzaYdiT++I9bxqY5HkGSj4ir8PmTMIH579uyxOnXq2LPPPmuDBw8OTR82bJht3rzZZs+evddnDjjgABs5cqRde+21oWljx461F154wf7973+Xu02CGwAAMk8i9++UPltq06ZNVlxcbM2bN4+YrveffPJJ1M+sW7cu6vKaHs3u3bvdKzxzAABAcKVFg+KqpLY5ivT8l6q8AABAcKU0uGnatKnl5uba+vXrI6brfUFBQdTPaHoiy48ePdoVYfmv1atXJ3EPAABAuklpcFOrVi3r3r27zZkzJzRNDYr1vk+fPlE/o+nhy8sbb7wRc/natWu7urnwFwAACK6UtrkRNQ5WA+IePXpYr169XFdw9YYaPny4m69u4q1atXLVS3LNNdfYsccea3fffbeddtppNmPGDPvwww/toYceSvGeAACAdJDy4EZduzdu3GhjxoxxjYLVpbuwsDDUaHjVqlVWo8b/Cpj69u3rxra5+eab7cYbb7SDDz7Y9ZSKZ4wbAAAQfCkfxK+60RUcAIBg378D31sKAABkF4IbAAAQKClvc1Pd/Fo4BvMDACBz+PfteFrTZF1ws23bNvc/g/kBAJCZ93G1vSlL1jUo1jg6X3/9tdWvX99y9KjbcqJEBUEa+I/xccgPzg2+J/HgukFecF5UzfdE4YoCm5YtW0b0oo4m60pulCH7779/Qp9h8D/yg3OD70miuG6QF5wXyf+elFdi46NBMQAACBSCGwAAECgEN2XQc6nGjh3r/gf5wbnB9yQeXDfIC86L1H9Psq5BMQAACDZKbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAIl64ObKVOmWJs2bSwvL8969+5tRUVFZWbYM888Yx06dHDLH3HEEfbKK69YtubHsmXL7KyzznLLa7TnSZMmWbbmxcMPP2zHHHOMNWrUyL369+9f7rkU1LyYNWuW9ejRwxo2bGh169a1rl272pNPPmnZfN3wzZgxw31XBg8ebNmYF48//rjb//CXPpet58XmzZvtiiuusBYtWrheQ4ccckig7ilTEsiP4447bq9zQ6/TTjutYhv3stiMGTO8WrVqedOmTfOWLVvmjRgxwmvYsKG3fv36qMu/9957Xm5urnfnnXd6H330kXfzzTd7++yzj7dkyRIvG/OjqKjIu/76672nn37aKygo8O69914vKBLNi1/84hfelClTvH/961/exx9/7F100UVefn6+99VXX3nZlhdvv/22N2vWLPcd+eyzz7xJkya5701hYaEXBInmh2/lypVeq1atvGOOOcYbNGiQl4158dhjj3kNGjTw1q5dG3qtW7fOy8a82L17t9ejRw/v1FNP9ebNm+fOj7lz53qLFy/2sjE/vvnmm4jzYunSpe66oXOmIrI6uOnVq5d3xRVXhN4XFxd7LVu29CZMmBB1+Z///OfeaaedFjGtd+/e3qWXXuplY36EO/DAAwMV3FQmL+THH3/06tev7/3lL3/xsj0vpFu3bu7HQBBUJD90PvTt29d75JFHvGHDhgUmuEk0L3SjUtAfRInmxdSpU722bdt6e/bs8YKoVyWvG7qf6Bq6ffv2Cm0/a6ul9uzZYwsXLnTVB+HPndL7BQsWRP2MpocvLwMHDoy5fNDzI6iSkRc7d+60H374wRo3bmzZnBf6ATVnzhxbvny59evXzzJdRfPj1ltvtWbNmtnFF19sQVHRvNi+fbsdeOCB7qGJgwYNctXb2ZgXL774ovXp08dVSzVv3tw6depkt912mxUXF1um25OEa+ijjz5q5557rqvaroisDW42bdrkTiKdVOH0ft26dVE/o+mJLB/0/AiqZOTFDTfc4J5cWzoYzpa82LJli9WrV89q1arl6szvu+8+GzBggGW6iuTHvHnz3IVa7bKCpCJ5ceihh9q0adNs9uzZNn36dCspKbG+ffvaV199ZdmWF59//rk9++yz7nNqZ/P73//e7r77bvvDH/5g2X4NLSoqsqVLl9oll1xS4TRk3VPBgap2++23u4ajc+fODVRjyUTUr1/fFi9e7H6lq+Rm5MiR1rZtW9doMJts27bNLrzwQhfYNG3a1LKdSir08imwOeyww+zBBx+08ePHWzZRYKfSvIceeshyc3Ote/futmbNGrvrrrvcYwmy2aOPPuo67PTq1avC68ja4EYXGp1Q69evj5iu9wUFBVE/o+mJLB/0/AiqyuTFxIkTXXDz5ptvWufOnS1b80JF0O3bt3d/q7fUxx9/bBMmTMj44CbR/FixYoV98cUXdsYZZ0Tc1KRmzZquuq5du3aWrdeMffbZx7p162afffaZZbKK5IV6SGn/9TmfAj2VbKhaR6WemappJc6NHTt2uB+HqsqtjKytltKJo0hZvyrDLzp6H/7LIpymhy8vb7zxRszlg54fQVXRvLjzzjvdr8/CwkLXFToIknVe6DO7d++2bMsPDRuxZMkSV4rlv84880w7/vjj3d9qd5LN54aqLpQ/utFnsorkxU9+8hMX1PnBrnz66acuLzI5sKnsuaHhVnStuOCCC6xSvCymrmq1a9f2Hn/8cddt9Ve/+pXrquZ3Tbzwwgu9UaNGRXQFr1mzpjdx4kTX3Xfs2LGB6wqeSH6oK6O6PuvVokUL1y1cf//3v//1si0vbr/9dtft8dlnn43ozrht2zYv2/Litttu815//XVvxYoVbnl9X/S9efjhh70gSDQ/SgtSb6lE82LcuHHea6+95s6NhQsXeueee66Xl5fnugpnW16sWrXK9Qa68sorveXLl3svv/yy16xZM+8Pf/iDl83fk6OPPtobMmRIpbef1cGN3Hfffd4BBxzgbkzquvb++++H5h177LHuQhTub3/7m3fIIYe45Q8//HDv73//u5et+aFxGRQfl35puWzLC3WFj5YXCoCzLS9uuukmr3379u6m1ahRI69Pnz7uQpfN142gBjeJ5sW1114bWrZ58+ZujJdFixZ52XpezJ8/3w0noiBA3cL/+Mc/umEDsjU/PvnkE3fd1I+jysrRP5Ur+wEAAEgfWdvmBgAABBPBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAOgQh5//HFr2LBhVudeTk6OvfDCC9W6TT2rStvV4xsqo02bNjZp0qS02z8gGQhugBS76KKL3E1ELz1Ir3nz5jZgwACbNm1axHNn4nHLLbe4B1UmW7Qb4ZAhQ9yzcKqaHrbp549eyp9zzjnHvvzyy2rbZulXpj8AFAg6ghsgDZx88sm2du1a96v81VdfdQ9WvOaaa+z000+3H3/80dLRvvvua82aNauWbY0YMcLlz9dff22zZ8+21atXV/7BemWYNWuW255eRUVFbpqe9O5P0/yK0IDw6Xo8gSAhuAHSQO3ata2goMBatWplRx55pN14443uJq5AR9U/vs2bN9sll1xi++23nzVo0MBOOOEE+/e//+3mablx48a5934Jg//Zsj7ne+mll6xnz56Wl5dnTZs2tZ/+9KduukopVErym9/8JrTeWNVSU6dOtXbt2rmnAh966KH25JNPRszXZx955BG37jp16tjBBx9sL774Yrn5o2WVP3pi8lFHHWVXXnmlLVq0KGKZd955x3r16uXyUsuNGjUqFEg88cQTVq9ePfvvf/8bWv7yyy93T+3euXPnXttr3Lix255eyjNp0qRJaJrm+zZt2hRzf+bOnev2WcdRT0lW2ubNm+dK5CZMmGAHHXSQCxK7dOlizz77bOhz3333nZ1//vlu25qv9T722GMRafz8889dEKzt6vMLFiyImP/cc8/Z4Ycf7rapkre77767zDxW3vTr188d/44dO9obb7xR7nEB0laln04FoFLKepBily5dvFNOOSX0vn///t4ZZ5zhffDBB96nn37qXXfddV6TJk28b775xtu5c6d7rwe6+k8l17TyPid6InFubq43ZswY9wTfxYsXu6d7i5bZf//9vVtvvTW0Xnnssce8/Pz8UNpmzZrl7bPPPt6UKVPcU47vvvtut8633nortIwuOVrXU0895Z4ef/XVV3v16tULpSMaPWDvmmuuCb3XstqX448/PjTtq6++8urUqeNdfvnl3scff+w9//zzXtOmTSMeXHrOOed4PXv29H744Qe3v0rrhx9+WO7x8R8Qqyfel1be/rz99ttumc6dO7uHAX722Wdunp783KFDB6+wsNA9IVt5qYcnzp07133uiiuu8Lp27eqOl7b/xhtveC+++GJEevR57Yfy+uyzz3YPb9W+ifarRo0a7phpvta/7777uv99Wv7ee+91fxcXF3udOnXyTjzxRHfs33nnHa9bt25uO8pLINMQ3ABpHNwMGTLEO+yww9zf7777rtegQQNv165dEcu0a9fOe/DBB93fupkrIAoXz+f05O7zzz8/ZhrDb4S+0sFN3759vREjRkQso4BCT3726WZ58803h95v377dTXv11VfLDG4UiNStW9cFMFr+kEMOcTd534033ugdeuihXklJSWiagiwFGrpxy7fffusCkcsuu8w9kVpPYI5HecFNWfvjBzcvvPBCaBkdB+2Hnggd7uKLL/bOO+8897eCt+HDh5eZnkceeSQ0bdmyZW6aAjv5xS9+4Q0YMCDic7/97W+9jh07Rj2mr732mlezZk1vzZo1ofnaB4IbZCqqpYA0pvunXw2kaqTt27e76hFVsfivlStX2ooVK2KuI57PqefNiSeeWKm0fvzxx/aTn/wkYprea3q4zp07h/6uW7euqybbsGFDmetWFY3SqH1RtU779u3tpJNOsm3btoW23adPn1Be+dvWfn/11VfufaNGjezRRx8NVZ2p2ioZ4tmfHj16hP7+7LPPXFWYGo2HHw9VnfnH47LLLrMZM2a4xuG/+93vbP78+WVuV9Vw4m831rFQ1VNxcfFe69LyrVu3tpYtW4amKT+BTFUz1QkAEJtuOmqXIbpR6yamdhylldUlO57PqV1HdVGPsHAKSMrrFZafn+8CGtH/ClK0TzNnznRtieL1j3/8w3Jzc12j4B07dlj9+vWtOvZHQU/48ZC///3vro1VOLWPkVNOOcW1c3rllVdc2xcFnldccYVNnDgx6nb9oC7R3nVAUFFyA6Spt956y5YsWWJnnXWWe6+GxuvWrbOaNWu6G3z4Sw2ARQ15S/8yj+dzKgWYM2dOzLREW29phx12mL333nsR0/RejVOTTQGKfP/996Ftq0Ht/9UU/W/bCl72339/916lH3fccYdrOK2SEjVKTgXlh4KYVatW7XU8VHriU2PiYcOG2fTp0103/IceeijubcQ6Foccckgo70ovrx5oCvp877//foX3EUg1Sm6ANLB7924XgCiAWL9+vRUWFrreNOoKPnToULdM//79XVXB4MGD7c4773Q3KnWNVgmAeuuo6kO9YlTdpCoc3dR1c4/nc2PHjnWlA6quOffcc10vI5Ua3HDDDW7bWq9KPTRPN2Y/KAr329/+1n7+859bt27d3DYVRKjLtLpQV5aqcZQ/ovwZP36869Wjqim/55MCgKuuusoFLcuXL3f7NHLkSKtRo4arvrrwwgvt6quvdqUiyhv1DDvjjDPs7LPPtuqkY3L99de73mcqaTn66KNty5YtLvhQlZYCmjFjxrjeVertpHPj5ZdfdgFIvK677jq3f8onjUekwG/y5Ml2//33R11ex0vnhbZ911132datW+2mm25K4l4D1SzVjX6AbKcGxfoq6qVGnfvtt5/r3TRt2rRQY1jf1q1bvauuuspr2bKla2TbunVr1xB41apVocaqZ511ltewYUO3Pr93THmfk+eee8710KlVq5brafSzn/0sNG/BggWux4969PiXjdINiuX+++/32rZt67ahRr9PPPFExPxoDVS1jvBePNEaFPv5o1ejRo3ctPBeWKKeRuoNpfQXFBR4N9xwQ6j3kBrnHnHEERGNqtWbq3Hjxq6nVWUaFJe1P36D4u+++y5iGTV8njRpkmsErbzSMR84cKDrpSTjx493DcnVw0lpVIPzzz//PGZ6tH5N0/Z8zz77rGtArPUfcMAB3l133VVmI3H1qjr66KNd/unYqScXDYqRqXL0T3UHVAAAAFWFNjcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAFiT/DyZGDZjJrQOwAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -2626,7 +2551,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAQJJJREFUeJzt3Ql8VOW9//FfEpYAQtiEBKSsKkUEBASjoFZBwOWK1RZoFaTWBdTeihtIZREtiFxLrQgV/4otVrEWba00WlGsC4qF4sJWRRTQhFUCgmFJzv/1fXond2aY7DNnQs7n/XqNMuc8c2bmzMmc7zzbSfE8zzMAAIAASU32CwAAAPAbAQgAAAQOAQgAAAQOAQgAAAQOAQgAAAQOAQgAAAQOAQgAAAQOAQgAAAQOAQgAAAQOAQgJ9c0339hPf/pTy8zMtJSUFPv5z3/ulm/bts2uuOIKa9asmVs+e/bsY/49VdbVV19t7dq1s2PVlClT3H4AOBZwLCEAocIWLFjgTngl3d59993isr/85S9d+TFjxtjvf/97u+qqq9zyW265xV5++WWbMGGCWz548OC4fxJ67hdeeCEh2431nmJRsLn44outulHoKu0zDN1UDtXL2LFjLTU11Xbv3h2xXPe1vG7dulZQUBCx7rPPPnOf51133WXV/fhLT0+36kp/z+GvtUGDBtanTx/73e9+V+ltLlmyxAVH+K9WEp4TNcQ999xj7du3P2p5p06div/92muv2RlnnGGTJ0+OKKPll156qd12220Je30KKqplGjp0aFy3W9J7qqz58+dbUVGR+en666+3AQMGFN/ftGmTTZo0ya677jrr379/8fKOHTv6+rpQtn79+tncuXPt7bfftksuuaR4+TvvvOMC0OHDh+2f//ynKxeisqHHVhcKao899thRy9PS0qw669Gjh916663u37m5ue49jBo1yg4ePGjXXnttpQLQnDlzCEFJQABCpQ0ZMsR69+5dapnt27dbly5dYi5v3LjxMbn3S3pPlVW7dm3zW3Z2truF6ISpAKRlV155pSXTgQMHrH79+kl9DdVZKMS89dZbEQFIIadbt2727bffunXhYUf3FY7OPPPMKj33kSNHXFivU6eOVVWtWrUqdazt37/f1bwk4tgpz/tr3bp1xOtWbVaHDh3sV7/6VaUCEJKHJjAkxLJly1wVsWoWXnrppeIq41Dzmed57ldPaHnInj17XJ+aNm3auF+Iqk26//77j6oh0f1f//rXduqpp7oq8+OPP941o+lELtqmviiffPLJcjfnKNhcc8011rJlS7fN7t27u8eX9Z4+//zzuPYB0va03VmzZtmjjz7qamG0L04//XR7//33j3r8+vXrXU1X06ZN3etWKP3LX/5i8fDHP/7RevXqZfXq1bPmzZu7L/4vv/yyXI9duHBh8WP12oYPH25btmyJKHPuueda165dbeXKlXb22We7k1eomebPf/6zXXTRRdaqVSv3/rUfpk2bZoWFhTG3sXbtWvve977ntqGT1MyZM496TWoaUnPDSSed5PZVVlaWff/737eNGzdGHFvqk3bKKae4MjoeVGP29ddfl7uGULVoOkkr5Kumc926dTH7ynz66afu81e5jIwMGz16tDuJl+Y73/mO+/sI1eqE6P5ZZ53lQk6sdXo/oR8dZR3r0ceh9kfoONR+DoUqHZN6vNb99re/tXgLfV+88cYbrumvRYsWdsIJJ5R57MTj/ZWXvns6d+4ccQzJm2++aT/4wQ/c56Xt6jNT078Caog+e30PSnjTWryORZSOGiBUWn5+vu3cuTNimf541bH5u9/9rusfoz94fWGFqoxPO+204n4zAwcOtJEjRxY/Vl/855xzjjvB6o9cXxyq1lc/IVU1h3eU1pebvhxVC6UOyfrlpi8c9T9SANBzaLna59WsU1Zzjr6U9IWqE9JNN93kmvZ08tcXlELZf//3f5f4nvQFmAh/+MMfbN++fW5faL/qhK6TtfpzhGqN1qxZ4056OuGPHz/enXSfffZZ1+z3pz/9yS677LJKP7/2r07IOslNnz7ddVxX6NTJ9F//+lepNXj33Xef3X333fbDH/7QfQ47duyw3/zmN+5EFf3YXbt2uc9RAUkBS1/yoec/7rjjbNy4ce7/Chaqpdq7d6898MADEc+nE4ICsPaPnvO5556zO++80wVkbVsUnNQfa+nSpe659Jlq//7973+3jz/+uPj40P4Ovfef/exnLvA+/PDD7nXrvZdWY/fqq6+651ONgEKOjiu9b31Gq1atOqqzu16rjjXtX61Xc4pO8gr9pVHtzuLFi12zi06uhw4dcuFY/dL0d3THHXe4Hxk6brRvdFK/4YYbyn2sh3viiSdccNTfkZ5LYfajjz6yCy64wB37ep/6+1OTcOizK6/o7w9R7UujRo0ilin86Ln0+euHTWnHTjzeX0XovW/dutWaNGkSsVzPqc9Cn4m+E1esWOGOBZXVutCx9tVXX7ljUN8t0apyLKIcPKCCnnjiCU+HTqxb3bp1I8q2bdvWu+iii47ahsreeOONEcumTZvmNWjQwPv3v/8dsXz8+PFeWlqat3nzZnf/tddec4//2c9+dtR2i4qKiv+tbY0aNapc72n27NlumwsXLixedujQIS87O9s77rjjvL1795b5nmIpT1m9RpUL2bRpk3stzZo183bv3l28/M9//rNb/uKLLxYvO//8871TTz3VKygoiNgHZ555pnfiiSd65fX++++7beuzDb33Fi1aeF27dvW+/fbb4nJ//etfXblJkyYVL5s8ebJbFvL555+7z+u+++6LeI6PPvrIq1WrVsTyc845xz123rx5R72mAwcOHLXs+uuv9+rXrx/xfkPb+N3vfle87ODBg15mZqZ3+eWXFy97/PHHXbkHH3ywxOPmzTffdGWeeuqpiPU5OTkxl0fr0aOH22+7du0qXvbBBx94qamp3siRI4/aZz/5yU8iHn/ZZZe5z70sc+bMcY/X65Xly5e7+1988YW3du1a9+81a9ZEfGah117eYz10HDZq1Mjbvn17xPMPHTrUS09Pd88XoufV516e04qO+ZK+QwYNGnTUd02/fv28I0eORGyjpGMnHu+vJPo7veCCC7wdO3a4m47pq666Kub3Wazjd/r06V5KSkrEftPjYu2zqh6LKBtNYKg0Vd3ql0v47W9/+1ult6dfRWo60C8p/TIM3dRZV7/e//GPf7hyqtnQL9tYnZArOxxbHRE1rH3EiBHFy/TrSr+6NOxdVfB+GzZsWMSvylDnZNUAhUb9qFZEtQiqyQjtL/0qHjRokH3yySflbq6KpqZENSPol3f4qBw1Sam6X02AJVHNhKru9brCP0ft3xNPPNFef/31iPL61a1fuNHUdBYSen/aB/pVrWa/cKohCu+XoVoE1f6F9lXouFEz3s0331zicaNjUE1Rqp0Mf+1qytNzRL/2cKqlXL16tatpCK9FUL8cbU/HWLRQrUyI3p8+P9VylbcfkKg2QLWAqjXV56PnDzWDRXeAruixfvnll0fUcupvUSM4Vcuo5wtRDamOu/LScRX9/aHbjBkzjiqrvjWxOkfHOnaq+v7K8sorr7jyuqmGUTU3eg3RtZLhx69qrXQcqXlSv/9Ug1OWqhyLKB+awFBpOsGU1Qm6InTC/vDDD0v8MtIJWdTWrn4hFa2qLs0XX3zhTs7qKBpOX+qh9X4LP7lIKAyF2v9Vxa8vUzU16VbSPtOJsaJC7/fkk08+ap1OsKETb0mfo16X9mcs0dX2en2xOp2qee8Xv/iFC3nRgUDNr+HUJBkdfrW/dDyF6LjR+1Hn29Jeu7atZqjSjsGK7jMdRwoN0R14S/uMo5uBwqnvi5oRw0OOmtlE+0Gd2bVMwUH/V/+T0HNV9FiPHump5kw1M8X6fPXeYwW9WBRowkcilibWaNOSjp2qvr+y9O3b1+69914XBNV0qn/r84p+HZs3b3ZNduqPF91nJ/r4jfexiPIhAKHaUK2Bfu2o/0Is6rgaJCUNB/5PC+J/9pdoKoGSfnmHT0ngF70unYRVGxjrPejXa0m/lEPUV0P9wRQCNN2C+ueoxkD9ZNS3J7pTfFn7qiKvXSecp556Kub6ePf3quzr1sldIUd95FRWISd8jh/VNDz++OPFfYOqMhVErM/HbyW9hni8topuQ7WIoeCmvzv9IFDfMvWPU381UTjSd5lqaXW8qoyCr2pkVUNYnmkv/D4Wg4gAhGpDJzlVUZf1q1Dl9GtaXy6l1QJVpDmsbdu2rrZAXzrhvxxDTS1aX92oo22oRqW8v6TLK/R+N2zYYOedd17EOi0rbX/o89FJWb+sKxtaNeJOTUFqTlPH6RB1Aq0sva733nvPzZNTUudRlVFHZtWmVPTEGL7Pouk40omzpOHblaEmLYVM1TCoNiBUAxQKQBMnTnS1MaqtCR8SX9VjXSde7RvVUESL9d795vffspqFFdY175g6LeszVifxf//7327kWfhADzXxlfd7qirHIsqHPkCoNtRnZPny5S7cxKoR0GiLUJu9TrBTp04t9Zezvoj0uPK48MILLS8vzxYtWlS8TM+nURuqsdAXXHWjX4ca7aLhx+p/Ek1NFZWlpk1tf968eW6kUYhOuBrSrS/9kmgklmo29PlE12TovoJNeWtGwh+v2oxHHnmkku/oP8eN+lBoFE200PPoGNSvdw23j6bjobTjSUPqNUmeTnrh5dRMon4jOsbiKRRqNGJMQ8D13OHN02rqC00FEB6Aqnqs67NRzYdmWVczT4iOi1h/u35Lxt+yanl0XGtS05KOX/1btUTRQqE4+tiqyrGI8qEGCJWmk2F0Z9TQr89Q7URF3H777e7XrKqTVU2szn7qM6FfUxrWrHk79Ctac71oGP1DDz3kfoVq+LN+7WkYvNZp6Kvo8foF9eCDD7o+Q6qRUPt9LBoCqyCh59W8IhqurOdU04KG3zds2NAqS3111E8gmqYEKC1IlLcjuk5u6oyp/h7a7xquriCp4bYffPBBpbarGhKdWNW5UycMdSgNDYPXvtFUACXRL1e9X01foM9MzS/af6q9ef75592+LmsGcB1D6g+jGXbVeVW/ktXZtKJNWuH0S1yXLFAzhYYkq8Oxji8dI+rsrfl69F71K17D0tWhWUO9tS90nKlTqt6/5lwqiTrCali2mqc0VUNoGLw6s8b7cgcKOep3os9aQTi8b5MCkea+0Tr1FVKfoXge6wq3OTk5bh9q34UChuarCe93VRo9RnNFxaLpGypbW5bIv+WS6DPXPtZ3zY033uiavPR3oONczV5qylUn/Fjz9+h7SnScK1gqPGlYf1WPRZRDOUaKAeUeBh8+lLqiw+Bl37593oQJE7xOnTp5derU8Zo3b+6GdM+aNcsNZQ3RkNgHHnjA69y5syt3/PHHe0OGDPFWrlxZXGb9+vXe2Wef7dWrV889X1lD4rdt2+aNHj3aPae2qeHl4e+lrPcUi8qWtJ+uueaaUofB6/3F2m8aQh1u48aNboi1hn3Xrl3ba926tXfxxRd7zz33nFfZYfAhixYt8k477TQ3vUHTpk29H//4x97WrVsjykQPgw/505/+5IYvazoC3fRZ6TPfsGFDxFDmU045JeZrevvtt70zzjjDfX6tWrXy7rjjDu/ll192z/X666+XuY3o/Roamjxx4kSvffv2bl9pn11xxRVuH4Z79NFHvV69ernnbtiwoTsW9PxfffVVmfvy1Vdf9c466yz3WA2xvuSSS9wQ8Vj7TEOpY/1t6RgoDw3tVvm77rrrqHWaJkLr9HdRmWO9tONQ3njjDbeP9PgOHTq44eglHQsVGQYf/v5D+0PHZ7TSjp14vL9YSvvbX7BgQcTfkD7zAQMGuKH3eh3XXnutmxIh+u9M32U333yz+w7TEPno/VeVYxGlS9F/yhOUAAAAagr6AAEAgMAhAAEAgMAhAAEAgMAhAAEAgMAhAAEAgMAhAAEAgMBhIsQYNKneV1995SbMquzVxQEAgL80s8++ffvc5LfRF8SNRgCKQeFHV08GAADHni1bttgJJ5xQahkCUAyhqdK1AzWFOQAAqP727t3rKjDKc8kTAlAMoWYvhR8CEAAAx5bydF+hEzQAAAgcAhAAAAgcAhAAAAgcAhAAAAgcAhAAAAgcAhAAAAgcAhAAAAgcAhAAAAgcAhAAAAgcZoL2UWGRZys27bbt+wqsRcN069O+qaWlcrFVAAD8RgDySc7HuTb1xbWWm19QvCwrI90mX9LFBnfN8utlAAAAmsD8Cz9jFq6KCD+Sl1/glms9AADwD32AfGj2Us2PF2NdaJnWqxwAAPAHASjB1OcnuuYnnGKP1qscAADwBwEowdThOZ7lAABA1RGAEkyjveJZDgAAVB0BKME01F2jvUoa7K7lWq9yAADAHwSgBNM8PxrqLtEhKHRf65kPCAAA/xCAfKB5fuZe2dMyMyKbuXRfy5kHCAAAfzERok8UcgZ2yWQmaAAAqgECkI/UzJXdsZmfTwkAAGKgCQwAAAQOAQgAAAQOAQgAAAQOAQgAAAQOAQgAAAQOAQgAAAQOAQgAAAQOAQgAAAQOAQgAAAQOAQgAAAQOl8LwUWGRx7XAAACoBghAPsn5ONemvrjWcvMLipdlZaTb5Eu6cDV4AAB8RhOYT+FnzMJVEeFH8vIL3HKtBwAA/iEA+dDspZofL8a60DKtVzkAAOAPAlCCrdi0+6ian3CKPVqvcgAAwB8EoATbvq8gruUAAEDVEYASrHmDunEtBwAAqo4AlGgpcS4HAACqjACUYDu/ORjXcgAAoOoIQAnWomF6XMsBAICqIwAlWJ/2Td2EhyW1cGm51qscAAAIUACaM2eOtWvXztLT061v3762YsWKEssuXrzYevfubY0bN7YGDRpYjx497Pe//31EmauvvtpSUlIiboMHD7ZkSEtNcbM9S3QICt3XepUDAAABCUCLFi2ycePG2eTJk23VqlXWvXt3GzRokG3fvj1m+aZNm9rEiRNt+fLl9uGHH9ro0aPd7eWXX44op8CTm5tbfHv66actWQZ3zbK5V/a0zIzIZi7d13KtBwAA/knxPC+pUxCrxuf000+3hx9+2N0vKiqyNm3a2M0332zjx48v1zZ69uxpF110kU2bNq24BmjPnj32wgsvVOo17d271zIyMiw/P98aNWpk8cLFUAEASJyKnL+TWgN06NAhW7lypQ0YMOD/XlBqqruvGp6yKLstXbrUNmzYYGeffXbEumXLllmLFi3s5JNPtjFjxtiuXbtK3M7BgwfdTgu/JYKaubI7NrNLe7R2/6fZCwCAAF4NfufOnVZYWGgtW7aMWK7769evL/FxSnatW7d2wSUtLc0eeeQRGzhwYETz1/e//31r3769bdy40e666y4bMmSIC1UqH2369Ok2derUOL87AABQXSU1AFVWw4YNbfXq1fbNN9+4GiD1IerQoYOde+65bv3w4cOLy5566qnWrVs369ixo6sVOv/884/a3oQJE9w2QlQDpGY4AABQMyU1ADVv3tzVyGzbti1iue5nZmaW+Dg1k3Xq1Mn9W6PA1q1b52pxQgEomsKRnuvTTz+NGYDq1q3rbgAAIBiS2geoTp061qtXL1eLE6JO0LqfnZ1d7u3oMWoOK8nWrVtdH6CsLEZbAQCAatAEpqanUaNGubl9+vTpY7Nnz7b9+/e7oe0ycuRI199HNTyi/6usmrQUepYsWeLmAZo7d65br2Yx9ee5/PLLXS2S+gDdcccdrsZIw+sBAACSHoCGDRtmO3bssEmTJlleXp5r0srJySnuGL1582bX5BWicDR27FhXq1OvXj3r3LmzLVy40G1H1KSm+YGefPJJNxS+VatWdsEFF7gh8jRzAQCAajEPUHWUqHmAAABA9Th/J70GKEiYCBEAgOqBAOSTnI9zbeqLay03v6B4mS6CquuAcSkMAAACdi2woISfMQtXRYQfycsvcMu1HgAA+IcA5EOzl2p+YnW0Ci3TepUDAAD+IAAl2IpNu4+q+Qmn2KP1KgcAAPxBAEqw7fsK4loOAABUHQEowVo0TI9rOQAAUHUEoATr076pG+2VUsJ6Ldd6lQMAAP4gACVYWmqKG+ou0SEodF/rVQ4AAPiDAOQDzfMz98qelpkR2cyl+1rOPEAAAPiLiRB9opAzsEumG+2lDs/q86NmL2p+AADwHwHIRwo72R2b+fmUAAAgBprAAABA4BCAAABA4BCAAABA4BCAAABA4NAJGgAA+EIX/q4uo6EJQAAAIOFyPs61qS+ujbhAuK6EoMmAkzEfHk1gAAAg4eFnzMJVEeFH8vIL3HKt9xsBCAAAJLTZSzU/Xox1oWVar3J+IgABAICEUZ+f6JqfcIo9Wq9yfiIAAQCAhFGH53iWixcCEAAASBiN9opnuXghAAEAgITRUHeN9ippsLuWa73K+YkABAAAEkbz/Giou0SHoNB9rfd7PiACEAAASCjN8zP3yp6WmRHZzKX7Wp6MeYCYCBEAACScQs7ALpnMBA0AAIIlLTXFsjs2s+qAJjAAABA4BCAAABA49AEK6FVwAQAIMgJQQK+CCwBAkNEEFtCr4AIAEGQEoIBeBRcAgCAjAAX0KrgAAAQZASigV8EFACDICEABvQouAABBRgAK6FVwAQAIMgJQQK+CCwBAkBGAAnoVXAAAgoyJEAN6FVwAAIKMABTQq+ACABBkNIEBAIDAIQABAIDAIQABAIDAIQABAIDAIQABAIDAIQABAIDAIQABAIDAIQABAIDAYSJEHxUWecwEDQBANUAA8knOx7k29cW1lptfULxMV4HXhVC5FhgAAP6iCcyn8DNm4aqI8CN5+QVuudYDAAD/EIB8aPZSzY8XY11omdarHAAA8AcBKMF09ffomp9wij1ar3IAAMAfBKAE276vIK7lAABA1RGAEqxFw/S4lgMAAFXHKLAE69O+qRvtpQ7PsXr5pJhZZka6KwcAQE1WWI2mgyEAJZg+WA1112gvfcThISj0kWt9sg4AAACCOB0MTWA+0Ac798qerqYnnO5rOfMAAQBqspxqOB0MNUA+UcgZ2CWz2lT9AQBQHaaD0VlQ63WO9POcSADykT7Y7I7N/HxKAACOmelgsn08RxKAAtr5CwCAIE8HQwAKaOcvAACCPB1MtegEPWfOHGvXrp2lp6db3759bcWKFSWWXbx4sfXu3dsaN25sDRo0sB49etjvf//7iDKe59mkSZMsKyvL6tWrZwMGDLBPPvnEkqU6dv4CAMDP6WBKau/Q8qwkTAeT9AC0aNEiGzdunE2ePNlWrVpl3bt3t0GDBtn27dtjlm/atKlNnDjRli9fbh9++KGNHj3a3V5++eXiMjNnzrSHHnrI5s2bZ++9954LStpmQYH/sy1zLTAAQJCl/e90MBIdgpI5HUyKp+qSJFKNz+mnn24PP/ywu19UVGRt2rSxm2++2caPH1+ubfTs2dMuuugimzZtmqv9adWqld1666122223ufX5+fnWsmVLW7BggQ0fPrzM7e3du9cyMjLc4xo1alSl97d84y4bMf/dMss9fe0ZdJAGANRYOT50BanI+TupfYAOHTpkK1eutAkTJhQvS01NdU1WquEpi8LOa6+9Zhs2bLD777/fLdu0aZPl5eW5bYRoZyhoaZuxAtDBgwfdLXwH1vTOXwAABHk6mKQGoJ07d1phYaGrnQmn++vXry/xcUp2rVu3dqElLS3NHnnkERs4cKBbp/AT2kb0NkProk2fPt2mTp1qQer8BQBAkKeDSXofoMpo2LChrV692t5//3277777XB+iZcuWVXp7qoFSqArdtmzZUuM7fwEAEGRJrQFq3ry5q8HZtm1bxHLdz8zMLPFxaibr1KmT+7dGga1bt87V4px77rnFj9M2NAosfJsqG0vdunXdLRG4FhgAANVPUmuA6tSpY7169bKlS5cWL1MnaN3Pzs4u93b0mFAfnvbt27sQFL5N9enRaLCKbDOeuBYYAADVS9InQlTz1ahRo9zcPn369LHZs2fb/v373dB2GTlypOvvoxoe0f9VtmPHji70LFmyxM0DNHfuXLc+JSXFfv7zn9u9995rJ554ogtEd999txsZNnTo0KS9z+rW+QsAgCBLegAaNmyY7dixw01cqE7KaqbKyckp7sS8efNm1+QVonA0duxY27p1q5vksHPnzrZw4UK3nZA77rjDlbvuuutsz5491q9fP7dNTbSYTNWp8xcAAEGW9HmAqqN4zgMEAAD8cczMAwQAAIKjsBpdFJwABAAAAndR8GNyHiAAAHDsyKmGFwUnAAEAgMBdFJwABAAAEkZ9fqJrfsIp9mi9yvmJAAQAABKmul4UnAAEAAASprpeFJwABAAAEqZX2yZW1kh3rVc5PxGAAABAwqz84msrq3+z1qucnwhAAAAgYegDBAAAAqcFfYAAAEDQ9Gnf1M34XFI3IC3XepXzE01gAAAgYXStL13uQqJDUOi+1vt9TTACEAAASChd62vulT0tMyNyqLvua3kyrgXGxVABAEDCKeQM7JLJ1eABAECwpKWmWHbHZlYd0AQGAAAChwAEAAAChz5AAADAF4VFHn2AAABAcOR8nGtTX1xrufn/d9V3zf+jIfDJGAVGE5jPyXf5xl3259Vfuv/rPgAAQQg/Yxauigg/kpdf4JZrvd9oAgto8gUAwA/6sa/zX6yf/Fqm6Q+1XkPk/ZwMkRqggCZfAAD8sGLT7qPOf9EhSOtVzk8EoCQnX9F6msMAADXR9n0FcS0XLwSggCZfAAD8wNXgA6q6Jl8AAPzA1eADqromXwAA/MDV4AOquiZfAAD8wtXgA5x8NdpLYSe8M3QoFGm9n0P/AAAI+tXgUzzPYza+KHv37rWMjAzLz8+3Ro0axWVHMw8QAADV5/zNRIgBTb4AAAQZAchHCjvZHZv5+ZQAACAG5gECAACBQwACAACBQwACAACBQwACAACBQwACAACBQwACAACBQwACAACBQwACAACBE7cAVFBQYLNmzYrX5gAAAKpHANqxY4f99a9/tVdeecUKCwvdssOHD9uvf/1ra9eunc2YMSNRrxMAAMD/S2G89dZbdvHFF7sLjaWkpFjv3r3tiSeesKFDh1qtWrVsypQpNmrUqPi9MgAAgGTXAP3iF7+wCy+80D788EMbN26cvf/++3bZZZfZL3/5S1u7dq3dcMMNVq9evUS9TgAAgLhJ8TzPK0/BZs2a2ZtvvmldunSxb7/91o477jhbvHixXXrppVbTqJYrIyPD8vPzrVGjRsl+OQAAIM7n73LXAH399dfWvHlz92/V9NSvX9+6du1a3ocDAAAce32ARE1deXl57t+qONqwYYPt378/oky3bt3i+wprkMIiz1Zs2m3b9xVYi4bp1qd9U0tLTUn2ywIAIHDK3QSWmprqOj/HKh5arv+HRocdyxLRBJbzca5NfXGt5eYXFC/Lyki3yZd0scFds+LyHAAABNneCpy/y10DtGnTpni8tkBS+BmzcJVFR8e8/AK3fO6VPQlBAAD4qNwBqG3btol9JTW42Us1P7Gq2bRMDWBaP7BLJs1hAAD4pNydoGfOnOlGf4W8/fbbdvDgweL7+/bts7Fjx8b/FR7j1OcnvNkrVgjSepUDAADVLABNmDDBhZyQIUOG2Jdffll8/8CBA/bb3/42/q/wGKcOz/EsBwAAfAxA0Z2fy9l3OvA02iue5QAAQNVxNfgE01B3jfYqabC7lmu9ygEAAH8QgBJM8/xoqLtEh6DQfa1nPiAAAKrpRIiPPfaYuwSGHDlyxBYsWFA8O3R4/yBE0jw/GuoePQ9QJvMAAQBQvSdCbNeunZvoMAjzBSXqWmDMBA0AwDE2EeLrr79u7du3j8frCyw1c2V3bJbslwEAQOCVuw9Qx44dXQD6yU9+YgsXLowYAg8AAHAsKXcN0GuvvWbLli1zt6efftoOHTpkHTp0sPPOO8++973vuVvLli0T+2oBAAD87AMUrqCgwN55553iQLRixQo7fPiwde7c2dasWWPHukT1AQIAANXj/F2pABSiWiBdEuNvf/ubmwX6m2++4WrwAAAgKYOBEtIJOhR43n33XdchWjU/7733nrVp08bOPvtse/jhh+2cc86p6msHAAA1UM7HuUdNB6OJgDUXnqaL8Vu5a4DU10eBRx2hFXT69+/v/p+V5f+LTjSawAAAiG/4GbNwlbsAeLhQ3Y/myotHCKrI+bvco8DefPNNa9asmQtC559/vg0cOLBGhp9EV/0t37jL/rz6S/d/3QcAoCYrLPJczU+sM15omdb7fU4sdwDas2ePPfroo1a/fn27//77rVWrVnbqqafaTTfdZM8995zt2LGj0i9izpw5bqLF9PR069u3r+tUXZL58+e72qcmTZq424ABA44qf/XVV7tJG8NvgwcPtmSn3373v2Yj5r9r//3Mavd/3ddyAABqqhWbdkc0e0VT7NF6lauWAahBgwYuRMyYMcM1he3cudNmzpzpApH+f8IJJ1jXrl0r/AIWLVpk48aNs8mTJ9uqVause/fuNmjQINu+fXvM8up7NGLECNcPafny5a4P0gUXXHDUvER6rbm5ucU3Dd1PdtVf9AGQl1/glhOCAAA11fZ9BXEtl/SLoSoQNW3a1N1UE1OrVi1bt25dhbfz4IMP2rXXXmujR4+2Ll262Lx581yoevzxx2OWf+qpp2zs2LHWo0cPN+xe1ycrKiqypUuXRpSrW7euZWZmFt/0GpOhulb9AQDgB432imc53wOQQoaamlTbM2TIEGvcuLGdeeaZ9sgjj7iAoWaszz77zCo6qmzlypWuGav4BaWmuvuq3SmPAwcOuDmIFMSia4patGhhJ598so0ZM8Z27dpV4jYOHjzoOk6F32p61R8AAH7QUHeN9ippsLuWa73K+ancw+AVePbv3+/CjmZ9/tWvfmXnnnuuu0RGZakZrbCw8KgZpHV//fr15drGnXfe6fojhYcoNX99//vfdyPWNm7caHfddZcLbQpVaWlpR21j+vTpNnXqVAtS1R8AAH7QPD8a6q4uHwo74e0doVCk9fGcDyiuAeiBBx5wweekk06y6kL9kZ555hlX26MO1CHDhw8v/rc6anfr1s0FNZXTCLZoEyZMcP2QQlQDpL5FNbnqDwAAv2iIu4a6R88DlJnEeYDKHYCuv/76uD958+bNXY3Mtm3bIpbrvmqaSjNr1iwXgF599VUXcEqja5bpuT799NOYAUj9hXRLZNWfOjzH6uWT8r8HgN9VfwAA+EkhZ2CXzITOBO1LJ+h4qFOnjvXq1SuiA3OoQ3N2dnaJj1M/pGnTpllOTo717t27zOfZunWr6wOUjHmLQlV/Ev0RJ7PqDwAAv+lcl92xmV3ao7X7fzLPfUkNQKKmJ83t8+STT7pRZOqwrL5GGhUmI0eOdE1UIZqD6O6773ajxDR3UF5enrvpOmSi/99+++3ukh2ff/65C1OXXnqpderUyQ2vT2bVn2p6wul+vGa/BAAA5Veha4ElwrBhw9wkipMmTXJBRsPbVbMT6hi9efNmNzIsZO7cuW702BVXXBGxHc0jNGXKFNek9uGHH7pApckb1UFa8wSpxihRzVzHYtUfAABBVqWrwddUXAsMAIBjT0KuBQYAAFBTEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgJH0eIAAAEAyFRV61mQ+PAAQAABIu5+Pcoy6GmpXEi6HSBAYAABIefsYsXBURfkQXCtdyrfcbAQgAACS02Us1P7EuOxFapvUq5ycCEAAASBj1+Ymu+Qmn2KP1KucnAhAAAEgYdXiOZ7l4IQABAICE0WiveJaLFwIQAABImF5tm1hZI921XuX8RAACAAAJs/KLr62s/s1ar3J+IgABAICEoQ8QAAAInBb0AQIAAEHTp31TN+NzSd2AtFzrVc5PNIEBAICE0bW+dLkLiQ5Bofta7/c1wQhAAAAgoXStr7lX9rTMjMih7rqv5cm4FhgXQwUAAAmnkDOwSyZXgwcAAMGSlppi2R2bWXVAExgAAAgcAhAAAAgcAhAAAAgcAhAAAAgcAhAAAAgcAhAAAAgcAhAAAAgcAhAAAAgcAhAAAAgcAhAAAAgcAhAAAAgcAhAAAAgcAhAAAAgcAhAAAAicWsl+AUFSWOTZik27bfu+AmvRMN36tG9qaakpyX5ZAAAEDgHIJzkf59rUF9dabn5B8bKsjHSbfEkXG9w1y6+XAQAAaALzL/yMWbgqIvxIXn6BW671AADAP/QB8qHZSzU/Xox1oWVar3IAAMAfBKAEU5+f6JqfcIo9Wq9yAADAHwSgBFOH53iWAwAAVUcASjCN9opnOQAAUHUEoATTUPfG9WuXWkbrVQ4AAPiDAOSDQ0eKSl1/uIz1AAAgvghACfbuxl124FBhqWX2Hyp05QAAgD8IQAm2/LOdcS0HAACqjgCUcOW91AWXxAAAwC8EoATrW87OzeUtBwAAqo4AlGCpKSlxLQcAAKqOAJRgO/cfjGs5AABQdQSgBGMiRAAAqh8CUIJpgsOsjPQSuzhrudYzESIAAP4hACVYWmqKTb6ki/t3dAgK3dd6lQMAAP4gAPlgcNcsm3tlT8vMiLzel+5rudYDAAD/1PLxuQJNIWdgl0xbsWm3u/K7+gap2YuaHwBAUBQWedXmPEgA8pE+5OyOzfx8SgAAqoWcj3Nt6otrLTe/oHiZ+sCqG0gyWkJoAgMAAAkPP2MWrooIP5KXX+CWa73fCEAAACChzV6q+fFirAst03qV8xMBCAAAJIz6/ETX/IRT7NF6lfMTAQgAACSMOjzHs1y8EIAAAEDgrohAAAIAAIG7IgIBCAAABO6KCNUiAM2ZM8fatWtn6enp1rdvX1uxYkWJZefPn2/9+/e3Jk2auNuAAQOOKu95nk2aNMmysrKsXr16rswnn3ziwzsBAADHwhURkj4R4qJFi2zcuHE2b948F35mz55tgwYNsg0bNliLFi2OKr9s2TIbMWKEnXnmmS4w3X///XbBBRfYmjVrrHXr1q7MzJkz7aGHHrInn3zS2rdvb3fffbfb5tq1a91jAABAsK+IkOKpuiSJFHpOP/10e/jhh939oqIia9Omjd188802fvz4Mh9fWFjoaoL0+JEjR7ran1atWtmtt95qt912myuTn59vLVu2tAULFtjw4cPL3ObevXstIyPDPa5Ro0ZxeJcAACDRKnL+TmoT2KFDh2zlypWuiar4BaWmuvvLly8v1zYOHDhghw8ftqZN/9N5atOmTZaXlxexTe0MBa3ybhMAANRsSW0C27lzp6vBUe1MON1fv359ubZx5513uhqfUOBR+AltI3qboXXRDh486G7hCRIAANRc1aITdGXNmDHDnnnmGXv++eer1Ldn+vTprpYodFMTHAAAqLmSGoCaN29uaWlptm3btojlup+ZmVnqY2fNmuUC0CuvvGLdunUrXh56XEW2OWHCBNdeGLpt2bKlCu8KAABUd0kNQHXq1LFevXrZ0qVLi5epE7TuZ2dnl/g4jfKaNm2a5eTkWO/evSPWadSXgk74NtWk9d5775W4zbp167rOUuE3AABQcyV9GLyGwI8aNcoFmT59+rhh8Pv377fRo0e79RrZpeHtaqYSDXvXHD9/+MMf3NxBoX49xx13nLulpKTYz3/+c7v33nvtxBNPLB4Gr35CQ4cOTep7BQAA1UPSA9CwYcNsx44dLtQozPTo0cPV7IQ6MW/evNmNDAuZO3euGz12xRVXRGxn8uTJNmXKFPfvO+64w4Wo6667zvbs2WP9+vVz22QOIAAAUC3mAaqOmAcIAIBjzzEzDxAAAEAyEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDgEIAAAEDg1Er2CwAAAMFQWOTZik27bfu+AmvRMN36tG9qaakpSXktBCAAAJBwOR/n2tQX11pufkHxsqyMdJt8SRcb3DXL/EYTGAAASHj4GbNwVUT4kbz8Ardc6/1GAAIAAAlt9lLNjxdjnfe/N61XOT8RgAAAQMKoz090zU80rVc5PxGAAABAwuTtLYhruXghAAEAgITZ/c3BuJaLFwIQAABImKYN6sS1XLwQgAAAQMJkZtSLa7l4IQABAICE0WSHmu+nNFqvcn4iAAEAgITRTM+a7LCk+Z61XOv9nhGaAAQAABJKMz3PvbLnUTVBuq/lyZgJmkthAACAhFPIGdgls9pcC4waIAAAEDjUAAEAgITjYqgBpuucLN+4y/68+kv3f7+vewIAQDLkVMOLoVIDFNDkCwBAdbgYqnoAab36B/nZH4g+QAFNvgAAVIeLoSoEcTHUACZf0XqawwAANdH2fQVxLRcv1AAFNPkCAOAHDXePZ7l4IQAFNPkCAOCHXm2bWFlde7Re5fxEAApo8gUAwA8rv/jayhr0rPUqF6gANGfOHGvXrp2lp6db3759bcWKFSWWXbNmjV1++eWufEpKis2ePfuoMlOmTHHrwm+dO3e2ZFGiTSkj+aYkIfkCABDklpCkBqBFixbZuHHjbPLkybZq1Srr3r27DRo0yLZv3x6z/IEDB6xDhw42Y8YMy8zMLHG7p5xyiuXm5hbf3nrrLUuW9zftNq+M5Kv1KgcAQE3Topq2hCQ1AD344IN27bXX2ujRo61Lly42b948q1+/vj3++OMxy59++un2wAMP2PDhw61u3bolbrdWrVouIIVuzZs3t2RZ/tnOuJYDAOBY0qd906MughpN61UuEAHo0KFDtnLlShswYMD/vZjUVHd/+fLlVdr2J598Yq1atXK1RT/+8Y9t8+bNpZY/ePCg7d27N+IWL+Wd7JlJoQEANVFaaor9V/fSJ/zVer8vipq0ALRz504rLCy0li1bRizX/by8vEpvV/2IFixYYDk5OTZ37lzbtGmT9e/f3/bt21fiY6ZPn24ZGRnFtzZt2li8NKlfJ67lAAA4lhQWefaXD0qf8Ffr/Z4PL+mdoONtyJAh9oMf/MC6devm+hMtWbLE9uzZY88++2yJj5kwYYLl5+cX37Zs2RK319O8Yd24lgMAoCbNh2dJmg8vadcCU7+ctLQ027ZtW8Ry3S+tg3NFNW7c2E466ST79NNPSyyj/kSl9SmqisxG6XEtBwDAsWQ7o8Ai1alTx3r16mVLly4tXlZUVOTuZ2dnx23Hf/PNN7Zx40bLykrOBUera+cvAAD8wCiwGDQEfv78+fbkk0/aunXrbMyYMbZ//343KkxGjhzpmqfCO06vXr3a3fTvL7/80v07vHbntttuszfeeMM+//xze+edd+yyyy5zNU0jRoywZFCnLl3xXV27ort3hZZpvd+dvwAA8LMioKSzXEqSKgKS1gQmw4YNsx07dtikSZNcx+cePXq4zsuhjtEavaWRYSFfffWVnXbaacX3Z82a5W7nnHOOLVu2zC3bunWrCzu7du2y448/3vr162fvvvuu+3eyDO6aZXOv7OkuehreDpqZke7Cj9YDAFATpf1vRcCYhatc2Anv6hwKRcmoCEjxvLKm6QseDYPXaDB1iG7UqFHctqse7urkpfZQVQkq7VLzAwAIgpyPc4+qCMiKc0VARc7fBKAq7kAAAFA9KgIqcv5OahMYAAAIjrTUFMvu2Myqgxo3DxAAAEBZCEAAACBwCEAAACBwCEAAACBwCEAAACBwCEAAACBwCEAAACBwCEAAACBwCEAAACBwmAk6htDl0TSlNgAAODaEztvlucwpASiGffv2uf+3adMm3p8NAADw4Tyua4KVhouhxlBUVGRfffWVNWzY0FJS4neRtlA6VbDasmULF1pNIPazP9jP7OeahOP52N/PqvlR+GnVqpWlppbey4caoBi000444QRLJH3oXGk+8djP/mA/s59rEo7nY3s/l1XzE0InaAAAEDgEIAAAEDgEIJ/VrVvXJk+e7P4P9vOxjuOZ/VyTcDwHaz/TCRoAAAQONUAAACBwCEAAACBwCEAAACBwCEAAACBwCEAJMGfOHGvXrp2lp6db3759bcWKFaWW/+Mf/2idO3d25U899VRbsmRJIl5WoPfz/PnzrX///takSRN3GzBgQJmfCyq+n8M988wzbib1oUOHsivjfDzLnj177MYbb7SsrCw3muakk07iuyMB+3n27Nl28sknW7169dzsxbfccosVFBRwTJfiH//4h11yySVuNmZ9B7zwwgtWlmXLllnPnj3dsdypUydbsGCBJZyHuHrmmWe8OnXqeI8//ri3Zs0a79prr/UaN27sbdu2LWb5t99+20tLS/NmzpzprV271vvFL37h1a5d2/voo4/4ZOK4n3/0ox95c+bM8f71r39569at866++movIyPD27p1K/s5jvs5ZNOmTV7r1q29/v37e5deein7OM77+eDBg17v3r29Cy+80Hvrrbfc/l62bJm3evVq9nUc9/NTTz3l1a1b1/1f+/jll1/2srKyvFtuuYX9XIolS5Z4EydO9BYvXqwrknrPP/98acW9zz77zKtfv743btw4dx78zW9+486LOTk5XiIRgOKsT58+3o033lh8v7Cw0GvVqpU3ffr0mOV/+MMfehdddFHEsr59+3rXX399vF9aoPdztCNHjngNGzb0nnzyyQS+ymDuZ+3bM88803vssce8UaNGEYASsJ/nzp3rdejQwTt06FDFPtCAq+h+VtnzzjsvYplO0meddVbCX2tNYeUIQHfccYd3yimnRCwbNmyYN2jQoIS+NprA4ujQoUO2cuVK17wSfl0x3V++fHnMx2h5eHkZNGhQieVRuf0c7cCBA3b48GFr2rQpuzSOx7Pcc8891qJFC7vmmmvYtwnaz3/5y18sOzvbNYG1bNnSunbtar/85S+tsLCQfR7H/XzmmWe6x4SayT777DPXzHjhhReyn+MoWedBLoYaRzt37nRfQPpCCqf769evj/mYvLy8mOW1HPHbz9HuvPNO1z4d/UeHqu3nt956y/7f//t/tnr1anZlAvezTsSvvfaa/fjHP3Yn5E8//dTGjh3rQr1m2EV89vOPfvQj97h+/fq5q4wfOXLEbrjhBrvrrrvYxXFU0nlQV43/9ttvXf+rRKAGCIEzY8YM10H3+eefdx0hER/79u2zq666ynU4b968Obs1gYqKilwt26OPPmq9evWyYcOG2cSJE23evHns9zhSx1zVrD3yyCO2atUqW7x4sb300ks2bdo09nMNQA1QHOlLPy0tzbZt2xaxXPczMzNjPkbLK1IeldvPIbNmzXIB6NVXX7Vu3bqxO+N4PG/cuNE+//xzN/oj/EQttWrVsg0bNljHjh3Z51Xcz6KRX7Vr13aPC/nud7/rfkmrqadOnTrs5zjs57vvvtuF+p/+9Kfuvkbp7t+/36677joXONWEhqor6TzYqFGjhNX+CJ9eHOlLR7/Gli5dGnEC0H2118ei5eHl5e9//3uJ5VG5/SwzZ850v9xycnKsd+/e7Mo4H8+ayuGjjz5yzV+h23/913/Z9773PfdvDSFG1feznHXWWa7ZKxQw5d///rcLRoSf+BzPob6C0SEnFDr/078X8ZC082BCu1gHdJilhk0uWLDADee77rrr3DDLvLw8t/6qq67yxo8fHzEMvlatWt6sWbPc8OzJkyczDD4B+3nGjBlu+Otzzz3n5ebmFt/27dsX/4MgwPs5GqPAErOfN2/e7EYx3nTTTd6GDRu8v/71r16LFi28e++9t4qfeM1W0f2s72Pt56efftoN1X7llVe8jh07utG7KJm+VzXliG6KGQ8++KD79xdffOHWax9rX0cPg7/99tvdeVBTljAM/hilOQy+853vuBOuhl2+++67xevOOeccd1II9+yzz3onnXSSK6+hgC+99FISXnXN3s9t27Z1f4jRN33BIX77ORoBKDHHs7zzzjtuygyd0DUk/r777nNTECB++/nw4cPelClTXOhJT0/32rRp440dO9b7+uuv2c2leP3112N+34b2rf6vfR39mB49erjPRcfzE0884SVaiv6T2DomAACA6oU+QAAAIHAIQAAAIHAIQAAAIHAIQAAAIHAIQAAAIHAIQAAAIHAIQAAAIHAIQADiKiUlxV544YVqu1fbtWtns2fPTvbLAJBkBCAAFXL11Vfb0KFDS1yfm5trQ4YMSdhePffcc13IKumm9QBQFq4GDyCuSrqydrwsXrzYXfFctmzZYn369LFXX33VTjnlFLcs0RcD5WrrQM1ADRCAhDWBff755+6+QouuCl+/fn3r3r27LV++POIxb731lvXv39/q1avnrhr/s5/9zPbv3x9z+02bNnUhS7fjjz/eLWvWrFnxstdff92Fobp167rmrv/5n/8p9fXu2bPHfvrTn7ptNWrUyM477zz74IMPitdPmTLFevToYY899pi1b9/e0tPT3fKcnBzr16+fNW7c2D3/xRdfbBs3bix+XHnf+9tvv+1qrbS+SZMmNmjQIPv666+Lr1Y+ffp097zaN3r8c889V8FPBEAsBCAACTdx4kS77bbbbPXq1XbSSSfZiBEj7MiRI26dQsPgwYPt8ssvtw8//NAWLVrkAtFNN91U4edZuXKl/fCHP7Thw4fbRx995MLL3XffbQsWLCjxMT/4wQ9s+/bt9re//c09vmfPnnb++efb7t27i8t8+umn9qc//cmFGb0HUUAbN26c/fOf/7SlS5daamqqXXbZZS60lPe9a5meq0uXLi4Y6X1fcsklVlhY6NYr/Pzud7+zefPm2Zo1a+yWW26xK6+80t54440K7xsAURJ+uVUANUpZV3jX18rzzz/v/r1p0yZ3/7HHHitev2bNGrds3bp17v4111zjXXfddRHbePPNN73U1FTv22+/LfW1hLb/r3/9y93/0Y9+5A0cODCizO233+516dKl+H7btm29X/3qV8XP06hRI6+goCDiMbr6929/+1v378mTJ3u1a9f2tm/fXupr2bFjh3stH330Ubnf+4gRI7yzzjor5vb0murXr++u+h5O+0uPA1A11AABSLhu3boV/zsrK8v9X7UuouYm1dAcd9xxxTc1A6kmZdOmTRV6nnXr1tlZZ50VsUz3P/nkk+JalXB67m+++cY1YYU/v543vDmrbdu2xc1tIdqmanM6dOjgms7U3CabN28u93sP1QDFolqnAwcO2MCBAyNem2qEwl8bgMqhEzSAhKtdu3bxv9UvRkJNRQog119/vev3E+073/lOQl+XnluhZNmyZUetU9+ekAYNGhy1Xk1VCkbz58+3Vq1auffTtWvX4g7a5Xnv6tdT2muTl156yVq3bh2xTv2bAFQNAQhAUqnPzdq1a61Tp05V3tZ3v/td16k4nO6r701aWlrM587Ly7NatWoV1+CUx65du2zDhg0u/Kjztqj/TkWpdkj9h6ZOnXrUOvULUtBRjdI555xT4W0DKB0BCECF5efnF3cGDlEzkkZwVdSdd95pZ5xxhuv0rNFYqm1RIPr73/9uDz/8cIW2deutt9rpp59u06ZNs2HDhrmOxdrGI488ErP8gAEDLDs7281rNHPmTBeUvvrqK1frog7NvXv3jvk4jdbS+3300UddDZJCyvjx4yv83idMmGCnnnqqjR071m644QY3hF+j2NQxu3nz5q7ztDo+q8ZII8603xXo1OQ2atSoCj8fgP9DAAJQYWoyOu200yKWXXPNNW6oeGVqQTSqSaOlVJuiftQdO3Z0AaaiVKPz7LPP2qRJk1wIUji555573OSNsahJasmSJe65R48ebTt27HBD6c8++2xr2bJlic+jEV/PPPOMa7ZTs9fJJ59sDz30UIUnYVTgeuWVV+yuu+5y8xmpSaxv376ub5HoPajvkUaDffbZZ65ZTu9R5QFUTYp6QldxGwAAAMcURoEBAIDAIQABAIDAIQABAIDAIQABAIDAIQABAIDAIQABAIDAIQABAIDAIQABAIDAIQABAIDAIQABAIDAIQABAIDAIQABAIDA+f/fSXjZm0ORkAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAASEhJREFUeJzt3Ql4VNX5+PE3BCGyhU0IILKqiMgiEAwqqAVxQ6hacQWpUuuCWtQK6g9ErCCg0gqKG9pKFSpFUYtxQWhFsFEQZRMVUdawCWEzQZP7f97z7x1nhplkZjLrme/neQYyd+7ce+6Zu7z3bDfDcRxHAAAALFEl0QkAAACIJoIbAABgFYIbAABgFYIbAABgFYIbAABgFYIbAABgFYIbAABgFYIbAABgFYIbAABgFYKbJHbgwAG54YYbJCcnRzIyMuSOO+4w07dv3y6XXXaZNGjQwEyfMmWKpPo2pZsXX3zRbP93330X93Xrem+99VZJZosWLTLpnDNnjtiangceeMAsMxQ6n86P4PRY0nzSYwsguEnQRS3Y6+OPP/bM+/DDD5v5b7rpJnnppZfk2muvNdP/8Ic/yDvvvCOjRo0y088777yop1PX/frrr8dkuYG2KZCWLVt68qVKlSpSt25dOeWUU+R3v/ud/Pe//61UOp588sm4nARjlY+2ePnll1MqOE93BQUF5nh8/PHHj/hswIAB5rMXXnjhiM969eolzZo1k2QKVIO9Zs2aJcnIDYbd11FHHWXOkbfddpvs3bs3omVu3brVLHfFihVim6qJTkC6evDBB6VVq1ZHTG/btq3n7w8++EBOO+00GTNmjM88Ol1PJHfddVdML8paOjRw4MCoLjfYNgXTuXNnufPOO83f+/fvl7Vr18qrr74qzz77rAnyHnvssYiDm4YNG8p1110nsRQsHzWou+KKK6R69eqS7sHNqlWr0rYEL9WceuqpUqNGDVm8eLE5/rwtWbJEqlatKh999JEMHTrUM/3w4cPyySefSP/+/SWZaFDQvXv3I6bn5eVJMnvqqaekVq1acvDgQVmwYIE88cQTsnz5cvObRBLcjB071gRJeq61CcFNgpx//vnSrVu3cufZsWOHtG/fPuB0LcVIRcG2KRi927vmmmt8pj3yyCNy1VVXmbvH448/3pQCpZrMzEzzQmwcOnTIXIQRXRq89OjRwwQw3tatWye7du0yx6X/RXbZsmVSXFwsZ5xxRlL9rmeeeaa58QhHWVmZCdaysrKO+EyDjZo1a8Z8+zTNemOmbrzxRnOTNHv2bFOqlpubW6n124RqqSTkFptu2LBB/vWvf3mKId0qLX2Q+7Rp0zzTXVo0qXfAzZs3NyUCWgqkgYAekN70/Z///GdTxaMH6THHHGOqtj799FPzuS5TD9S//vWvnnVUVMKhQcv1118vjRs3Nsvs1KmT+X5F2xRJm5Ojjz7aVGnVr19f/vSnP5n88N42reY4+eSTTTo0PXoC2LNnj2cevUtZvXq1/Pvf//ak46yzzoprPgZrc6MlSpp2XW/Tpk3llltuOaLIWdPaoUMHWbNmjZx99tnmZKhB4MSJE8PKx7///e9y4oknmrR37dpV/vOf/xwxz2effWYC8Tp16pi7xV/96lc+VadaEqdVhqNHjz6iREa3T+8yg9Ht0H3h+++/9+SP/jb+eay/8bHHHmvSqev/5ptvAuaHXkS1+kPz49577zWflZSUmFJC/Q01T/U3/eMf/2ime3vvvffMxVdvGnQ7NV/cZYSbHqWli5qnuq/qhUgD9C1btkhFNF1aIqL7Uu3ateXiiy+WzZs3S6gqOg6926ZMnjxZnnnmGWnTpo3JGy3F0BKWimg+abs/7+3WYEf3Ea0ydgMd78/c70Wynwf6XXVePZays7PNbzZkyJCIq2ZCaZ+mx4qb3vz8fM/xq+eQm2++WRo1amT2iWhtX7hBmlq/fr1n2g8//GBK9vXcpPuz/jZ6HH/++ec+52S35EpL2ryvMy6t/tdzmuazpq93795HBLZJy0FcvfDCC3oldt5//31n586dPq9du3aZeQoLC52XXnrJadiwodO5c2fzt75WrVpl/tfv9+3b1zNdHTx40OnYsaPToEED595773WmT5/uDB482MnIyHBuv/12nzRcd911Zhnnn3++M2XKFGfy5MnOgAEDnCeeeMJ8rsusXr26c+aZZ3rWsWTJkqDbdOjQIeekk05yjjrqKOcPf/iD85e//MV8V9ehyy9vmw4cOBB0uS1atHAuvPDCoJ9ff/31Zh2aL64bbrjBqVq1qjNs2DCTB/fcc49Ts2ZNp3v37s7hw4fNPK+99ppz7LHHOu3atfOk4913341rPrr7wYYNGzzLGzNmjJnWp08fs4xbb73VyczM9Em76t27t9O0aVOnefPmJk1PPvmkc84555jvzp8/36mIztehQwfzWzz44IPOI488YvL66KOPdlauXOmZT/NV865JkybOuHHjnAkTJjitWrUy2/Txxx975rvllltMni9btsy837p1q1O/fn2zHWVlZUHToXmu+4Kmw80f/W3UwoULTTq7dOnidO3a1Xn88cedBx54wKlRo4aTm5vrsxzNj5ycHOeYY45xhg8f7jz99NPO66+/7pSWljrnnnuu+c4dd9xhpmuealr1d/LezmrVqjndunVz/vznP5vf/K677nJ69erlmSec9Li/rf5uOt/IkSNN3rZs2dLZs2fPEb+3t2uuucZMu+qqq5ypU6c6l1xyidkfdZrOX55QjkOl+5y7LW3btjW//8SJE83voMeF974WyDvvvGO+r9vp+u1vf2vy+scffzTrnzdvnuezgQMHOrVr13Z+/vnnsPfzQL+r7lP621SpUsW5+eabzTJ0/3fzyTtdgbi/5YwZM444B+vLe5/V+TRPNQ1jx451pk2b5nz22Wee37h9+/YmnZoGPT6isX3BuMvVNHrTfVWnv/32255pn3zyidOmTRuz7+ly9Thv1qyZk52d7WzZssVzTtbp+t3f/e53nmNw/fr15vMFCxaY4yIvL8959NFHzb6seazT/vvf/zrJjuAmztyDItBLLxqhXNx1Xr2geNOLj16IvvrqK5/punPrgbVx40bz/oMPPjDfv+22245YrvdBrcsaMmRISNukJ05d5syZMz3T9CDWg6JWrVrOvn37KtymQCqaVw82Xa97Iv3www/N+7///e8+8+Xn5x8x/eSTTzYnF3/xykf/4GbHjh3mpKEXCL0ou/QC556IXZpunfa3v/3NM62kpMScKC+99FKnIu7+9umnn3qmff/9905WVpbz61//2ueipGlyT3Zu4KIXKu8LvwaEepHUPC0uLja/WZ06dcwyK6Lz6u8c7AKkFxbdNpcGHzrdOwhz80ODEm96otYLoO4X3nQ+nf+jjz7y2Y/8LxqRpEf3+0aNGpngUS/0rrfeesvMN3r06KDBzYoVK8x7vWB700AnlOAm1OPQDW40gP/hhx888+pxpNPffPPNctejy9FjQW8uXCeeeKK5+CsN9u6++27PZ3rx1puxSPdz/99VAwCdrgGZSwMnN5ALNbgJ9tq2bZtnXn2v+9Dq1asDHr9nnHGGJ2iL1vYF4+4v69atM/vqd999Z5angbPmsR6HruLiYp/1u7+7XmM0oPEOggLlmZ7Djj/+eKdfv34+5zMNoPUGx/09kxnVUgmi1UpaFO79evvttyNenhaDa/FkvXr1TJGw++rTp4+UlpZ6qhz++c9/mqLHQA16Q+2W6m/+/Pmma/eVV17pmaYt+bXBnnb91qLbWNDiVrehsZsHWnzat29fnzzQ6gGdd+HChUmbj++//76py9fqMK3mcQ0bNswUKWv1jf+2e7dFqlatmqlv//bbb0Nanzaa1HxxHXfccaaRuvbC0+3U17vvvmsaQrdu3dozX5MmTTztKvbt22emaXG1FmVrY28tXte0ansoXWZlaXG5bpt/Ebz/dmrxv3cjVve3POmkk6Rdu3Y+v+U555xjPnf3B7f92rx5846oegw3PVolqVVDWlXh3S7jwgsvNOnw/x39jyOlx423UBtbh3scDho0yOznwbYlGK0u69ixo6dtjeapVkX17NnTvD/99NM9VRdfffWV7Ny501MlFe5+Huh31e3Utj/ebe20/drw4cMlHFqV6n8O1pdWd3vTqphg7QQ13d5t56KxfRXRKlOtttQq3N/+9remylWvHd5tdapXr+5Zvx7Lu3fv9lS3auPjimjvqa+//toc6/pd99jRanatitXzYEXHSqLRoDhB9EJUUYPicOiO+MUXX5idPhA94br1sloH7H8AV4a2mdCGvd4Hs9ILi/t5LOgJ2z3ZunlQVFRk6r/Ly4NkzEc3j/Tk400vpBpc+Oeh1u/7B1F6odK0h0J/L38nnHCCadCoFyOlf/unx/1d9cS2adMm067AvaDpxUaD9n79+pmTbjT4B0juxdi7DZXSNkfeQYf7W2rAVdFvqRf55557zoy/NHLkSHPyvuSSS0zDTf99uqL0BPsdlQY35fVo0e/q+rQNjLdAy4rGcRhq3gaiwYr20tELnvaS0gu89oJUGuRomxNtP+Tf3ibc/TzQ76rzaJDt3tyEm08ubY+iNy0VCdSrNdhn0di+iuiNlQZKepz+5S9/Me0YtW1XoPaATz75pPlcAxyXjo9WET12lLZlCkbPtd7BcbIhuLGE7sxaYqGNJQPRC5dttAuxd/d5zQMNbLTxXyDBLnKpmI/Belp5N66OJ72QaQNFN/CLVq+WULfT/+Tu/pZ6AQs2XIA2Lna/q3eiWpKjd9baYFR7n2gJj5Zeeach2fK9MiqzLW5wo8GLBjduw1U3uNH9QRsnazCnpSxu4BOuQL9rvJWXhsqmL5Lva+mo21tKu9dr3l999dWmYbIb2D788MPyf//3f+YmY9y4ceYmTD/TEqVQSlzceSZNmhS0i7h/cJlsCG4soXd7WpJR0Z2IzqdVD9qavrxSh3CqVlq0aGFKDPSA8L5r/PLLLz2fR5tu62uvvWYuUO6dqW6bFgtrKUJFJ41g25eofHTzSIv3vauBtIhb77xCucMMh3tn5k2rEDQgcYNA/VvT409/V/2d3eBAafWclpJoD5x77rnHlIDoXWVFIq0KDYX+Rto7REtiKlqPbo/Opy8NhvTicN9995mAJ5y89/4d3eovl04r71jQz/QY0uDQ+84/0G+Q6OPQLYnR4GXp0qXmmHNpiaauSwMffXXp0sUT6EZjP9dl6Pguepx6X2BDzadYivdxrNuvx55Wbf3jH/8w3cLVnDlzTE/K559/3md+7bHlBkYVnQeVlhBFO83xQpsbS1x++eXmJKMXXH+6Q//888/m70svvdTcmenATeXdsel4DaF2rbzggguksLDQ3O26dH16Z6cHn9ZZR9OPP/5oBsHTwEIvQO4Bqnmgxa96p+JP0+O9PcG2L1H5qCcQLZ7WgMD7+3py0uJfbbMRTbqN3nXvWsWkbU7OPfdczxg8+rdO8+6url2AtZu3Xtz0xOd2F9WgRu8KdcDFu+++W6ZOnRpSWyvNH92+WNDfUrtf64CPgfYhbT+gdD/y596t+ncZr4hWNWvp4fTp032+q20iNPgr73fUrrrKPygMdQTneB6HGsBolYwGGdrOyG1v49L3OjK3XuS9u4BHYz/X7dTt8h5mQI973c5Ei/dxrLTURqupdbgKV2Zm5hElcNoGzX84AndcHv9zlLbH0wBHj2u3+t+bW3WdzCi5SRA92bl3VP4nBe+IP1R6QXnjjTfkoosuMuM/6M6pJ++VK1eaKF4vUBqxazSvgYEefHr3rmMY6J3ehx9+aD5znzmk39dSEL2LdU9kOnhXIDq2xdNPP23Wq0Wj2tBN16l3bXpidtvEREIPxpkzZ5q/9SDTsV30INWTuF5IdQwbl5689f348eNNgzi9OGuDSt1O/Y7WQbuDdun26cnxoYceMtVaekHSO+1E5aOWlujjNDRY0mXp+CZ6YdA6cx2Lwn8gw8rS8TW0bYw2NtXGh7oe5R2sad64479oA1mtXtDfWS/a7pg6Ojib1strWw8d/8VdxptvvmnuJjXfyhvYTPNHL8YjRoww26kX4WiNZKu/j97N/v73vzclMFq6oBdBPe50ugawGozoaOFaLaUXHr3z1rY4mh96wQh34Dnd3/Qio9uu+6M27tWAUPc9PS78R/X1D6h0fl23Xgj1XKDBQ6BxdOJ9HAaieaPjTSnvkhulaX/llVc880VzP9f9Q9enpYN6PGpj37lz54YdJOuxqvuvP20sra9IxPs4dve522+/3Zy7tEpV13vRRReZ/Vr3Q/0t9DjU6nr/a4sGMNqgXoNx3T/0WNXzk56ntB2aBtzark6Xo+2D9Hysx5Le2OgxntQS3V0r3ZTXFdy/S144XcHV/v37nVGjRpluudodUcet6Nmzpxl/xXt8Be26OGnSJDPOi86n3Qh1rBZ3nBL15Zdfmu6+2s1Q11dRt/Dt27c7Q4cONevUZZ5yyikBu2SG2xXczRcdZ0a7F2t3Yx3DprxxFp555hkzFommXbsta1r++Mc/mm7MLh3jQdOhn+vyvbuFxyMfA41z43YZ1eXpWCGNGzd2brrpJp+xUZSmVfPBny47ULfqYPuPdhnW7p7aPVTHPNEusv6WL19uuoNqV2Id0+Xss8/2GfNIx1PRbsH+v4d2M9fxZDT95dFxjrSrc926dU263PS73XVfffVVn/ndbsze+1aw/FD6e+k4Lvq5bme9evXMvqHdlouKijzjeei4Nzp2kP6O+v+VV17pMxxAOOlRs2fPNnmq69Qxf66++mpn8+bNPvMEGudGu4/r8ALaTVuHEejfv7+zadOmkLqCh3ocumnWfddfqOtROn6Kzq/jpwTab9xjV9PkrzL7udq9e7dz7bXXmnOCjt2if+v4M9HoCu69/cHOte7xq12pA6ns9oUzzo3SfVnzwT2PFRcXO3feeacZo0rPPaeffrqzdOlS87n/EBg6BICO16PHq3/+aZ7qWEu6P+q+rMfn5Zdfbo6ZZJeh/yQ6wAIAAIgW2twAAACrENwAAACrENwAAACrENwAAACrENwAAACrENwAAACrpN0gfjrQ2tatW82ARbEc+h0AAESPjlyzf/9+MyCq/wNiJd2DGw1svJ+JAwAAUoc+LkZHEC9P2gU37hDkmjnus3EAAEBy27dvnymcCOVRImkX3LhVURrYENwAAJBaQmlSQoNiAABgFYIbAABgFYIbAABgFYIbAABgFYIbAABgFYIbAABgFYIbAABgFYIbAABgFYIbAABglbQboRgAkBpKyxwp2PCD7NhfLI1qZ0luq/qSWYUHHqNiBDcAgKSTv2qbjH1zjWwrKvZMa5KdJWP6t5fzOjRJaNqQ/KiWAgAkXWBz08zlPoGNKiwqNtP1c6A8BDcAgKSqitISGyfAZ+40/VznA4IhuAEAJA1tY+NfYuNNQxr9XOcDgiG4AQAkDW08HM35kJ4IbgAASUN7RUVzPqQnghsAQNLQ7t7aKypYh2+drp/rfEAwBDcAgKSh49hod2/lH+C47/VzxrtBeQhuAABJRcexeeqaUyUn27fqSd/rdMa5iY/SMkeWrt8t81ZsMf+nUg81BvEDACQdDWD6ts9hhOIEyU/xQRSTouRm2rRp0rJlS8nKypIePXpIQUFB0HlffPFFycjI8Hnp9wAAdtGqp7w2DWRA52bmf6qi4iPfgkEUEx7czJ49W0aMGCFjxoyR5cuXS6dOnaRfv36yY8eOoN+pU6eObNu2zfP6/vvv45pmAABsVGrJIIoJD24ee+wxGTZsmAwdOlTat28v06dPlxo1asiMGTOCfkdLa3Jycjyvxo0bxzXNAADYqMCSQRQTGtwcPnxYli1bJn369PklQVWqmPdLly4N+r0DBw5IixYtpHnz5jJgwABZvXp1nFIMAIC9dlgyiGJCg5tdu3ZJaWnpESUv+r6wsDDgd0488URTqjNv3jyZOXOmlJWVSc+ePWXz5s0B5y8pKZF9+/b5vAAAgL2DKCa8WipceXl5MnjwYOncubP07t1b5s6dK8ccc4w8/fTTAecfP368ZGdne15a2gMAAOwdRDGhwU3Dhg0lMzNTtm/f7jNd32tbmlAcddRR0qVLF/nmm28Cfj5q1CgpKiryvDZt2hSVtAMAYJtMSwZRTGhwU61aNenatassWLDAM02rmfS9ltCEQqu1Vq5cKU2aBO53X716ddO7yvsFAADsHUQx4YP4aTfwIUOGSLdu3SQ3N1emTJkiBw8eNL2nlFZBNWvWzFQvqQcffFBOO+00adu2rezdu1cmTZpkuoLfcMMNCd4SAADscF6KD6KY8OBm0KBBsnPnThk9erRpRKxtafLz8z2NjDdu3Gh6ULn27Nljuo7rvPXq1TMlP0uWLDHdyAEAQHQHUUxFGY7jJPdIPFGmvaW0YbG2v6GKCgAA+67fKddbCgAAoDwENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCpVE50AAAhXaZkjBRt+kB37i6VR7SzJbVVfMqtkkJEADIIbACklf9U2GfvmGtlWVOyZ1iQ7S8b0by/ndWiS0LQBSA5USwFIqcDmppnLfQIbVVhUbKbr5wBAcAMgZaqitMTGCfCZO00/1/kApDeCGwApQdvY+JfYeNOQRj/X+QCkN4IbAClBGw9Hcz4A9iK4AZAStFdUNOcDYC+CGwApQbt7a6+oYB2+dbp+rvMBSG8ENwBSgo5jo929lX+A477XzxnvBgDBDYCUoePYPHXNqZKT7Vv1pO91OuPcAFAM4gcgpWgA07d9DiMUAwiK4AZAytGqp7w2DRKdDABJimopAABglaQIbqZNmyYtW7aUrKws6dGjhxQUFIT0vVmzZklGRoYMHDgw5mkEAACpIeHBzezZs2XEiBEyZswYWb58uXTq1En69esnO3bsKPd73333ndx1111y5plnxi2tAAAg+SU8uHnsscdk2LBhMnToUGnfvr1Mnz5datSoITNmzAj6ndLSUrn66qtl7Nix0rp167imFwAAJLeEBjeHDx+WZcuWSZ8+fX5JUJUq5v3SpUuDfu/BBx+URo0ayfXXX1/hOkpKSmTfvn0+LwAAYK+EBje7du0ypTCNGzf2ma7vCwsLA35n8eLF8vzzz8uzzz4b0jrGjx8v2dnZnlfz5s2jknYAAJCcEl4tFY79+/fLtddeawKbhg0bhvSdUaNGSVFRkee1adOmmKcTAACk6Tg3GqBkZmbK9u3bfabr+5ycnCPmX79+vWlI3L9/f8+0srIy83/VqlVl3bp10qZNG5/vVK9e3bwAAEB6SGjJTbVq1aRr166yYMECn2BF3+fl5R0xf7t27WTlypWyYsUKz+viiy+Ws88+2/xNlRMAAEj4CMXaDXzIkCHSrVs3yc3NlSlTpsjBgwdN7yk1ePBgadasmWk7o+PgdOjQwef7devWNf/7TwcARF9pmcOjL5D0Eh7cDBo0SHbu3CmjR482jYg7d+4s+fn5nkbGGzduND2oAACJlb9qm4x9c41sKyr2TGuSnWWexs5DS5FMMhzHcSSNaFdw7TWljYvr1KmT6OQAQMoENjfNXC7+F4yM//3PU9mRTNdvikQAABVWRWmJTaA7YXeafq7zAcmA4AYAUK6CDT/4VEX505BGP9f5gGRAcAMAKNeO/cVRnQ+INYIbAEC5GtXOiup8QKwR3AAAypXbqr7pFeU2Hvan0/VznQ9IBgQ3AIByZVbJMN29lX+A477Xz3U+IBkQ3AAAKqTj2Gh375xs36onfU83cCSbhA/iBwBInQCnb/scRihG0iO4AQCETKue8to0IMeQ1KiWAgAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAVkmK4GbatGnSsmVLycrKkh49ekhBQUHQeefOnSvdunWTunXrSs2aNaVz587y0ksvxTW9AAAgeSU8uJk9e7aMGDFCxowZI8uXL5dOnTpJv379ZMeOHQHnr1+/vtx3332ydOlS+eKLL2To0KHm9c4778Q97QAAIPlkOI7jJDIBWlLTvXt3mTp1qnlfVlYmzZs3l+HDh8vIkSNDWsapp54qF154oYwbN67Cefft2yfZ2dlSVFQkderUqXT6AQBA7IVz/U5oyc3hw4dl2bJl0qdPn18SVKWKea8lMxXRuGzBggWybt066dWrV8B5SkpKTIZ4vwAAgL0SGtzs2rVLSktLpXHjxj7T9X1hYWHQ72nUVqtWLalWrZopsXniiSekb9++AecdP368ifTcl5YKAQAAeyW8zU0kateuLStWrJBPPvlE/vSnP5k2O4sWLQo476hRo0ww5L42bdoU9/QCAID4qSoJ1LBhQ8nMzJTt27f7TNf3OTk5Qb+nVVdt27Y1f2tvqbVr15oSmrPOOuuIeatXr25eAAAgPSS05Earlbp27Wrazbi0QbG+z8vLC3k5+h1tWwMAAJDQkhulVUpDhgwxY9fk5ubKlClT5ODBg6Z7txo8eLA0a9bMlMwo/V/nbdOmjQlo5s+fb8a5eeqppxK8JQAAIBkkPLgZNGiQ7Ny5U0aPHm0aEWs1U35+vqeR8caNG001lEsDn5tvvlk2b94sRx99tLRr105mzpxplgMAAJDwcW7ijXFuAABIPSkzzg0AAEC0EdwAAACrENwAAACrRC24KS4ulsmTJ0drcQAAALEPbrRX01tvvSXvvvuueWyC+umnn+TPf/6ztGzZUiZMmBBZKgAAAOLdFXzx4sVy0UUXmdbKGRkZZqyZF154QQYOHChVq1aVBx54wIxXAwAAkBIlN/fff79ccMEF8sUXX5iB9/S5Tr/+9a/l4YcfljVr1sjvf/97M+4MAABASoxz06BBA/nwww+lffv28uOPP5qncs+dO1cGDBggqYRxbgAASD0xGedmz5495kGXSktoatSoIR06dKh8agEAABL1+AWtftJHJCgt8Fm3bp15HIK3jh07RjN9AAAAsamW0uc7aUPiQLO70/V/txdVsqJaCgCA1BPO9TvkkpsNGzZEI20AAAAxFXJw06JFi9imBAAAIApCblA8ceJE00vK9dFHH0lJSYnn/f79++Xmm2+ORpoAAABi3+YmMzNTtm3bJo0aNTLvtb5rxYoV0rp1a/N++/bt0rRpU9rcAACA1OgK7h8DhRgTAQAAxBVPBQcAAFYhuAEAAOk7iN9zzz1nHrugfv75Z3nxxRc9oxZrg2IAAICUaVDcsmVLM0hfqo+HwyB+AACknpgM4rdw4UJp1apVNNIHAACQ+DY3bdq0McHNb3/7W5k5c6Zs2bIldqkCAACIUMglNx988IEsWrTIvF555RU5fPiwGePmnHPOkbPPPtu8GjduHGk6AAAA4tvmxltxcbEsWbLEE+wUFBTITz/9JO3atZPVq1dLMqPNDQAAqSec63dEwY1LS2/0MQxvv/22PP3003LgwAFGKAYAAKnRoNgNZj7++GPTuFhLbP773/9K8+bNpVevXjJ16lTp3bt3ZdMOAABQKSEHN9q2RoMZbVSsQcyNN94oL7/8sjRp0qRyKQAAAEhEcPPhhx+aQEaDnLPOOssEOA0aNIhmWgAAAOLXFXzv3r3yzDPPSI0aNeSRRx4xTwA/5ZRT5NZbb5U5c+bIzp07K58aAACASoq4QbE+bmHx4sWe9jeff/65HH/88bJq1SpJZvSWAgAg9YRz/Y74wZk1a9aU+vXrm1e9evWkatWqsnbt2kgXBwAAEN82N2VlZfLpp5+aUhotrdEu4AcPHpRmzZqZAfymTZtm/gcAAEiJ4KZu3bommMnJyTFBzOOPP24aFutjGQAAAFIuuJk0aZIJak444YTYpggAACAewY2OawMAAJDsIm5QDAAAkIwIbgAAgFUIbgAAgFUIbgAAgFUIbgAAgFUIbgAAgFUIbgAAgFUIbgAAgFUIbgAAgFUIbgAAgFUIbgAAgFUIbgAAgFUIbgAAgFUIbgAAgFUIbgAAgFUIbgAAgFUIbgAAgFUIbgAAgFUIbgAAgFUIbgAAgFWSIriZNm2atGzZUrKysqRHjx5SUFAQdN5nn31WzjzzTKlXr5559enTp9z5AQBAekl4cDN79mwZMWKEjBkzRpYvXy6dOnWSfv36yY4dOwLOv2jRIrnyyitl4cKFsnTpUmnevLmce+65smXLlrinHQAA/KK0zJGl63fLvBVbzP/6PhEyHMdJzJr/R0tqunfvLlOnTjXvy8rKTMAyfPhwGTlyZIXfLy0tNSU4+v3BgwdXOP++ffskOztbioqKpE6dOlHZBgAA0l3+qm0y9s01sq2o2DOtSXaWjOnfXs7r0KTSyw/n+p3QkpvDhw/LsmXLTNWSJ0FVqpj3WioTikOHDslPP/0k9evXD/h5SUmJyRDvFwAAiG5gc9PM5T6BjSosKjbT9fN4Smhws2vXLlPy0rhxY5/p+r6wsDCkZdxzzz3StGlTnwDJ2/jx402k5760VAgAAESHVj1piU2gaiB3mn4ezyqqhLe5qYwJEybIrFmz5LXXXjONkQMZNWqUKcJyX5s2bYp7OgEAsFXBhh+OKLHxpiGNfq7zxUtVSaCGDRtKZmambN++3We6vs/JySn3u5MnTzbBzfvvvy8dO3YMOl/16tXNCwAARN+O/cVRnS/lS26qVasmXbt2lQULFnimaYNifZ+Xlxf0exMnTpRx48ZJfn6+dOvWLU6pBQAA/hrVzorqfClfcqO0G/iQIUNMkJKbmytTpkyRgwcPytChQ83n2gOqWbNmpu2MeuSRR2T06NHy8ssvm7Fx3LY5tWrVMi8AABA/ua3qm15R2ng4UKuaDBHJyc4y86VNm5tBgwaZKiYNWDp37iwrVqwwJTJuI+ONGzfKtm2/tLJ+6qmnTC+ryy67TJo0aeJ56TIAAEB8ZVbJMN293UDGm/teP9f50macm3hjnBsAAOwe5ybh1VIAACD1ndehifRtn2N6RWnjYW1jo1VR8SyxcRHcAACAqNBAJq9NA0m0hLe5AQAAiCaCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYJWqiU4AAAAoX2mZIwUbfpAd+4ulUe0syW1VXzKrZJBtQRDcAACQxPJXbZOxb66RbUXFnmlNsrNkTP/2cl6HJglNW7KiWgoAgCQObG6audwnsFGFRcVmun6OIxHcAACQpFVRWmLjBPjMnaaf63zwRXADAEAS0jY2/iU23jSk0c91PvgiuAEAIAlp4+FozpdOCG4AAEhC2isqmvOlE4IbAACSkHb31l5RwTp863T9XOeDL4IbAACSkI5jo929lX+A477Xzxnv5kgENwAAJCkdx+apa06VnGzfqid9r9MZ5yYwBvEDACCJaQDTt30OIxSHgeAGAIAkp1VPeW0aJDoZKSPh1VLTpk2Tli1bSlZWlvTo0UMKCgqCzrt69Wq59NJLzfwZGRkyZcqUuKYVAAAkv4QGN7Nnz5YRI0bImDFjZPny5dKpUyfp16+f7NixI+D8hw4dktatW8uECRMkJycn7ukFAADJL6HBzWOPPSbDhg2ToUOHSvv27WX69OlSo0YNmTFjRsD5u3fvLpMmTZIrrrhCqlevHvf0AgCA5Jew4Obw4cOybNky6dOnzy+JqVLFvF+6dGnU1lNSUiL79u3zeQEAAHslLLjZtWuXlJaWSuPGjX2m6/vCwsKorWf8+PGSnZ3teTVv3jxqywYAAMkn4Q2KY23UqFFSVFTkeW3atCnRSQIAADZ2BW/YsKFkZmbK9u3bfabr+2g2Fta2ObTPAQAgfSSs5KZatWrStWtXWbBggWdaWVmZeZ+Xl5eoZAEAgBSX0EH8tBv4kCFDpFu3bpKbm2vGrTl48KDpPaUGDx4szZo1M+1m3EbIa9as8fy9ZcsWWbFihdSqVUvatm2byE0BAABJIqHBzaBBg2Tnzp0yevRo04i4c+fOkp+f72lkvHHjRtODyrV161bp0qWL5/3kyZPNq3fv3rJo0aKEbAMAAEguGY7jOIlORDxpV3DtNaWNi+vUqZPo5AAAgChfv63vLQUAANILwQ0AALAKwQ0AALAKwQ0AALAKwQ0AALAKwQ0AALAKwQ0AALBKQgfxAwCkvtIyRwo2/CA79hdLo9pZktuqvmRWyUja5cJ+BDcAgIjlr9omY99cI9uKij3TmmRnyZj+7eW8Dk2SbrmRIMhKPYxQDACIOAC5aeZy8R/m3i1beeqaUyMKRGK13FQPstLdPkYoBhJH7/KWrt8t81ZsMf/re8A2ul/rRT/Q3u1O08/D3f9jtdxIuEGWd2CjCouKzXT9HMmJaikghe7yKB5HstC2MP4XfW8aeujnOl9emwYJW26kx0xFQZYuQT/v2z6HdkBJiOAGiJJgRenuXV5li9LDCZwIghBrGixEc75YLLcyNxuxCt4QHwQ3QBTE+i4vnMCJNgKIBy0FieZ80V5uZW82YhW8IT4Y5waIgnDu8sIVThsE2gggXrR6R0tBgoXqOl0/1/nivdxotNuJVfCG+CC4AaIglnd5oQZOH6/fnTQNMWE/LYHU6h3lH4i47/XzcEsqo7HcaNxsxCp4Q3wQ3ABREMu7vFADoqXf7opZ6REQiFbraPVOTrbvfq3vK9PGrLLLjcbNRqyCN8QHbW6AKHDv8rQ+P1C5SMb/TsyR3OWFHhCFdpKljQCiSQMNbUsW7ZGEK7PcaN1suEGWf6NkPZYZ5ya5EdwAUeDe5WlDRT31OlG8yws1cNIeG1MXflPh8mgjgGjT/ToWPYYiXW40bzZiFbwhtqiWApK8iD7U4vHTWjegjQAQgyolN8ga0LmZ+Z/AJvnx+AUgymI1xkwoXbzd3lISpPQonsPWA4nGsAjp+/gFghvAssCJEzoQ3jGD1EBwE6XMAVIVJ3QA6Xz9pkExYKFYNfAEgFRAg2IAAGAVSm4ApG1Vl43bBLuwj0aG4AZAhWxspGzjNsEu7KORo1oKQLlsfBinjdsEu7CPVg7BDYCYPl052di4TbAL+2jlEdwAiOnTlZONjdsEuyTLPlpa5sjS9btl3oot5v9UCvhpcwMgpk9XTjY2bhPskgz7aH6Kt0mj5AZAzJ+unExs3CbYJdH7aL4FbdIIbgBU+HTlYJ2jdXqTEJ+unCxs3CbYJZH7aKklbdIIbgDE7enKycDGbYJdErmPFiRJe5/KIrgBUC6tX9eniedk+xaB6/tUfcq4jdsEuyRqH92RBO19ooEGxQAqpCfSvu1zrBrN18Ztgl0SsY82sqRNGsENgLR9GKeN2wS7xHsfzf1fex9tPByoVU3G/0qPkr1NGtVSAADAqjZpBDcAAMCqNmlUSwEAAKvapBHcAAAAq9qkUS0FAACsQnADAACsQnADAACsQnADAACsQnADAACsQm+pKNEnpH68frd8tH6nbN1bLM3qHS092zSU01o3CLvrnC4rUd3vYr1u7+U3rFndjAq160DJEeuKVjoSmZexlirbFko6k21bKpse9/uFRT/KDwcPS/1a1SWnTuy3K1C6VXnbkmx5X5k0xWpbkvGcnIy/WzIhuImC/FXbZOTclbL30E8+06ctXC91axwlEy45JeRBj3RZ+jh576ey6lDYOiJkrAdOivW6Ay3fm7suFY10BFpfTp3qcmXucdKyYc2ITpqF+4rlhwMlUr9mNcnJPlq6tqgny77fE/IJJtTgrqLvfrfrkLxSsNGkpzJ5FK5wT6ih7FOJ3OcjTXO433fVzsqUy049Vs49uUnUL0aB1qvnH+V9btJ996EBHeSCjk2ikveV3ac//na3LF2/W8qcMqlXo7ps3fujvL5ii+zxSrMGhg9cXH6a5n+xTe6ft8oEkxVtSzj7caA80jwc2LmpGQcmUAAZ7nkhWN5M/eBreeGj72Tvjz/5bNPFnZrIG59vi9oxU2phoJThOE6gx0dYa9++fZKdnS1FRUVSp06dSi9Pd/zfz1xe4XzTQxjVUZd108zlRzzPw93FYjkyZKzXHWz5/usK9nm46QhlfaGeEMq7WOnxX+aEtrxQg7tIvhuP/STcC2Eo+5RK1D4fi+Mg1P0uFjcOoa7X1bd9I3l/zY5K5X1l9+lAN4WRnEfHz18jT/9nQ8DvZPhtSzj7cSj5GiiADOe8EEgkeRPpMZOfZDcX0bp+E9xUgka7p09YIIX7SiqcV3eWxfecEzQa1mWd8cgHQU8S7sPKyltGpGK97oqWH6pQ0xHO+io6IYR70Qi2vFCDu0i/G+v9JNyLfqj7lN5bBTt+YrnPx+I4iGQ/97/wxiLdkQgl7yu7T4dyU+ivXo2j5NP7+/qkaf4XW+Xmlz8L6fz73prCkPfjaOZruAFjuIFqpMdMfgJvqGMd3NCguBL+fzVFxYGN0gNE5y9vWeUdRE4Iy4hUrNdd0fJDFWo6wlmfe1DrnYuezLzpe50ezkkm0PJCXU5lvhvL/aS8NATLv1D3qfKOn1ju87E4DiLdzwPte4k4vsLZ1sru0w+8sSaidGlVlVZjeadDq6IqotuibSLD2Y+jma/lnWcqe86J9JgpjeC4TiUEN5Wg9ZPRmj/UZYW7zmguM9J1RzvNFS0v3PUFOyFEenLzX164wVak341Vnkdy0Y/m+mOxz1dmPcHmiySd0QjgYpk/wZZd2X3au61YuLR9jnc6fjgYWtXN0m93hbUfRztfQ/mtoxVQ7Qgh7Ym8oY4HgptK0IZX0Zo/1GWFu85oLjPSdUc7zRUtL9L1+Z8QKntyc78fyXIq891o53kkF/1orj8W+3xl1hNsvsqkszL7WizzJ9iyE7FP/+KXkoTwlhVa1aa7zFjlazRucivSKIS0J/KGOh4IbipBW5Rr75tQaJ2v26o+2LJ0nmCHX0YIy4hUrNdd0fJDFWo6Il2f/wmhsic39/uRLCfS78ZiP4nkoh/qPqXHTyL2+VgcB+73I1GZfS1ax1c42xrPfdpfXuuGYaejQc1qIT8A0l1mLPLVe/nhfhaKcI6ZRgm8oY4HgptK0AZbD1x8ckjzasvz8hp46WduN2j/uTJCXEakYr3u8pYfaF2VTUeo66vohBDpyc1/eeEsp7LfjcV+EslFP9R9yj1+4r3Px+I4cL8fTmqjEcCFu78HSkO421rZfVq7dkdCeyad5hWkhBpQjhvQwYw5Fs5+XNl8rWj5gVQmoAr3mMlN4A112gQ306ZNk5YtW0pWVpb06NFDCgoKyp3/1VdflXbt2pn5TznlFJk/f74kirYk1+6JbnfAQK37Q+kG7i5LW6dra3dv+j7WrdZjve5gy/dfl+bV9CikI5T1VXRC8D65hSrQ8sIN7iL5biz3k0gv+qHsU4nc5wOpbHrc74dTghONAC5YumtWywz6HV3jjb1aRbStld2ndcyaSOiYYd55FUpAqduoY/pEsh+Heh6JVuARSr7qtUa3qUklj5nMBN5Qx0PCu4LPnj1bBg8eLNOnTzeBzZQpU0zwsm7dOmnUqNER8y9ZskR69eol48ePl4suukhefvlleeSRR2T58uXSoUOHuI9z42KE4uQfoTjSge+SdZybSAckjFSk42Gk8wjF767eJnOWb5H9xT8fMU8sxhIJlO53VrmD2/0UcN2V2dZ4jXOj+7qW8gXLq8AD7R31v8EKm1Y4b0W/hZtH768plNdWbPHJy1iNcxNoQMahPVvJree0jeoIxfmMcxMbGtB0795dpk6dat6XlZVJ8+bNZfjw4TJy5Mgj5h80aJAcPHhQ3nrrLc+00047TTp37mwCpEQFN0gNlR3WPVlGKE5UAJAMaUg1iXoUQ7x+t2iPUNywdnVpVLu6aTe862Boywl3GyuTH6E84iJaIxTH61grTZHjOmUG8Tt8+LDUqFFD5syZIwMHDvRMHzJkiOzdu1fmzZt3xHeOO+44GTFihNxxxx2eaWPGjJHXX39dPv/88wrXSXADAEDqCef6ndBnS+3atUtKS0ulcePGPtP1/ZdffhnwO4WFhQHn1+mBlJSUmJd35gAAAHslRYPiWNK2ORrpuS+t8gIAAPZKaHDTsGFDyczMlO3bt/tM1/c5OTkBv6PTw5l/1KhRpgjLfW3atCmKWwAAAJJNQoObatWqSdeuXWXBggWeadqgWN/n5eUF/I5O955fvffee0Hnr169uqmb834BAAB7JbTNjdLGwdqAuFu3bpKbm2u6gmtvqKFDh5rPtZt4s2bNTPWSuv3226V3797y6KOPyoUXXiizZs2STz/9VJ555pkEbwkAAEgGCQ9utGv3zp07ZfTo0aZRsHbpzs/P9zQa3rhxo1Sp8ksBU8+ePc3YNvfff7/ce++9cvzxx5ueUqGMcQMAAOyX8EH84o2u4AAA2H39tr63FAAASC8ENwAAwCoJb3MTb24tHIP5AQCQOtzrdiitadIuuNm/f7/5n8H8AABIzeu4tr0pT9o1KNZxdLZu3Sq1a9eWjIyMqEeVGjTpQIHpOp4OeUAesC9wPHBO4NwYi+uDhisa2DRt2tSnF3UgaVdyoxly7LHHxnQdDBZIHrAfcDxwTuC8yPUh+tfIikpsXDQoBgAAViG4AQAAViG4iSJ9jtWYMWPM/+mKPCAP2Bc4HjgncG5M9PUh7RoUAwAAu1FyAwAArEJwAwAArEJwAwAArEJwAwAArEJwE6Zp06ZJy5YtJSsrS3r06CEFBQXlzv/qq69Ku3btzPynnHKKzJ8/X9IpD1avXi2XXnqpmV9HhJ4yZYrYIJw8ePbZZ+XMM8+UevXqmVefPn0q3G9szIe5c+dKt27dpG7dulKzZk3p3LmzvPTSS5Ju5wTXrFmzzDExcOBASac8ePHFF812e7/0ezYId1/Yu3ev3HLLLdKkSRPTg+iEE05I+WvEtDDy4KyzzjpiX9DXhRdeWPmEaG8phGbWrFlOtWrVnBkzZjirV692hg0b5tStW9fZvn17wPk/+ugjJzMz05k4caKzZs0a5/7773eOOuooZ+XKlWmTBwUFBc5dd93lvPLKK05OTo7z+OOPO6ku3Dy46qqrnGnTpjmfffaZs3btWue6665zsrOznc2bNzvplA8LFy505s6da46Fb775xpkyZYo5PvLz8510yQPXhg0bnGbNmjlnnnmmM2DAACeVhZsHL7zwglOnTh1n27ZtnldhYaGT6sLNh5KSEqdbt27OBRdc4CxevNjsE4sWLXJWrFjhpEse7N6922c/WLVqlTkn6D5SWQQ3YcjNzXVuueUWz/vS0lKnadOmzvjx4wPOf/nllzsXXnihz7QePXo4N954o5MueeCtRYsWVgQ3lckD9fPPPzu1a9d2/vrXvzrpnA+qS5cuJuhPpzzQ379nz57Oc8895wwZMiTlg5tw80AvXBrc2ybcfHjqqaec1q1bO4cPH3ZskVvJc4JeH/TceODAgUqnhWqpEB0+fFiWLVtmqhS8n1Ol75cuXRrwOzrde37Vr1+/oPPbmAe2iUYeHDp0SH766SepX7++pGs+6I3VggULZN26ddKrVy9Jpzx48MEHpVGjRnL99ddLqos0Dw4cOCAtWrQwD1EcMGCAqb5Ot3x44403JC8vz1RLNW7cWDp06CAPP/ywlJaWSrqeG59//nm54oorTLV1ZRHchGjXrl1mp9Od0Ju+LywsDPgdnR7O/DbmgW2ikQf33HOPeaqtf+CbDvlQVFQktWrVkmrVqpl69SeeeEL69u0r6ZIHixcvNidwbYdlg0jy4MQTT5QZM2bIvHnzZObMmVJWViY9e/aUzZs3Szrlw7fffitz5swx39N2Nv/3f/8njz76qDz00EOSjufGgoICWbVqldxwww1RSU/aPRUcSKQJEyaYhqSLFi2yphFlOGrXri0rVqwwd+5acjNixAhp3bq1aVhou/3798u1115rApuGDRtKutLSCn25NLA56aST5Omnn5Zx48ZJutCgTkvwnnnmGcnMzJSuXbvKli1bZNKkSeYRBenm+eefN51ucnNzo7I8gpsQ6clId8Dt27f7TNf3OTk5Ab+j08OZ38Y8sE1l8mDy5MkmuHn//felY8eOko75oMXUbdu2NX9rb6m1a9fK+PHjUzK4CTcP1q9fL999953079/f5wKnqlataqro2rRpI+l2TjjqqKOkS5cu8s0330iqiiQftIeUbrt+z6VBnpZyaBWPlm6my75w8OBBc9OnVbbRQrVUiHRH08ha7za9T0z63vsuxJtO955fvffee0HntzEPbBNpHkycONHclebn55vu0KkuWvuCfqekpETSIQ90SIiVK1eakiv3dfHFF8vZZ59t/tb2J+m4H2hVhuaLXuxTVST5cPrpp5uAzg1w1VdffWXyIdUCm8ruCzpkip4HrrnmGomaSjdJTiPaza169erOiy++aLqz/u53vzPd3NxujNdee60zcuRIn67gVatWdSZPnmy6AI8ZM8aKruDh5IF2d9Qu0Ppq0qSJ6Rauf3/99ddOuuTBhAkTTPfIOXPm+HR73L9/v5PKws2Hhx9+2Hn33Xed9evXm/n1uNDj49lnn3XSJQ/82dBbKtw8GDt2rPPOO++Y/WDZsmXOFVdc4WRlZZmuw+mUDxs3bjQ9g2699VZn3bp1zltvveU0atTIeeihh5x0Ox7OOOMMZ9CgQVFNC8FNmJ544gnnuOOOMxcr7fb28ccfez7r3bu3OVl5+8c//uGccMIJZv6TTz7Z+de//uWkUx7o2A0aQ/u/dL50yQPtAh8oDzTYTXXh5MN9993ntG3b1lzI6tWr5+Tl5ZmTYbqdE2wLbsLNgzvuuMMzb+PGjc04L8uXL3dsEO6+sGTJEjM8iAYE2i38T3/6kxkqIJ3y4MsvvzTnQ73xiaYM/Sd65UAAAACJRZsbAABgFYIbAABgFYIbAABgFYIbAABgFYIbAABgFYIbAABgFYIbAABgFYIbABF58cUXpW7dummdexkZGfL666/HdZ36fCpdrz6yoTJatmwpU6ZMSbrtA6KB4AZIsOuuu85cRPSlD9Jr3Lix9O3bV2bMmOHz3JlQPPDAA+aBlNEW6EI4aNAg8yycWNOHarr5oy/Nn9/85jfy/fffx22d/q9UfNAnkE4IboAkcN5558m2bdvMXfnbb79tHqZ4++23y0UXXSQ///yzJKOjjz5aGjVqFJd1DRs2zOTP1q1bZd68ebJp06boPmTPz9y5c8369FVQUGCm6dPc3Wn6eSR0QPhk/T0BmxDcAEmgevXqkpOTI82aNZNTTz1V7r33XnMR10BHq39ce/fulRtuuEGOOeYYqVOnjpxzzjny+eefm890vrFjx5r3bgmD+93yvud68803pXv37pKVlSUNGzaUX//612a6llJoKckf/vAHz3KDVUs99dRT0qZNG/OE4BNPPFFeeukln8/1u88995xZdo0aNeT444+XN954o8L80Xk1f/SJyaeddprceuutsnz5cp95/v3vf0tubq7JS51v5MiRnkDib3/7m9SqVUu+/vprz/w333yzeVL3oUOHjlhf/fr1zfr0pXmmGjRo4Jmmn7t27doVdHsWLVpktll/R31isqZt8eLFpkRu/Pjx0qpVKxMkdurUSebMmeP53p49e+Tqq68269bPdbkvvPCCTxq//fZbEwTrevX7S5cu9fn8n//8p5x88slmnVry9uijj5abx5o3vXr1Mr9/+/bt5b333qvwdwGSVlSfVAUgbOU9PLFTp07O+eef73nfp08fp3///s4nn3zifPXVV86dd97pNGjQwNm9e7dz6NAh814f0Oo+eVynVfQ9pU8kzszMdEaPHm2e5rtixQrzFG+l8xx77LHOgw8+6FmueuGFF5zs7GxP2ubOnWueej9t2jTzlONHH33ULPODDz7wzKOnHF3Wyy+/bJ4Mf9tttzm1atXypCMQfdje7bff7nmv8+q2nH322Z5pmzdvdmrUqOHcfPPNztq1a53XXnvNadiwoc/DSX/zm9843bt3d3766SezvZrWTz/9tMLfx334qz7N3l9F27Nw4UIzT8eOHc2DAb/55hvzmT75uV27dk5+fr55OrbmpT48cdGiReZ7t9xyi9O5c2fze+n633vvPeeNN97wSY9+X7dD8/qyyy4zD2jVbVO6XVWqVDG/mX6uyz/66KPN/y6d//HHHzd/l5aWOh06dHB+9atfmd/+3//+t9OlSxezHs1LINUQ3ABJHNwMGjTIOemkk8zfH374oVOnTh2nuLjYZ542bdo4Tz/9tPlbL+YaEHkL5Xv6hO6rr746aBq9L4Qu/+CmZ8+ezrBhw3zm0YBCn/rs0ovl/fff73l/4MABM+3tt98uN7jRQKRmzZomgNH5TzjhBHORd917773OiSee6JSVlXmmaZClgYZeuNUPP/xgApGbbrrJPI1an8AcioqCm/K2xw1uXn/9dc88+jvodugTob1df/31zpVXXmn+1uBt6NCh5abnueee80xbvXq1maaBnbrqqqucvn37+nzv7rvvdtq3bx/wN33nnXecqlWrOlu2bPF8rttAcINURbUUkMT0+ulWA2k10oEDB0z1iFaxuK8NGzbI+vXrgy4jlO9pz5tf/epXlUrr2rVr5fTTT/eZpu91ureOHTt6/q5Zs6apJtuxY0e5y9YqGk2jbotW67Rt21bOPfdc2b9/v2fdeXl5nrxy163bvXnzZvO+Xr168vzzz3uqzrTaKhpC2Z5u3bp5/v7mm29MVZg2Gvf+PbTqzP09brrpJpk1a5ZpHP7HP/5RlixZUu56tRpOuesN9lto1VNpaekRy9L5mzdvLk2bNvVM0/wEUlXVRCcAQHB60dF2GUov1HoR03Yc/srrkh3K97RdR7xojzBvGpBU1CssOzvbBDRK/9cgRbdp9uzZpi1RqP7zn/9IZmamaRR88OBBqV27tsRjezTo8f491L/+9S/Txsqbto9R559/vmnnNH/+fNP2RQPPW265RSZPnhxwvW5QF27vOsBWlNwASeqDDz6QlStXyqWXXmrea0PjwsJCqVq1qrnAe7+0AbDShrz+d+ahfE9LARYsWBA0LYGW6++kk06Sjz76yGeavtfGqdGmAYr68ccfPevWBrX/v6bol3Vr8HLsscea91r68cgjj5iG01pSoo2SE0HzQ4OYjRs3HvF7aOmJSxsTDxkyRGbOnGm64T/zzDMhryPYb3HCCSd48s5/fu2BpkGf6+OPP454G4FEo+QGSAIlJSUmANEAYvv27ZKfn29602hX8MGDB5t5+vTpY6oKBg4cKBMnTjQXKu0arSUA2ltHqz60V4xWN2kVjl7U9eIeyvfGjBljSge0uuaKK64wvYy01OCee+4x69blaqmHfqYXZjco8nb33XfL5ZdfLl26dDHr1CBCu0xrF+rK0moczR+l+TNu3DjTq0erptyeTxoADB8+3AQt69atM9s0YsQIqVKliqm+uvbaa+W2224zpSKaN9ozrH///nLZZZdJPOlvctddd5neZ1rScsYZZ0hRUZEJPrRKSwOa0aNHm95V2ttJ94233nrLBCChuvPOO832aT7peEQa+E2dOlWefPLJgPPr76X7ha570qRJsm/fPrnvvvuiuNVAnCW60Q+Q7rRBsR6K+tJGncccc4zp3TRjxgxPY1jXvn37nOHDhztNmzY1jWybN29uGgJv3LjR01j10ksvderWrWuW5/aOqeh76p///KfpoVOtWjXT0+iSSy7xfLZ06VLT40d79LinDf8GxerJJ590WrdubdahjX7/9re/+XweqIGqLsO7F0+gBsVu/uirXr16Zpp3LyylPY20N5SmPycnx7nnnns8vYe0ce4pp5zi06hae3PVr1/f9LSqTIPi8rbHbVC8Z88en3m04fOUKVNMI2jNK/3N+/XrZ3opqXHjxpmG5NrDSdOoDc6//fbboOnR5es0XZ9rzpw5pgGxLv+4445zJk2aVG4jce1VdcYZZ5j8099Oe3LRoBipKkP/iXdABQAAECu0uQEAAFYhuAEAAFYhuAEAAFYhuAEAAFYhuAEAAFYhuAEAAFYhuAEAAFYhuAEAAFYhuAEAAFYhuAEAAFYhuAEAAFYhuAEAAGKT/wc5dGcDi/vHGgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -2636,7 +2561,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAARbtJREFUeJzt3QmYFNXZ9vFnGJZhR0AYQGRVEdlkdRSXKAhEjbgkQGJAYlzAJQaNgkaWoILKq8SI4PIqRkzEGJdoFBcUP1QUA0GULYIoogxrGDYHFOq77pNUv91Nz9Az9DZd/991NUNVna6u6qruevqc55zK8TzPMwAAgACplO4NAAAASDUCIAAAEDgEQAAAIHAIgAAAQOAQAAEAgMAhAAIAAIFDAAQAAAKHAAgAAAQOARAAAAgcAiAk1a5du+yXv/yl5efnW05Ojl1//fVu/saNG+3iiy+2Bg0auPlTp06t8PtUXpdeeqm1bNnSKqrx48e79wHgXEBFQgCEMps5c6a74JX0+OCDD0Jl77zzTld+xIgR9uSTT9rPf/5zN//Xv/61vfbaazZmzBg3v3///gk/EnrtF154ISnrjbVPsSiwOffccy3TKOgq7Rj6D5VDZhk5cqRVqlTJtm3bFjFf05pfrVo1Ky4ujlj2+eefu+N5yy23WKaff3l5eZap9HkO39aaNWtaz5497Y9//GO51/nKK6+4wBGpVzkNr4ks8bvf/c5atWp10Py2bduG/v/WW2/ZSSedZOPGjYsoo/nnn3++3XjjjUnbPgUqqmUaOHBgQtdb0j6V1yOPPGIHDhywVLryyiutT58+oem1a9fa2LFj7YorrrBTTz01NL9NmzYp3S4cWu/evW369On23nvv2XnnnRea//7777sA6LvvvrN//OMfrpxPZf3nZgoFao8++uhB83Nzcy2TdenSxW644Qb3/w0bNrh9GDZsmO3du9cuv/zycgVA06ZNIwhKAwIglNuAAQOse/fupZbZtGmTtW/fPub8evXqVch3v6R9Kq8qVapYqhUUFLiHTxdMBUCad8kll1g67dmzx2rUqJHWbchkfhDz7rvvRgRACnI6depk3377rVsWHuxoWsHRySeffFiv/f3337tgvWrVqna4KleuXK5zbffu3a7mJRnnTjz716xZs4jtVm1W69at7b777itXAIT0oQkMSTFv3jxXRayahb///e+hKmO/+czzPPerx5/v2759u8upad68ufuFqNqku+6666AaEk3//ve/t44dO7oq8yOPPNI1o+lCLlqnviifeOKJuJtzFNhcdtll1rhxY7fOzp07u+cfap+++OKLhOYAaX1a75QpU+zhhx92tTB6L3r06GEfffTRQc9fuXKlq+mqX7++224FpX/7298sEf7yl79Yt27drHr16tawYUP3xf/111/H9dxZs2aFnqttGzx4sH311VcRZc444wzr0KGDLVq0yE477TR38fKbaV588UU755xzrGnTpm7/9T5MnDjR9u/fH3Mdy5cvtx/84AduHbpI3X333Qdtk5qG1Nxw7LHHuveqSZMmduGFF9qaNWsizi3lpJ1wwgmujM4H1Zj9+9//jruGULVoukgryFdN54oVK2Lmyqxevdodf5WrW7euDR8+3F3ES3P00Ue7z4dfq+PT9CmnnOKCnFjLtD/+j45DnevR56HeD/881PvsB1U6J/V8LXvooYcs0fzvi3feecc1/TVq1MiOOuqoQ547idi/eOm7p127dhHnkMyfP99+/OMfu+Ol9eqYqelfAapPx17fgxLetJaocxGlowYI5VZUVGRbtmyJmKcPrxKbjz/+eJcfow+8vrD8KuMTTzwxlDfTt29fGzp0aOi5+uI//fTT3QVWH3J9cahaX3lCqmoOT5TWl5u+HFULpYRk/XLTF47yjxQA6DU0X+3zatY5VHOOvpT0haoL0jXXXOOa9nTx1xeUgrJf/epXJe6TvgCT4U9/+pPt3LnTvRd6X3VB18Va+Rx+rdGyZcvcRU8X/NGjR7uL7jPPPOOa/f7617/aBRdcUO7X1/urC7IucpMmTXKJ6wo6dTH95z//WWoN3h133GG33Xab/eQnP3HHYfPmzfaHP/zBXaiin7t161Z3HBUgKcDSl7z/+rVq1bJRo0a5vwosVEu1Y8cOu+eeeyJeTxcEBcB6f/Sazz77rN18880uQNa6RYGT8rHmzp3rXkvHVO/vG2+8YZ9++mno/ND77e/7dddd5wLeBx54wG239r20Grs333zTvZ5qBBTk6LzSfusYLV68+KBkd22rzjW9v1qu5hRd5BX0l0a1O88995xrdtHFdd++fS44Vl6aPkc33XST+5Gh80bvjS7qV111VdznerjHH3/cBY76HOm1FMx+8skndvbZZ7tzX/upz5+ahP1jF6/o7w9R7UudOnUi5in40Wvp+OuHTWnnTiL2ryy07+vXr7cjjjgiYr5eU8dCx0TfiQsXLnTngspqmX+uffPNN+4c1HdLtMM5FxEHDyijxx9/3NOpE+tRrVq1iLItWrTwzjnnnIPWobJXX311xLyJEyd6NWvW9P71r39FzB89erSXm5vrrVu3zk2/9dZb7vnXXXfdQes9cOBA6P9a17Bhw+Lap6lTp7p1zpo1KzRv3759XkFBgVerVi1vx44dh9ynWOIpq21UOd/atWvdtjRo0MDbtm1baP6LL77o5r/00kuheWeddZbXsWNHr7i4OOI9OPnkk71jjjnGi9dHH33k1q1j6+97o0aNvA4dOnjffvttqNzLL7/syo0dOzY0b9y4cW6e74svvnDH64477oh4jU8++cSrXLlyxPzTTz/dPXfGjBkHbdOePXsOmnfllVd6NWrUiNhffx1//OMfQ/P27t3r5efnexdddFFo3mOPPebK3XvvvSWeN/Pnz3dlnnrqqYjlc+bMiTk/WpcuXdz7tnXr1tC8jz/+2KtUqZI3dOjQg96zX/ziFxHPv+CCC9xxP5Rp06a552t7ZcGCBW76yy+/9JYvX+7+v2zZsohj5m97vOe6fx7WqVPH27RpU8TrDxw40MvLy3Ov59Pr6rjHc1nROV/Sd0i/fv0O+q7p3bu39/3330eso6RzJxH7VxJ9Ts8++2xv8+bN7qFz+uc//3nM77NY5++kSZO8nJyciPdNz4v1nh3uuYhDowkM5aaqW/1yCX+8+uqr5V6ffhWp6UC/pPTL0H8oWVe/3v/f//t/rpxqNvTLNlYScnm7YysRUd3ahwwZEpqnX1f61aVu76qCT7VBgwZF/Kr0k5NVA+T3+lGtiGoRVJPhv1/6VdyvXz/77LPP4m6uiqamRDUj6Jd3eK8cNUmpul9NgCVRzYSq7rVd4cdR7+8xxxxjb7/9dkR5/erWL9xoajrz+fun90C/qtXsF041ROF5GapFUO2f/175542a8a699toSzxudg2qKUu1k+LarKU+vEb3t4VRLuWTJElfTEF6LoLwcrU/nWDS/Vsan/dPxUy1XvHlAotoA1QKq1lTHR6/vN4NFJ0CX9Vy/6KKLImo59VlUD07VMur1fKoh1XkXL51X0d8fekyePPmgssqtiZUcHevcOdz9O5TXX3/dlddDNYyqudE2RNdKhp+/qrXSeaTmSf3+Uw3OoRzOuYj40ASGctMF5lBJ0GWhC/bSpUtL/DLSBVnU1q68kLJWVZfmyy+/dBdnJYqG05e6vzzVwi8u4gdDfvu/qvj1ZaqmJj1Kes90YSwrf3+PO+64g5bpAutfeEs6jtouvZ+xRFfba/tiJZ2qee+3v/2tC/KiAwI1v4ZTk2R08Kv3S+eTT+eN9kfJt6Vtu9atZqjSzsGyvmc6jxQ0RCfwlnaMo5uBwin3Rc2I4UGOmtlE74OS2TVPgYP+Kv/Ef62ynuvRPT3VnKlmpljHV/seK9CLRQFNeE/E0sTqbVrSuXO4+3covXr1sttvv90Fgmo61f91vKK3Y926da7JTvl40Tk70edvos9FxIcACBlDtQb6taP8hViUuBokJXUH/k8L4n/eL9FQAiX98g4fkiBVtF26CKs2MNY+6NdrSb+UfcrVUD6YggANt6D8HNUYKE9GuT3RSfGHeq/Ksu264Dz11FMxlyc636u8262Lu4Ic5ciprIKc8DF+VNPw2GOPhXKDDmcoiFjHJ9VK2oZEbFtZ16FaRD9w0+dOPwiUW6b8OOWriYIjfZepllbnq8oo8FWNrGoI4xn2ItXnYhARACFj6CKnKupD/SpUOf2a1pdLabVAZWkOa9Gihast0JdO+C9Hv6lFyzONEm39GpV4f0nHy9/fVatW2ZlnnhmxTPNKez90fHRR1i/r8gat6nGnpiA1pylx2qck0PLSdn344YdunJySkkdVRonMqk0p64Ux/D2LpvNIF86Sum+Xh5q0FGSqhkG1AX4NkB8A3Xrrra42RrU14V3iD/dc14VX741qKKLF2vdUS/VnWc3CCtY17piSlnWMlST+r3/9y/U8C+/ooSa+eL+nDudcRHzIAULGUM7IggULXHATq0ZAvS38NntdYCdMmFDqL2d9Eel58fjhD39ohYWFNnv27NA8vZ56bajGQl9wmUa/DtXbRd2PlX8STU0V5aWmTa1/xowZrqeRTxdcdenWl35J1BNLNRs6PtE1GZpWYBNvzUj481Wb8eCDD5Zzj/5z3iiHQr1oovmvo3NQv97V3T6azofSzid1qdcgebrohZdTM4nyRnSOJZIf1KjHmLqA67XDm6fV1OcPBRAeAB3uua5jo5oPjbKuZh6fzotYn91US8dnWbU8Oq81qGlJ56/+r1qiaH5QHH1uHc65iPhQA4Ry08UwOhnV//Xp106UxW9+8xv3a1bVyaomVrKfcib0a0rdmjVuh35Fa6wXdaO///773a9QdX/Wrz11g9cydX0VPV+/oO69916XM6QaCbXfx6IusAok9LoaV0TdlfWaalpQ9/vatWtbeSlXR3kC0TQkQGmBRLyJ6Lq4KRlT+R5639VdXYGkutt+/PHH5Vqvakh0YVVypy4YSij1u8HrvdFQACXRL1ftr4Yv0DFT84veP9XePP/88+69PtQI4DqHlA+jEXaVvKpfyUo2LWuTVjj9EtctC9RMoS7JSjjW+aVzRMneGq9H+6pf8eqWroRmdfXWe6HzTEmp2n+NuVQSJcKqW7aapzRUg98NXsmsib7dgYIc5Z3oWCsQDs9tUkCksW+0TLlCyhlK5Lmu4HbOnDnuPdR75wcYGq8mPO+qNHqOxoqKRcM3lLe2LJmf5ZLomOs91nfN1Vdf7Zq89DnQea5mLzXlKgk/1vg9+p4SnecKLBU8qVv/4Z6LiEMcPcWAuLvBh3elLms3eNm5c6c3ZswYr23btl7VqlW9hg0bui7dU6ZMcV1ZfeoSe88993jt2rVz5Y488khvwIAB3qJFi0JlVq5c6Z122mle9erV3esdqkv8xo0bveHDh7vX1DrVvTx8Xw61T7GobEnv02WXXVZqN3jtX6z3TV2ow61Zs8Z1sVa37ypVqnjNmjXzzj33XO/ZZ5/1ytsN3jd79mzvxBNPdMMb1K9f3/vZz37mrV+/PqJMdDd431//+lfXfVnDEeihY6VjvmrVqoiuzCeccELMbXrvvfe8k046yR2/pk2bejfddJP32muvudd6++23D7mO6PfV75p86623eq1atXLvld6ziy++2L2H4R5++GGvW7du7rVr167tzgW9/jfffHPI9/LNN9/0TjnlFPdcdbE+77zzXBfxWO+ZulLH+mzpHIiHunar/C233HLQMg0ToWX6XJTnXC/tPJR33nnHvUd6fuvWrV139JLOhbJ0gw/ff//90PkZrbRzJxH7F0tpn/2ZM2dGfIZ0zPv06eO63ms7Lr/8cjckQvTnTN9l1157rfsOUxf56PfvcM5FlC5H/8QTKAEAAGQLcoAAAEDgEAABAIDAIQACAACBQwAEAAAChwAIAAAEDgEQAAAIHAZCjEGD6n3zzTduwKzy3l0cAACklkb22blzpxv8NvqGuNEIgGJQ8KO7JwMAgIrnq6++sqOOOqrUMgRAMfhDpesN1BDmAAAg8+3YscNVYMRzyxMCoBj8Zi8FPwRAAABULPGkr5AEDQAAAocACAAABA4BEAAACBwCIAAAEDgEQAAAIHAIgAAAQOAQAAEAgMAhAAIAAIFDAAQAAAKHkaBTaP8Bzxau3WabdhZbo9p51rNVfcutxM1WAQBINQKgFJnz6Qab8NJy21BUHJrXpG6ejTuvvfXv0CRVmwEAAGgCS13wM2LW4ojgRwqLit18LQcAAKlDDlAKmr1U8+PFWObP03KVAwAAqUEAlGTK+Ymu+QmnsEfLVQ4AAKQGAVCSKeE5keUAAMDhIwBKMvX2SmQ5AABw+AiAkkxd3dXbq6TO7pqv5SoHAABSgwAoyTTOj7q6S3QQ5E9rOeMBAQCQOgRAKaBxfqZf0tXy60Y2c2la8xkHCACA1GIgxBRRkNO3fT4jQQMAkAEIgFJIzVwFbRqk8iUBAEAMNIEBAIDAIQACAACBQwAEAAAChwAIAAAEDgEQAAAIHAIgAAAQOARAAAAgcAiAAABA4BAAAQCAwCEAAgAAgcOtMAAExv4DHvfjA+AQAAEIhDmfbrAJLy23DUXFoXlN6ubZuPPau5sVAwgWmsAABCL4GTFrcUTwI4VFxW6+lgMIFgIgAFnf7KWaHy/GMn+elqscgOTS52zBmq324pKv3d90fu5oAgOQ1Rau3XZQzU84ff1qucoVtGmQ0m0DgmROhjVDUwMEIKtt2lmc0HIAsqMZmgAIQFZrVDsvoeUAZEczNAEQgKzWs1V9V82eU8JyzddylQOQ3mboVCIAApDVcivluBwDiQ6C/GktVzkAwWmGJgACkPWUYDn9kq6WXzeymUvTms84QEDwmqHpBQYgEBTk9G2fz0jQQJqaoQuLimPmAeX898dIqpuhM6IGaNq0adayZUvLy8uzXr162cKFC0ss+9xzz1n37t2tXr16VrNmTevSpYs9+eSTEWUuvfRSy8nJiXj0798/BXsCIJOpmUtd3c/v0sz9pdkLCG4zdNoDoNmzZ9uoUaNs3LhxtnjxYuvcubP169fPNm3aFLN8/fr17dZbb7UFCxbY0qVLbfjw4e7x2muvRZRTwLNhw4bQ489//nOK9ggAAGR6M3SO53lpHf5UNT49evSwBx54wE0fOHDAmjdvbtdee62NHj06rnV07drVzjnnHJs4cWKoBmj79u32wgsvlGubduzYYXXr1rWioiKrU6dOudYBAABSe0Pisly/01oDtG/fPlu0aJH16dPn/zaoUiU3rRqeQ1HsNnfuXFu1apWddtppEcvmzZtnjRo1suOOO85GjBhhW7duLXE9e/fudW9a+AMAAGRvM3Rak6C3bNli+/fvt8aNG0fM1/TKlStLfJ4iu2bNmrnAJTc31x588EHr27dvRPPXhRdeaK1atbI1a9bYLbfcYgMGDHBBlcpHmzRpkk2YMCHBewcAADJVhewFVrt2bVuyZInt2rXL1QAph6h169Z2xhlnuOWDBw8Ole3YsaN16tTJ2rRp42qFzjrrrIPWN2bMGLcOn2qA1AwHAACyU1oDoIYNG7oamY0bN0bM13R+fn6Jz1MzWdu2bd3/1QtsxYoVrhbHD4CiKTjSa61evTpmAFStWjX3AAAAwZDWHKCqVatat27dXC2OT0nQmi4oKIh7PXqOmsNKsn79epcD1KRJ6rPMAQBA5kl7E5ianoYNG+bG9unZs6dNnTrVdu/e7bq2y9ChQ12+j2p4RH9VVk1aCnpeeeUVNw7Q9OnT3XI1iymf56KLLnK1SMoBuummm1yNkbrXAwAApD0AGjRokG3evNnGjh1rhYWFrklrzpw5ocTodevWuSYvn4KjkSNHulqd6tWrW7t27WzWrFluPaImNY0P9MQTT7iu8E2bNrWzzz7bdZGnmQsAAGTEOECZiHGAAADI7ut32muAACBbBmEDUHEQAAEIhDmfbrAJLy23DUXFoXm6QaPuQcTd4IHgSfu9wAAgFcHPiFmLI4If0d2pNV/LAQQLARCArG/2Us1PrGRHf56WqxyA4CAAApDVlPMTXfMTTmGPlqscgOAgAAKQ1ZTwnMhyALIDARCArKbeXoksByA7EAAByGrq6q7eXiV1dtd8LVc5AMFBAAQgq2mcH3V1l+ggyJ/WcsYDAoKFAAhA1tM4P9Mv6Wr5dSObuTSt+YwDBAQPAyECCAQFOX3b5zMSNACHAAhAYKiZq6BNg3RvBoAMQBMYAAAIHAIgAAAQOARAAAAgcAiAAABA4JAEDQAAUkI3HdZ993TrGY2+rgFI0zUGFwEQAABIujmfbrAJLy2PuDmxRmHXQKTpGIuLJjAAAJD04GfErMURwY8UFhW7+VqeagRAAAAgqc1eqvnxYizz52m5yqUSARAAAEga5fxE1/yEU9ij5SqXSgRAAAAgaZTwnMhyiUIABAAAkka9vRJZLlEIgAAAQNKoq7t6e5XU2V3ztVzlUokACAAAJI3G+VFXd4kOgvxpLU/1eEAEQAAAIKk0zs/0S7paft3IZi5Na346xgFiIEQAAJB0CnL6ts9nJGgAABAsuZVyrKBNA8sENIEBAIDAIQACAACBQw4QAABICe4GDwAAAmUOd4MHAABBMoe7wQMAgCDZz93gAQBA0CzkbvAAACBoNnE3eAAAEDSNuBs8AAAImp7cDR4AAARNLneDBwAAQcTd4AEAQCD1527wAAAgiHK5GzwAAED6cDd4AAAQOARAAAAgcAiAAABA4BAAAQCAwCEAAgAAgUMABAAAAocACAAABE7ldG8AAKTK/gOeLVy7zTbtLHZ3qNZNGjUwG4DgIQACEAhzPt1gE15abhuKikPzmtTNs3HntXdD9AMIFprAAAQi+Bkxa3FE8COFRcVuvpYDCBYCIABZ3+ylmh8vxjJ/nparHIDgIAACkNWU8xNd8xNOYY+WqxyA4CAAApDVlPCcyHIAsgMBEICspt5eiSwHIDvQCwxAVlNXd/X2UsJzrCwfdYLPr/ufLvEAgjMUBQEQgKymL1d1dVdvL33NhgdB/teuljMeEBCsoShoAgOQ9fTlOv2Srq6mJ5ymNZ9xgIDgDUVBDRCAQFCQ07d9fsZUvwNBsf8QQ1HoE6jl+nym8vNIAAQgMPTlWtCmQbo3AwiUhWUYiiKVn08CIACBkUkJmEBQbMrQoSgIgAAEQqYlYAJB0ShDh6LIiCToadOmWcuWLS0vL8969eplCxcuLLHsc889Z927d7d69epZzZo1rUuXLvbkk09GlPE8z8aOHWtNmjSx6tWrW58+feyzzz5LwZ4AyESZmIAJBG0oipwSlmt+kzQMRZH2AGj27Nk2atQoGzdunC1evNg6d+5s/fr1s02bNsUsX79+fbv11lttwYIFtnTpUhs+fLh7vPbaa6Eyd999t91///02Y8YM+/DDD12gpHUWFzPSKxA03AsMyIyhKCQ6CErnUBQ5nqpL0kg1Pj169LAHHnjATR84cMCaN29u1157rY0ePTqudXTt2tXOOeccmzhxoqv9adq0qd1www124403uuVFRUXWuHFjmzlzpg0ePPiQ69uxY4fVrVvXPa9OnTqHuYcA0mnBmq025JEPDlnuz5efRII0UMGbocty/U5rDtC+ffts0aJFNmbMmNC8SpUquSYr1fAcioKdt956y1atWmV33XWXm7d27VorLCx06/DpzVCgpXXGCoD27t3rHuFvIIDskKkJmEDQ9M+woSjSGgBt2bLF9u/f72pnwml65cqVJT5PkV2zZs1c0JKbm2sPPvig9e3b1y1T8OOvI3qd/rJokyZNsgkTJiRgjwBkmkxNwASCKDeDhqJIew5QedSuXduWLFliH330kd1xxx0uh2jevHnlXp9qoBRU+Y+vvvoqodsLIH0yNQETQHqltQaoYcOGrgZn48aNEfM1nZ+fX+Lz1EzWtm1b93/1AluxYoWrxTnjjDNCz9M61AssfJ0qG0u1atXcA0D24V5gADKuBqhq1arWrVs3mzt3bmiekqA1XVBQEPd69Bw/h6dVq1YuCApfp3J61BusLOsEkD24FxiAjBsIUc1Xw4YNc2P79OzZ06ZOnWq7d+92Xdtl6NChLt9HNTyivyrbpk0bF/S88sorbhyg6dOnu+U5OTl2/fXX2+23327HHHOMC4huu+021zNs4MCBad1XAOmTaQmYAAIeAA0aNMg2b97sBi5UkrKaqebMmRNKYl63bp1r8vIpOBo5cqStX7/eDXLYrl07mzVrlluP76abbnLlrrjiCtu+fbv17t3brVMDLQIIrkxKwASQXmkfBygTMQ4QAAAVT4UZBwgAAATH/gy6ITEBEAAACNwNiSvkOEAAAKDimJOBNyQmAAIAAIG7ITEBUArp4OrGjC8u+dr9TfXBBgAg1Rau3XZQzU84XQm1XOVSiRyggLZ9AgAQ5BsSUwMU0LZPAACCfENiAqCAtn0CABDkGxITAAW07RMAgFTekFiigyB/WstTPR4QAVBA2z4BAAjyDYlJgg5o2ycAAEG+ITEBUIraPpXwHCvLJ+e/EXCq2z4BAAjyDYlpAgto2ycAAEFGABTQtk8AAIKMJrCAtn0CABBkBEABbfsEACDIaAIDAACBQwAEAAAChyYwAIGhW86QhwdACIAABIJuOqz77oXfmkZjdGkYCnpiAsFDExiAQAQ/I2YtPui+fBqgVPO1HECwEAAByPpmL9X8xBqJ3fvvQ8tVDkBwEAAByGrK+Ymu+Ymm5SoHIDgIgABktcIdxQktByA7EAAByGrbdu1NaDkA2YEACEBWq1+zakLLAcgOBEAAslp+3eoJLQcgOxAAAchquumwxvspjZarHIDgIAACkPU3IdZghzklLNd8LVc5AMFBAAQg62mk5+mXdD2oJkjTms9I0EDwcCsMAIGgIKdv+3zuBQbAIQACEBhq5ipo0yDdmwEgA9AEBgAAAocACAAABA4BEAAACBwCIAAAEDgEQAAAIHAIgAAAQOAQAAEAgMAhAAIAAIGTsACouLjYpkyZkqjVAQAAZEYAtHnzZnv55Zft9ddft/3797t53333nf3+97+3li1b2uTJk5O1nQAAAKm/Fca7775r5557ru3YscNycnKse/fu9vjjj9vAgQOtcuXKNn78eBs2bFjitgwAACDdNUC//e1v7Yc//KEtXbrURo0aZR999JFdcMEFduedd9ry5cvtqquusurVqydrOwEAABImx/M8L56CDRo0sPnz51v79u3t22+/tVq1atlzzz1n559/vmUb1XLVrVvXioqKrE6dOuneHAAAkODrd9w1QP/+97+tYcOG7v+q6alRo4Z16NAh3qcDAABUvBwgUVNXYWGh+78qjlatWmW7d++OKNOpU6fEbiEAAMgK+w94tnDtNtu0s9ga1c6znq3qW26lnMxuAqtUqZJLfo5V3J+vv37vsIqMJjAAABJrzqcbbMJLy21DUXFoXpO6eTbuvPbWv0OTlF+/464BWrt2bSK2DQAABDD4GTFrsUVXoRQWFbv50y/pmrAgKF5xB0AtWrRI7pYAAICsbPaa8NLyg4If0Tw1gGl53/b5KW0OizsJ+u6773a9v3zvvfee7d27NzS9c+dOGzlyZOK3EAAAVFgL126LaPaKFQRpucqlUtwB0JgxY1yQ4xswYIB9/fXXoek9e/bYQw89lPgtBAAAFdamncUJLZfyACg6+TnO3GkAABBgjWrnJbRconA3eAAAkDTq6q7eXiVl92i+lqtcKhEAAQCApFFis7q6S3QQ5E9rearHAyrTQIiPPvqouwWGfP/99zZz5szQ6NDh+UEAAAA+dXFXV/focYDyEzwOUFIGQmzZsqUb6DAI4wUxECIAABVvJOikDIT49ttvW6tWrRKxfQAAIIByK+VYQZsGlgnizgFq06aNC4B+8Ytf2KxZsyK6wAMAAFQkcdcAvfXWWzZv3jz3+POf/2z79u2z1q1b25lnnmk/+MEP3KNx48bJ3VoAAIBU5gCFKy4utvfffz8UEC1cuNC+++47a9eunS1btswqOnKAAADI7ut3uQIgn2qBdEuMV1991Y0CvWvXLu4GDyCwCZgA0ispSdB+wPPBBx+4hGjV/Hz44YfWvHlzO+200+yBBx6w008//XC3HQCSdjfq6C64TdLYBRdAesVdA6RcHwU8SoRWoHPqqae6v02aZN8XB01gQPYFPyNmLT7obtR+3Y/GJyEIAoJ1/Y67F9j8+fOtQYMGLhA666yzrG/fvlkZ/ADIvmYv1fzE+qXnz9NylQMQHHEHQNu3b7eHH37YatSoYXfddZc1bdrUOnbsaNdcc409++yztnnz5nJvxLRp09xAi3l5edarVy+XVF2SRx55xNU+HXHEEe7Rp0+fg8pfeumlbtDG8Ef//v3LvX0AKi7l/IQ3e0VT2KPlKgcgOOIOgGrWrOmCiMmTJ7umsC1bttjdd9/tAiL9Peqoo6xDhw5l3oDZs2fbqFGjbNy4cbZ48WLr3Lmz9evXzzZt2hSzvHKPhgwZ4vKQFixY4HKQzj777IPGJdK2btiwIfRQ130AwaOE50SWA5Adyn0zVAVE9evXdw/VxFSuXNlWrFhR5vXce++9dvnll9vw4cOtffv2NmPGDBdUPfbYYzHLP/XUUzZy5Ejr0qWL63av+5MdOHDA5s6dG1GuWrVqlp+fH3poGwEET8Oa1RJaDkDAAiAFGWpqUm3PgAEDrF69enbyySfbgw8+6AIMNWN9/vnnVtZeZYsWLXLNWKENqlTJTat2Jx579uxxYxApEIuuKWrUqJEdd9xxNmLECNu6dWuJ69i7d69LnAp/AMgS8fZypzc8EChxd4NXwLN7924X7GjU5/vuu8/OOOMMd4uM8lIz2v79+w8aQVrTK1eujGsdN998s8tHCg+i1Px14YUXuh5ra9assVtuucUFbQqqcnNzD1rHpEmTbMKECeXeDwCZa8uuvQktByBgAdA999zjAp9jjz3WMoXykZ5++mlX26MEat/gwYND/1eidqdOnVygpnLqwRZtzJgxLg/Jpxog5RYBqPg04GEiywEIWAB05ZVXJvzFGzZs6GpkNm7cGDFf06ppKs2UKVNcAPTmm2+6AKc0umeZXmv16tUxAyDlC+kBIPtotGcNeFhYVByzK7xavvLr/mdUaADBUe4k6ESoWrWqdevWLSKB2U9oLigoKPF5ykOaOHGizZkzx7p3737I11m/fr3LAWLcIiB4dKsLjfYcK83Hn9ZybokBBEtaAyBR05PG9nniiSdcLzIlLCvXSL3CZOjQoa6JyqcxiG677TbXS0xjBxUWFrqH7kMm+vub3/zG3bLjiy++cMHU+eefb23btnXd6wEEj0Z51mjPqukJp2lGgQaCqUz3AkuGQYMGuUEUx44d6wIZdW9XzY6fGL1u3TrXM8w3ffp013vs4osvjliPxhEaP368a1JbunSpC6g0eKMSpDVOkGqMaOYCgh0E9W2fz81QARz+3eCzFfcCAwCg4knKvcAAAACyBQEQAAAIHAIgAAAQOARAAAAgcAiAAABA4BAAAQCAwEn7OEAAACAY9h/wMmYsLgIgAACQdHM+3WATXlpuG4qKQ/N0nz7dikYDlaYaTWAAACDpwc+IWYsjgh/RTYo1X8tTjQAIAAAktdlLNT+xbjvhz9NylUslAiAAAJA0yvmJrvkJp7BHy1UulQiAAABA0ijhOZHlEoUACAAAJI16eyWyXKIQAAEAgKTp1uIIO1RPdy1XuVQiAAIAAEmz6Mt/26Hym7Vc5VKJAAgAACQNOUAAACBwGpEDBAAAgqZnq/puxOeS0oA0X8tVLpVoAgMAAEmje33pdhcSHQT501qe6nuCEQABAICk0r2+pl/S1fLrRnZ117Tmp+NeYNwMFQAAJJ2CnL7t87kbPAAACJbcSjlW0KaBZQKawAAAQOAQAAEAgMAhAAIAAIFDAAQAAAKHAAgAAAQOARAAAAgcAiAAABA4BEAAACBwCIAAAEDgEAABAIDAIQACAACBQwAEAAAChwAIAAAEDgEQAAAInMrp3gAAABAM+w94tnDtNtu0s9ga1c6znq3qW26lnLRsCwEQAABIujmfbrAJLy23DUXFoXlN6ubZuPPaW/8OTSzVaAIDAABJD35GzFocEfxIYVGxm6/lqUYABAAAktrspZofL8Yyf56Wq1wqEQABAICkUc5PdM1POIU9Wq5yqUQOUECTvwAASAVd8xJZLlEIgFJE7Zvj/7bMCnfsDc3Lr1PNxv/ohLQkfwEAkAr6wZ/IcolCE1iKgp+rZi2OCH5E01elKfkLAIBUUGuHenuV1N6h+VqucqlEAJSCZq/Rz31SahktT3XyFwAAqaBUD3V1l+ggyJ/W8lSnhBAAJdkHa7ba9j3flVpGy1UOQHLph8aCNVvtxSVfu7/88ABSQ6ke0y/pavl1I5u5NK356UgFIQcoyRZ8viXucqcc0zDZmwMEVqYNwgYETf8OTaxv+/yM6QxEAJR08R5YeoMByR6ELbqh2R+ELV2/QIGgya2UYwVtGlgmoAksyeI90JlyQgDZJlMHYQOQXgRASXZS6wZWr0aVUsscUaOKKwcgOIOwAUgvAqAUVPdNvrBjqWUmXdiRARGBgA3CBiC9CIBSQLkFM5T9Xicy+10JmJpP7gEQvEHYAKQXSdABzX4HgjYImxKeY2X55Py3K26qB2EDkF4EQAHNfgeCNgibensp2PEyZBA2AOlFExiArJeJg7ABSC9qgAAEgoKcM9s1ticXfGFfbttjLerXsJ8XtLSqlfkdCAQRARCAwI4E/ei7axkJGggofvoACMxI0NHjAfkjQWs5gGAhAAKQ1RgJGkAsBEAAshojQQOIhQAIQFZjJGgAsRAAAchqjAQNIBYCIACBGAm6pGEONV/LGQkaCBYCIACBGAlaooMgRoIGgisjAqBp06ZZy5YtLS8vz3r16mULFy4ssewjjzxip556qh1xxBHu0adPn4PKe55nY8eOtSZNmlj16tVdmc8++ywFewIgEzESNICMGwhx9uzZNmrUKJsxY4YLfqZOnWr9+vWzVatWWaNGjQ4qP2/ePBsyZIidfPLJLmC666677Oyzz7Zly5ZZs2bNXJm7777b7r//fnviiSesVatWdtttt7l1Ll++3D0HQPBwQ2IA4XI8VZekkYKeHj162AMPPOCmDxw4YM2bN7drr73WRo8efcjn79+/39UE6flDhw51tT9Nmza1G264wW688UZXpqioyBo3bmwzZ860wYMHH3KdO3bssLp167rn1alTJwF7CQAAkq0s1++0NoHt27fPFi1a5JqoQhtUqZKbXrBgQVzr2LNnj3333XdWv359N7127VorLCyMWKfeDAVa8a4TAABkt7Q2gW3ZssXV4Kh2JpymV65cGdc6br75Zlfj4wc8Cn78dUSv018Wbe/eve4RHkECAIDslRFJ0OU1efJke/rpp+35558/rNyeSZMmuVoi/6EmOAAAkL3SGgA1bNjQcnNzbePGjRHzNZ2fn1/qc6dMmeICoNdff906deoUmu8/ryzrHDNmjGsv9B9fffXVYewVAADIdGkNgKpWrWrdunWzuXPnhuYpCVrTBQUFJT5PvbwmTpxoc+bMse7du0csU68vBTrh61ST1ocffljiOqtVq+aSpcIfAAAge6W9G7y6wA8bNswFMj179nTd4Hfv3m3Dhw93y9WzS93b1Uwl6vauMX7+9Kc/ubGD/LyeWrVquUdOTo5df/31dvvtt9sxxxwT6gavPKGBAwemdV8BAEBmSHsANGjQINu8ebMLahTMdOnSxdXs+EnM69atcz3DfNOnT3e9xy6++OKI9YwbN87Gjx/v/n/TTTe5IOqKK66w7du3W+/evd06GQMIAABkxDhAmYhxgAAAqHgqzDhAAAAA6UAABAAAAocACAAABA4BEAAACBwCIAAAEDgEQAAAIHAIgAAAQOAQAAEAgMAhAAIAAIFDAAQAAAKHAAgAAAQOARAAAAgcAiAAABA4BEAAACBwCIAAAEDgEAABAIDAIQACAACBQwAEAAAChwAIAAAEDgEQAAAIHAIgAAAQOARAAAAgcAiAAABA4BAAAQCAwCEAAgAAgUMABAAAAocACAAABA4BEAAACBwCIAAAEDgEQAAAIHAIgAAAQOAQAAEAgMAhAAIAAIFDAAQAAAKHAAgAAAQOARAAAAgcAiAAABA4BEAAACBwCIAAAEDgEAABAIDAIQACAACBQwAEAAAChwAIAAAETuV0bwAAAAiG/Qc8W7h2m23aWWyNaudZz1b1LbdSTlq2hQAIAAAk3ZxPN9iEl5bbhqLi0LwmdfNs3HntrX+HJpZqNIGlOPJdsGarvbjka/dX0wAABCH4GTFrcUTwI4VFxW6+lqcaNUABjXwBAEgF/djX9S/WT37NUwOYlvdtn5/S5jBqgAIa+QIAkArK+Ym+/kUHQVqucqlEAJTmyFe0nOYwAEA22rSzOKHlEoUAKKCRLwAAqaDeXokslygEQAGNfAEASAV1dVfOa0nZPZqv5SqXSgRAAY18AQBIBSU2q8OPRAdB/rSWp3o8IAKggEa+AACkino7T7+kq+XXjfyxr2nNT0dvaLrBpyjyVW8vBTtehkS+AACkkoIcdXXPlJGgczzPYzS+KDt27LC6detaUVGR1alTJyFvNOMAAQCQOddvaoACGvkCABBkBEAppGCnoE2DVL4kgAy9ESOA9CIAAhAINEMDCEcvMACBvR2NprkdDRBMBEAAAns7GtF8bkcDBA8BUIq/iBes2WovLvna/eX+X0D6b0cj3I4GCB5ygFKE/AMgPQqLvk1oOQDZgRqgNOYfFJJ/ACTdtt37EloOQHa0hFADlMb8A81TB1wt1xhBdMcFEq9+rWoJLQcgO1pCqAFKc/6BgiDyD4Dkya+Tl9ByALKjJSTtAdC0adOsZcuWlpeXZ7169bKFCxeWWHbZsmV20UUXufI5OTk2derUg8qMHz/eLQt/tGvXztJFA64lshyAstFgh/VqVCm1zBE1qnBDYiBNLSGWpp6YaQ2AZs+ebaNGjbJx48bZ4sWLrXPnztavXz/btGlTzPJ79uyx1q1b2+TJky0/P7/E9Z5wwgm2YcOG0OPdd9+1dNFos4ksByDxuCEiELyWkLQGQPfee69dfvnlNnz4cGvfvr3NmDHDatSoYY899ljM8j169LB77rnHBg8ebNWqldxeX7lyZRcg+Y+GDRtaOn99qo2zpMH2NV/LVQ5A4ulLdfue70oto+Wp/vIFgmJThraEpC0A2rdvny1atMj69OnzfxtTqZKbXrBgwWGt+7PPPrOmTZu62qKf/exntm7dulLL7927191BNvyRKEpsVoKXRAdB/rSWkwANBOvLFwiKhjWrJbRchQ+AtmzZYvv377fGjRtHzNd0YWFhuderPKKZM2fanDlzbPr06bZ27Vo79dRTbefOnSU+Z9KkSVa3bt3Qo3nz5pZIym6ffklXy68b2cylac1PR/Y7EBQ0QwPpdcDzElouUbKuG/yAAQNC/+/UqZMLiFq0aGHPPPOMXXbZZTGfM2bMGJeL5FMNUDKCIHV1507UQHqaodXbJNbXa85/f4zQDA0kx4dxNi+r3KnHHmlZHwApLyc3N9c2btwYMV/TpSU4l1W9evXs2GOPtdWrV5dYRvlEpeUUJYqauQraNEj66wCI/NypmVldbRXshAdBNEMDqRBvzU5AeoFVrVrVunXrZnPnzg3NO3DggJsuKChI2Ovs2rXL1qxZY02a0MwEBBXN0ED6FLRumNByWdEEpmanYcOGWffu3a1nz55uXJ/du3e7XmEydOhQa9asmcvR8ROnly9fHvr/119/bUuWLLFatWpZ27Zt3fwbb7zRzjvvPNfs9c0337gu9qppGjJkSBr3FEC60QwNpMdJbRq4sbhK642p5SoXmABo0KBBtnnzZhs7dqxLfO7SpYtLXvYTo9V7Sz3DfApoTjzxxND0lClT3OP000+3efPmuXnr1693wc7WrVvtyCOPtN69e9sHH3zg/g8g2GiGBtLzuZt8YUe7atbiEstoeap7Q+d4XorTrisAJUGrN1hRUZHVqVMn3ZsDAECFN+fTDTb+b8uscMfe0Lz8OtVs/I9OSFhv6LJcv7OuFxgAAMg8/TOsNzQBEAAACFwzdNpvhgoAAJBqBEAAACBwCIAAAEDgEAABAIDAIQACAACBQwAEAAAChwAIAAAEDgEQAAAIHAIgAAAQOIwEHYN/ezTdUwQAAFQM/nU7ntucEgDFsHPnTve3efPmiT42AAAgBddx3RS1NNwNPoYDBw7YN998Y7Vr17acnJyER6cKrL766qusvNM8+1fxcQwrtmw/fkHYR/av/FTzo+CnadOmVqlS6Vk+1ADFoDftqKOOsmTShzYbP7g+9q/i4xhWbNl+/IKwj+xf+Ryq5sdHEjQAAAgcAiAAABA4BEApVq1aNRs3bpz7m43Yv4qPY1ixZfvxC8I+sn+pQRI0AAAIHGqAAABA4BAAAQCAwCEAAgAAgUMABAAAAocAqIymTZtmLVu2tLy8POvVq5ctXLiwxLIzZ850I0mHP/S86FErx44da02aNLHq1atbnz597LPPPosos23bNvvZz37mBsWqV6+eXXbZZbZr166M37/vvvvObr75ZuvYsaPVrFnTjcw5dOhQN8p2OL1e9HomT56c8fsnl1566UFl+vfvn7bjl4x9jF7uP+65556MP4ayfft2u/rqq91nTL1rjj32WHvllVfKtM7i4mK3jgYNGlitWrXsoosuso0bNyZl/+LZnrLu46RJk6xHjx5udPtGjRrZwIEDbdWqVRHrOOOMMw46hldddVWF2L/x48cftO3t2rVL2zFM9P7F+nzpoeek4/iVdR9jbZse55xzTnqvhR7i9vTTT3tVq1b1HnvsMW/ZsmXe5Zdf7tWrV8/buHFjzPKPP/64V6dOHW/Dhg2hR2FhYUSZyZMne3Xr1vVeeOEF7+OPP/Z+9KMfea1atfK+/fbbUJn+/ft7nTt39j744ANv/vz5Xtu2bb0hQ4Zk/P5t377d69Onjzd79mxv5cqV3oIFC7yePXt63bp1i1hPixYtvN/97ncR69m1a1fG758MGzbMHZ/wMtu2bYsok6rjl6x9DF+mh9adk5PjrVmzJuOP4d69e73u3bt7P/zhD713333XW7t2rTdv3jxvyZIlZVrnVVdd5TVv3tybO3eu949//MM76aSTvJNPPjnh+5esfezXr5871p9++qmbr7JHH310xDE6/fTT3WuFH8OioqIKsX/jxo3zTjjhhIht37x5c8R6UnUMk7F/mzZtiti3N954Q3f69N5+++2UH7/y7OPWrVsjtkvnYW5urjsn03ktJAAqA128r7766tD0/v37vaZNm3qTJk2KWV4HVwe0JAcOHPDy8/O9e+65JyJoqFatmvfnP//ZTS9fvtyd6B999FGozKuvvuouQF9//bWXyfsXy8KFC93+fPnllxEXz/vuu89LtmTsnwKg888/v8TlqTx+qTqG2t8zzzwzYl6mHsPp06d7rVu39vbt21fudeozWaVKFe8vf/lLqMyKFSvccVVQXxH2MZouqNr+d955J+IC+qtf/cpLtmTsnwIgXRhLkspjmIrjp+PUpk0bdw1J9fErzz5G03dF7dq1QwF4uq6FNIHFad++fbZo0SJXLRd+zzBNL1iwoMTnqXquRYsW7sZ9559/vi1btiy0bO3atVZYWBixTt3DRNWJ/jr1V1V93bt3D5VReb32hx9+mNH7F0tRUZGr+tQ+hVNziaqmTzzxRNe08v3331siJXP/5s2b55oVjjvuOBsxYoRt3bo1tCxVxy/Z++hTk8Hf//53V/UcLROP4d/+9jcrKChwTQWNGze2Dh062J133mn79++Pe51arubc8DJqXjn66KNLfV8zZR9L+hxK/fr1I+Y/9dRT1rBhQ7eOMWPG2J49e6yi7J+aS9TM3rp1a9dMsm7dutCyVB3DVBw/vcasWbPsF7/4xUE360728Tuc75lw//u//2uDBw92qRHpvBZyM9Q4bdmyxZ2QOkHDaXrlypUxn6ML4mOPPWadOnVyXzhTpkyxk08+2V1gdLNVHXB/HdHr9Jfpry6uEQetcmX3xeWXydT9i6Y2eOUEDRkyJOIGhtddd5117drV7dP777/vPrgbNmywe++9N+P3T/k+F154obVq1crWrFljt9xyiw0YMMB9WHNzc1N2/JK5j+GeeOIJl0eifQ6Xqcfw888/t7feestdEJVTsXr1ahs5cqS7GGok4XjWqeNUtWrVg4L28M9pJu9jtAMHDtj1119vp5xyirtQ+n7605+6QFhBxNKlS91nVXlCzz33XMbvny6UymfT+azzbsKECXbqqafap59+6s7XVB3DVBy/F154weUMKf8wXCqOX3n3MZxyhXRcFAT50nUtJABKIkX1evh0YTn++OPtoYcesokTJ1qQ9k8f5p/85Ccu0W369OkRy0aNGhX6vy7E+qK68sorXeJmOoe6j2f/9CvGp2RvbX+bNm1crdBZZ51l2XaOKljSF3V0onSmHkNd7PWl+fDDD7uAtFu3bvb111+7GqpYF5eKqKz7qJoGXYDefffdiPlXXHFFxLmsZFSdwwrsdU5n8v7pR0f4+aeASMHAM888E7O2siIfPwUO2l8FOhXh+MXafm1fz549Ld1oAouTqhV1ckb3GtB0fn5+XOuoUqWKax5QhC/+80pbp/5u2rQpYrmaFpQNH+/rpmv/ooOfL7/80t54442I2p9Y9OWlffziiy+sIuxfOFW/67XCj3Eqjl8q9nH+/PnuF+Uvf/nLQ64nU46hLgLqUaPn+RTg6RejqvLjWaf+qqx+dcf7upm0j+GuueYae/nll+3tt9+OWcMXfQyltPM90/bPp5oePSf8c5iKY5js/dN36Jtvvhn3ZzDRx+9wv2d2795tTz/99EFBabquhQRAcdIvWkXmc+fOjYjcNR3+C7o0qjb85JNP3AkvajbRgQtf544dO1x7pr9O/dWHVm2uPlWX6rX9EzxT9y88+FH7vD64yhE5lCVLlrh23ejqzkzcv2jr1693OUB+mVQdv1Tso365af2dO3euMMdQzTy6AKic71//+pfbP60vnnVquQLD8DIKBJVjEu/7ms59FNW8Kvh5/vnn3fmn7554jqGUdr5nyv7FymtTzYe/7ak6hsnev8cff9x9psK7j6fy+B3u98xf/vIX27t3r11yySUR89N2LSxX6nRAqeufstJnzpzpMtKvuOIK1/XP7zb885//3Bs9enSo/IQJE7zXXnvNdRdetGiRN3jwYC8vL891Gwzv+qd1vPjii97SpUtdD5tYXf9OPPFE78MPP3TdJI855pikdYNP5P6pV4O6Mh511FGuS2d4N0h1/ZT333/f9QjQcq1n1qxZ3pFHHukNHTo04/dv586d3o033uh6kajr6ptvvul17drVHZ/i4uKUH79k7KNP3Wlr1KjheqxEy+RjuG7dOtfb5JprrvFWrVrlvfzyy16jRo2822+/Pe51+l2o1W38rbfecl2oCwoK3CMZkrGPI0aMcL391L06/HO4Z88et3z16tVuGAPtm85lfR+pZ9Jpp51WIfbvhhtucPumbX/vvffc8BsNGzZ0vd1SfQyTsX9+Tytt/80333zQa6by+JVnH329e/f2Bg0a5MWSjmshAVAZ/eEPf3AnocZAUFdAjUcQ3g1R3aJ9119/fahs48aN3TgPixcvjlifuv/ddtttbrlOqLPOOst9CKLHUNBBrlWrlhuzZfjw4e7im+n7pw+iYuxYD3/8Cl10e/Xq5b6cdeE9/vjjvTvvvDMigMjU/dPF4+yzz3YXe3WxVVdwjYcRPY5OKo9fovfR99BDD3nVq1d3XVOjZfIx9AM0bZ8+X7oo3HHHHd73338f9zpFX8IjR470jjjiCBcIXnDBBS6ASJZE72NJn0N/HBZdhHWxrF+/vluHxlf5zW9+k7RxZBK9f7qoNmnSxK2vWbNmblpBQbqOYTLOUf1Q0TGLvj6k4/iVZx81Fpy2//XXX/diSce1MEf/lK/uCAAAoGIiBwgAAAQOARAAAAgcAiAAABA4BEAAACBwCIAAAEDgEAABAIDAIQACAACBQwAEIKFycnLcHaszVcuWLW3q1Knp3gwAaUYABKBMLr30Uhs4cGCJyzds2BBxd+5EO+OMM1yQVdJDywHgUCofsgQAlEGi75Ae7bnnngvdJfurr76ynj17uhvtnnDCCW5eSTfITBS9drJfA0DyUQMEIGlNYF988YWbVtDygx/8wGrUqOHuJr9gwYKI57z77rt26qmnWvXq1a158+Z23XXX2e7du2Ouv379+i7I0uPII4908xo0aBCa9/bbb7tgqFq1aq6563/+539K3V7dYfqXv/ylW1edOnXszDPPtI8//ji0fPz48dalSxd79NFH3V2r8/Ly3Pw5c+ZY7969rV69eu71zz33XHcHcl+8+/7ee++5WistP+KII6xfv37273//2y3Tna4nTZrkXlfvjZ7/7LPPlvGIAIiFAAhA0t16661244032pIlS+zYY4+1IUOG2Pfff++WKWjo37+/XXTRRbZ06VKbPXu2C4iuueaaMr/OokWL7Cc/+YkNHjzYPvnkExe83HbbbTZz5swSn/PjH//YNm3aZK+++qp7fteuXe2ss86ybdu2hcqsXr3a/vrXv7pgRvsgCtBGjRpl//jHP2zu3LlWqVIlu+CCC1zQEu++a55eq3379i4w0n6fd955tn//frdcwc8f//hHmzFjhi1btsx+/etf2yWXXGLvvPNOmd8bAFHKfRtVAIGkuzyff/75JS7X18rzzz/v/r927Vo3/eijj4aWL1u2zM1bsWKFm77sssu8K664ImId8+fP9ypVquTu4F0af/3//Oc/3fRPf/pTr2/fvhFldFfs9u3bh6ZbtGjh3XfffaHX0V2lo+9c36ZNG++hhx5y/x83bpxXpUoVb9OmTaVuy+bNm922fPLJJ3Hvu+5sfcopp8Rcn7ZJdy3XncLD6f3S8wAcHmqAACRdp06dQv9v0qSJ+6taF1Fzk2poatWqFXqoGUg1KWvXri3T66xYscJOOeWUiHma/uyzz0K1KuH02rt27XJNWOGvr9cNb85q0aJFqLnNp3WqNqd169au6UzNbbJu3bq4992vAYpFtU579uyxvn37RmybaoTCtw1A+ZAEDSDpqlSpEvq/8mLEbypSAHLllVe6vJ9oRx99dFK3S6+toGTevHkHLVNuj69mzZoHLVdTlQKjRx55xJo2ber2p0OHDqEE7Xj2XXk9pW2b/P3vf7dmzZpFLFN+E4DDQwAEIK2Uc7N8+XJr27btYa/r+OOPd0nF4TSt3Jvc3NyYr11YWGiVK1cO1eDEY+vWrbZq1SoX/Ch5W5S/U1aqHVL+0IQJEw5aprwgBTqqUTr99NPLvG4ApSMAAlBmRUVFoWRgn5qR1IOrrG6++WY76aSTXNKzemOptkUB0RtvvGEPPPBAmdZ1ww03WI8ePWzixIk2aNAgl1isdTz44IMxy/fp08cKCgrcuEZ33323C5S++eYbV+uihObu3bvHfJ56a2l/H374YVeDpCBl9OjRZd73MWPGWMeOHW3kyJF21VVXue716sWmxOyGDRu65GklPqvGSD3O9L4roFOT27Bhw8r8egD+DwEQgDJTk9GJJ54YMe+yyy5zXcXLUwuiXk3qLaXaFOVRt2nTxgUwZaUanWeeecbGjh3rgiAFJ7/73e/c4I2xqEnqlVdeca89fPhw27x5s+tKf9ppp1njxo1LfB31+Hr66adds52avY477ji7//77yzwIowKu119/3W655RY3npGaxHr16uVyi0T7oNwj9Qb7/PPPXbOc9lHlARyeHGVCH+Y6AAAAKhR6gQEAgMAhAAIAAIFDAAQAAAKHAAgAAAQOARAAAAgcAiAAABA4BEAAACBwCIAAAEDgEAABAIDAIQACAACBQwAEAAAChwAIAAAEzv8Hzqnqt3h9Qc4AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHHCAYAAACvJxw8AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAARGRJREFUeJzt3QeUFFX69/FnGIQhDklmAFGSioiCksRVEQUxobgGZEWQVczoLuoKyoJhFRVUXEGM6CqvKyuLcREDiIKgoyBKUEwoQaICAyjBmXrP7+6/eruHnppAz/R09/dzTjF01e2uW/mpW/feSvM8zzMAAABEVSn6aAAAABAsAQAAFIGSJQAAgAAESwAAAAEIlgAAAAIQLAEAAAQgWAIAAAhAsAQAABCAYAkAACDVgqXt27fbZZddZtnZ2ZaWlmZ/+tOf3Pj169fbeeedZ/Xr13fjx40bZ4m+TMlCy3TbbbdZIjrxxBPdgLKl/UP7SSqZMWOGtW/f3jIyMtyyb9myxY1/7rnnrHXr1rbffvtZnTp19mk/TORjL1k1a9bMLrnkknhnA4kYLD3zzDPuoC5s+PDDD0Np7777bpf+qquucieViy++2I3/85//bG+++aYNHz7cjT/11FNjnk/N++WXXy6T3422TNEuJkUNsbywP//883ENOn/88Ue33IsWLSrT+SxbtszN5/vvvy/T+QC+n376yS644AKrVq2aTZgwwR33NWrUsC+//NJdSFu2bGlPPPGEPf744xV+pcX7PFFQXl6e1a5d284+++y9pj344IPuPDlw4MC9po0cOdJN++qrr6wiCDrPX3nllVYRzZ49OyKf6enp1rBhQ1eQ8cUXX1S4a6+vsiWYO+64w5o3b77X+FatWoX+P2vWLDvmmGNs1KhREWk0XgfHjTfeWGb50wbTRu/Tp09Mf7ewZQr3+9//PmI9qDRKwdU555zjpvmysrJiehJcsmRJ3Eq6FCzdfvvt7k5Md+BlGSxpPgo0Na9wb731VpnNF/8zYsQIGzZsWMqsko8//ti2bdtmd955p/Xo0SPiYpOfn28PPfRQxPFe2v3w119/tcqVy/ZSEO/zREG6QOt8Om/evL2mffDBB2596G+0abqwH3LIIVZR9OzZ0wYMGLDX+IqUx2iuu+4669Spk+3Zs8c+//xze/TRR92+rf1ET1AqyrU3YYOl0047zTp27BiYZsOGDdamTZuo4/0i60RT2DKFO/LII93g27RpkwuWNK5///7lkMvUVKVKlXhnISXoAlbWF/WKdsxLwXNWYeNLux/qEV8qOu644+ztt992pRmHHXZYRECkEj0FeOvWrQtduH/77Tf76KOP7JRTTtnnee/YscOVEsaCgqLSnN9/+eUXq169+l7jtZwKxvflvLajGMt3/PHHu+DGd+ihh7rr1bPPPmt/+ctfrMLxEsTTTz/tKbsff/xxoWneffddl6bg4H+34ODbvHmzd/3113sHHHCAV6VKFa9ly5bePffc4+Xl5UX8vj6PGzfOa9u2rVe1alWvQYMGXq9evUJ5ijaPgQMHBi7X+vXrvT/+8Y9ew4YN3W8eeeSR3jPPPFPkMq1YsaLIdbZx40aXdtSoURHjv/jiC+/cc8/16tat6+bZoUMH75VXXonIk5atW7duXn5+fmj8119/7VWvXt274IIL3GdNL5ivgw46KDBPO3fu9P70pz+5369Zs6bXu3dvb9WqVVHzuXr1am/QoEFu3Wi7tGnTxnvqqaeKtb19H374odtGtWvX9qpVq+adcMIJ3ty5c/fKl+al7dCoUSM3r2bNmnlXXnmlt2vXrkL3H83fXw8aSrJdRdtQvzNmzBjvscce81q0aOHm3bFjRy8nJ8crjqL2XW2/E0880a1v5cmn5dJ+rHlu377djdP6V360f5x//vlerVq1vHr16nnXXXed9+uvv0bMd9KkSV737t29/fff3833sMMO8x555JG98qf94YwzzvDmzJnjderUya2L5s2be//4xz8i0u3evdu77bbbvFatWrk0mu/vfvc776233gql8fMXbs+ePd4dd9wRWnea3/Dhw91+Vpp8FKaoY78keZHp06d7xx13nDuedBycfvrp3pIlS0LTox1bOpfoNwuO94+baPuhtpumH3zwwS7f2dnZ3jnnnON98803oTSlOfbCj78pU6Z4f/vb37wmTZq4eZx00knuXBG0LEWdJ8pju86cOdPl5YknngiN+/bbb924efPmeRkZGd7UqVND07StNe3++++P+A1/O2ZmZnpnnXWWt2zZsoj5+Pvt0qVLvX79+nl16tTx2rdvHzo+77zzTrfudH7Ssar9QMtV1LVD9LvXXHNNkem0DQ4//HDvk08+8Y4//ng3L503ws9BDz74oFvflSpV8j799NOYLF80/n7z4osvRozXcmv85ZdfHjFeeevatas7J2ibHH300Xt9t6hrb3H256IkXLD0zjvvuCAgfNi0aZNLs27dOu+5555zJzJtLP1fgzaC/ur7PXv2DI2XHTt2uAtZ/fr1vVtuucV79NFHvQEDBnhpaWluZwp3ySWXuN847bTT3Ilz7Nix3tlnn+09/PDDbrp+UwerdkZ/HjroCvPLL7+4i8x+++3n/fnPf/b+/ve/u+9qHvr9oGXyL3AlDZa0LrTTa2e59957vfHjx7sAQss7bdq0UDrtjPruQw89FLpY6OKVlZUVWt+6kClPypufr5deeikwT/3793e/+4c//MHN+/e//71b/wXzqeVWANC0aVN30pw4caI7UJVOB7WfRtP8A8zPg054/oGuA0MHmk5w+p7mpXEfffRRaF5r1qzxGjdu7E4ICuS0D/z1r39120bBiH5PAYPmo33En4/mH+0iVZztKv6J6qijjnJBgrbHfffd59anll0BRJDi7rvfffeduyDrIukbNmyYS/fee+/tddI74ogjXBCr7eNvr4svvjhi3row6XjQOtX+f8opp7h0+k44nfQPPfRQt98oj5quk53mHR4caJrGDR482F28tL104lXgVzB/4XRC1LjzzjvPmzBhglt+fe7Tp0+p8lGYoo79kuTl2WefdfM99dRT3fe13RWc6yLj3wTp2NI+re9rH/fPJTq+tB01XseExn/22WdR98PffvvNO/nkk13aCy+80C3z6NGjXTDz8ssvh9KV5tgLv+hp/9UNl6Yp4NVx1Llz51C60pwnymO76vipXLlyxEVV26ZGjRouWFOQoOPXp+2uPPjnjrffftt9/5BDDnHH7e233+6WUTeh4Tez/n6rc672Gd1UaJlkxIgRbpqCZeVdN1g6F+l3ihssXXrppXtdEzXohsin/UKBsm5uhgwZ4m7OtA/45yDlTYGSjjdtxx9++CEmy1eSYOn1119342+++eaI8doXr776ard+HnjgAbdvKZ3S+4KuvcXdn5MuWIo2aCVFu9soThSuqF4Hx1dffRUxXheT9PR0b+XKle7zrFmz3Pd10SwovPRFv1WcnTz84Js8eXJonC6Qurjr4pabm1vkMpU0WNLJUxfD8Ds05f/YY491d5/hdLHSiU/rRtG9fiv8JCvKU1F3ib5Fixa539COH06BU8F86gSgUh4/MPPppK9gTwFJ+N1eeGmSv0xaHt39h28ffU93ngqafToR624qWqml/10/ePRLk8IVvEgVd7v6JyoFOz///HMorUr5NP61114LXJ/F3XdFJ0c/Typt03QFhuH8k55OJOG0vTTevyj767EgrWudcMP5JSHvv/9+aNyGDRvcMXvDDTeExrVr167I/btgsOTvT5dddllEuhtvvNGN1zFb0nxEU5xjv7h52bZtmwuKFBSG0wld+3X4+MJK0/31oOM7aD9U6Z/S6QJTWL6ltMeef9HTjUH4hVk3WBq/ePHifTpPlPV29YN+lcb6rrjiCldiKn/5y1/cdJ8CN50PFUiJAkCVVPz000+hNDpGdC7ROaXg9tL5NJzyqRs3rZvw7aGgr2DJSGEKuyZq+Oc//7lX6Z5uqML55yCVvCs/4fZ1+Qrj7zfaP7UP//jjj96MGTPcDaOC3IKl6gXPNTqXqoRXQX+4wq69xd2fi5IwreF8ahWi58zhwxtvvFHq33vxxRfds9O6deu6Oj7+oAqVajHx/vvvu3T//ve/Xc39aBWsS9ucefr06e55eL9+/ULj1BRYFd9UOfu9996zWPr5559dRXE9j1fFUX9Z1eqmV69e9vXXX9uaNWtC6cePH2+ZmZnuufJf//pX1wIvWuuRkiyvaPnCFaz0qXOA1nfv3r3d/8O3i/K5detWW7hwYeC81DpOy/OHP/zBLZ//fT1LP/nkk9121XN5DWpBoXlFqwtXmm1b0u3at29ft//5tD/Kd999F5N9Vy6//HK37oYMGeK2o1pSqUJkNNdcc03EZ33HXy6fWmj5tD00327durk863M41bXzl0n2339/Vz8hfPlU/2bp0qVumxWXn5+hQ4dGjL/hhhvc3//85z8lzkc0xTn2i5sXna/U/F/7Rvg2U4XjLl262Lvvvmuxonw3aNAgtP2i5bug0hx7gwYNiqjfUtz9N97b1a+39O2337q6SX59pWOPPdb9/3e/+519+umnrm6PP03bSPXm1q5d684xapVYr1690O+pfqgqXIcfK76CrdPeeecd2717t9s+4dujpJXgdU4ueE3U0L1794h0VatWddsqmnPPPdetN18slq8of/zjH908Gzdu7Fqma99Si09V+g4Xfq7ZvHmzS6ftXdQ1IFbXEl/C1Zbs3LlzkRW8S0InZ9XED99RolWm1AGljRq+4+yrH374wQ4++GCrVCkyZvUrG2p6LH3zzTduh1Hgo6Gw5W3SpIn7v5b173//u51//vmuBZ3+vy+0PFpWXajD6cQWbuPGje6CoibRhTWL9rdLYfyLbrTmvz4dKDpZ5ebmWtu2bS1e2/XAAw+M+OwHTjoxxGLf9T311FNu3et7agUUfhIKp7yH03e0LOHdJujCoeBh/vz5oYtJ+HpVkF3Y8vnLGL58auWqk74qq2pb6OSpoC68wUJh+1N4izBRoKrgq6j1HC0f0RTn2C9uXvz98qSTTor6O2rOHivKt46tklSKL82xV9r9N97b1Q+W1FWA9mfdRClgv++++9w0BU2q7JyTk2MHHXSQCyDU152fx2jnLv84Vxc1BSs5F2zF7f9GweNNx3P4zVNRDjjggIjWkoXReb2wStuF5W1flq8o6oZBQY9uIF966SV74YUX9jpnyuuvv25/+9vfXPC2a9euEt3IxuJakrDBUqypZEGRcmG17yt688uSLquo6wRF1dEUPEHpoBCdeFavXl0urQn9fKqFR2HBTtBFNPw3xowZU2iXAjVr1nSlbfGmUoVo/lvKHrt9V81y/ZPN4sWLrWvXrsXKX8GTki7CurCoU8QHHnjAmjZt6k7CutvUhcdf9yVZvhNOOMH97iuvvOKawD/55JPut9Sc2L9AFTd/sV7PJVFUXvx1ozvoaM2j493arzTHXlmt1/LYrgqWZO7cuaGWYf5xoVI5BTKatmrVqoj0pVHYzUl5CZp/LPJWrYS/ccQRR4SCPDX3103X4MGD3TrWOUXmzJljZ511ljs/PPLII9aoUSNXSv/000+71orlcS3xpXywpLtmRbZFReZKp8BBF9egO8ySPLbR3YpKBrRBwyNqdTrnT4+lFi1auL/a2YpzJ6Leg3XR0sX4//2//+d2NjWdDT+hl3R5taz+Ha9v+fLle91Z1apVyz1KKiqfhc3fL73SnXrQb2heSqO+PUozn3hu1+Luu6K7YhX3q9mzAhs/YI6WF5V+hN8lqkRSy+L3L/Xaa6+5oOvVV1+NuKvf10dIOq70mECDlksnSHUEWliw5O9Pym9402/11K+7yViu56KO/eLmxd8v1VdPcbbbvuZbx6v6sdExXxwlOfZKojTnibLerv528AMilZLokV74DaFKl1TqpBtFBWV+IOXnoeC5yz/OFWgV1XTe/w0tp39u9ktDSlsqFyuxWL6Suueee1wJ01133eVukkSP0NS1hY4/PUb0KVgqzj4Wy/054eosxZrq7+hRgl+CEk4Hpoph/We6ulNRx4RBdzDagfxXEhTl9NNPd8/Kp0yZEhqn+T388MOu1EN1QGJJJwZ1qvjYY4+5i2dBOkh9WgZdpPTYU3VbFDTp2W7Bei5a3oJ1VIL6yJKCj/MK9uyrk5LWtw6UaEFMeD79A7bgOu/QoYO7WIwdO9ZdeAv7DQUzuqtRAPDJJ58Uum0Lm088t2tx913RHZsuQHoUp+JoBbyXXnpp1Ltv1QsMp3yHbz//Tj78u9oHop3Aikv1ysJpPamUM7zYPdp6jrb/qLRLzjjjDIuF4hz7xc2LAlQF5zqOFMQE7duxyLfqZqjuYWH5Lqgkx15JlOQ8UV7b1aeSDD3iUYmmX1/Jp886xlTCoRIIXXhFJRwqsf7HP/4RcU7QOtPv+MsQRBdvBbE6vsK3R0Xo6TwWy1dSOl9r39ObKvw6ZNofFQQp2PGpOkC0nrqjXXtjuT8nXMmSKnP7d+gFd+rw6Ly4brrpJneHfOaZZ7rKbLrI6lmsHlNMnTrVbRhF0aospzoUutDrTkB1KnTx0UGkaddee637PX1fFfd0YKueg+7QVSkwGlW6VeCi+S5YsMDduWueupPRAeMfmLGkC6FODioC1QVU60x3bDoh6O7ps88+c+muv/56dwHTsmiH0/IqeNKzY9UtadeuXWh5FRSoMqYq5ukip8p00ejgU8VWFafqxKltNnPmTFdyEe0uQyUVWnfKp+74dGevgE158h+f6QDTnaDuRLS+dMDoO1rvCvB0gT/88MNdaYWe2asCu35XFywFSKILl04ACmK0TXQ3q2BSFah1x6nfV961Hu69916Xd93lqN6JAtB4bdfi7rsKYlQpVich1W8QnaBVND1x4kS7+uqrI353xYoVruhb21z7xeTJk11FeX+b+6VT2s5XXHGFC0b12g2ti2hBeHFo+yqQ1zKo9EaBq5bBP66iUX5U2qngTydJbT/VL9EJXgFwwQqupVWcY7+4edF+p3Wu3zv66KPtwgsvdHe/K1eudNtIlYqjBTeloV6d1cGfjk3lRfVDtH/o+NE2L6yxRnGPvZIoyXmivLarT+dDHSPqMb1g4wado3S8ayhYUV6P+HV+UWmTbjzUE7qOK9XXK8679rTdVcI7evRodwwrAFGFcl3jdNwWl169omO0INUz1WP60trX5SvtOe1f//qXO09qP1RgrGupjjmdg1S/SNcw3Uip9D5cYdfemO3PXhJ0HVCw6XhJug7wm/OqwzM1XVRTTvUloab06kslvK8b9VuiJvStW7d26dRnhfpdWbBgQSjNl19+6fotUqdfxWn+qY4C1VmW5qnfVLP+gs3gg5apNJ1Sqt8gNf1UvxvqC0gdop155pmhDtj8puvhna+JmrwrH2rm7a8X9fekpv9qDq3vFNU8WJ3kqQm2msurqWdQp5RaN9pe6h9D+VR+1fXB448/HpFO+VUfH+oTpOC+oM7V1JeT5qfmxMqfOtVUH0zh1K+I1om2qdKpCbzmHd4kWv3/aLya3RenU8qitmt4h3AFRVsf0RS172rdqnms1nNB6q9H20D9MIU3AVanc2omrU4p1afKtddeu1enlK+++qrr40mdxKmPIPUV5DdVD++DpbD9tuA6U6eG6j9F+5GOHR1jd911V8TxV1inlOr/Rd1BaB/RvhLUeWFR+ShMcY794uZFtO+oqwVtG61DNV9XX07qNDBWXQeImkXfeuutoTzpGNK29fsik9Iee4X1l+Pv1+H7e0nPE+W1XWX58uWh60jBbjjUpN/PszrfLEj9/qn/Oe2zan6v46ywThsLbi+//zotp5q2l7ZTysKG8OX3O6UsKOgcFIvli6aw/candaB5bdmyxX1W55F+p6o6/rRfRTsXBF17i3stCZKmf0oVAgJIKrpb1KMmFU2X5M4WAJJdytdZAgAACEKwBAAAEIBgCQAAIAB1lgAAAAJQsgQAABCAYAkAACCZOqXcV+pM7scff3QdA5bmjfIAAKD8qaejbdu2uU4no710tyylXLCkQMl/SR8AAEgsq1atCr2NoLykXLDkv2pCK1uvHgAAABVfbm6uK+woi1eBFSXlgiX/0ZsCJYIlAAASS1ocqtBQwRsAACAAwRIAAEAAgiUAAIAABEsAAAABCJYAAAACECwBAAAEIFgCAAAIQLAEAAAQgGAJAAAgQMr14A0gOeXle5az4mfbsG2nNayVYZ2b17P0SrwsG8C+I1gCkPBmLFlrt7+2zNZu3Rka1ygzw0b1bmOntm0U17wBSHw8hgOQ8IHSVZMXRgRKsm7rTjde0wFgXxAsAUjoR28qUfKiTPPHabrSAUBpESwBSFiqo1SwRCmcQiRNVzoAKC2CJQAJS5W5Y5kOAKIhWAKQsNTqLZbpACAagiUACUvdA6jVW2EdBGi8pisdAJQWwRKAhKV+lNQ9gBQMmPzPmk5/SwD2BcESgISmfpQm9j/asmpXjRivzxpPP0sA9hXBEoAkUVjZEgAkQbA0YcIEa9asmWVkZFiXLl0sJyen0LTPPPOMpaWlRQz6HoDU7pRyXW5ki7f1uXRKCSBJgqUpU6bY0KFDbdSoUbZw4UJr166d9erVyzZs2FDod2rXrm1r164NDT/88EO55hlAxUCnlABSIlh64IEHbPDgwTZo0CBr06aNPfroo1a9enWbNGlSod9RaVJ2dnZoyMrKKtc8A6gY6JQSQNIHS7t377YFCxZYjx49/pehSpXc5/nz5xf6ve3bt9tBBx1kTZs2tbPPPtuWLl1aTjkGUJHQKSWApA+WNm3aZHl5eXuVDOnzunXron7n0EMPdaVOr7zyik2ePNny8/Pt2GOPtdWrV0dNv2vXLsvNzY0YACQHOqUEkBKP4Uqqa9euNmDAAGvfvr1169bNpk2bZvvvv7899thjUdOPHj3aMjMzQ4NKowAkBzqlBJD0wVKDBg0sPT3d1q9fHzFen1UXqTj2228/O+qoo+ybb76JOn348OG2devW0LBq1aqY5B1A/NEpJYCkD5aqVKliHTp0sJkzZ4bG6bGaPqsEqTj0GG/x4sXWqFGjqNOrVq3qWs+FDwCSr1PK7MzILkT0mU4pAcRCZYszdRswcOBA69ixo3Xu3NnGjRtnO3bscK3jRI/cmjRp4h6nyR133GHHHHOMtWrVyrZs2WJjxoxxXQdcdtllcV4SAPEMmHq2yXat41TpW3WZ9IiO15wASIpgqW/fvrZx40YbOXKkq9StukgzZswIVfpeuXKlayHn27x5s+tqQGnr1q3rSqbmzZvnuh0AkLoUGHVtWT/e2QCQhNI8z/Mshag1nCp6q/4Sj+QAAEgMuXG8fidcazgAAIDyRLAEAAAQgGAJAAAgAMESAABAAIIlAACAAARLAAAAAQiWAAAAAhAsAQAABCBYAgAACECwBAAAEIBgCQAAIADBEgAAQACCJQAAgAAESwAAAAEIlgAAAAIQLAEAAAQgWAIAAAhAsAQAABCAYAkAACAAwRIAAEAAgiUAAIAABEsAAAABCJYAAAACECwBAAAEIFgCAAAIQLAEAAAQgGAJAAAgAMESAABAAIIlAACAAARLAAAAAQiWAAAAAhAsAQAABCBYAgAACECwBAAAEIBgCQAAIADBEgAAQACCJQAAgAAESwAAAAEIlgAAAAIQLAEAAAQgWAIAAAhAsAQAABCAYAkAACBA5aCJAJAo8vI9y1nxs23YttMa1sqwzs3rWXqltHhnC0ASIFgCkPBmLFlrt7+2zNZu3Rka1ygzw0b1bmOntm0U17wBSHw8hgOQ0BQoXTV5YUSgJOu27nTjNR0A9gXBEoCEfvSmEiUvyjR/nKYrHQCUFsESgISlOkoFS5TCKUTSdKUDgNIiWAKQsFSZO5bpACAagiUACUut3mKZDgCiIVgCkLDUPYBavRXWQYDGa7rSAUBpESwBSFjqR0ndA0jBgMn/rOn0twRgXxAsAUho6kdpYv+jLTsz8lGbPms8/SwB2Fd0Sgkg4Skg6tkmmx68AZQJgiUASUGP2rq2rB/vbABIQjyGAwAAqOjB0oQJE6xZs2aWkZFhXbp0sZycnGJ974UXXrC0tDTr06dPmecRAACkprgHS1OmTLGhQ4faqFGjbOHChdauXTvr1auXbdiwIfB733//vd144412/PHHl1teAQBA6ol7sPTAAw/Y4MGDbdCgQdamTRt79NFHrXr16jZp0qRCv5OXl2cXXXSR3X777daiRYtyzS8AAEgtcQ2Wdu/ebQsWLLAePXr8L0OVKrnP8+fPL/R7d9xxhzVs2NAuvfTSIuexa9cuy83NjRgAAAASIljatGmTKyXKysqKGK/P69ati/qduXPn2lNPPWVPPPFEseYxevRoy8zMDA1NmzaNSd4BAEBqiPtjuJLYtm2bXXzxxS5QatCgQbG+M3z4cNu6dWtoWLVqVZnnEwAAJI+49rOkgCc9Pd3Wr18fMV6fs7Oz90r/7bffuordvXv3Do3Lz893fytXrmzLly+3li1bRnynatWqbgAAAEi4kqUqVapYhw4dbObMmRHBjz537dp1r/StW7e2xYsX26JFi0LDWWedZd27d3f/5xEbAABIuh681W3AwIEDrWPHjta5c2cbN26c7dixw7WOkwEDBliTJk1c3SP1w9S2bduI79epU8f9LTgeQGrJy/d43QmA5AyW+vbtaxs3brSRI0e6St3t27e3GTNmhCp9r1y50rWQA4DCzFiy1m5/bZmt3bozNK5RZoaN6t2GF+kC2Gdpnud5lkLUdYBaxamyd+3ateOdHQAxCJSumrzQCp7I0v7v78T+RxMwAUkgN47Xb4psACT0ozeVKEW74/PHabrSAUBpESwBSFg5K36OePRWkEIkTVc6ACgtgiUACWvDtp0xTQcA0RAsAUhYDWtlxDQdAERDsAQgYXVuXs+1evMrcxek8ZqudABQWgRLABJWeqU01z2AFAyY/M+arnQAUFoESwAS2qltG7nuAbIzIx+16TPdBgBIik4pASAWAVPPNtn04A2gTBAsAUgKetTWtWX9eGcDQBLiMRwAAEAAgiUAAIAABEsAAAABCJYAAAACECwBAAAEIFgCAAAIQLAEAAAQgGAJAAAgAMESAABAAIIlAACAAARLAAAAAQiWAAAAAhAsAQAABCBYAgAACECwBAAAEIBgCQAAIADBEgAAQACCJQAAgAAESwAAAAEIlgAAAAIQLAEAAAQgWAIAAAhAsAQAABCAYAkAACAAwRIAAEAAgiUAAIAABEsAAAABCJYAAAACECwBAAAEIFgCAAAIQLAEAAAQgGAJAAAgAMESAABAAIIlAACAAARLAAAAAQiWAAAAAhAsAQAABCBYAgAACECwBAAAEIBgCQAAIADBEgAAQACCJQAAgAAESwAAAAEIlgAAAAIQLAEAAAQgWAIAAAhAsAQAAFDRg6UJEyZYs2bNLCMjw7p06WI5OTmFpp02bZp17NjR6tSpYzVq1LD27dvbc889V675BQAAqSPuwdKUKVNs6NChNmrUKFu4cKG1a9fOevXqZRs2bIiavl69enbrrbfa/Pnz7fPPP7dBgwa54c033yz3vAMAgOSX5nmeF88MqCSpU6dONn78ePc5Pz/fmjZtakOGDLFhw4YV6zeOPvpoO+OMM+zOO+8sMm1ubq5lZmba1q1brXbt2vucfwAAUPbief2Oa8nS7t27bcGCBdajR4//ZahSJfdZJUdFUZw3c+ZMW758uZ1wwglR0+zatcut4PABAAAgIYKlTZs2WV5enmVlZUWM1+d169YV+j1FlTVr1rQqVaq4EqWHH37YevbsGTXt6NGjXSTqDyq1AgAASJg6S6VRq1YtW7RokX388cd21113uTpPs2fPjpp2+PDhLrjyh1WrVpV7fgEAQOKqHM+ZN2jQwNLT0239+vUR4/U5Ozu70O/pUV2rVq3c/9Ua7osvvnAlSCeeeOJeaatWreoGAACAhCtZ0mO0Dh06uHpHPlXw1ueuXbsW+3f0HdVNAgAASKqSJdEjtIEDB7q+kzp37mzjxo2zHTt2uO4AZMCAAdakSRNXciT6q7QtW7Z0AdL06dNdP0sTJ06M85IAAIBkFPdgqW/fvrZx40YbOXKkq9Stx2ozZswIVfpeuXKle+zmUyB19dVX2+rVq61atWrWunVrmzx5svsdAACApOtnqbzRzxIAAIknN1X7WQIAAKjoCJYAAAACECwBAACUR7C0c+dOGzt2bKx+DgAAIPGCJbVae/311+2tt95yrymRPXv22EMPPWTNmjWze+65p6zyCQAAULG7Dpg7d66deeaZrjZ6Wlqa6+vo6aeftj59+ljlypXttttuc/0lAQAApGTJ0ogRI+z000+3zz//3HUkqfeynXPOOXb33XfbsmXL7Morr3T9HgEAAKRkP0v169e3OXPmWJs2bezXX3+1mjVr2rRp0+zss8+2REI/SwAAJJ7cROhnafPmze7Ft6ISpOrVq1vbtm3LMm8AAACJ9boTPW7TK0lEBVLLly93rx8Jd+SRR8Y2hwAAAInwGE7vZ1PF7mjJ/fH667eSq6h4DAcAQOLJjeNjuGKXLK1YsaJscwIAAFABFTtYOuigg8o2JwAAABVQsSt433fffa4VnO+DDz6wXbt2hT5v27bNrr766tjnEAAAIBHqLKWnp9vatWutYcOG7rOeFy5atMhatGjhPq9fv94aN25MnSUAAJCaXQcUjKmKGWMBAAAktJi9SBcAACAZESwBAADEqlPKJ5980r3mRH777Td75plnQr16q4I3AABAylbwbtasmet0MtH7Y6JTSgAAEk9uInRK+e6771rz5s3LNjcAAACJWmepZcuWLlj64x//aJMnT7Y1a9aUbc4AAAAqgGKXLM2aNctmz57thn/+85+2e/du18fSSSedZN27d3dDVlZW2eYWAACgotZZCrdz506bN29eKHjKycmxPXv2WOvWrW3p0qVWkVFnCQCAxJMbxzpLpQqWfCpd0mtP3njjDXvsscds+/bt9OANAABSs4K3Hxx9+OGHrrK3SpQ++ugja9q0qZ1wwgk2fvx469atW9nlFAAAIA6KHSypbpKCI1XyVlB0xRVX2PPPP2+NGjUq2xwCAAAkQrA0Z84cFxgpaDrxxBNdwFS/fv2yzR0AAECidB2wZcsWe/zxx6169ep27733WuPGje2II46wa6+91qZOnWobN24s25wCAADEQakreOv1JnPnzg3VX/rss8/s4IMPtiVLllhFRms4AAAST24cK3iX+kW6NWrUsHr16rmhbt26VrlyZfviiy9imzsAAIBEqbOUn59vn3zyiStFUmmSugzYsWOHNWnSxHVIOWHCBPcXAAAgJYOlOnXquOAoOzvbBUUPPvigq+it16AAAABYqgdLY8aMcUHSIYccUrY5AgAASMRgSf0qAQAApJpSV/AGAABIBQRLAAAAAQiWAAAAAhAsAQAABCBYAgAACECwBAAAEIBgCQAAIADBEgAAQACCJQAAgAAESwAAAAEIlgAAAAIQLAEAAAQgWAIAAAhAsAQAABCAYAkAACAAwRIAAADBEgAAQOlQsgQAABCAYAkAACAAwRIAAEBFD5YmTJhgzZo1s4yMDOvSpYvl5OQUmvaJJ56w448/3urWreuGHj16BKYHAABI6GBpypQpNnToUBs1apQtXLjQ2rVrZ7169bINGzZETT979mzr16+fvfvuuzZ//nxr2rSpnXLKKbZmzZpyzzuAiiMv37P53/5kryxa4/7qMwDEQprneXE9o6gkqVOnTjZ+/Hj3OT8/3wVAQ4YMsWHDhhX5/by8PFfCpO8PGDCgyPS5ubmWmZlpW7dutdq1a8dkGQDE14wla+3215bZ2q07Q+MaZWbYqN5t7NS2jeKaNwCxEc/rd1xLlnbv3m0LFixwj9JCGapUyX1WqVFx/PLLL7Znzx6rV69e1Om7du1yKzh8AJBcgdJVkxdGBEqybutON17TASBhg6VNmza5kqGsrKyI8fq8bt26Yv3GzTffbI0bN44IuMKNHj3aRaL+oFIrAMlBj9pUohSteNwfp+k8kgOQ0HWW9sU999xjL7zwgr300kuucng0w4cPd0V2/rBq1apyzyeAspGz4ue9SpQKBkyarnQAUFqVLY4aNGhg6enptn79+ojx+pydnR343bFjx7pg6Z133rEjjzyy0HRVq1Z1A4Dks2HbzpimA4AKV7JUpUoV69Chg82cOTM0ThW89blr166Ffu++++6zO++802bMmGEdO3Ysp9wCqGga1sqIaToAqHAlS6JuAwYOHOiCns6dO9u4ceNsx44dNmjQIDddLdyaNGni6h7JvffeayNHjrTnn3/e9c3k122qWbOmGwCkjs7N67lWb6rMHa3eUpqZZWdmuHQAkLB1lvr27eseqSkAat++vS1atMiVGPmVvleuXGlr1/6vNcvEiRNdK7rzzjvPGjVqFBr0GwBSS3qlNNc9gB8YhfM/a7rSAUDC9rNU3uhnCUg+9LMEJL/cOPazFPfHcACwr9TxZM822a7Vmypzq46SHr1RogQgFgiWACQFBUZdW9aPdzYAJKG411kCAACoyAiWAAAAAhAsAQAABCBYAgAACECwBAAAEIBgCQAAIADBEgAAQACCJQAAgAAESwAAAAEIlgAAAAIQLAEAABAsAQAAlA4lSwAAAAEIlgAAAAIQLAEAAAQgWAIAAAhAsAQAABCAYAkAACAAwRIAAEAAgiUAAIAABEsAAAABCJYAAAACECwBAAAEIFgCAAAIQLAEAAAQgGAJAAAgAMESAABAAIIlAACAAARLAAAAAQiWAAAAAhAsAQAABCBYAgAACECwBAAAEIBgCQAAIADBEgAAQACCJQAAgAAESwAAAAEIlgAAAAIQLAEAAAQgWAIAAAhAsAQAABCAYAkAACBA5aCJAJAo8vI9y1nxs23YttMa1sqwzs3rWXqltHhnC0ASIFgCkPBmLFlrt7+2zNZu3Rka1ygzw0b1bmOntm0U17wBSHw8hgOQ8IHSVZMXRgRKsm7rTjde0wFgXxAsAUjoR28qUfKiTPPHabrSAUBpESwBSFiqo1SwRCmcQiRNVzoAKC2CJQAJS5W5Y5kOAKIhWAKQsNTqLZbpACAagiUACUvdA6jVW2EdBGi8pisdAJQWwRKAhKV+lNQ9gBQMmPzPmk5/SwD2BcESgISmfpQm9j/asjMjH7Xps8bTzxKAfUWnlAASngKinm2y6cEbQJkgWAKQFPSorWvL+vHOBoAkFPfHcBMmTLBmzZpZRkaGdenSxXJycgpNu3TpUjv33HNd+rS0NBs3bly55hUAAKSeuAZLU6ZMsaFDh9qoUaNs4cKF1q5dO+vVq5dt2LAhavpffvnFWrRoYffcc49lZ2eXe34BAEDqiWuw9MADD9jgwYNt0KBB1qZNG3v00UetevXqNmnSpKjpO3XqZGPGjLELL7zQqlatWu75BQAAqSduwdLu3bttwYIF1qNHj/9lplIl93n+/Pkxm8+uXbssNzc3YgAAAKjwwdKmTZssLy/PsrKyIsbr87p162I2n9GjR1tmZmZoaNq0acx+GwAAJL+4V/Aua8OHD7etW7eGhlWrVsU7SwAAIIHEreuABg0aWHp6uq1fvz5ivD7HsvK26jZRvwkAACRcyVKVKlWsQ4cONnPmzNC4/Px897lr167xyhYAAEDF6ZRS3QYMHDjQOnbsaJ07d3b9Ju3YscO1jpMBAwZYkyZNXL0jv1L4smXLQv9fs2aNLVq0yGrWrGmtWrWK56IAAIAkFddgqW/fvrZx40YbOXKkq9Tdvn17mzFjRqjS98qVK10LOd+PP/5oRx11VOjz2LFj3dCtWzebPXt2XJYBAAAktzTP8zxLIeo6QK3iVNm7du3a8c4OAACo4NfvpG8NBwAAsC8IlgAAAAIQLAEAAAQgWAIAAAhAsAQAABCAYAkAACAAwRIAAEBF7ZQSAGJl92/59tz87+2Hn3+xg+pVt4u7NrMqlbkfBLDvCJYAJLzR05fZE3NWWH5YF7t3Tf/CBh/f3Iaf3iaeWQOQBAiWACR8oPTY+yv2Gq/AyR9PwARgX1BGDSChH709PmfvQCmcpisdAJQWwRKAhPWPed9bUW+31HSlA4DSIlgCkLA+/v6nmKYDgGgIlgAkrOr7VY5pOgCIhmAJQMI6JLtmTNMBQDQESwAS1pfrtsU0HQBEQ7AEIGH9uOXXmKYDgGgIlgAkrCZ1qsc0HQBEQ7AEIGGd1+GAmKYDgGgIlgAkrGNbNbDqVdID09Soku7SAUBpESwBSFjpldLsgQvaBaa5/4J2Lh0AlBbBEoCEdmrbRvZo/6Mtq1bViPHZtau68ZoOAPuCntoAJDwFRD3bZFvOip9tw7ad1rBWhnVuXo8SJQAxQbAEICnoUVvXlvXjnQ0ASYjHcAAAAAEoWQKQFH7dnWd3T19m3//0izWrX91uOb2NVSuipRwAFAfBEoCEN/jZj+3tZRtCn+d8bfbchyutZ5uG9sSATnHNG4DEx2M4AEkVKIXTeE0HgH1BsAQgoR+9FRYo+TRd6QCgtAiWACQs1VGKZToAiIZgCUDCUmXuWKYDgGgIlgAkLLV6i2U6AIiGYAlAwrr51MNimg4AoiFYApCwFq/ZGtN0ABANwRKAhKX3wMUyHQBEQ7AEIGHphbmxTAcA0RAsAUhYnZvXs0aZGZZWyHSN13SlA4DSIlgCkLDSK6XZqN5t3P8LBkz+Z01XOgAoLYIlAAnt1LaNbGL/oy07M/JRmz5rvKYDwL7gRboAEp4Cop5tsi1nxc+uMrfqKOnRGyVKAGKBYAlAUlBg1LVl/XhnA0AS4jEcAABAAIIlAACAAARLAAAAAQiWAAAAAhAsAQAABKA1HICkMPvz9XbJ85+EPj/zh4524pFZcc0TgORAsAQg4TUb9p+9xrnA6Xmz7+85Iy55ApA8eAwHIOkCpZJMB4CiECwBSOhHb7FMBwDRECwBSFjhdZRikQ4AoiFYAgAACECwBAAAEIBgCQAAIADBEoCENenCDjFNBwAVNliaMGGCNWvWzDIyMqxLly6Wk5MTmP7FF1+01q1bu/RHHHGETZ8+vdzyCqDiOKl9dkzTAUCFDJamTJliQ4cOtVGjRtnChQutXbt21qtXL9uwYUPU9PPmzbN+/frZpZdeap9++qn16dPHDUuWLCn3vAOIv6I6naRTSgD7Ks3zPM/iSCVJnTp1svHjx7vP+fn51rRpUxsyZIgNGzZsr/R9+/a1HTt22Ouvvx4ad8wxx1j79u3t0UcfLXJ+ubm5lpmZaVu3brXatWvHeGkAxMusRevsjy8siHj0RokSkDxy43j9juvrTnbv3m0LFiyw4cOHh8ZVqlTJevToYfPnz4/6HY1XSVQ4lUS9/PLLZZ5fABWXAqPv2/NqEwBJFixt2rTJ8vLyLCsr8mWX+vzll19G/c66deuiptf4aHbt2uWG8MgUAAAgYeoslbXRo0e7Yjt/0CM+AACAhAiWGjRoYOnp6bZ+feR7m/Q5Ozt66xWNL0l6PeLT801/WLVqVQyXAAAAJLu4BktVqlSxDh062MyZM0PjVMFbn7t27Rr1Oxofnl7efvvtQtNXrVrVVQQLHwAAABKizpKosvbAgQOtY8eO1rlzZxs3bpxr7TZo0CA3fcCAAdakSRP3OE2uv/5669atm91///12xhln2AsvvGCffPKJPf7443FeEgAAkIziHiypK4CNGzfayJEjXSVtdQEwY8aMUCXulStXuhZyvmOPPdaef/55GzFihN1yyy128MEHu5Zwbdu2jeNSAACAZBX3fpbKG/0sAQCQeHLj2M9S0reGAwAA2BcESwAAABW5zlJ585860jklAACJI/f/OpWOR+2hlAuWtm3b5v7SOSUAAIl5Hc/MzCzXeaZcBW/14/Tjjz9arVq1LC0tzVKdInUFjuqskz6oWM+Jjv2Z9Zxs2Kf/R+GKAqXGjRtHtJIvDylXsqQVfMABB8Q7GxUOHXaynpMJ+zPrOdmwT/9XeZco+ajgDQAAEIBgCQAAIADBUorTu/NGjRrl/oL1nOjYn1nPyYZ9umJIuQreAAAAJUHJEgAAQACCJQAAgAAESwAAAAEIlgAAAAIQLCW5n3/+2S666CLXoVmdOnXs0ksvte3btwd+Z+fOnXbNNddY/fr1rWbNmnbuuefa+vXro6b96aefXCef6g19y5YtlqrKYj1/9tln1q9fP9fDerVq1eywww6zhx56yFLNhAkTrFmzZpaRkWFdunSxnJycwPQvvviitW7d2qU/4ogjbPr06RHT1aZl5MiR1qhRI7dee/ToYV9//bWluliu5z179tjNN9/sxteoUcP1uDxgwAD39oRUF+v9OdyVV17pzsXjxo0rg5ynOLWGQ/I69dRTvXbt2nkffvihN2fOHK9Vq1Zev379Ar9z5ZVXek2bNvVmzpzpffLJJ94xxxzjHXvssVHTnn322d5pp52mFpXe5s2bvVRVFuv5qaee8q677jpv9uzZ3rfffus999xzXrVq1byHH37YSxUvvPCCV6VKFW/SpEne0qVLvcGDB3t16tTx1q9fHzX9Bx984KWnp3v33Xeft2zZMm/EiBHefvvt5y1evDiU5p577vEyMzO9l19+2fvss8+8s846y2vevLn366+/eqkq1ut5y5YtXo8ePbwpU6Z4X375pTd//nyvc+fOXocOHbxUVhb7s2/atGnuHNS4cWPvwQcfLIelSS0ES0lMB5eCmI8//jg07o033vDS0tK8NWvWRP2OTnI6GF988cXQuC+++ML9jk544R555BGvW7du7mKfysFSWa/ncFdffbXXvXt3L1XoAnvNNdeEPufl5bmLwejRo6Omv+CCC7wzzjgjYlyXLl28K664wv0/Pz/fy87O9saMGROxLapWrer985//9FJVrNdzNDk5OW7//uGHH7xUVVbrefXq1V6TJk28JUuWeAcddBDBUhngMVwSmz9/vnsk1LFjx9A4PXLQ+/E++uijqN9ZsGCBK0JXOp+KgA888ED3e75ly5bZHXfcYc8++2y5v9AwldZzQVu3brV69epZKti9e7dbT+HrSOtUnwtbRxofnl569eoVSr9ixQpbt25dRBq9a0qPQ4LWezIri/Vc2L6rR0Q6VlJRWa1nvRz+4osvtptuuskOP/zwMlyC1JbaV7kkp4tCw4YNI8ZVrlzZXWw1rbDvVKlSZa8TWlZWVug7u3btcnVpxowZ4y7uqa6s1nNB8+bNsylTptjll19uqWDTpk2Wl5fn1klx15HGB6X3/5bkN5NdWaznaPXzVIdJ5w3V60tFZbWe7733Xne+ue6668oo5xCCpQQ0bNgwd4cWNHz55ZdlNv/hw4e7ysb9+/e3ZBbv9RxuyZIldvbZZ7tX05xyyinlMk8gFlSCesEFF7iK9RMnTmSlxpBKqtTo45lnnnHnI5SdymX42ygjN9xwg11yySWBaVq0aGHZ2dm2YcOGiPG//faba7mladFovIqL1bItvNRDrbT878yaNcsWL15sU6dOdZ/9N+Y0aNDAbr31Vrv99tstGcR7PYc/8jz55JNdidKIESMsVWh/Sk9P36slZrR15NP4oPT+X41Ta7jwNO3bt7dUVBbruWCg9MMPP7jzRqqWKpXVep4zZ44794SX8Kv0SucutYj7/vvvy2RZUlJZVIRCxap4rJZWvjfffLNYFY+nTp0aGqfWLOEVj7/55hvXGsMf1LJD0+fNm1doq45kVlbrWVRhs2HDht5NN93kpWqF2GuvvTaiQqwqsgZViD3zzDMjxnXt2nWvCt5jx44NTd+6dSsVvGO8nmX37t1enz59vMMPP9zbsGFDibd9Mor1et60aVPEuViDKozffPPN7nyC2CFYSoEm7UcddZT30UcfeXPnzvUOPvjgiCbtakVx6KGHuunhTdoPPPBAb9asWS4A0MGpoTDvvvtuSreGK6v1rBPf/vvv7/Xv399bu3ZtaEilC4+aWqul2jPPPOOC0ssvv9w1tV63bp2bfvHFF3vDhg2LaGpduXJlFwypdeGoUaOidh2g33jllVe8zz//3HV/QdcBsV3PCpTUJcMBBxzgLVq0KGL/3bVrl5eqymJ/LojWcGWDYCnJ/fTTT+6iXbNmTa927dreoEGDvG3btoWmr1ixwgU6Cnh86m9GTdTr1q3rVa9e3TvnnHPcSa4wBEtls551YtR3Cg46GaYS9SuloFL90+jOXH1Z+dR1xcCBAyPS/+tf//IOOeQQl16lGv/5z38ipqt06a9//auXlZXlLlwnn3yyt3z5ci/VxXI9+/t7tCH8GEhFsd6fCyJYKhtp+ifejwIBAAAqKlrDAQAABCBYAgAACECwBAAAEIBgCQAAIADBEgAAQACCJQAAgAAESwAAAAEIlgCUil7eGf5eu1Skl5e+/PLL5TpPve9L8120aNE+/U6zZs3c+8Mq2vIBFRHBEhBnelmvLkoa9ttvP8vKyrKePXvapEmTLD8/v0S/ddttt5XJC2GjXVj79u1rX331lZW1E088MbR+NGj9nH/++e7lrOU1z4KDpgNIHQRLQAVw6qmn2tq1a12pwRtvvGHdu3e366+/3s4880z77bffrCKqVq2aNWzYsFzmNXjwYLd+fvzxR3vllVds1apV1r9//zKb37Rp09z8NOTk5Lhx77zzTmicppeGXphQUbcngMIRLAEVQNWqVS07O9uaNGliRx99tN1yyy0uKFDgpMddvi1btthll11m+++/v9WuXdtOOukk++yzz9w0pbv99tvdZ78ExP9u0Pd8r732mnXq1MkyMjKsQYMGds4557jxKkVRKc6f//zn0O8W9hhu4sSJ1rJlS6tSpYodeuih9txzz0VM13effPJJ99vVq1e3gw8+2F599dUi14/Sav00atTIjjnmGLv22mtt4cKFEWnee+8969y5s1uXSjds2LBQYPLss89azZo17euvvw6lv/rqq61169b2yy+/7DW/evXquflp0DqT+vXrh8Zpum/Tpk2FLs/s2bPdMms7dujQweVt7ty5rsRw9OjR1rx5cxd0tmvXzqZOnRr63ubNm+2iiy5y89Z0/e7TTz8dkcfvvvvOBdWar74/f/78iOn//ve/7fDDD3fzVMng/fffH7iOtW5OOOEEt/3btGljb7/9dpHbBUgZZfTOOQDFpBdn6s330bRr18477bTTQp979Ojh9e7d2/v444+9r776yrvhhhu8+vXruxf5/vLLL+6zXrbpv+Fd44r6nrz++uteenq6N3LkSPc2dL0p/u6773bTlEZvj7/jjjtCvytPP/20l5mZGcrbtGnT3BvRJ0yY4F5Me//997vfnDVrViiNTjn6reeff977+uuvveuuu869fNjPRzR6uej1118f+qy0Wpbu3buHxq1evdq9jFgvJtbb2V966SWvQYMG7mXEvvPPP9/r1KmTt2fPHre8yusnn3xS5PbxXwr76aef7jWtqOXxXzJ95JFHem+99Zb3zTffuGl/+9vfvNatW3szZszwvv32W7cu9VLf2bNnu+9dc801Xvv27d320vzffvtt79VXX43Ij76v5dC6Pu+889wLVLVsouWqVKmS22aart+vVq2a+xvthat5eXle27Zt3UuFte3fe+8976ijjnLz0boEUh3BElCBg6W+fft6hx12mPv/nDlzvNq1a3s7d+6MSNOyZUvvsccec/9XcKAAK1xxvte1a1fvoosuKtGbzAsGS8cee6w3ePDgiDQKUE4//fTQZ118R4wYEfq8fft2N+6NN94IDJYU2NSoUcMFREqvt7AraPDdcsst3qGHHurl5+eHxiloU+CiQEB+/vlnF9hcddVVXlZWlnfXXXd5xVFUsBS0PH6w9PLLL4fSaDtoOebNmxfxW5deeqnXr18/938Fg4MGDQrMz5NPPhkat3TpUjdOgaL84Q9/8Hr27BnxvZtuuslr06ZN1G365ptvepUrV/bWrFkTmq5lIFgC/ovHcEAFpuux/9hLj822b9/uHgfpkZI/rFixwr799ttCf6M431PLqpNPPnmf8vrFF1/Y7373u4hx+qzx4Y488sjQ/2vUqOEeC27YsCHwt/VISnnUsugxVqtWreyUU06xbdu2hebdtWvX0Lry563lXr16tftct25de+qpp0KPCvWYLhaKszwdO3YM/f+bb75xj/5UiT98e+hRob89rrrqKnvhhRdcZf2//OUvNm/evMD56rGj+PMtbFvoUVteXt5ev6X0TZs2tcaNG4fGaX0C+K/K//cXQAWki5jqtYgu/Looqh5MQUFN+IvzPdWLKS9q8RdOAU5Rrf4yMzNdgCT6q6BHyzRlyhRXF6u43n//fUtPT3eVtHfs2GG1atWy8lgeBVHh20P+85//uDpq4VS/SE477TRXT2z69Omu7pAC2WuuucbGjh0bdb5+kFjS1pMAioeSJaCCmjVrli1evNjOPfdc91kVv9etW2eVK1d2AUP4oArZoorVBUsOivM9lVLMnDmz0LxE+92CDjvsMPvggw8ixumzKgvHmgIe+fXXX0PzVgXn/z4Z+9+8FQwdcMAB7rNKZ+69915XkV0lOaokHg9aHwqKVq5cudf2UOmOT5W7Bw4caJMnT3bdNjz++OPFnkdh2+KQQw4JrbuC6dXCUEGk78MPPyz1MgLJhpIloALYtWuXC2gUkKxfv95mzJjhWkup64ABAwa4ND169HCPRvr06WP33Xefu/CpKb1KKNQaS4961OpJj9f0yEpBgoKF4nxv1KhRrvRCj6cuvPBC14pMpRo333yzm7d+V6UymqYLvR9khbvpppvsggsusKOOOsrNU0GJmtiryf2+0mMrrR/R+rnzzjtdqy09ivNbtimgGDJkiAuCli9f7pZp6NChVqlSJfe47uKLL7brrrvOldpo3ajlX+/eve28886z8qRtcuONN7rWhSoJOu6442zr1q0umNEjPAVII0eOdK3n1JpN+8brr7/uApriuuGGG9zyaT2pPywFkuPHj7dHHnkkanptL+0XmveYMWMsNzfXbr311hguNZDg/q/uEoA4VvDWoahBlWz3339/13pt0qRJocrJvtzcXG/IkCFe48aNXaXnpk2buorZK1euDFUePvfcc706deq43/NbPxX1Pfn3v//tWmBVqVLFtST7/e9/H5o2f/5816JLLbb800bBCt7yyCOPeC1atHDzUCXsZ599NmJ6tArD+o3wVlrRKnj760dD3bp13bjwVnailmRq7ab8Z2dnezfffHOodZgqSx9xxBERldzVWq9evXquJd2+VPAOWh6/gvfmzZsj0qgi+rhx41yldK0rbfNevXq5Vmhy5513uor9asGmPKoBwHfffVdofvT7Gqf5+aZOneoqdOv3DzzwQG/MmDGBlfbVau64445z60/bTi31qOAN/Fea/ol3wAYAAFBRUWcJAAAgAMESAABAAIIlAACAAARLAAAAAQiWAAAAAhAsAQAABCBYAgAACECwBAAAEIBgCQAAIADBEgAAQACCJQAAgAAESwAAAFa4/w81UiR+Tn7oqgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -2646,17 +2571,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAAHHCAYAAAB5gsZZAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAATSFJREFUeJzt3QmczfX+x/HvIEaWEWKQkKWSkLUp7YTKTSu6Ird0o7RIRYvlqqvklrqW9lT+lXsrpCstSqtSpBIJKfvOjKVR8fs/3t/b79xzjnNmzszvzFlfz8fjGOf3+53fvnx+3zXDcRzHAAAAoNhKFf+nAAAAIKACAACIAlKoAAAAPCKgAgAA8IiACgAAwCMCKgAAAI8IqAAAADwioAIAAPCIgAoAAMCjtAyo9uzZY6655hqTnZ1tMjIyzM0332yHb9682Vx66aWmWrVqdvj48eNNsm9TqtA2jRw50iSjM888035QsnR+6DxJJ3PmzDEtW7Y0mZmZdtt37dplh7/wwgvmuOOOM4cddpipUqWKp/Mwma+9VFW/fn1z1VVXxXs1kKoB1ZQpU+yFH+7z2Wef+ab9+9//bqcfMGCAvfFceeWVdvgtt9xi3nrrLTNs2DA7vEuXLlFfTy17xowZJTLfUNsU6oFT2CeaD/8XX3wxroHphg0b7HYvXry4RJezdOlSu5yffvqpRJcDuLZv324uv/xyU758eTNx4kR73VeoUMF8//339mHbsGFD8+STT5onnngi4XdavO8TwQ4cOGAqV65sLrzwwkPGPfzww/Y+2bdv30PGDR8+3I774YcfTCIo6D5/3XXXmUQ0b968gPUsXbq0qVGjhk3sWLZsWcI9e/2VMSnmb3/7m2nQoMEhwxs1auT7/3vvvWdOPvlkM2LEiIBpNFwX0JAhQ0ps/XRQdWJ07949qvMNt03+Lr744oD9oFQtBWAXXXSRHeeqWbNmVG+US5YsiVuKmQKqUaNG2Tc6vcmXZECl5SgY1bL8vf322yW2XPzP3XffbYYOHZo2u+SLL74wu3fvNqNHjzYdO3YMeCAdPHjQPPLIIwHXe3HPw19++cWUKVOyj4p43yeC6SGu++mnn356yLhPPvnE7g/9DTVOD/8mTZqYRNGpUyfTp0+fQ4Yn0jqGcuONN5q2bdua3377zXzzzTfmscces+e2zhPlxCTKszelA6quXbuaNm3aFDjNli1bTNOmTUMOd5PHk024bfLXvHlz+3Ft27bNBlQa1rt37xisZXoqW7ZsvFchLeghV9IP/kS75iX4nhVueHHPQ2UnpqMOHTqYd955x6aKHH/88QFBk1IGFQRu2rTJ93D//fffzeeff27OPfdcz8veu3evTW2MBgVOxbm/79u3zxx++OGHDNd2KmD3cl/bG8H2nXbaaTYAch177LH2efX888+b22+/3SQkJ0U8++yzjjbniy++CDvN+++/b6cJ/ri/Df64du7c6dx0003OUUcd5ZQtW9Zp2LChc//99zsHDhwImL++jx8/3mnWrJlTrlw5p3r16k7nzp196xRqGX379i1wuzZv3uz85S9/cWrUqGHn2bx5c2fKlCmFbtPq1asL3Wdbt261044YMSJg+LJly5xLLrnEOeKII+wyW7du7cycOTNgnbRtZ5xxhnPw4EHf8BUrVjiHH364c/nll9vvGh+8XvXq1StwnfLz852bb77Zzr9ixYpOt27dnLVr14Zcz3Xr1jn9+vWz+0bHpWnTps7TTz8d0fF2ffbZZ/YYVa5c2Slfvrxz+umnOx9//PEh66Vl6TjUqlXLLqt+/frOdddd5+zfvz/s+aPlu/tBn6IcV9Ex1HwefPBB5/HHH3eOOeYYu+w2bdo4CxYscCJR2Lmr43fmmWfa/a11cmm7dB5rmXv27LHDtP+1Pjo/LrvsMqdSpUpO1apVnRtvvNH55ZdfApb7zDPPOGeddZZz5JFH2uUef/zxzqRJkw5ZP50P559/vvPRRx85bdu2tfuiQYMGznPPPRcw3a+//uqMHDnSadSokZ1Gyz311FOdt99+2zeNu37+fvvtN+dvf/ubb99pecOGDbPnWXHWI5zCrv2irIvMnj3b6dChg72edB2cd955zpIlS3zjQ11bupdonsHD3esm1Hmo46bxjRs3tuudnZ3tXHTRRc7KlSt90xTn2vO//qZNm+bce++9Tp06dewyzj77bHuvKGhbCrtPxOK4zp07167Lk08+6Ru2atUqO+zTTz91MjMznVdeecU3Tsda4/7xj38EzMM9jllZWc6f/vQnZ+nSpQHLcc/b7777zunVq5dTpUoVp2XLlr7rc/To0Xbf6f6ka1XngbarsGeHaL7XX399odPpGJxwwgnOl19+6Zx22ml2Wbpv+N+DHn74Ybu/S5Uq5Xz11VdR2b5Q3PPm3//+d8BwbbeGX3vttQHDtW45OTn2nqBj0qpVq0N+W9izN5LzORIpF1C9++67NlDw/2zbts1Os2nTJueFF16wNzsdUP1fHx0o/dXvO3Xq5Bsue/futQ+7atWqOXfeeafz2GOPOX369HEyMjLsCefvqquusvPo2rWrvbmOGzfOufDCC51//vOfdrzmqQtaJ6y7DF2Y4ezbt88+iA477DDnlltucR599FH7Wy1D8y9om9yHYFEDKu0LXRg6oR544AFnwoQJNsjQ9r722mu+6XTC6rePPPKI74GiB1zNmjV9+1sPO62T1s1dr+nTpxe4Tr1797bzveKKK+yyL774Yrv/g9dT260goW7duvbGOnnyZHsxazpd+O40GudehO466Kbo3gx08ehi1E1Qv9OyNOzzzz/3LWv9+vVO7dq17U1DwZ7OgXvuucceGwUsmp+CCi1H54i7HC0/1IMskuMq7s3spJNOsoGEjsfYsWPt/tS2K8goSKTn7o8//mgf2nqQuoYOHWqn++CDDw65MZ544ok20NXxcY/XlVdeGbBsPbx0PWif6vw/99xz7XT6jT89GI499lh73mgdNV43RC3bP4DQOA3r37+/fcDpeOnmrOAweP386aapYZdeeqkzceJEu/363r1792KtRziFXftFWZfnn3/eLrdLly729zruCuD1IHJflHRt6ZzW73WOu/cSXV86jhqua0LDv/7665Dn4e+//+6cc845dtqePXvabR4zZowNeGbMmOGbrjjXnv+DUeevXso0TkGxrqN27dr5pivOfSIWx1XXT5kyZQIevDo2FSpUsAGdAgldvy4dd62De+9455137O+bNGlir9tRo0bZbdSLqv8Lr3ve6p6rc0YvHtomufvuu+04BdRad72E6V6k+UQaUF199dWHPBP10UuTS+eFgmm9AA0aNMi+wOkccO9BWjcFU7redBx//vnnqGxfUQKqN954ww6/4447AobrXBw4cKDdPw899JA9tzSdpncV9OyN9HxOy4Aq1Ec7MtRbSyTRvN4OdAH98MMPAcP1wCldurSzZs0a+/29996zv9eDNZh/Ko7mFcmF4H+BTp061TdMD1EFAHoA5uXlFbpNRQ2odIPVA9P/TU/rf8opp9i3WH96oOnmqH2jtwTNy/9GLFqnwt42XYsXL7bz0MXhT8FV8HrqJqHUIjd4c+nBoIBQQYv/W6N/qpS7TdoepSL4Hx/9Tm+wCqxdulnrrSxU6qf7WzfAdFOl/AU/yCI9ru7NTAHRjh07fNMqtVDDZ82aVeD+jPTcFd1A3XVSqp3GK3j0594YdbPxp+Ol4e6D292PwbSvdVP256aofPjhh75hW7Zssdfsrbfe6hvWokWLQs/v4IDKPZ+uueaagOmGDBlih+uaLep6hBLJtR/puuzevdsGTgoc/emmr/Paf3i4VHl3P+j6Lug8VCqiptNDKNx6S3GvPffBqJcH/4e3XsI0/Ntvv/V0nyjp4+q+GChV1/XXv/7VprzK7bffbse7FNzpfqhgSxQkKsVj+/btvml0jeheontK8PHS/dSf1lMvd9o3/sdDgWFwCks44Z6J+rz00kuHpBLqpcufew9SCr7Wx5/X7QvHPW90fuoc3rBhgzNnzhz7UqlAODh1Pvheo3upUor1YuAv3LM30vM5EilTy8+l2i7K9/b/vPnmm8We37///W+bl3vEEUfYMkfuR4VAVRPkww8/tNO9+uqrtkZCqELhxa3KPXv2bJs/36tXL98wVYNWYT0VKP/ggw9MNO3YscMWblf5ABV2dbdVtYk6d+5sVqxYYdavX++bfsKECSYrK8vmc99zzz22ZmGoWjFF2V7R9vkLLqiq+4T2d7du3ez//Y+L1jM3N9csWrSowGWp1p+254orrrDb5/5eefvnnHOOPa4qJ6CPaoZoWaHK5hXn2Bb1uPbo0cOefy6dj/Ljjz9G5dyVa6+91u67QYMG2eOoGmIqxBnK9ddfH/Bdv3G3y6WaZy4dDy33jDPOsOus7/5U9s/dJjnyyCNteQn/7VN5oO+++84es0i56zN48OCA4bfeeqv9+5///KfI6xFKJNd+pOui+5WaPtC54X/MVEi6ffv25v333zfRovWuXr267/iFWu9gxbn2+vXrF1DeJtLzN97H1S1HtWrVKltWyi0/dcopp9j/n3rqqearr76yZY3ccTpGKse3ceNGe49RbcuqVav65qfyqiok7n+tuIJr3b377rvm119/tcfH/3gUteC+7snBz0R9zjrrrIDpypUrZ49VKJdccondb65obF9h/vKXv9hl1q5d29a417mlmqwqqO7P/16zc+dOO52Od2HPgGg9S/ylXAnOdu3aFVoovSh0A1cNA/+TKVQBUF10OvD+J5dXP//8s2ncuLEpVSow7nULSGp8NK1cudKeVAqO9Am3vXXq1LH/17Y++uij5rLLLrM1A/V/L7Q92lY9zP3p5udv69at9qGj6uDhqoS7xyUc98EcquqzSxeTbmh5eXmmWbNmJl7H9eijjw747gZXunlE49x1Pf3003bf63eq3eR/o/Kndfen32hb/JuM0MNFAcb8+fN9Dxz//apAPNz2udvov32qvasHgwrY6ljoBqvAz7+SRbjzyb+mmyiYVYBW2H4OtR6hRHLtR7ou7nl59tlnh5yPqvJHi9Zb11ZRCvIX59or7vkb7+PqBlRqJkHns160FNSPHTvWjlNgpQLaCxYsMPXq1bNBhtoCdNcx1L3Lvc7VPE9wwezg2unuPIKvN13P/i9YhTnqqKMCaoGGo/t6uILm4dbNy/YVRk1QKDDSS+b06dPNyy+/fMg9U9544w1z77332gBv//79RXrZjcazJKUDqmhTCoUi7nC1ChK96mlRt1XUbISi81CCb2K6cEQ3p3Xr1sWklqS7nqq5Ei4gKuhB6z+PBx98MGxzChUrVrSpdvGm1IlQ/puiH71zV1WS3RvSt99+a3JyciJav+Ablx7UevioYcmHHnrI1K1b196o9daqh5O774uyfaeffrqd78yZM231/6eeesrOS1Wp3YdYpOsX7f1cFIWti7tv9CYeqmp4vGsxFufaK6n9GovjqoBKPv74Y1+NN/e6UOqegh2NW7t2bcD0xRHuBSZWClp+NNatfBHnceKJJ/oCQTV1oBez/v37232se4p89NFH5k9/+pO9P0yaNMnUqlXLpvY/++yzthZmLJ4l/gioCqG3b0XIhUX4mk7BhR7ABb2pFiWLSG89SmHQQfePzNVwnzs+mo455hj7VydkJG80aqVZDzY9sP/v//7PnpCqNux/0y/q9mpb3Tdn1/Llyw95Q6tUqZLNtipsPcMt300F0xt/QfPQsjSN2j4pznLieVwjPXdFb9fKWlCVbwU/blAdal2UiuL/tqmUTW2L2/7WrFmzbGD2+uuvB6QOeM2u0nWlLAl9tF26iaox1XABlXs+aX39q72rRwS9lUZzPxd27Ue6Lu55qbaMIjluXtdb16va+dE1H4miXHtFUZz7REkfV/c4uEGTUluUfej/0qhUKqVe6WVSgZsbbLnrEHzvcq9zBWOFNRvgzkPb6d6b3VSV4qbuRUs0tq+o7r//fptSdd9999kXKVF2nZr10PWnLEuXAqpIzrFon88pV4Yq2lSeSNkWbkqMP128SvJ185j1xqPGHQt6E9JJ5nYPUZjzzjvP5t1PmzbNN0zL++c//2lTT1QmJZp081DDlI8//rh9wAbThezSNuhBpixWlbVRYKW85uByN9re4DIzBbUhJsFZh8EtKOvGpf2tiylUoOO/nu5FHbzPW7dubR8o48aNsw/ncPNQwKO3IwUJX375ZdhjG2458TyukZ67ojc/PaSU7aekbwXFV199dci3eJVT9Kf19j9+boqA/291DoS6yUVK5dz8aT8ptdQ/iT/Ufg51/ijVTM4//3wTDZFc+5Gui4JYBfC6jhToFHRuR2O9VVZEZSHDrXewolx7RVGU+0SsjqtLKSLKTlLKqFt+yqXvusaUUqKUDD2cRSklSvl+7rnnAu4J2meaj7sNBdEDXoGuri//45EILcpHY/uKSvdrnXvqEcQt06bzUYGSAiKXih6EahE91LM32udzyqVQqQC6+6YffOL7R/mRuu222+yb9gUXXGAL4OlBrLxhZYm88sor9uApGlcBP5XpUDCgNwqV8dADSheaxt1www12fvq9Chvq4le5C73pqyBjKCoorOBGy124cKFNAdAy9Uaki8q9eKNJD0vdQJTcqoes9pne/HTT0FvY119/bae76aab7ENO26KTUturAEt52Srr0qJFC9/2KnBQAVIVJtSDUAUAQ9EFqsK4SrrVzVXHbO7cuTYFJNTbilI8tO+0nnpzVAqBgjqtk5tVp4tQb5R6o9H+0kWl32i/KwhUEHDCCSfYVA+VIVChe81XDzUFUaKHm24SCnR0TPRWrIBThb715qr5a921Hx544AG77npbUjkYBanxOq6RnrsKdFSQVzcqlbcQ3cSVDD558mQzcODAgPmuXr3aJrPrmOu8mDp1qi3c7x5zN5VLx/mvf/2rDVjVBYr2RahAPRI6vgr2tQ1KBVJwq21wr6tQtD5KNVWAqBupjp/Ku+ghoCA5uFBucUVy7Ue6LjrvtM81v1atWpmePXvat+g1a9bYY6SC0KECoOJQ69lqJFHXptZF5VV0fuj60TEPV8Ek0muvKIpyn4jVcXXpfqhrRC3TB1fI0D1K17s+wYX7VZxA9xelWunlRC3O67pS+cFI+kbUcVdK8ZgxY+w1rCBFheD1jNN1Gyl1g6NrNJjKvapIQHF53b7i3tP+9a9/2fukzkMFz3qW6prTPUjlnfQM08uWcgH8hXv2RvV8dtKg2YTgavNFaTbBrcqsRuNUbVPVWNXWhpoRUFsz/m0BqV0XNR9w3HHH2enUpofapVm4cKFvmu+//96266SG0yKp+qrGFtXgmJapeapJg+AmAArapuI07Kl2lVTtVe2SqK0kNSp3wQUX+Bqxc6vt+zdgJ6rur/VQFXd3v6g9LDV7oKrg+k1hVaPV0KCqn6upAFVzLahhT+0bHS+1H6L11Pqq2YcnnngiYDqtr9pAUZspweeCGqhTW1danqpSa/3UMKnaqPKndle0T3RMNZ2q/2vZ/tXB1T6ShqvJgUga9izsuPo3qhcs1P4IpbBzV/tWVYO1n4OpPSMdA7VT5V/9WQ33qYq4GvZUmzM33HDDIQ17vv7667YNLDW0pzaU1JaSW03fv42acOdt8D5Tw5BqX0bnka4dXWP33XdfwPUXrmFPtY+jpjB0juhcKagByMLWI5xIrv1I10V07qiZCR0b7UNV3VdbV2p4MVrNJoiqhN91112+ddI1pGPrttUmxb32wrUn5J7X/ud7Ue8TsTqusnz5ct9zJLgJEjVn4K6zGjANpnYR1T6fzlk1PaDrLFzDl8HHy23fT9upav3Fbdgz3Md/+92GPYMVdA+KxvaFEu68cWkfaFm7du2y39UAp9swra4/nVeh7gUFPXsjfZYUJkP/FCtUBJBW9NapbC0lgxflDRkA0gFlqAAAADwioAIAAPCIgAoAAMAjylABAAB4RAoVAACARwRUAAAAHqVcw57RoEb5NmzYYBtYLEqXCAAAIH7UEtTu3btt452hOlMuSQRUISiYcjtfBAAAyWXt2rW+nh9ihYAqBLfrDx0QdQUBAAASX15enk0QKYmu2QpDQBWCm82nYIqACgCA5JIRh+I6FEoHAADwiIAKAADAIwIqAAAAjwioAAAAPCKgAgAA8IiACgAAwCMCKgAAAI8IqAAAADwioAIAAPCIltIBAEBMHDjomAWrd5gtu/NNjUqZpl2DqqZ0qdi3al4SCKgAAECJm7Nkoxk1a6nZmJvvG1YrK9OM6NbUdGlWK+mPAFl+AACgxIOpAVMXBQRTsik33w7X+GRHQAUAAEo0m2/UrKXGCTHOHabxmi6ZEVABAIASs2D1jkNSpvwpjNJ4TZfMCKgAAECJ2bI7P6rTJSoCKgAAUGJqVMqM6nSJioAKAACUmHYNqtrafOEaR9Bwjdd0yYyACgAAlJjSpTJs0wgSHFS53zU+2dujIqACAAAlqkuzWmZy71YmOyswW0/fNTwV2qGiYU8AAFDiujSrZTo1zaaldAAAAC9Kl8owOQ2rpeROJMsPAADAIwIqAAAAjwioAAAAPCKgAgAA8IiACgAAwCMCKgAAAI8IqAAAADwioAIAAPCIgAoAAMAjAioAAACP6MsPAAB4cuCgk7J99EWKgAoAABTbnCUbzahZS83G3HzfsFpZmWZEt6a2Q+R0QZYfAAAodjA1YOqigGBKNuXm2+Eany4IqAAASMIstvmrtpuZi9fbv/oej3VQylSoJTt//NX4eKxbPJDlBwBAEkmULDaVmQpOmfKnMErjNV1Ow2om1ZFCBQBAkkikLDYVQI/mdMmOgAoAgCSQaFlsqs0XzemSHQEVAABJoChZbLGgphGU1RiucYSMP7IiNV06IKACACAJJFoWm9qZUrktyQga537X+HRpj4qACgCAJJCIWWwqBD+5dyuTnRW4TH3X8HRqh4pafgAAJAE3i00F0EOVksr4I5CJdRabgqZOTbPTvqX0hEihmjhxoqlfv77JzMw07du3NwsWLAg77WuvvWbatGljqlSpYipUqGBatmxpXnjhhYBprrrqKpORkRHw6dKlSwy2BACA9MtiK10qwzaNcGHLOvZvumTzJVRANW3aNDN48GAzYsQIs2jRItOiRQvTuXNns2XLlpDTV61a1dx1111m/vz55ptvvjH9+vWzn7feeitgOgVQGzdu9H1eeumlGG0RAAAlgyy2xJXhOE5cmzBVilTbtm3NhAkT7PeDBw+aunXrmkGDBpmhQ4dGNI9WrVqZ888/34wePdqXQrVr1y4zY8aMYq1TXl6eycrKMrm5uaZy5crFmgcAACWFzogT7/kd1xSqX3/91SxcuNB07NjxfytUqpT9rhSowigWnDt3rlm+fLk5/fTTA8bNmzfP1KhRwxx77LFmwIABZvv27WHns3//fnsQ/D8AACQqstgST1wLpW/bts0cOHDA1KxZM2C4vn///fdhf6fIs06dOjYQKl26tJk0aZLp1KlTQHbfxRdfbBo0aGBWrVpl7rzzTtO1a1cbpGn6YGPGjDGjRo2K8tYBAIB0kZS1/CpVqmQWL15s9uzZY1OoVAbrmGOOMWeeeaYd37NnT9+0J554omnevLlp2LChTbU655xzDpnfsGHD7DxcSqFStiMAAEDCB1TVq1e3KUabN28OGK7v2dnZYX+nbMFGjRrZ/6uW37Jly2wqkxtQBVOwpWWtXLkyZEBVrlw5+wEAAEi6MlRly5Y1rVu3tqlMLhVK1/ecnJyI56PfKPsvnHXr1tkyVLVqpU8DYwAAII2y/JTV1rdvX9u2VLt27cz48ePN3r17bVMI0qdPH1teSilQor+aVll4CqJmz55t26GaPHmyHa9sQJWHuuSSS2wql8pQ3X777TZFS80xAAAApFxA1aNHD7N161YzfPhws2nTJpuFN2fOHF9B9TVr1tgsPpeCrYEDB9pUp/Lly5vjjjvOTJ061c5HlIWo9qmee+4523RC7dq1zbnnnmubVCBbDwAApGQ7VImIdqgAAEg+eXFshyruKVQAACA+aCA0egioAABIQ3OWbDSjZi01G3PzfcPU+bL6A1QXN0iyvvwAAEDsg6kBUxcFBFOyKTffDtd4FA0BFQAAaZbNp5SpUAWo3WEar+kQOQIqAADSyILVOw5JmfKnMErjNR0iR0AFAEAa2bI7P6rT4b8IqAAASCM1KmVGdTr8FwEVAABppF2DqrY2X0aY8Rqu8ZoOkSOgAgAgjZQulWGbRpDgoMr9rvGaDpEjoAIAIM2onanJvVuZ7KzAbD1913DaoSo6GvYEACANKWjq1DTb1uZTAXSVmVI2HylTxUNABQBAmlLwlNOwWrxXIyWQ5QcAAOARARUAAIBHBFQAAAAeEVABAAB4RKF0AACSjDoupnZeYiGgAgAgicxZstGMmrU0oINjtWyuxjhpPyp+yPIDACCJgqkBUxcFBFOyKTffDtd4xAcBFQAASZLNp5QpJ8Q4d5jGazrEHgEVAABJQGWmglOm/CmM0nhNh9gjoAIAIAmoe5hoTofoIqACACAJqK+9aE6H6CKgAgAgCajjYtXmywgzXsM1XtMh9gioAABIko6M1TSCBAdV7neN13SIPQIqAACShNqZmty7lcnOCszW03cNpx2q+KFhTwAAkoiCpk5Ns2kpPcEQUAEAkGSUrZfTsFq8VwN+yPIDAADwiIAKAADAI7L8ACDBqSsRtX6tBhvVxpCqxVOTC0gsBFQAkMDU2a36Z/PvckRtDal6PDW6gMRBlh8AJHAwNWDqokP6b9uUm2+HazyAxEBABQAJms2nlCl1eBvMHabxmg5A/BFQAUACUpmp4JQpfwqjNF7TAYg/AioASEAqgB7N6QCULAIqAEhAqs0XzekAlCwCKgBIQGoaQbX5wnVzq+Ear+kAxB8BFQAkILUzpaYRJDiocr9rPO1RAYmBgAoAEpTamZrcu5XJzgrM1tN3DacdKiBx0LAnACQwBU2dmmbTUjqQ4AioACDBKVsvp2G1eK8GgAKQ5QcAAOARARUAAIBHBFQAAAAeEVABAAB4REAFAADgEQEVAACARwRUAAAAHhFQAQAAeETDngAAxMCBgw4t3qcwAioAAErYnCUbzahZS83G3HzfsFpZmbaDa/pkTA1k+QEAUMLB1ICpiwKCKdmUm2+HazySHwEVAAAlmM2nlCknxDh3mMZrOiQ3AioAAErIgtU7DkmZ8qcwSuM1HZIbARUAACVky+78qE6HxEVABQBACalRKTOq0yFxUcsPAIASat5Av1VtPhVAD1VKSnPNzvrvMpDcCKgAACih5g0UiOm3qs2n4Mk/qHJDNI0vbsCGxEGWHwAAJdi8gQKxyb1b2ZQof/qu4bRDlRpIoQIApL3CmjdQ+pHGd2qaXazUJAVN+m20shKReAioAABpryjNG+Q0rFas/aXgqbi/ReIjyw8AkPZo3gBeEVABANJepM0W/LRtX9rvKyRwQDVx4kRTv359k5mZadq3b28WLFgQdtrXXnvNtGnTxlSpUsVUqFDBtGzZ0rzwwgsB0ziOY4YPH25q1aplypcvbzp27GhWrFgRgy0BACQjt3mDwko0jX/3B/reQ2IGVNOmTTODBw82I0aMMIsWLTItWrQwnTt3Nlu2bAk5fdWqVc1dd91l5s+fb7755hvTr18/+3nrrbd804wdO9Y8+uij5rHHHjOff/65Dbw0z/x8WqIFAIRv3iCSHvXoew+hZDhKzokjpUi1bdvWTJgwwX4/ePCgqVu3rhk0aJAZOnRoRPNo1aqVOf/8883o0aNt6lTt2rXNrbfeaoYMGWLH5+bmmpo1a5opU6aYnj17Fjq/vLw8k5WVZX9XuXJlj1sIAEgWj7z7g3n43cJzNF7qfzIFzBNQXhyf33FNofr111/NwoULbZacb4VKlbLflQJVGAVPc+fONcuXLzenn366HbZ69WqzadOmgHlq5ypwCzfP/fv324Pg/wEApJ/61StENB197yGhAqpt27aZAwcO2NQjf/quoCgcRZ4VK1Y0ZcuWtSlT//znP02nTp3sOPd3RZnnmDFjbNDlfpRCBgBIP/S9h6QtQ1UclSpVMosXLzZffPGFue+++2wZrHnz5hV7fsOGDbNBmvtZu3ZtVNcXAJAahdM1XOPpew8J1bBn9erVTenSpc3mzZsDhut7dnZ22N8pW7BRo0b2/6rlt2zZMpvKdOaZZ/p+p3molp//PDVtKOXKlbMfAEB6o+89JGUKlbLsWrdubctBuVQoXd9zcnIino9+o3JQ0qBBAxtU+c9TZaJU268o8wQApCf63kNSdj2j7Lq+ffvatqXatWtnxo8fb/bu3WubQpA+ffqYOnXq2BQo0V9N27BhQxtEzZ4927ZDNXnyZDs+IyPD3Hzzzebee+81jRs3tgHWPffcY2v+de/ePa7bCgBIDvS9h6QLqHr06GG2bt1qG+JUoXFly82ZM8dXqHzNmjU2i8+lYGvgwIFm3bp1ttHO4447zkydOtXOx3X77bfb6a699lqza9cu06FDBztPNRwKAEAk6HsPSdUOVSKiHSoAAJJPXhzboYp7ChUA4H8OHHTMgtU7bDtHqsKv2mRKKQGQ2AioACBBzFmy0XZrsjH3f91kqYq+ukRRmR4AiSsp26ECgFQMpgZMXRQQTMmm3Hw7XOMBJC4CKgBIgGw+pUyFKtDqDqNDXiCxEVDF+KY5f9V2M3PxevtX3wFAZaaCU6b86U6h8ZoOQGKiDFWMUDYCgNeOdumQF0hcpFDFAGUjABSEDnmB5EdAVcIoGwGgMHTICyQ/AqoSRtkIAJF2yCvBLU653zWe9qiAxEVAVcIoGwEgEnTICyQ3CqWXMMpGAIgUHfICyYuAKkZlI9Q4X6hGEpScn5313+4lAIAOeYHkRJZfCaNsBAAAqY+AKgYoGwEAQGojyy9GKBsBAEDqIqCKIcpGAACQmsjyAwAA8IiACgAAwCOy/IAYdUGkVvPV0KvaJlMzGbR6DQCpg4AKiEHn2KNmLTUbc/N9w9Q2mboSUWUFAEDyI8sPKOFgasDURQHBlKihVw3XeACJl6I8f9V2M3PxevtX34HCkEIFlBDdhJUyFepW7PzRSr7Gd2qaTfYfkCBIUUZxkUIFlBCVmQpOmQoOqjRe0wGIP1KU4QUBFVBCVAA9mtMBiF+Ksmg82X8Ih4AKKCGqzRfN6QCUHFKU4RUBFVBC1DSCavOprFQoGq7xmg5AfJGiDK8IqIASonam1DSCBAdV7neNpz0qIP5IUYZXBFRACVI7U5N7tzLZWYHZevqu4bRDBSQGUpThFc0mACVMQZOaRqCldCDxU5TVPpxSkP0Lp5OijEhkOI5Di2VB8vLyTFZWlsnNzTWVK1eOaEcCAJIf7VAlt7w4Pr9JoQIA4A+kKKO4CKgAAAjK/stpWI19giKhUDoAAIBHBFQAAAAeEVABAAB4REAFAADgEQEVAACARwRUAAAAHhFQAQAAeERABQAA4BEBFQAAgEcEVAAAAIkUUOXn55tx48ZFc5YAAAAJr8gB1datW80bb7xh3n77bXPgwAE77LfffjOPPPKIqV+/vrn//vtLYj0BAABSo3Pkjz/+2FxwwQUmLy/PZGRkmDZt2phnn33WdO/e3ZQpU8aMHDnS9O3bt+TWFgAAINlTqO6++25z3nnnmW+++cYMHjzYfPHFF+aiiy4yf//7383SpUvNddddZ8qXL19yawsAAJCAMhzHcSKduFq1auajjz4yTZs2Nb/88oupWLGiee2118yFF15oUolS4LKyskxubq6pXLlyvFcHABLCgYOOWbB6h9myO9/UqJRp2jWoakqXyoj3agEJ8fwuUpbfzp07TfXq1e3/lRJ1+OGHm2bNmpXUugEAEsScJRvNqFlLzcbcfN+wWlmZZkS3pqZLs1pxXTcgERQpoBJl7W3atMn+X4lby5cvN3v37g2Ypnnz5tFbQwBA3IOpAVMXmeDsjE25+Xb45N6tCKqQ9oqU5VeqVClbGD3UT9zh+uvW/ktWZPkBwP+y+To88F5AypQ/ZfhlZ2Waj+84m+w/xF3SZPmtXr265NYEAJBwVGYqXDAler3WeE2X07BaTNcNSCRFCqjq1atXcmsCAEg4KoAezemAVFWkZhPGjh1ra/e5PvnkE7N//37f9927d5uBAwdGdw0BAHGj2nzRnA5IVUUKqIYNG2aDJlfXrl3N+vXrfd/37dtnHn/88eiuIQAgbtQ0gmrzhWscQcM1XtMB6axIAVVwYfQilGcHACQhtTOlphEkOKhyv2s87VEh3UW1c2QAQOpRO1NqGkG1+fzpO00mAMVshwoAkJ5BVaem2bSUDkQroHrqqadslzPy+++/mylTpvhaT/cvXwUASC3K1qNpBCAKDXvWr1/fNtyZ6u1V0bAnAADJJy9ZGvb86aefSm5NAAAA0qFQ+nvvvWeaNm1qI8BgigZPOOEE89FHH0Vz/QAAAFIroBo/frzp379/yGQ0JbH99a9/NQ899FA01w8AkGB9+81ftd3MXLze/tV3AEXM8vv666/NAw88EHb8ueeea8aNG8d+BYAUNGfJRjNq1tKAvv3UqKfaoVItQCCdFSmFavPmzeawww4LO75MmTJm69at0VgvAECCBVMDpi46pKPkTbn5drjGA+msSAFVnTp1zJIlS8KO/+abb0ytWrylAEAqZblpGUqZCrUkd5jGk/2HdFakgOq8884z99xzj8nPP7RXcXWaPGLECHPBBRcUeSUmTpxom2TIzMw07du3NwsWLAg77ZNPPmlOO+00c8QRR9hPx44dD5n+qquuss07+H+6dOlS5PUCgESiVKAOD7xnej35mbnp5cX2r76XdOrQgtU7DkmZCg6qNF7TAemqSAHV3XffbXbs2GGaNGlixo4da2bOnGk/Kld17LHH2nF33XVXkVZg2rRpZvDgwTYYW7RokWnRooXp3Lmz2bJlS8jp582bZ3r16mXef/99M3/+fFO3bl1bdsu/k2ZRALVx40bf56WXXirSegFAIolnltuW3flRnQ4w6d6wp/z8889mwIAB5q233vJ1jqwUIAVBSmlq0KBBkVZAKVJt27Y1EyZMsN8PHjxog6RBgwaZoUOHFvr7AwcO2JQq/b5Pnz6+FKpdu3aZGTNmmOKgYU8AiURZaUqJCpdKlPFHv3of33F2iXRSrKxFpYYV5qX+J9OSOuIqaRr2lHr16pnZs2ebnTt3mpUrV9qgqnHjxjaoKapff/3VLFy40AwbNsw3rFSpUjYbT6lPkdi3b5/57bffTNWqVQ9JyapRo4Zdr7PPPtvce++9plq1aiHnsX//fvtxhWpnCwDipShZbiXRNUy7BlVtbT6lhjkFBHSaDkhXRcry86dARSlL7dq1K1YwJdu2bbMpTDVr1gwYru+bNm2KaB533HGHqV27tg3C/LP7nn/+eTN37lybHfnBBx+Yrl272mWFMmbMGBvRuh+lkAFAooh3lptSvdQ0ggSnf7nfNb4kUseAlA+oEsH9999vXn75ZTN9+nRboN3Vs2dP86c//cmceOKJpnv37uaNN94wX3zxhU21CkUpZEoedD9r166N4VYAQMFqVMqM6nTFoXamJvduZVOi/Om7htMOFdJdkbP8oql69eqmdOnStn0rf/qenZ1d4G/VgKgCqnfffdc0b968wGmPOeYYuyxlUZ5zzjmHjC9Xrpz9AEAiSpQsNwVNnZpm26xFpYYpgNMySZkC4pxCVbZsWdO6dWubNedSoXR9z8nJCfs71TAcPXq0mTNnjmnTpk2hy1m3bp3Zvn07bWQBSEqJlOWmZaic1oUt69i/BFNAgmT5qckEtS313HPPmWXLltkahHv37jX9+vWz41Vzz7/QuspEqS2sZ555xrZdpbJW+uzZs8eO19/bbrvNfPbZZ+ann36ywdmFF15oGjVqZGsiAkAyIssNSGxxzfKTHj162O5qhg8fbgOjli1b2pQnt6D6mjVrbM0/1+TJk23twEsvvTRgPmrHauTIkTYLUS22K0BT0wkqsK52qpSiRbYegGRGlhuQQu1QpQPaoQIAIPnkxbEdqrhn+QEAACQ7AioAAACPCKgAAAA8IqACAADwiIAKAADAIwIqAACAZG+HCgDS0YGDDl24ACmEgAoAYmzOko1m1KylZmNuvm+Y+upT9zF0MgwkJ7L8ACDGwdSAqYsCgilRx8carvEAkg8BFQDEMJtPKVOhuqdwh2m8pgOQXAiogCShh+z8VdvNzMXr7V8euslnweodh6RM+VMYpfGaDkByoQwVkAQoc5MatuzOj+p0ABIHKVRAgqPMTeqoUSkzqtMBSBwEVEACo8xNamnXoKqtzZcRZryGa7ymA5BcCKiABEaZm9RSulSGbRpBgoMq97vGazoAyYWACkhglLlJPWpnanLvViY7KzBbT981nHaogOREoXQggVHmJjUpaOrUNJuW0oEUQkAFJEGZGzX6GKploow/UjYoc5N8lK2X07BavFcDQJSQ5QckMMrcAEByIKACEhxlbgAg8ZHlByQBytwAQGIjoAKSBGVuACBxkeUHAADgEQEVAACARwRUAAAAHhFQAQAAeERABQAA4BEBFQAAgEcEVAAAAB4RUAEAAHhEQAUAAOARARUAAIBHBFQAAAAeEVABAAB4REAFAADgEQEVAACAR2W8zgAAEB8HDjpmweodZsvufFOjUqZp16CqKV0qg8MBxAEBFQAkoTlLNppRs5aajbn5vmG1sjLNiG5NTZdmteK6bkA6IssPAJIwmBowdVFAMCWbcvPtcI0HEFsEVACQZNl8SplyQoxzh2m8pgMQOwRUAJBEVGYqOGXKn8Iojdd0AGKHMlQxRiFSAF6oAHo0pwMQHQRUMUQhUgBeVa9QLqLpVOsPQOyQ5RcjFCIFEI37yK3//rrAaTL+qO2nJhQAxA4BVQxQiBRAtF7KNuWFz8pzW6BS0wm0RwXEFgFVDFCIFEBJvZT5q3J4GfOXU+ubrPJlqeUHxBhlqGKAQqQASvKlzLVz3+/m6U9+sh8a+QRiixSqGIi0cCiFSAFEq8YejXwCsUVAFQMqHKq3xXA9bFGIFEC0X7Zo5BOILQKqGFDhUBUSleCgikKkALy+lIVDI59A7BBQxYg6K53cu5XJzgp809R3DaczUwDFeSmLBI18AiWPQukxpKCpU9NsW8BUNzgl4+vNk+rNACK5f+jlS7X9Iimg7o/ymUDJI6CKMQVPOQ2rxXqxAFLwpax6xXLm1n8tNpvz9odsUiHjj1RwGvkESh4BFQAk8UvZyD+dYBv8VPDkH1RRPhOILcpQAUASo3wmkBhIoQKAIrZanmjlICmfCcQfARUAFKE/veBC4YnSIjnlM4H4IssPAIrQOXFwDTtaJAdAQAUAHjsnpkVyAARUABCFzolpkRwAWX4AEKWWxmmRHEhfBFQAEKWWxmmRHEhfBFQA4LFzYg3XeFokB9IXARUAeOicmBbJASRMQDVx4kRTv359k5mZadq3b28WLFgQdtonn3zSnHbaaeaII46wn44dOx4yveM4Zvjw4aZWrVqmfPnydpoVK1bEYEsApCpaJAeQ0A17Tps2zQwePNg89thjNpgaP3686dy5s1m+fLmpUaPGIdPPmzfP9OrVy5xyyik2AHvggQfMueeea7777jtTp04dO83YsWPNo48+ap577jnToEEDc88999h5Ll261P4GAIqDFskBhJPhKDknjhREtW3b1kyYMMF+P3jwoKlbt64ZNGiQGTp0aKG/P3DggE2p0u/79OljU6dq165tbr31VjNkyBA7TW5urqlZs6aZMmWK6dmzZ6HzzMvLM1lZWfZ3lStXjsJWAgCAkhbP53dcs/x+/fVXs3DhQpsl51uhUqXs9/nz50c0j3379pnffvvNVK1a1X5fvXq12bRpU8A8tXMVuEU6TwAAgKTJ8tu2bZtNYVLqkT99//777yOaxx133GFTpNwASsGUO4/gebrjgu3fv99+/CNcAACApCqUXlz333+/efnll8306dM9lY0aM2aMTcVyP8pyBAAASIqAqnr16qZ06dJm8+bNAcP1PTs7u8Dfjhs3zgZUb7/9tmnevLlvuPu7osxz2LBhNr/V/axdu9bDVgEAgHQT14CqbNmypnXr1mbu3Lm+YSqUru85OTlhf6dafKNHjzZz5swxbdq0CRinWn0KnPznqSy8zz//POw8y5UrZwuv+X8AAACSptkENZnQt29fGxi1a9fONpuwd+9e069fPzteNffUHIKy5UTNJKiNqRdffNG2XeWWi6pYsaL9ZGRkmJtvvtnce++9pnHjxr5mE1TOqnv37nHdVgAAkJriHlD16NHDbN261QZJCo5atmxpU57cQuVr1qyxNf9ckydPtrUDL7300oD5jBgxwowcOdL+//bbb7dB2bXXXmt27dplOnToYOdJG1QAACAl26FKRLRDBQBA8slL13aoAAAAUgEBFQAAAAEVAABAfJFCBQAA4BEBFQAAgEcEVAAAAB4RUAEAAHhEQAUAAOARARUAAIBHBFQAAAAeEVABAAB4REAFAADgEQEVAACARwRUAAAAHhFQAQAAeERABQAA4BEBFQAAgEcEVAAAAB4RUAEAAHhEQAUAAOARARUAAIBHBFQAAAAeEVABAAB4REAFAADgEQEVAACARwRUAAAAHhFQAQAAeERABQAA4BEBFQAAgEcEVAAAAB4RUAEAAHhEQAUAAOARARUAAIBHBFQAAAAeEVABAAB4REAFAADgEQEVAACARwRUAAAAHhFQAQAAeERABQAA4BEBFQAAgEcEVAAAAB4RUAEAAHhUxusMABTuwEHHLFi9w2zZnW9qVMo07RpUNaVLZbDrACBFEFABJWzOko1m1KylZmNuvm9YraxMM6JbU9OlWS32PwCkALL8ENdUm/mrtpuZi9fbv/qeisHUgKmLAoIp2ZSbb4drPAAg+ZFChbhIh1QbBYjaxlBhooYpw0/jOzXNJvsPAJIcKVSIuXRJtVGZqeBtDA6qNF7TAQCSGwEVEirVRjQ+FbL/VAA9mtMBABIXARViKp1SbVSbL5rTAQASFwEVYiqdUm3UNILKhYVrHEHDNV7TAQCSGwEVYiqdUm3UzpQK2UtwUOV+13jaowKA5EdAhZhKt1Qb1Vic3LuVyc4KDBD1XcNTpUYjAKQ7mk1AXFJtVJtPwZOTBqk2CprUNAItpQNA6spwHCf5q1NFWV5ensnKyjK5ubmmcuXK8V6dlJQO7VABANLn+U0KFeKCVBsAQCohoEJcOwjOaViNIwAASHoEVIgJsvgAAKmMWn5pLFadE6dLVzMAgPRFClWailWKER0EAwDSASlUaSiWKUbx7momVqlwAID0RgpVmol1ilE8u5qh3BYAIFZIoUozsU4xildXMwWlwl03dZH526zvSLECAEQNKVRJ3ORAcVKQYp1i5HY1o0AmVKpYxh/dsESzq5nCUuHkmU9+sh8aEwUARAMBVRKIZtZVrFOM4tHVTGGpcKHKjdGvHgAgqbP8Jk6caOrXr28yMzNN+/btzYIFC8JO+91335lLLrnETp+RkWHGjx9/yDQjR4604/w/xx13nElW0S5AHo/OiYvbQXBxC5QXJXXNnaMCVgqsAwCSMoVq2rRpZvDgweaxxx6zwZQCpM6dO5vly5ebGjVqHDL9vn37zDHHHGMuu+wyc8stt4Sd7wknnGDeffdd3/cyZZIzIa4kCpB7TTEqbtZjUbua8ZIqV9TUNf9yY7TcDgAojrhGGg899JDp37+/6devn/2uwOo///mPeeaZZ8zQoUMPmb5t27b2I6HG+wdQ2dnZJp0KkBclEHBTjIIDluxCAhavWY8KniJZTzdVzilm9lxh5bZiWdMQAJAe4hZQ/frrr2bhwoVm2LBhvmGlSpUyHTt2NPPnz/c07xUrVpjatWvbbMScnBwzZswYc/TRR4edfv/+/fbj31t1IijJAuTFSTHyEuTEMlWuoFS4WNY0BACkj7iVodq2bZs5cOCAqVmzZsBwfd+0aVOx56uswylTppg5c+aYyZMnm9WrV5vTTjvN7N69O+xvFHBlZWX5PnXr1jWJoKQLkLspRhe2rGP/FpTNV1ituWiVQYpWsw7hym3FqtwYACC9xL1QerR17drVlrFq3ry5LY81e/Zss2vXLvOvf/0r7G+USpabm+v7rF271iSCeBQgj3fbVdFMlVNQ9fEdZ5uX+p9srj61fshpSqqmIQAgvcQtoKpevbopXbq02bx5c8BwfY9m+acqVaqYJk2amJUrV4adply5cqZy5coBn0TgZl1JRhwDgVi2XRXtVDk3Fe6ebieYx3q3sgFoUWoaAgCQ0GWoypYta1q3bm3mzp1runfvbocdPHjQfr/hhhuitpw9e/aYVatWmSuvvNIko+IWII+mWLZdVZINgRa13BgAAElRy09NJvTt29e0adPGtGvXzjabsHfvXl+tvz59+pg6derYMk5uQfalS5f6/r9+/XqzePFiU7FiRdOoUSM7fMiQIaZbt26mXr16ZsOGDWbEiBE2JaxXr14mWcU7EIhla+cl3RBopDUNAQBImoCqR48eZuvWrWb48OG2IHrLli1tYXK3oPqaNWtszT+XAqSTTjrJ933cuHH2c8YZZ5h58+bZYevWrbPB0/bt282RRx5pOnToYD777DP7/2QWz0Ag1q2dJ0KqHAAARZHhOI73qlkpRs0mqLafCqgnSnmqVOsCJ5b9FwIA0kNeHJ/fBFQJdkASHUEOACBR5cXx+Z2cfbIgbiiDBABAGrRDBQAAEGsEVAAAAB4RUAEAAHhEQAUAAOARARUAAIBHBFQAAAAeEVABAAB4REAFAADgEQEVAACAR7SUHoLbvaGasAcAAMkh74/ndjy6KSagCmH37t32b926dWN9PAAAQBSe4+rTL5boHDmEgwcPmg0bNphKlSqZjIyMqEXNCtDWrl2bVh0us90c73TAeZ5e57lwzBPzmDuOY4Op2rVrm1KlYluqiRSqEHQQjjrqqBLZ4ToBE/EkLGlsd3rheKeXdD3e6bztibzdWTFOmXJRKB0AAMAjAioAAACPCKhipFy5cmbEiBH2bzphuzne6YDzPL3Oc+GYp98xLwyF0gEAADwihQoAAMAjAioAAACPCKgAAAA8IqACAADwiIAqCj788EPTrVs32zKrWlafMWNGgdO/9tprplOnTubII4+0DaPl5OSYt956y6T6dn/88cfm1FNPNdWqVTPly5c3xx13nHn44YdNqm+3v08++cSUKVPGtGzZ0iSjom77vHnz7HTBn02bNplUP+b79+83d911l6lXr56tEVa/fn3zzDPPmFTe7quuuirk8T7hhBNMqh/v//u//zMtWrQwhx9+uKlVq5b5y1/+YrZv325SfbsnTpxojj/+eHtPP/bYY83zzz9v0hUBVRTs3bvXXkg6sSI9aRVQzZ492yxcuNCcddZZ9iT+6quvTCpvd4UKFcwNN9xgt3/ZsmXm7rvvtp8nnnjCpPJ2u3bt2mX69OljzjnnHJOsirvty5cvNxs3bvR9atSoYVJ9uy+//HIzd+5c8/TTT9vtf+mll+wDJ5W3+5FHHgk4zupqq2rVquayyy4zqbzdelHStX311Veb7777zvz73/82CxYsMP379zepvN2TJ082w4YNMyNHjrTbPWrUKHP99debWbNmmbTkIKq0S6dPn17k3zVt2tQZNWpU2m33RRdd5PTu3dtJh+3u0aOHc/fddzsjRoxwWrRo4SS7SLb9/ffft9Pt3LnTSRWRbPebb77pZGVlOdu3b3dSRXGucU2fkZHh/PTTT04qb/eDDz7oHHPMMQHDHn30UadOnTpOKm93Tk6OM2TIkIBhgwcPdk499VQnHZFClSCdMaszR73JpROlyH366afmjDPOMKnu2WefNT/++KNt3DUdKYtT2SBKmdXbfKp7/fXXTZs2bczYsWNNnTp1TJMmTcyQIUPML7/8YtKJUuc6duxosz1TmYptKDVOuQ6KRTZv3mxeeeUVc95555lUpmztzMzMgGHly5e3qXO//fabSTcEVAlg3LhxZs+ePTaLIB2o42mVKdEDR8nD11xzjUllK1asMEOHDjVTp0615afSiYKoxx57zLz66qv2U7duXXPmmWeaRYsWmVSm4FllBpcsWWKmT59uxo8fbx+wAwcONOliw4YN5s0330z561tUNlRlqHr06GHKli1rsrOzbQe9Rc0aTzadO3c2Tz31lC264jiO+fLLL+13BVPbtm0z6Sa97u4J6MUXX7T5zjNnzky6ciXF9dFHH9kA8rPPPrOBRqNGjUyvXr1MKjpw4IC54oor7DFWKkW6UZkh/3JDp5xyilm1apWtjPDCCy+YVE51VqFePWT1YJWHHnrIXHrppWbSpEn2LT7VPffcc6ZKlSqme/fuJtUtXbrU3HTTTWb48OE2yFD5sdtuu81cd911NpUuVd1zzz22gsnJJ59sA6qaNWuavn372pTZUqXSL72GgCqOXn75Zfv2pgKMShZPFw0aNLB/TzzxRJs0rgKNqRpQKStXb23K3lSBfPdhq5uPUqvefvttc/bZZ5t00q5dO5t6k+opc8rqc4MpUU0oHfd169aZxo0bm1Sm7VSNxiuvvNKm2KS6MWPG2FQqBVHSvHlzWwnntNNOM/fee689H1KRXgx0nB9//HF7L9d2qpJRpUqVbC32dENAFSeq8aNqtQqqzj//fJOuFFwoHz5VqVmMb7/9NmCYUijee+89mwXkBpfpZPHixSn7gHHp4aoXJaXEVqxY0Q774Ycf7Fu7srxT3QcffGBWrlxpa72lg3379h2SnV+6dGn797/lu1PbYYcd5juv9Uy74IILSKFC8eimqZuHa/Xq1fahoULmRx99tK1Wun79el/7HMrmU7Koqhi3b9/e1yaPon3/N9pU226VJ9BwtT8laj5B5cduvPFGk0yKst16gDZr1izg98raVUHO4OGpeMxVdkhBo9ohys/Pt+UrFEwqZS6Vt1vZvKNHjzb9+vWz2b0qT6LUC71EJVN2X1G326VsLt3bkvEcL852q9kbNZGgZgTcLL+bb77ZpsaqTadU3W69JKgAuo71zp07bba2yg0quzctxbuaYSpwq4YHf/r27WvH6+8ZZ5zhm17/L2j6VN1uVSM+4YQTnMMPP9ypXLmyc9JJJzmTJk1yDhw44KTydgdL5mYTirrtDzzwgNOwYUMnMzPTqVq1qnPmmWc67733npNsinPMly1b5nTs2NEpX768c9RRR9nq5Pv27XNSfbt37dplt/mJJ55wklVxtlv3NzV/o22vVauW8+c//9lZt26dk8rbvXTpUqdly5Z2mytXruxceOGFzvfff++kqwz9E++gDgAAIJmlXzF8AACAKCOgAgAA8IiACgAAwCMCKgAAAI8IqAAAADwioAIAAPCIgAoAAMAjAioAJWbKlCm2g9x0pk6SZ8yYEdNl/vTTT3a5auXai/r169vW7hNt+4BEREAFJIGrrrrKPrj0Ub9Z6tW9U6dOtmNS9YdYFOqMumXLllFfx1AP3x49etjuKUramWee6ds/+mj/XHbZZebnn3+O2TKDPxoPIH0QUAFJokuXLraPMKU+vPnmm+ass84yN910k+2I9PfffzeJSP3Wqe/CWFBfato/GzZsMDNnzjRr1641vXv3LrHlvfbaa3Z5+qg/M3n33Xd9wzS+ONR5RaIeTwDhEVABSaJcuXImOzvb1KlTx7Rq1crceeedNnBQcKWsNdeuXbvMNddcY4488khTuXJlc/bZZ5uvv/7ajtN06qxX392UFPe3Bf3ONWvWLNO2bVvbuXP16tXNRRddZIcrNUapQbfccotvvuGy/NSBbMOGDU3ZsmXNsccea1544YWA8fqtOlHWvA8//HDTuHFj8/rrrxe6fzSt9k+tWrXMySefbG644QazaNGigGk++OAD22Gt9qWmGzp0qC94UYevFStWNCtWrPBNP3DgQNuZ9759+w5ZnjqM1fL00T6TatWq+YZpvEudI4fbnnnz5tlt1nFs3bq1XbePP/7YpjyOGTPGdi6twLRFixbmlVde8f1OndH++c9/tsvWeM332WefDVjHH3/80QbeWq5+P3/+/IDxr776qu24WstUCuM//vGPAvex9s3pp59uj3/Tpk3NO++8U+hxAdJGvDsTBFA4dUqqjkdDUUfLXbt29X1Xh7zdunVzvvjiC+eHH35wbr31VqdatWrO9u3bbee8+q5Oqjdu3Gg/boe9Bf1O3njjDad06dLO8OHDbaeoixcvdv7+97/bcZpGHQD/7W9/881Xnn32WScrK8u3bq+99ppz2GGHORMnTnSWL1/u/OMf/7Dz9O8wWbclzevFF190VqxY4dx4441OxYoVfesRijpsvemmm3zfNa225ayzzvINU0e16ph74MCBtuPi6dOnO9WrV7edVbsuu+wyp23bts5vv/1mt1fr+uWXXxZ6fFavXm3X+6uvvjpkXGHb43ZI27x5c+ftt992Vq5cacfde++9znHHHefMmTPHWbVqld2X5cqVc+bNm2d/d/3119uOaXW8tPx33nnHef311wPWR7/XdmhfX3rppU69evXstom2q1SpUvaYabzmr05u9del6R9++GH7f3Vi3qxZM+ecc86xx/6DDz6wHZxrOdqXQLojoAKSPKDq0aOHc/zxx9v/f/TRR7bX9/z8/IBpGjZs6Dz++OP2/wogFIT5i+R3OTk5zp///Oew6+j/8HUFB1SnnHKK079//4BpFMScd955vu96QN99992+73v27LHD3nzzzQIDKgU/FSpUsEGTpm/SpIkNLFx33nmnc+yxxzoHDx70DVNgp+BGwYLs2LHDBj8DBgxwatas6dx3331OJAoLqAraHjegmjFjhm8aHQdtx6effhowr6uvvtrp1auX/b8Cxn79+hW4Pk899ZRv2HfffWeHKZiUK664wunUqVPA72677TanadOmIY/pW2+95ZQpU8ZZv369b7y2gYAK+C+y/IAkp2e2m8WmLLo9e/bYrCdlX7mf1atXm1WrVoWdRyS/U42xc845x9O6Llu2zJx66qkBw/Rdw/01b97c9/8KFSrYLMgtW7YUOG9lf2kdtS3KMmvUqJE599xzze7du33LzsnJ8e0rd9na7nXr1tnvRxxxhHn66ad92ZLKEoyGSLanTZs2vv+vXLnSZjOq4oH/8VC2pHs8BgwYYF5++WVbweD22283n376aYHLVRanuMsNdyyUrXfgwIFD5qXp69ata2rXru0bpv0J4L/K/PEXQJLSg07lbETBgR6cKpcTrKDmCyL5ncrpxIpqMvpTEFRYbcasrCwbRIn+KjDSNk2bNs2WDYvUhx9+aEqXLm0Llu/du9dUqlTJxGJ7FGj5Hw/5z3/+Y8vM+VN5J+natasttzZ79mxblknB7vXXX2/GjRsXcrluIFnUWqEAIkMKFZDE3nvvPfPtt9+aSy65xH5XYfVNmzaZMmXK2KDC/6NC5KLC4MEpEJH8Tqkdc+fODbsuoeYb7PjjjzeffPJJwDB9VwHnaFNQJL/88otv2SqU/d9cuP8tWwHTUUcdZb8rleeBBx6whe+VIqSC7fGg/aHAac2aNYccD6USuVQgvW/fvmbq1Km2yYonnngi4mWEOxZNmjTx7bvg6VVzUoGm67PPPiv2NgKphhQqIEns37/fBj0KWjZv3mzmzJlja4Gp2YQ+ffrYaTp27GizYbp3727Gjh1rH45qRkApHaplpmwl1eZSVp6yxxRIKKCI5HcjRoywqSDKCuvZs6etHafUkTvuuMMuW/NV6o7GKRhwAzF/t912m7n88svNSSedZJepwEXNC6i5Aa+URab9I9o/o0ePtrXRlO3n1thT0DFo0CAbKC1fvtxu0+DBg02pUqVs1uCVV15pbrzxRpv6o32jGo3dunUzl156qYklHZMhQ4bYWpNKUerQoYPJzc21AY+yCxVEDR8+3NYKVC09nRtvvPGGDXoideutt9rt035Se2EKNidMmGAmTZoUcnodL50XWvaDDz5o8vLyzF133RXFrQaS3B9lqQAkeKF0Xa76qGDwkUceaWvlPfPMM74C1a68vDxn0KBBTu3atW1B7bp169rC5GvWrPEVeL7kkkucKlWq2Pm5tboK+528+uqrtmZZ2bJlbQ25iy++2Ddu/vz5tqaaaqK5t5bgQukyadIk55hjjrHLUMHx559/PmB8qELOmod/7bNQhdLd/aPPEUccYYf51x4U1ZBTLT6tf3Z2tnPHHXf4ar2pgPeJJ54YUDBftRCrVq1qawh6KZRe0Pa4hdJ37twZMI0Kz48fP94WpNe+0jHv3LmzrV0no0ePtpURVDNP66hKCz/++GPY9dH8NUzLc73yyiu2ELrmf/TRRzsPPvhggRUNVBuwQ4cOdv/p2KkGIoXSgf/K0D/xDuoAAACSGWWoAAAAPCKgAgAA8IiACgAAwCMCKgAAAI8IqAAAADwioAIAAPCIgAoAAMAjAioAAACPCKgAAAA8IqACAADwiIAKAADAIwIqAAAA483/A4hG+UwcEUFMAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAARr1JREFUeJzt3Ql8FPX9//FvEoQAQriEBKScKo1yyNmoeBQQqBdeBazlqFWLra0CVZDKUfwXRKrUclWsRaVVrKUerU2pKK0HioUiylVALKCEU8JlQJP5P97fdva3u+wmm7C7s9l5PR+PhczMd2fnns98r8lwHMcxAAAAPpLp9QIAAAAkGwEQAADwHQIgAADgOwRAAADAdwiAAACA7xAAAQAA3yEAAgAAvkMABAAAfIcACAAA+A4BUAo7cuSI+e53v2tyc3NNRkaGueuuu+z43bt3mxtuuME0btzYjp81a5ap7uuE1NO6dWszYsSImNJeeuml9pNqy3/llVeadF2ejz/+2J5DCxcurDCt9qN+H9XvOEbiEAAlmS5WumhF+7zzzjuBtD/72c9s+lGjRpmnn37afPvb37bj7777bvPXv/7VjB8/3o4fMGBA3JdTv/3CCy8kZL6R1inY5MmTy91G7ieeF6rf/e531SqQ9ML69evtvtGNN1Wk4jKhfPn5+aZz584njf/jH/9oz+tLLrnkpGlPPPGEnbZ06dKU2LwKJqNdlxJxPY5nwOx+MjMzTaNGjczAgQPNihUrqjzfuXPnxhSEp6IaXi+AX/30pz81bdq0OWl8+/btA3+/9tpr5mtf+5qZNGlSSBqNv+aaa8zYsWMTtnwKVJTLNGjQoLjON9o6BbvuuutCtoNyjRQwXXvttXaaq1mzZnENgD788ENypIJs2rTJXiSDg40pU6bYwDM8N8GrG1N5y4TUdNFFF5lf//rXpri42OTk5ATGv/XWW6ZGjRrmvffeM1988YU57bTTQqZlZWWZgoICkyq6dOlixowZc9L45s2bm1Q2dOhQ841vfMOUlpaaf//73zaAueyyy+x279ixY6Xnp+83adIk5tziVEIA5BFF3d27dy83zZ49e+zTUqTxDRo0MNVRtHUK1qlTJ/tx7du3zwZAGnfzzTebVFRWVmZOnDhhsrOzTbqoVatWzGlr1qxp0snRo0dN3bp1vV6MtA2AFixYYN5++217HQwOcr75zW/ah5FVq1bZByXXm2++ac//evXqpcx+bdGiRZWuR9GWIR7XkFjWr2vXriHL3bt3b7sf5s2bZ4MZP6EILAUtX77cZlFu27bN/PnPfw5kWbrFZ47jmDlz5gTGuw4ePGhzMFq2bGlvXspFefDBB+2JFUzDv/jFL2y0r5PtjDPOsNm2//znP+10zVMn0pNPPhn4jYqiewU2t9xyi82V0TyVxa3vV7ROp1J0sXHjRptLpWxc/aYCypdeeilkmbRuyh3QNnNt2bLFXiQGDx5shzVdy/Sf//wnsFwV5SYozQ9+8APz29/+1px77rl2excWFtppn3zyifnOd75jt4XGa7qy8MOVlJTY4puzzz7bLn9eXp7N4dq6dWsgjfaDnjLdfXrOOeeYmTNnhqyPfP755+aHP/yhfRLTTeLqq6+2y6Hl1G+EFy9qG2ifKpDWU/jIkSPNsWPHotYB0rF344032r/1tOhuJ+1XdxuGF0lWdEwEZ8trnR577DHTrl07u549evSwT6TlqWiZgm+ePXv2tMvQtm1b89RTT500H33v73//u7njjjtM06ZNzZlnnhmY/pe//MXeJHTMaNteccUVZt26dSHzKCoqsttQ39Pya18qlzbS8V3R8shHH31k103Hdp06dWwwoGM0Fiq6Pu+88+z89b+KlipDN0H3mFZuxve//317bQmmfa15KwdO217LqIBgxowZMQVAbsATfC6sXr3aHv/aJsHT9u7da3Mq3O/Jv/71L3vTrl+/vjn99NNNnz59QqoPxLJf3eOtdu3adn+88cYbJt50/mj5dE4r10XHz7e+9a0KryHxWL9Y9e7d2/4ffN2R3/zmN+brX/+6na+WTQ+uCpLCrxE6F7QMkaomxHpP8go5QB5R9q9yNoLp4FHF5q9+9au2fozq+uiAdrNZzz///EC9mX79+plhw4YFvqubl8rOddO7/fbbzVe+8hX7hKV6Qrt27Qqp36Kbkk4enWCqkPzll1/ak18nmIII/YbG66Jw22232e/oQhGNbr466HVT1Qmtor3f//739uTXCfCjH/0o6jopQKkKnXQXXnihveiOGzfO3pyee+45W2T3hz/8wRaX6cTVCasbyS9/+UsbIOjE03LpQuQ+7UyYMMHuj507d5pHHnnEjtNFJ5biPP2m1lmBhy4GqqCum5V7cdP66QaqbX7o0KFAEZuyn1UhdtmyZWbIkCF2Gx0+fNj87W9/s0Vx2t4KchTIvP766/b7ynJX3a8f//jHdj+7yypaJy2Ljg39vi5IulFHoydt7adp06bZG8/jjz9ut5cuTpFcfPHFdvs9+uij5r777rP7U9z/q3JMBNNTv9Zfx662nW6kuhkqEAguCqnsMun3FSRr+w0fPtwGolqGbt262ZtOMN1EtL8mTpxoA0/RMavv9e/f324bnWc6pnQz1k3KDZSvv/56e0zeeeeddpyCP+3L7du3hwTTsSyPjqELLrjA/pbWT9cEBY46Fp5//nl7bEejokgti25W2rf79+8PBGaxUICsIsW+ffvaXFcVg2p9FYwqKAneF5999pl9cNJ+0vGkZbv33nvtg1Vwzk44BTgKrBQIujR/5X5ovfXRb7nXCF3HxA2AtJ1101ZwcM8999hl+tWvfmWPNx33vXr1qnC/qghOx5p+S+ekjjNtXwWculnHQsV04ddw0bVIQZVL11cdP1p+BfoKFsu7hsRj/Srj4/8F6Q0bNgwZr/2uY1LbRUWTL7/8sv0tXUMVFIvuKzrmdb3UdTS4akJl7kmecZBUv/nNb/ToHvFTq1atkLStWrVyrrjiipPmobTf//73Q8ZNnTrVqVu3rvPvf/87ZPy4ceOcrKwsZ/v27Xb4tddes9//4Q9/eNJ8y8rKAn9rXsOHD49pnWbNmmXnuWjRosC4EydOOAUFBc7pp5/uHDp0qMJ1Ks/evXvt/CdNmhQY16dPH6djx45OSUlJyPJfcMEFzllnnRXy/aFDhzp16tSx2+ahhx6y83rhhRdC0miZtGyx0jwyMzOddevWhYy/5ZZbnLy8PGffvn0h44cMGeLk5OQ4x44ds8NPPPGEncfDDz8cdT9oGZXmgQceCJl+ww03OBkZGc6WLVvs8KpVq2y6u+66KyTdiBEjTtpu+lvjvvOd74Skvfbaa53GjRuHjNP2CD4Gfv/739vvvv766yct8yWXXGI/lT0mtm3bZtPptw8cOBBI++KLL9rxL7/8slOe8pZJy69p//jHPwLj9uzZY8+zMWPGnHROXnTRRc6XX34ZGH/48GGnQYMGzq233hoy36KiIrsv3fGfffaZ/b6OrfLEujzaj0r3xhtvhCxLmzZtnNatWzulpaUh207L7+rSpYs9/g4ePBgYt3TpUpuuouNby1KzZk3n8ssvD/yGzJ49235fx6xL+1rjnnrqqcC448ePO7m5uc7111/vVOTGG290ateubY8JmTZtml0/mTt3rtO0adNA2rFjx9rf+uSTT+zwoEGD7HJu3bo1kObTTz916tWr51x88cUV7lf9puavbaVldj322GM2ffBxXNG+jPTRurh0/micrsOxXkNOdf2icY+XKVOm2GtqUVGRPcZ69Ohhx+tcCuZeq4L179/fadu2bci4c889N+I2i/We5CWKwDyiIiw9IQZ/lFNQVXq61lODong9lbgfPckpt+Ef//iHTafcET1hR6qEHFycVhmvvPKKbdauynUuPbXo6VUVmPXUEk8HDhywT0566lSugbuuetrVk9bmzZvtU4dr9uzZtphHT97333+/zSVR8cSp0tNNcH0mXdO0fa+66ir7d/B+0HIpl0m5LaJ0euLT01O0/aDtqoqf2o7B9GSs+bvHi5ttrqezYJHm7fre974XMqxjR9tPuVTxUNljQsWRwU+gbra8nsxPhfaPOy/Rk7KKESPN99Zbb7Xb26VzUrlVWofgfak0egpXzpzoaV91oFT0plyRU10ebTvlvgYX+egJW7mxelpXsVMkeqpes2aNzVkKrlys3OKK6t3Jq6++anNhlCMSXPld20W5EeFFcFqm4Lok2gZa7lj2mdZNuYSq6yPK8VFujChnVzloOo/dacpBVK6RrmXK5VJOr3KSXCpyvOmmm2yuUvgxHL5fVdSv+escCK67ppy44O1WER0D4ddwfYKPeZdy02K5hsRj/Sqia7+Ou9zcXHssbtiwwfz85z+318dgwblYbomFllf7V8Pxuid5iSIwj+hCUVEl6MrQxWLt2rVRi5R0wrvlvLqQKKs3XlR35qyzzgq5aAYXRWh6PKkYQQGAghl9oq2visdE66piEhWFKXtWf8dDeCs+1VXQDVN1C/SJtlzuftCNT1nL0Wi7aV+FV/wM3676X9s+fHmCW9KFU3Z0MDf40A1cN7tkHxPlLc+pCJ+vO+9I8w3ffu4NWPUgInG3k+o2qHhMgamOLxVBqnhTRdS6yVR2ebRtwos5wred6t+Ec7eptns4HWtu8B2N+32lDaYgQTfj8H2mYrXwhyati65DlakHpHVV0cgDDzxgx2ndtG01TcVRCpLc+no6x1S0Er6M7vZR8cyOHTtCijfD92u07aQAPTjoqIgeYHQzr4jO8WhFkJGuIae6fhVRIK1rYUlJiX2Q1PVQAUk4bX8FS2oiH14/MLwF36nck7xEAJQmdGLoSU9lxpGoom26cCvQqRsA5axEEn7zV90Z0Y1GdX3i0You+AkpeLn0VKyn8EiCW7d5KdoTY3jl6uq+PJWZb7T9qXpA4YGMBAevyjVRzp8qIOtYU2CuOji6wajuXlWWJ9WdyrqoQrwCe+VoqHKwcnXdHCAFzQqKNE114ZQrFZwbVlnh+zXZFCCHPwjEc9kqOw8Ffm7gduWVV9r9qHqUqszuPpTrAU0Vrzt06GAefvhhG4gqEFbupOoexlKJuTrckwiA0oQuFCpaqOiJROl0gdYFp7xcoMoUh7Vq1cpG+jrgg090tdJyp8eT+5SmJ7ZYnsBURKRKvjoR1eJCwcm7774bcgOravFfMD3p6KKup6lY9oOWIby/k2DabiqWUDFfcC5Q+HbV/9r2amEX/FSrnLJ4SsVjIh77LRq34r8qh8dynCm9coH00dOvKq2raGHRokWV+l1tG1U+DlfRtnPHuzlXwSLNL9r3lTY4J0QBiI6tWLZBrHTTVU6ZchkU6CjHJ7gPGgVDixcvDjzIuAGQzjFVIo62fXSsVVSJOXg7Befu6VzUekbqpDFZ4rF+lTVhwgTbLcFPfvKTQHG6KjwfP37ctqoNzrV0i31jOQdjvSd5iTpAaUL1YZRV6eZ0BFOxjFoiiFqI6AlNLT3Ke3JTS4bwpq/R6AlOzYB1wXLp99TySvUEIvXseip0Q1KLCLWMUL2HcMpGdmkd3BZt6txRgZCKAvR3MK1vLOXaFV3UtX1Vv0ctucpbLqVTebjqJ0XbD25nZeFp9ASmi47b0sbNBQvvw0PbP57c/kViOS6SdUxUZpkqS9tVN2YdK7o5RtufKh5QcUL4xV9Bq24ilaVtt3LlypDeedW6R8WqaiUUrT6P6oko6FKLseBjWfVSotUbCqYblZ7yVSQSfC1wOy0sr1VhVSio0TZUc2vl+AQHygqAFAS8+OKLgZax7jl2+eWX2/HBXQyo5ZxaEmqeFRXhKpdDgcb8+fNtcOdSy9hEHEeVEY/1q6wGDRrYVlq6d6gOmbscEnwc6BjQvgoX7V4R6z3JS+QAeUQVWN0numA68StTDu1S02hF68rSdJvV6qL5wQcf2OapOplUZq1sTlUC1kVOT0BqxqqndDWD1zQ1xxR9X7kPyv5UPRSVM0eql+CWKSsY0e+qvF4Xaf2mnu7U1PFUOy+LVolcFwM9NaoSoLaZLhI64VTE9f7779t0am6tyr1aF53UWl8FRKpvoIrQ7tOe1lc369GjR9s+aHSTVpFGZU2fPt0+JWlbabl0s1Jum4IuLYP+FtUPUf8v+j3d7FRZUPtLaVSZWcum39c+0ROa9p+WVRUkdXFUkYubQ6FlV0Clba11dZvBq++UeOaS6Oaqbaj6LroYKmvf7SfEq2OiMstUWbrRqCmwzhd1HqfuCnTjVNN2VQhWZV0Fp9rOKi7QBV/7WzmL6ntHx6O+U1kqjnjmmWdsgKtK48qpVVCj3AkF19GKU0TFbgpUdG6oLyodbwo6VWdET+Pl0bqpibIejnSeqPmzghAF1jon4t0JqZuro3M2uK8qcbuSUNccOg+Cj2Gduwrq9H2dK9reOtYUbMbSD5FyXDUP3fR1rKh+kbatbu6VufaqoUWk3D1dO06lB/1TXb+q+NGPfmTPS12/nn32WRuEKRjWttd20rGjXCKdV+EPnbr+6DzRcivHTmm0XWO9J3nK62ZoflNeM/jwJq2VaQbvNpUdP3680759e9uMskmTJrZZ+MyZMwPNTUVNJtVkt0OHDjbdGWec4QwcONA2p3Zt3LjRNrlUU1X9XkVN4nfv3u2MHDnS/qbmqSbqwetS0TpVthm8qJnosGHDbNPb0047zWnRooVz5ZVXOs8//3xIU+qf//znId9TE2wtR+fOnQPb5ciRI85NN91kmz3H0mQ42j5wt4WmtWzZ0i6Xlk/N9tXMNryZ6YQJE2zzXzedmrgHN3/VPr377rud5s2b2zRq4q99F9xlgRw9etT+ZqNGjWwzczWl3bRpk13O6dOnn9QMXts00nGpprLRmsHLggULbDNYNWMNbn4e3gw+1mPCbZobqQl5pH0eSbRlinashS+ru+7vvfdexPlrfmr+q6bv2dnZTrt27WwXA//85z/tdHV5oG2v80nNfpWuV69eznPPPRcyn1iXR3QM6FjQ8ajf7Nmzp/OnP/0pJE2kZvDyhz/8wfnqV79qm9fn5+c7S5Yssfsx1m4e1Oxd66LjrVmzZs6oUaNsU//wZVbz53CV+R0dszVq1LDroKb64Tp16mSnPfjggydNW716td0nOtbVxcVll13mvP322yFpKtqvam6vc0/bqXv37rZ7gkj7orLN4IPXX9tDx0RlryHxWL9w5Z1romNa55DbvcZLL71k94GOP3W/oP3gdt8RfJ1Qc3od12qmH96NQKz3JK9k6B9vQzAAiaDsbFXA1VOq2/ssAOC/qAMEpAH1qRJOWdoqLlGPyQCAUNQBAtKA6gaoro3qDKnOgOqY6aO6OPFuNQIA6YAiMCANqNKkKq+qtY8qLKrpqirvqgJ1eZ0tAoBfEQABAADfoQ4QAADwHQIgAADgO1QOiEAdA3766ae2s7ZEdrUPAADiRz376PVB6sC3vE5DhQAoAgU/tJwBAKB62rFjhznzzDPLTUMAFIHbTb82YLzfuwIAABLj0KFDNgMjltftEABF4BZ7KfghAAIAoHqJpfoKlaABAIDvEAABAADfIQACAAC+QwAEAAB8hwAIAAD4DgEQAADwHQIgAADgOwRAAADAdwiAAACA79ATNADfKC1zzMptB8yewyWmab1s07NNI5OVyQuPAT8iAALgC4Uf7jJTXl5vdhWXBMbl5WSbSVflmwHn5Xm6bACSjyIwAL4IfkYtWh0S/EhRcYkdr+kA/IUACEDaF3sp58eJMM0dp+lKB8A/CIAApDXV+QnP+QmmsEfTlQ6AfxAAAUhrqvAcz3QA0gMBEIC0ptZe8UwHID0QAAFIa2rqrtZe0Rq7a7ymKx0A/yAAApDW1M+PmrpLeBDkDms6/QEB/kIABCDtqZ+feTd3Nbk5ocVcGtZ4+gEC/IeOEAH4goKcfvm59AQNwCIAAuAbKuYqaNfY68UAkAIoAgMAAL5DAAQAAHyHAAgAAPgOARAAAPAdAiAAAOA7BEAAAMB3CIAAAIDvEAABAADfIQACAAC+QwAEAAB8h1dhAACApCgtc1LmfXwEQAAAIOEKP9xlpry83uwqLgmMy8vJNpOuyrcvK042isAAAEDCg59Ri1aHBD9SVFxix2t6shEAAfBV9vuKrfvNi2s+sf9rGEBi6TxTzk+ks80dp+nJPh8pAgPgC6mW/Q74xcptB07K+QmmsEfTla6gXeOkLRc5QADSXipmvwN+sedwSVzTxQsBEIC0lqrZ74BfNK2XHdd08UIABCCtVSb7HUD8qam7ipujNXbXeE1XumQiAAKQ1lI1+x3wi6zMDFvXTsKDIHdY05PdHxABEIC0lqrZ74CfDDgvz8y7uavJzQk9zzSs8V40RKAVGABfZL+rwnOkWj4Z/7sIJzv7HfCbAeflmX75uSnTE3RK5ADNmTPHtG7d2mRnZ5tevXqZlStXRk27ZMkS0717d9OgQQNTt25d06VLF/P000+HpBkxYoTJyMgI+QwYMCAJawIg1aRq9jvgR1mZGbap+zVdWtj/vTzvPA+AFi9ebEaPHm0mTZpkVq9ebTp37mz69+9v9uzZEzF9o0aNzIQJE8yKFSvM2rVrzciRI+3nr3/9a0g6BTy7du0KfJ555pkkrRGAVJOK2e8AvJXhOI6nbT+V49OjRw8ze/ZsO1xWVmZatmxp7rzzTjNu3LiY5tG1a1dzxRVXmKlTpwZygA4ePGheeOGFKi3ToUOHTE5OjikuLjb169ev0jwApJ5UehEjgPirzP3b0xygEydOmFWrVpm+ffv+3wJlZtph5fBURLHbsmXLzKZNm8zFF18cMm358uWmadOm5pxzzjGjRo0y+/fvjzqf48eP240W/AGQflIp+x2AtzytBL1v3z5TWlpqmjVrFjJewxs3boz6PUV2LVq0sIFLVlaWmTt3runXr19I8dd1111n2rRpY7Zu3Wruu+8+M3DgQBtUKX24adOmmSlTpsR57QAAQKqqlq3A6tWrZ9asWWOOHDlic4BUh6ht27bm0ksvtdOHDBkSSNuxY0fTqVMn065dO5sr1KdPn5PmN378eDsPl3KAVAwHAADSk6cBUJMmTWyOzO7du0PGazg3Nzfq91RM1r59e/u3WoFt2LDB5uK4AVA4BUf6rS1btkQMgGrVqmU/AADAHzytA1SzZk3TrVs3m4vjUiVoDRcUFMQ8H31HxWHR7Ny509YBysujpQcAAEiBIjAVPQ0fPtz27dOzZ08za9Ysc/ToUdu0XYYNG2br+yiHR/S/0qpIS0HPK6+8YvsBmjdvnp2uYjHV57n++uttLpLqAN1zzz02x0jN6wEAADwPgAYPHmz27t1rJk6caIqKimyRVmFhYaBi9Pbt222Rl0vB0R133GFzdWrXrm06dOhgFi1aZOcjKlJT/0BPPvmkbQrfvHlzc/nll9sm8hRzAQCAlOgHKBXRDxAAAOl9//Y8BwgAAPhDaQp1RkoABAAAEq7ww11mysvrza7iksA4vahY7+Lz4nU0nr8LDAAApH/wM2rR6pDgR4qKS+x4TU82AiAAAJDQYi/l/ESqcOyO03SlSyYCIAAAkDCq8xOe8xNMYY+mK10yEQABAICEUYXneKaLFwIgAACQMGrtFc908UIABAAAEkZN3dXaK1pjd43XdKVLJgIgAACQMOrnR03dJTwIcoc1Pdn9AREAAQCAhFI/P/Nu7mpyc0KLuTSs8V70A0RHiAAAIOEU5PTLz6UnaAAA4C9ZmRmmoF1jkwooAgMAAL5DAAQAAHyHAAgAAPgOARAAAPAdWoEBAICk0AtP9c4vvfZCPT+r88Nk9//jIgACAAAJV/jhLvvW9+AXo6oHaHWC6EU/QBSBAQCAhAc/oxatPumt8EXFJXa8picbARAAAEhosZdyfpwI09xxmq50yUQABAAAEkZ1fsJzfoIp7NF0pUsmAiAAAJAwqvAcz3TxQgAEAAASRq294pkuXgiAAABAwqipu1p7RWvsrvGarnTJRAAEAAASRv38qKm7hAdB7rCmJ7s/IAIgAACQUOrnZ97NXU1uTmgxl4Y13ot+gOgIEQAAJJyCnH75ufQEDQAA/CUrM8MUtGtsUgFFYAAAwHcIgAAAgO9QBwiAb6TSm6gBeIsACIAvpNqbqAF4iyIwAGkvFd9EDcBbBEAA0lqqvokagLcIgACktVR9EzUAbxEAAUhrqfomagDeIgACkNZS9U3UALxFAAQgraXqm6gBeIsACEBaS9U3UQPwFgEQgLSXim+iBuAtOkIE4Aup9iZqAN4iAALgG6n0JmoA3qIIDAAA+A4BEAAA8B0CIAAA4DsEQAAAwHcIgAAAgO8QAAEAAN8hAAIAAL5DAAQAAHyHjhABAEBSlJY5KdMbOwEQAABIuMIPd5kpL683u4pLAuPycrLty4i9eB8fRWAAACDhwc+oRatDgh8pKi6x4zU92QiAAABAQou9lPPjRJjmjtN0pUsmAiAAAJAwqvMTnvMTTGGPpitdMhEAAQCAhFGF53imixcCIAAAkDBq7RXPdPFCKzCfNv8DACAZdK9Tay9VeI5Uy0d3wdyc/94Tk4kAyKfN/wAASAY96Otep9ZeCnaCgyA3C0DTk50hQBGYT5v/AQCQLHrQn3dzV5vTE0zDGu9FRgA5QB43/1O8q+n98nMpDgMApK0B5+XZe12qVAUhAEqh5n8F7RonenEAAPCMgp1UudcRAPm0+R8AAH5uDEQA5NPmfwAA+LkxUEpUgp4zZ45p3bq1yc7ONr169TIrV66MmnbJkiWme/fupkGDBqZu3bqmS5cu5umnnw5J4ziOmThxosnLyzO1a9c2ffv2NZs3bzZeNv+LFt9qfJ4Hzf8AAPBzYyDPA6DFixeb0aNHm0mTJpnVq1ebzp07m/79+5s9e/ZETN+oUSMzYcIEs2LFCrN27VozcuRI+/nrX/8aSDNjxgzz6KOPmvnz55t3333XBkqaZ0lJiWfN/yQ8CPKy+R8AAH5+F1iGo+wSDynHp0ePHmb27Nl2uKyszLRs2dLceeedZty4cTHNo2vXruaKK64wU6dOtbk/zZs3N2PGjDFjx46104uLi02zZs3MwoULzZAhQyqc36FDh0xOTo79Xv369U06Zv0BAJAMK7buN0MXvFNhumdu/dopV5CuzP3b0zpAJ06cMKtWrTLjx48PjMvMzLRFVsrhqYiCnddee81s2rTJPPjgg3bctm3bTFFRkZ2HSxtDgZbmGSkAOn78uP0Eb8B0b/4HAICfGwN5GgDt27fPlJaW2tyZYBreuHFj1O8psmvRooUNWrKysszcuXNNv3797DQFP+48wufpTgs3bdo0M2XKFOOn5n8AAPi5MZDndYCqol69embNmjXmvffeM//v//0/W4do+fLlVZ6fcqAUVLmfHTt2xHV5AQDwq54p2hjI0xygJk2a2Byc3bt3h4zXcG5ubtTvqZisffv29m+1AtuwYYPNxbn00ksD39M81AoseJ5KG0mtWrXsBwAAxBfvAougZs2aplu3bmbZsmWBcaoEreGCgoKYN66+49bhadOmjQ2CguepOj1qDVaZeQIAgPjgXWARqPhq+PDhtm+fnj17mlmzZpmjR4/apu0ybNgwW99HOTyi/5W2Xbt2Nuh55ZVXbD9A8+bNs9MzMjLMXXfdZR544AFz1lln2YDo/vvvty3DBg0aFKddCQAAqnNjIM97gh48eLDZu3ev7bhQlZRVTFVYWBioxLx9+3Zb5OVScHTHHXeYnTt32k4OO3ToYBYtWmTn47rnnntsuttuu80cPHjQXHTRRXae6mgRAAB4I5UaA3neD1AqSkQ/QAAAILGqTT9AfpNKL4EDAMDPCICShJ6gAQBIHdWyH6DqJhVfAgcAgJ8RAPn0JXAAAPgZAVCCqc5PeM5PMIU9mq50AACks9Iyx74c9cU1n9j/vXz4pw6QT18CBwCAn+vCkgPk05fAAQDg57qwBEA+fQkcAAB+rgtLAJSkl8BJeBDkDms6/QEBANLRyhStC0sA5NOXwAEA4Oe6sFSC9ulL4AAA8HNdWAIgn74EDgCAZNaFVYXnSLV8Mv5XIpLsurAUgQEAAN/VhSUAAgAAvqsLSxEYAADwXV1YAiAAAOC7urAUgQEAAN8hAAIAAL5DERgA31BX+6lS/wCAtwiAAPhCqr2JGoC3KAIDkPZS8U3UALxFAATA12+idjx6EzUAbxEAAfD1m6iNR2+iBuAtAiAAaa3oUElc0wFIDwRAANLagSPH45oOQHogAAKQ1hrVrRnXdADSAwEQgLSWm1M7rukApAcCIABpTZ0dqr+f8mi60gHwDwIgAGlNPT2rs8No/T1rvKbTIzTgLwRAANKeenqed3PXk3KCNKzx9AQN+A+vwgDgCwpy+uXn8i4wABYBEADfUDFXQbvGXi8GgBRAERgAAPAdAiAAAOA7BEAAAMB3CIAAAIDvEAABAADfIQACAAC+QwAEAAB8hwAIAAD4TtwCoJKSEjNz5sx4zQ4AACA1AqC9e/eaP/3pT2bp0qWmtLTUjvviiy/ML37xC9O6dWszffr0RC0nAABA8l+F8eabb5orr7zSHDp0yGRkZJju3bub3/zmN2bQoEGmRo0aZvLkyWb48OHxWzIAAACvc4B+8pOfmG984xtm7dq1ZvTo0ea9994z1157rfnZz35m1q9fb773ve+Z2rVrJ2o5AQAA4ibDcRwnloSNGzc2b7zxhsnPzzeff/65Of30082SJUvMNddcY9KNcrlycnJMcXGxqV+/vteLAwAA4nz/jjkH6LPPPjNNmjSxfyunp06dOua8886L9esAAADVrw6QqKirqKjI/q2Mo02bNpmjR4+GpOnUqVN8lxAAAKSF0jLHrNx2wOw5XGKa1ss2Pds0MlmZGaldBJaZmWkrP0dK7o7X/27rsOqMIjAAAOKr8MNdZsrL682u4pLAuLycbDPpqnwz4Ly8pN+/Y84B2rZtWzyWDQAA+DD4GbVotQnPQikqLrHj593cNW5BUKxiDoBatWqV2CUBAABpWew15eX1JwU/onEqANP0fvm5SS0Oi7kS9IwZM2zrL9dbb71ljh8/Hhg+fPiwueOOO+K/hAAAoNpaue1ASLFXpCBI05UumWIOgMaPH2+DHNfAgQPNJ598Ehg+duyY+dWvfhX/JQQAANXWnsMlcU2X9AAovPJzjHWnAQCAjzWtlx3XdPHC2+ABAEDCqKm7WntFq92j8ZqudMlEAAQAABJGFZvV1F3CgyB3WNOT3R9QpTpCfPzxx+0rMOTLL780CxcuDPQOHVw/CAAAwKUm7mrqHt4PUG6c+wFKSEeIrVu3th0d+qG/IDpCBACg+vUEnZCOEF9//XXTpk2beCwfAADwoazMDFPQrrFJBTHXAWrXrp0NgL7zne+YRYsWhTSBBwAAqE5izgF67bXXzPLly+3nmWeeMSdOnDBt27Y1X//6181ll11mP82aNUvs0gIAACSzDlCwkpIS8/bbbwcCopUrV5ovvvjCdOjQwaxbt85Ud9QBAgAgve/fVQqAXMoF0isx/vKXv9heoI8cOcLb4AH4tgImAG8lpBK0G/C88847tkK0cn7effdd07JlS3PxxReb2bNnm0suueRUlx0AEvY26vAmuHkeNsEF4K2Yc4BU10cBjypCK9Dp3bu3/T8vL/0uHBSBAekX/IxatPqkt1G7eT/qn4QgCPDX/TvmVmBvvPGGady4sQ2E+vTpY/r165eWwQ+A9Cv2Us5PpCc9d5ymKx2AxNJ5tmLrfvPimk/s/16edzEHQAcPHjSPPfaYqVOnjnnwwQdN8+bNTceOHc0PfvAD8/zzz5u9e/dWeSHmzJljO1rMzs42vXr1spWqo1mwYIHNfWrYsKH99O3b96T0I0aMsJ02Bn8GDBhQ5eUDUH2pzk9wsVc4XX41XekAJDYn9qIHXzNDF7xjfvTsGvu/hjU+pQOgunXr2iBi+vTptihs3759ZsaMGTYg0v9nnnmmOe+88yq9AIsXLzajR482kyZNMqtXrzadO3c2/fv3N3v27ImYXnWPhg4daushrVixwtZBuvzyy0/ql0jLumvXrsBHTfcB+I8qPMczHYCqF0OHP4wUFZfY8V4EQVV+GaoCokaNGtmPcmJq1KhhNmzYUOn5PPzww+bWW281I0eONPn5+Wb+/Pk2qHriiScipv/tb39r7rjjDtOlSxfb7F7vJysrKzPLli0LSVerVi2Tm5sb+GgZAfiPWnvFMx2A9CiGjjkAUpChoibl9gwcONA0aNDAXHDBBWbu3Lk2wFAx1kcffWQq26ps1apVthgrsECZmXZYuTuxOHbsmO2DSIFYeE5R06ZNzTnnnGNGjRpl9u/fH3Uex48ftxWngj8A0oOauqu1V7TG7hqv6UoHwD/F0DE3g1fAc/ToURvsqNfnRx55xFx66aX2FRlVpWK00tLSk3qQ1vDGjRtjmse9995r6yMFB1Eq/rruuutsi7WtW7ea++67zwZtCqqysrJOmse0adPMlClTqrweAFKX+vlRU3dlsyvYCX7GdIMiTac/IMBfxdAxB0APPfSQDXzOPvtskypUH+nZZ5+1uT2qQO0aMmRI4G9V1O7UqZMN1JROLdjCjR8/3tZDcikHSHWLAKQHNXFXU/fwfoBy6QcI8G0xdMwB0O233x73H2/SpInNkdm9e3fIeA0rp6k8M2fOtAHQq6++agOc8uidZfqtLVu2RAyAVF9IHwDpHQT1y8+lJ2jAo2LoouKSiPWAMv73MJLsYugqV4KOh5o1a5pu3bqFVGB2KzQXFBRE/Z7qIU2dOtUUFhaa7t27V/g7O3futHWA6LcI8DcVcxW0a2yu6dLC/k+xF5C8YmgJr4vnZTG0pwGQqOhJffs8+eSTthWZKiyrrpFahcmwYcNsEZVLfRDdf//9tpWY+g4qKiqyH72HTPT/j3/8Y/vKjo8//tgGU9dcc41p3769bV4PAAC8KYZWTk8wDXvVE3ul3gWWCIMHD7adKE6cONEGMmrerpwdt2L09u3bbcsw17x582zrsRtuuCFkPupHaPLkybZIbe3atTagUueNqiCtfoKUY0QxFwAA3ki1YuhTeht8uuJdYAAAVD8JeRcYAABAuiAAAgAAvkMABAAAfIcACAAA+A4BEAAA8B0CIAAA4Due9wMEAAD8obTMSZl+gAiAAABAwhV+uOukFxLrHWF6DYYXPUFTBAYAABIe/IxatDok+BG9IFXjNT3ZCIAAAEBCi72U8xPptRPuOE1XumQiAAIAAAmjOj/hOT/BFPZoutIlEwEQAABIGFV4jme6eCEAAgAACaPWXvFMFy8EQAAAIGG6tWpoKmrprulKl0wEQAAAIGFW/eczU1H9Zk1XumQiAAIAAAlDHSAAAOA7TakDBAAA/KZnm0a2x+do1YA0XtOVLpkoAgMAAAmjd33pdRcSHgS5w5qe7HeCEQABAICE0ru+5t3c1eTmhDZ117DGe/EuMF6GCgAAEk5BTr/8XN4GDwAA/CUrM8MUtGtsUgFFYAAAwHcIgAAAgO8QAAEAAN8hAAIAAL5DAAQAAHyHAAgAAPgOARAAAPAdAiAAAOA7BEAAAMB3CIAAAIDvEAABAADfIQACAAC+QwAEAAB8hwAIAAD4Tg2vF8BPSsscs3LbAbPncIlpWi/b9GzTyGRlZni9WAAA+A4BUJIUfrjLTHl5vdlVXBIYl5eTbSZdlW8GnJeXrMUAAAAUgSUv+Bm1aHVI8CNFxSV2vKYDAIDkoQ5QEoq9lPPjRJjmjtN0pQMAAMlBAJRgqvMTnvMTTGGPpisdAABIDgKgBFOF53imAwAAp44AKMHU2iue6QAAwKkjAEowNXVvUOe0ctNoutIBAIDkIABKghNflpU7/YsKpgMAgPgiAEqwd7buN8dOlJab5uiJUpsOQGKpteWKrfvNi2s+sf/T+hLwLzpCTLAVH+2LOd2FZzVJ9OIAvkVnpACCkQOUcLG+6oJXYgCJQmekAMIRACVYQbvGcU0HoHLojBRAJARACfa1to0rbAXWsM5pNh2A+KMzUgCREAAlmN72Pv26juWmmXZdR94KDyQInZECiIQAKAn0tvf5N3c1ufVDOzvU2+A1nrfBA4lDZ6QAIqEVWJIoyOmXn2uz4/VEqouyOj9UDhGAxNF5poeNouKSiC8l1hmYm/Pf8xGAfxAAJZGCHSo7A8k/7yZdlW9GLVptg53gIMh9/NB0HkYAf6EIDIAvcmDnqRg6J7QYWsMaTzE04D/kAAHwBYqhgdTolmJlilQFIQAC4BsUQwPeKfxwl5ny8nqzq7gkME7181QE7UUuLEVgAADAd72xEwABAADf9cZOAAQAAHzXGzsBEAAA8F1v7ARAAADAd72xEwABAICE98YerbG7xud50Bs7ARAAAEh4b+wSHgR52Rt7SgRAc+bMMa1btzbZ2dmmV69eZuXKlVHTLliwwPTu3ds0bNjQfvr27XtSesdxzMSJE01eXp6pXbu2TbN58+YkrAkAAKgOvbF73hHi4sWLzejRo838+fNt8DNr1izTv39/s2nTJtO0adOT0i9fvtwMHTrUXHDBBTZgevDBB83ll19u1q1bZ1q0aGHTzJgxwzz66KPmySefNG3atDH333+/nef69evtdwAAgL97Y89wlF3iIQU9PXr0MLNnz7bDZWVlpmXLlubOO+8048aNq/D7paWlNidI3x82bJjN/WnevLkZM2aMGTt2rE1TXFxsmjVrZhYuXGiGDBlS4TwPHTpkcnJy7Pfq168fh7UEAACJVpn7t6dFYCdOnDCrVq2yRVSBBcrMtMMrVqyIaR7Hjh0zX3zxhWnU6L+Vp7Zt22aKiopC5qmNoUAr1nkCAID05mkR2L59+2wOjnJngml448aNMc3j3nvvtTk+bsCj4MedR/g83Wnhjh8/bj/BESQAAEhfKVEJuqqmT59unn32WfPHP/7xlOr2TJs2zeYSuR8VwQEAgPTlaQDUpEkTk5WVZXbv3h0yXsO5ubnlfnfmzJk2AFq6dKnp1KlTYLz7vcrMc/z48ba80P3s2LHjFNYKAACkOk8DoJo1a5pu3bqZZcuWBcapErSGCwoKon5PrbymTp1qCgsLTffu3UOmqdWXAp3geapI69133406z1q1atnKUsEfAACQvjxvBq8m8MOHD7eBTM+ePW0z+KNHj5qRI0fa6WrZpebtKqYSNXtXHz+/+93vbN9Bbr2e008/3X4yMjLMXXfdZR544AFz1llnBZrBq57QoEGDPF1XAACQGjwPgAYPHmz27t1rgxoFM126dLE5O24l5u3bt9uWYa558+bZ1mM33HBDyHwmTZpkJk+ebP++5557bBB12223mYMHD5qLLrrIzpM+gAAAQEr0A5SK6AcIAIDqp9r0AwQAAOAFAiAAAOA7BEAAAMB3CIAAAIDvEAABAADfIQACAAC+QwAEAAB8hwAIAAD4DgEQAADwHQIgAADgOwRAAADAdwiAAACA7xAAAQAA3yEAAgAAvkMABAAAfIcACAAA+A4BEAAA8B0CIAAA4DsEQAAAwHcIgAAAgO8QAAEAAN8hAAIAAL5DAAQAAHyHAAgAAPgOARAAAPAdAiAAAOA7BEAAAMB3CIAAAIDvEAABAADfIQACAAC+QwAEAAB8hwAIAAD4DgEQAADwHQIgAADgOwRAAADAdwiAAACA7xAAAQAA3yEAAgAAvkMABAAAfIcACAAA+A4BEAAA8B0CIAAA4DsEQAAAwHdqeL0AflJa5piV2w6YPYdLTNN62aZnm0YmKzPD68UCAMB3CICSpPDDXWbKy+vNruKSwLi8nGwz6ap8M+C8vGQtBgAAoAgsecHPqEWrQ4IfKSouseM1HQAAP5SErNi637y45hP7v4a9Qg5QgmnnKucn0i7WOBWAaXq//FyKwwAAaaswxUpCqASdYKrzE57zEx4EabrSAQCQjgpTsCSEACjBVOE5nukAAEinkhDR9GQXhxEAJZhae8UzHQAA1cnKFC0JIQBKMDV1VxlntMbuGq/pSgcAQLrZk6IlIQRACaZ+flTBS8KDIHdY0+kPCACQjpqmaEkIAVASqHb7vJu7mtyc0J2rYY2nHyAAQLrqmaIlITSDTxIFOWrqTk/QAAA/loSMWrTaBjtOipSEZDiO410vRCnq0KFDJicnxxQXF5v69et7vTgAAFR7hUnoB6gy929ygAAAgO9KQgiAAPgGLyQGvJWVmWEK2jVOid1AAATAF1KtG34A3qIVmE9fAgf4SSp2ww/AW+QAJQlPn4A3eCExgEjIAfLw6VPDPH0C/uyGH4C3CIA8fPoUx6OXwAF+kard8APwFgGQx0+fwtMn4L9u+AF4iwAowYqKP49rOgBV64a/PLyQGPAfAqAEO3D0RFzTAah8vyNXdy6/mbum80JiwF88D4DmzJljWrdubbKzs02vXr3MypUro6Zdt26duf766236jIwMM2vWrJPSTJ482U4L/nTo0MF4pdHpteKaDkDlqH7dS++X38xd06mHB/irOxhPm8EvXrzYjB492syfP98GPwpo+vfvbzZt2mSaNm16Uvpjx46Ztm3bmhtvvNHcfffdUed77rnnmldffTUwXKOGd6vZtF6tuKYDkLh6eKnSQy2QjgpTrDNST3OAHn74YXPrrbeakSNHmvz8fBsI1alTxzzxxBMR0/fo0cM89NBDZsiQIaZWregBgwKe3NzcwKdJkybGM7EGtzQCAxKCVmCA9wpTsDNSzwKgEydOmFWrVpm+ffv+38JkZtrhFStWnNK8N2/ebJo3b25zi771rW+Z7du3l5v++PHj9g2ywZ942Xf0eFzTAagcWoEBqd0ZqfGoOxjPAqB9+/aZ0tJS06xZs5DxGi4qKqryfFWUtnDhQlNYWGjmzZtntm3bZnr37m0OHz4c9TvTpk0zOTk5gU/Lli1NvHDxBbzVrVVDU9HLpjVd6QD4pzNSzytBx9vAgQNtHaFOnTrZ+kSvvPKKOXjwoHnuueeifmf8+PGmuLg48NmxY0fcm+BGu/5qPE1wgcRZ9Z/PTEUPlpqudAD8UwztWQCkejlZWVlm9+7dIeM1rHo78dKgQQNz9tlnmy1btkRNo/pE9evXD/nEi5rWqoKXhAdB7rCm0wQX8NfFF/CLpinaGalnAVDNmjVNt27dzLJlywLjysrK7HBBQUHcfufIkSNm69atJi8v+TXMXardPu/mriY3rDM2DWu8F7XfAb9I1Ysv4Bc9U7QkxNNm8GoCP3z4cNO9e3fTs2dP2wz+6NGjtlWYDBs2zLRo0cLW0XErTq9fvz7w9yeffGLWrFljTj/9dNO+fXs7fuzYseaqq64yrVq1Mp9++qmZNGmSzWkaOnSoh2v63yCoX36uLePUk6YuttrZ5PwAybn4qrWJE+Xim+vBxRfwi6z/lYSotZfONydFSkI8DYAGDx5s9u7dayZOnGgrPnfp0sVWXnYrRqv1llqGuRTQnH/++YHhmTNn2s8ll1xili9fbsft3LnTBjv79+83Z5xxhrnooovMO++8Y//2mnYu/YwAyT/vUvHiC/jJgP+VhIT3A5TrYT9AGY7j0ANNGDWDV2swVYiOZ30gAN5JtU7YAD8qLXMSWhJSmfs3AdApbkAA1UeiL74Aqs/929MiMABIJoqhAaRtP0AAAAAVIQACAAC+QwAEAAB8hwAIAAD4DgEQAADwHQIgAADgOwRAAADAdwiAAACA7xAAAQAA36En6Ajc16OpS20AAFA9uPftWF5zSgAUweHDh+3/LVu2jPe+AQAASbiP651g5eFlqBGUlZWZTz/91NSrV89kZGTEPTpVYLVjx460fNEq61f9sQ+rt3Tff35YR9av6pTzo+CnefPmJjOz/Fo+5ABFoI125plnmkTSSZuOJ66L9av+2IfVW7rvPz+sI+tXNRXl/LioBA0AAHyHAAgAAPgOAVCS1apVy0yaNMn+n45Yv+qPfVi9pfv+88M6sn7JQSVoAADgO+QAAQAA3yEAAgAAvkMABAAAfIcACAAA+A4B0CmaM2eOad26tcnOzja9evUyK1euLDf973//e9OhQwebvmPHjuaVV145qRfLiRMnmry8PFO7dm3Tt29fs3nzZpMu6zdixAjbu3bwZ8CAAcZLlVnHdevWmeuvv96m17LPmjXrlOdZ3dZv8uTJJ+1D7XMvVWYdFyxYYHr37m0aNmxoPzrHwtNX5/MwlvVLtfOwMuu3ZMkS0717d9OgQQNTt25d06VLF/P000+n9P5LxDpW530Y7Nlnn7XLPmjQoOTvQwdV9uyzzzo1a9Z0nnjiCWfdunXOrbfe6jRo0MDZvXt3xPRvvfWWk5WV5cyYMcNZv36985Of/MQ57bTTnA8++CCQZvr06U5OTo7zwgsvOO+//75z9dVXO23atHE+//zztFi/4cOHOwMGDHB27doV+Bw4cMDxSmXXceXKlc7YsWOdZ555xsnNzXUeeeSRU55ndVu/SZMmOeeee27IPty7d6/jlcqu40033eTMmTPH+de//uVs2LDBGTFihD3ndu7cmRbnYSzrl0rnYWXX7/XXX3eWLFlirzFbtmxxZs2aZa87hYWFKbn/ErWO1XkfurZt2+a0aNHC6d27t3PNNdc4wZKxDwmATkHPnj2d73//+4Hh0tJSp3nz5s60adMipv/mN7/pXHHFFSHjevXq5dx+++3277KyMnvTeeihhwLTDx486NSqVcvekKr7+rknbfiB7qXKrmOwVq1aRQwQTmWe1WH9FAB17tzZSRWnur2//PJLp169es6TTz6ZFudhReuXaudhPM6X888/3z5wpeL+S8Q6psM+/PLLL50LLrjAefzxx09al2TtQ4rAqujEiRNm1apVNlsu+B1iGl6xYkXE72h8cHrp379/IP22bdtMUVFRSBq900TZidHmWZ3Wz7V8+XLTtGlTc84555hRo0aZ/fv3Gy9UZR29mGdVJXJZlBWtlw22bdvWfOtb3zLbt283XojHOh47dsx88cUXplGjRmlxHla0fql0Hp7q+ukhftmyZWbTpk3m4osvTrn9l6h1TId9+NOf/tQu+y233HLStGTtQ16GWkX79u0zpaWlplmzZiHjNbxx48aI39EOjZRe493p7rhoaarz+onKqK+77jrTpk0bs3XrVnPfffeZgQMH2oM6KyvLpPo6ejHPqkrUsugitHDhQnvR3bVrl5kyZYqtc/Lhhx+aevXqmeq2jvfee68N5tyLbXU/Dytav1Q6D6u6fsXFxaZFixbm+PHjdnnnzp1r+vXrl3L7L1HrWN334Ztvvml+/etfmzVr1kScnqx9SACEpBoyZEjgb1WS7tSpk2nXrp19kunTpw97oxrQRdal/aeAqFWrVua5556L+DSXyqZPn24rYer4U+XNdBNt/ar7eahAWzfPI0eO2NyR0aNH29zISy+91KSLitaxuu7Dw4cPm29/+9u2sn6TJk08XRaKwKpIO05R9u7du0PGazg3NzfidzS+vPTu/5WZZ3Vav0h0Quu3tmzZYpKtKuvoxTyrKlnLopYqZ599drXbhzNnzrQBwtKlS+3Nw1Xdz8OK1i+VzsOqrp+KWNq3b29bR40ZM8bccMMNZtq0aSm3/xK1jtV5H27dutV8/PHH5qqrrjI1atSwn6eeesq89NJL9m9NT9Y+JACqopo1a5pu3brZyNxVVlZmhwsKCiJ+R+OD08vf/va3QHplZWrnBqc5dOiQeffdd6POszqtXyQ7d+605dZq6phsVVlHL+ZZVclaFj2h6qJVnfbhjBkzzNSpU01hYaFtbhysup+HFa1fKp2H8TpG9R0VFaXa/kvUOlbnfdihQwfzwQcf2Nwt93P11Vebyy67zP7dsmXL5O3DuFWn9iE1/VOt9IULF9rmirfddptt+ldUVGSnf/vb33bGjRsX0ky8Ro0azsyZM23zVLWmidQMXvN48cUXnbVr19qa8V42v43n+h0+fNg2sV6xYoVt/vjqq686Xbt2dc466yynpKQk6etXlXU8fvy4bV6sT15enl0f/b158+aY51nd12/MmDHO8uXL7T7UPu/bt6/TpEkTZ8+ePUlfv6qso84xNdl9/vnnQ5oQ6/hMh/OwovVLtfOwsuv3s5/9zFm6dKmzdetWm17XG113FixYkJL7LxHrWN33YbhILdqSsQ8JgE7RL3/5S+crX/mKveCoKeA777wTmHbJJZfYHRvsueeec84++2ybXn2p/PnPfw6ZruZ/999/v9OsWTN7QPXp08fZtGmTkw7rd+zYMefyyy93zjjjDBsYqZm1+ovwIjCo6jrqYqPnhvCP0sU6z+q+foMHD7bBkeanPjw0rL5KvFSZddRxF2kdFbCnw3lY0fql4nlYmfWbMGGC0759eyc7O9tp2LChU1BQYG/AwVJt/8V7Hav7PowlAErGPszQP/HLTwIAAEh91AECAAC+QwAEAAB8hwAIAAD4DgEQAADwHQIgAADgOwRAAADAdwiAAACA7xAAAYirjIwM88ILL6TsVm3durWZNWuW14sBwGMEQAAqZcSIEWbQoEFRp+/atSvkjfHxprdhK8iK9kmnN4IDSJwaCZw3AB9K9Bu3lyxZYk6cOGH/3rFjh+nZs6d59dVXzbnnnht4OWMi6bcT/RsAEo8cIAAJKwL7+OOP7bCCFr3tuU6dOqZz585mxYoVId958803Te/evU3t2rXt26B/+MMfmqNHj0acf6NGjWyQpc8ZZ5xhxzVu3Dgw7vXXX7fBUK1atWxx189//vNyl/fgwYPmu9/9rp1X/fr1zde//nXz/vvvB6ZPnjzZdOnSxTz++OP2LdXZ2dl2vN60ftFFF5kGDRrY37/yyivN1q1bA9+Ldd3feustm2ul6Q0bNjT9+/c3n332WeCt2tOmTbO/q22j7z///POV3CMAIiEAApBwEyZMMGPHjjVr1qwxZ599thk6dKj58ssv7TQFDQMGDDDXX3+9Wbt2rVm8eLENiH7wgx9U+ndWrVplvvnNb5ohQ4aYDz74wAYv999/v1m4cGHU79x4441mz5495i9/+Yv9fteuXU2fPn3MgQMHAmm2bNli/vCHP9hgRusgCtBGjx5t/vnPf5ply5aZzMxMc+2119qgJdZ11zj9Vn5+vg2MtN5XXXWVKS0ttdMV/Dz11FNm/vz5Zt26debuu+82N998s/n73/9e6W0DIExcX60KIO1FenNzMF1W/vjHP4a8Xf7xxx8PTF+3bp0dt2HDBjt8yy23OLfddlvIPN544w0nMzPT+fzzz8tdFnf+//rXv+zwTTfd5PTr1y8kzY9//GMnPz8/MKw3Zz/yyCOB36lfv75TUlIS8p127do5v/rVr+zfeou63ri9Z8+ecpdl7969dlk++OCDmNd96NChzoUXXhhxflqmOnXqOG+//XbIeG0vfQ/AqSEHCEDCderUKfB3Xl6e/V+5LqLiJuXQnH766YGPioGUk7Jt27ZK/c6GDRvMhRdeGDJOw5s3bw7kqgTTbx85csQWYQX/vn43uDirVatWgeI2l+ap3Jy2bdvaojMVt8n27dtjXnc3BygS5TodO3bM9OvXL2TZlCMUvGwAqoZK0AAS7rTTTgv8rXox4hYVKQC5/fbbbb2fcF/5ylcSulz6bQUly5cvP2ma6va46tate9J0FVUpMFqwYIFp3ry5XZ/zzjsvUEE7lnVXvZ7ylk3+/Oc/mxYtWoRMU/0mAKeGAAiAp1TnZv369aZ9+/anPK+vfvWrtlJxMA2r7k1WVlbE3y4qKjI1atQI5ODEYv/+/WbTpk02+FHlbVH9ncpS7pDqD02ZMuWkaaoXpEBHOUqXXHJJpecNoHwEQAAqrbi4OFAZ2KViJLXgqqx7773XfO1rX7OVntUaS7ktCoj+9re/mdmzZ1dqXmPGjDE9evQwU6dONYMHD7YVizWPuXPnRkzft29fU1BQYPs1mjFjhg2UPv30U5vrogrN3bt3j/g9tdbS+j722GM2B0lByrhx4yq97uPHjzcdO3Y0d9xxh/ne975nm9erFZsqZjdp0sRWnlbFZ+UYqcWZtrsCOhW5DR8+vNK/B+D/EAABqDQVGZ1//vkh42655RbbVLwquSBq1aTWUspNUT3qdu3a2QCmspSj89xzz5mJEyfaIEjByU9/+lPbeWMkKpJ65ZVX7G+PHDnS7N271zalv/jii02zZs2i/o5afD377LO22E7FXuecc4559NFHK90JowKupUuXmvvuu8/2Z6QisV69etm6RaJ1UN0jtQb76KOPbLGc1lHpAZyaDNWEPsV5AAAAVCu0AgMAAL5DAAQAAHyHAAgAAPgOARAAAPAdAiAAAOA7BEAAAMB3CIAAAIDvEAABAADfIQACAAC+QwAEAAB8hwAIAAD4DgEQAADwnf8PL2GzhU8M5UMAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAARvlJREFUeJzt3QmcE+X9x/HfshwrAsslLFDk9EIElEtURC0U6+1fLZ4gVetdFe1fKBZEreBNK3ihiC3/KpbSqtXigdKKYlEolUssiILIcogsl4Au8399HztrEpLdZDfZJJPP+/UKS2Ymk2eeeWbmN88xyfM8zzMAAICAqJHuBAAAACQTwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsFNGm3fvt0uv/xyKyoqsry8PLvxxhvd9PXr19u5555rTZo0cdPHjx9v2b5NyDxt27a1Sy+9NK5lTzjhBPfKtPSfdtppFtT0fPrpp+4YmjJlSoXLaj/q+5F95RipQXCTZDoR6YQU6/Xee++VLXv33Xe75a+++mr7/e9/b5dccombftNNN9mrr75qI0aMcNNPPvnkZCfTffdf/vKXlKw32jaFuv3228vNI/+VzJPQH/7wh6wKEtNh6dKlbt/oopopMjFNKF+nTp2sa9eu+0z/85//7I7rfv367TNv8uTJbt5rr72WEdmrQDHWeSkV5+NkBsP+q0aNGta4cWP78Y9/bHPnzq30eh955JG4AuxMUzPdCQiqO+64w9q1a7fP9I4dO5b9/80337Sjjz7aRo8eHbaMpp955pl2yy23pCx9CkJUO3TWWWcldb2xtinU//zP/4Tlg2p7FAydffbZbp6vefPmSQ1uFi9eTE1SiOXLl7sTYGggMWbMGBdURtYCpOuiU16akJmOO+44e+qpp6ykpMQKCwvLpr/zzjtWs2ZNe//99+2bb76xWrVqhc3Lz8+3Pn36WKbo1q2b3XzzzftMb9mypWWyCy64wE455RQrLS21jz/+2AUnJ554osv3I444IuH16fNNmzaNu5Y3UxDcpIii5R49epS7zIYNG9xdTrTpDRs2tGwUa5tCdenSxb18mzZtcsGNpl188cWWifbu3Wt79uyxgoICC4o6derEvWzt2rUtSHbs2GH7779/upMR2OBm0qRJ9u6777rzYGgA85Of/MTdaMyfP9/dBPnmzJnjjv/69etnzH5t1apVpc5HsdKQjHNIPNt31FFHhaW7b9++bj88+uijLlDJFTRLpcHs2bNdteGqVavs5ZdfLqtG9Ju09EPtEydOLJvu27Jli6t5aN26tbswqfbjnnvucQdNKL3/zW9+46J0HUgHHHCAq0r94IMP3HytUwfJM888U/YdFUXlClouu+wyV5uidaraWZ+vaJuq0pzw0UcfudolVa3qOxUsvvjii2Fp0rbprj70x+1XrFjhTgCDBg1y7zVfafrss8/K0lVRLYCWue666+z//u//7PDDD3f5PXPmTDdv7dq19tOf/tTlhaZrvqrVI+3atcs1qRx88MEu/S1atHA1UytXrixbRvtBd4f+Pj3kkEPs/vvvD9se+frrr+3nP/+5u4PSBeCMM85w6VA69R2RTX7KA+1TBcm6ex46dKjt3LkzZp8blb3zzjvP/V93eX4+ab/6eRjZTFhRmQitKtc2PfHEE9ahQwe3nT179nR3kuWpKE2hF8ZevXq5NLRv395+97vf7bMefe7vf/+7XXPNNdasWTP7wQ9+UDb/b3/7m7sAqMwob0899VRbsmRJ2DqKi4tdHupzSr/2pWpXo5XvitIjn3zyids2le26deu6C73KaDzUnNy5c2e3fv1Vc08idIHzy7RqIa699lp3bgmlfa11q+ZMea806mJ/7733xhXc+MFM6LGwYMECV/6VJ6HzNm7c6GoY/M/Jv/71L3dBbtCggdWrV89++MMfhjXpx7Nf/fK23377uf3x9ttvW7Lp+FH6dEyrtkTl56KLLqrwHJKM7YtX37593d/Q8448/fTTdtJJJ7n1Km26KVUAFHmO0LGgNETrLhDvNSkdqLlJEVXJqkYilAqGOgkfdthhrj+K+taosPpVn0ceeWRZP5UBAwbY4MGDyz6rC5PaqnVBu/LKK+3AAw90d0bql7Nu3bqw/iS64OjA0MGjzr3ffvutO7B18ChA0Hdoug74n/3sZ+4zOgnEogurCrQumDpY1dz2xz/+0R3YKtw33HBDzG1S8FEZOqCOPfZYd0IdPny4u/A8//zzrhntT3/6k2vC0kGpg1EXiYcffthd/HVQKV06yfh3KSNHjnT74/PPP7eHHnrITdMJJZ4mNn2ntllBhQ50dfbWhcg/cWn7dHFUnm/durWs2UtVwupcOmvWLDv//PNdHm3bts1ef/111zym/FYAoyDlrbfecp9XNbj6Wv3iF79w+9lPq2iblBaVDX2/Tja6CMeiO2Ttp7Fjx7qLypNPPunySyeeaI4//niXf7/97W/tl7/8pduf4v+tTJkIpbt1bb/KrvJOF0ld6HSRD22eSDRN+n4FwMq/IUOGuCBTaejevbu7oITSBUL7a9SoUS6oFJVZfW7gwIEub3ScqUzpQqsLkB8En3POOa5MXn/99W6aAjvty9WrV4cFyvGkR2XomGOOcd+l7dM5QUGhysL06dNd2Y5FzYNKiy5E2rdffvllWdAVDwW/aubr37+/qy1V06S2V4GmAo7QffHVV1+5myLtJ5Unpe3WW291N02hNTKRFLwoaFKQ59P6VWuh7dZL3+WfI3QeEz+4UT7rgqwL///+7/+6ND3++OOuvKnc9+7du8L9qmYxlTV9l45JlTPlr4JJXYjjoaazyHO46FykgMmn86vKj9KvIF6BYHnnkGRsXyI+/W8A3qhRo7Dp2u8qk8oXNRe+9NJL7rt0DlXAK7quqMzrfKnzaGh3gUSuSWnhIamefvpp3XJHfdWpUyds2TZt2ninnnrqPuvQstdee23YtDvvvNPbf//9vY8//jhs+vDhw738/Hxv9erV7v2bb77pPv/zn/98n/Xu3bu37P9a15AhQ+LapvHjx7t1Tp06tWzanj17vD59+nj16tXztm7dWuE2lWfjxo1u/aNHjy6b9sMf/tA74ogjvF27doWl/5hjjvEOOuigsM9fcMEFXt26dV3e3HfffW5df/nLX8KWUZqUtnhpHTVq1PCWLFkSNv2yyy7zWrRo4W3atCls+vnnn+8VFhZ6O3fudO8nT57s1vHggw/G3A9Ko5a56667wuafe+65Xl5enrdixQr3fv78+W65G2+8MWy5Sy+9dJ980/817ac//WnYsmeffbbXpEmTsGnKj9Ay8Mc//tF99q233tonzf369XOvRMvEqlWr3HL67s2bN5ct+8ILL7jpL730klee8tKk9GveP/7xj7JpGzZscMfZzTffvM8xedxxx3nffvtt2fRt27Z5DRs29K644oqw9RYXF7t96U//6quv3OdVtsoTb3q0H7Xc22+/HZaWdu3aeW3btvVKS0vD8k7p93Xr1s2Vvy1btpRNe+2119xyFZVvpaV27drej370o7LvkAkTJrjPq8z6tK817Xe/+13ZtN27d3tFRUXeOeec41XkvPPO8/bbbz9XJmTs2LFu++SRRx7xmjVrVrbsLbfc4r5r7dq17v1ZZ53l0rly5cqyZb744guvfv363vHHH1/hftV3av3KK6XZ98QTT7jlQ8txRfsy2kvb4tPxo2k6D8d7Dqnq9sXil5cxY8a4c6rKscpYz5493XQdS6H8c1WogQMHeu3btw+bdvjhh0fNs3ivSelCs1SKqFlJd3ahL93hV5buihXtK/rW3YT/0h2Yagn+8Y9/uOVUq6E742gdekObuBLxyiuvuKHd6qjm092G7jrVGVh3G8m0efNmd8eju0Xd7fvbqrtU3SH95z//cXcLvgkTJrimF90x/+pXv3K1G2oyqCrdlYT2H9L5Svl7+umnu/+H7gelS7VDqiURLac7Nd31xNoPyld1olQ+htIdrdbvlxe/Klt3VaGirdt31VVXhb1X2VH+qXYpGRItE2oiDL1z9KvKdUddFdo//rpEd7hq2ou23iuuuMLlt0/HpGqZtA2h+1LL6O5ZNWqiu3T1OVJzmGozqpoe5Z1qTUObYXRnrFpU3WWrKSga3Q0vXLjQ1QiFdtRVLW9F/dzkjTfecLUnqskI7UiufFEtQmSzmNIU2ndDeaB0x7PPtG2q3VPfGlFNjWpRRDWyqvnScezPU82fant0LlPtlGpoVQPkUzPghRde6GqDIstw5H5V87vWr2MgtK+YatBC860iKgOR53C9Qsu8T7Vg8ZxDkrF9FdG5/4ADDnDHp8rismXL7IEHHnDnx1ChtU9+S4PSq/2r98m6JqULzVIpopNARR2KE6ETwYcffhizmUcHs9+uqpOEql+TRX1VDjrooLATYmjzgOYnk6r2dXFXoKJXrO1Vk5VoW9V0oeYpVZnq/8kQOdpNfQN0MVRbvl6x0uXvB13UVN0bi/JN+yqyE2Vkvuqv8j4yPaEjziKpijiUH1jo4qwLWXWXifLSUxWR6/XXHW29kfnnX1zV7yAaP5/Ul0BNVgo6Vb7ULKgmRzUb6wKSaHqUN5FND5F5p/4ukfw8Vb5HUlnzA+tY/M9r2VAKAHShjdxnauqKvCHStug8lEi/G22rmivuuusuN03bprzVPDURKQDy+8fpGFNzR2Qa/fxRk8maNWvCmhwj92usfFLwHRpQVEQ3J7pQV0THeKxmwWjnkKpuX0UUJJ933nmun5NuEnU+VLARSfmvQEjDxCP740WOdKvKNSldCG6yhAq97tDURhuNOq0Ghd8ZTUPhVSMSTeSFXX1VRBcR9a1Jxmiz0Dub0HTpblZ3z9GEjgJLp1h3epEdlbM9PYmsN9b+VL+byCBFQgNT1Xaoxk6deVXWFHSrz4suHuorV5n0ZLqqbIs6lytoV02EOtqqNtavuVFArIBH89T3TLVJobVYiYrcr9VNwW9kkJ/MtCW6DgV1/f8blCkI135Uv0V1DPdvuHXzpU7Mhx56qD344IMuyFSQq1pF9fWLp0Nwpl+TCG6yhE4Cqu6v6E5Cy+nkq5NJebU3iTRRtWnTxkXoKsyhB7FGM/nzk8m/u9KdVjx3Tmq2UYdZHWQamaDA45///GfYxamyTXKhdIeiE7buguLZD0pD5PM8Qinf1FSgprfQ2pvIfNVf5b1GooXejaqGK5kysUwkY7/F4neiV0freMqZllftjV66a1UHcFX3T506NaHvVd6oI2+kivLOn+7XOIWKtr5Yn9eyoTUYCi5UtuLJg3jpgqoaLtUOKIhRTU3oM1YU6EybNq3sJsUPbnSMqUNurPxRWauoQ3BoPoXWyulY1HZGe8BgdUnG9iVq5MiRbmj+bbfdVtbErc7Du3fvdqNPQ2sb/abYeI7BeK9J6UKfmyyh/ieqPvRrKEKpqUQ99kUjKXRnpRER5d1xqcd/5PDPWHTnpaGwOhn59H0aoaR2+WhPHK0KXWw0ckAjCNTPIJKqdn3aBn/klx5MqCBH1fP6fyhtbzztyBWdsJW/6k+jEU/lpUvLqf1Z/YFi7Qf/QVuRy+jOSScUf0SKX3sV+YwK5X8y+c/PiKdcVFeZSCRNiVK+6qKrsqILX6z9qSp7VfFHntgVkOoCkSjl3bx588KeGqtRMGrq1GiaWP1n1C9DAZVGVoWWZfUDidVPJ5QuQro7VzNF6LnAf+BeeaPvKkMBi/JQQ45VUxMaBCu40QX+hRdeKBtB6h9jP/rRj9z00GH2GmGmEXdaZ0XNqqqdUBDx2GOPucDNpxGkqShHiUjG9iWqYcOGbjSTrh3qs+WnQ0LLgcqA9lWkWNeKeK9J6ULNTYqoM6h/JxZKB3Ui7b4+DQ9WlK1qRn9oqU6IixYtckM0daCojVhVj+pQqxOY7lw0lFN31xoKrnkakij6vGoNVCWpfh9q143WD8Bvw1Wgoe9V+7hOwPpO3ZVpuF9VH7wVq0O2DnTd7alDnfJMJwAdTGp2+ve//+2W05BjdZTVtuiA1fYq2FH7vjoV+3dp2l5diIcNG+aesaILsJoZEjVu3Dh3d6O8Urp0IVItmQIqpUH/F/XH0PNN9H26kKnjnfaXllHHYKVN3699ojsr7T+lVZ0NdeJTM4hfs6C0K1hSXmtb/aHgejZIMms3dOFUHqp/iU50qm73n4ORrjKRSJoSpYuIhsPqeNGDzzRkXxdFDe9W51p1fFXgqXxWFb5O5trfqhHUs2VUHvWZRKmJ4Nlnn3XBqzpgq4ZVAYtqFRQ4x2riEDWFKQjRsaFnLam8KaBUHw3dRZdH26Zhurrx0XGiIcAKMBQ065hI9gM0/doYHbOhz2IS/3EKejyFjoPQMqxjVwGbPq9jRfmtsqZAMp7n7KimVOvQBV1lRf15lLe6cCdy7tWghWi1cjp3VOXJ7lXdvsq44YYb3HGp89dzzz3nAiwFusp75ZPKjmp3dFxF3lDq/KPjROlWTZuWUb7Ge01Km7SO1cqxoeCRwzoTGQruDxcdMWKE17FjRzeUsGnTpm5o9P3331825FI0bFDDVg899FC33AEHHOD9+Mc/dkOKfR999JEbdqjhmvq+ioaFr1+/3hs6dKj7Tq1Tw7RDt6WibUp0KLhoqOTgwYPd8NNatWp5rVq18k477TRv+vTpYcOJH3jggbDPaRiy0tG1a9eyfNm+fbt34YUXuqG/8QybjbUP/LzQvNatW7t0KX0auq6hppFDLUeOHOmGwPrLaZh36BBQ7dObbrrJa9mypVtGw9y170KH7cuOHTvcdzZu3NgNtdZw0uXLl7t0jhs3bp+h4MrTaOVSw0VjDQWXSZMmuaGgGsoZOgQ7cih4vGXCH54abRh1tH0eTaw0xSprkWn1t/3999+Pun6tT0NgNfy7oKDA69Chgxtm/8EHH7j5GvavvNfxpKGvWq53797e888/H7aeeNMjKgMqCyqP+s5evXp5f/3rX8OWiTYUXP70pz95hx12mBti3qlTJ2/GjBluP8b7qAMN/da2qLw1b97cu/rqq91w98g0awhwpES+R2W2Zs2abhs0XD1Sly5d3Lx77rlnn3kLFixw+0RlXY95OPHEE7133303bJmK9quGnOvYUz716NHDDdGPti8SHQoeuv3KD5WJRM8hydi+SOUda6IyrWPIf8TEiy++6PaByp8eQaD94D/CIvQ8oSHlKtcaqh45lD7ea1I65Omf9IVWACpLVczqzKq7S/+pqAAA+twAWUHPDImkamY1YehJvgCA79HnBsgCaotX3xb10VEbvfp06aW+L8keXQEA2Y5mKSALqAOiOoJqVIw6/2n4pjrCqjNyeQ8KBIBcRHADAAAChefcAACAQCG4AQAAgZJzjfV6oN0XX3zhHjKWyke7AwCA5NGTa/RzNXrwbHkPu8zJ4EaBDaNLAADITvrl9Fi/xJ6zwY3/WHhlTrJ/wwMAAKTG1q1bXeVEPD/vknPBjd8UpcCG4AYAgOwST5cSOhQDAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKGkPbiZOnGht27a1goIC6927t82bN6/c5bds2WLXXnuttWjRwurUqWMHH3ywvfLKK9WWXgAAkNnS+pybadOm2bBhw+yxxx5zgc348eNt4MCBtnz5cmvWrNk+y+/Zs8cGDBjg5k2fPt1atWpln332mTVs2DAt6QcAAJknz9OPNaSJApqePXvahAkTyn73SU8fvP7662348OH7LK8g6L777rOPPvrIatWqVeknHBYWFlpJSQkP8QMAIEskcv1OW7OUamHmz59v/fv3/z4xNWq493Pnzo36mRdffNH69OnjmqWaN29unTt3trvvvttKS0tjfs/u3btdhoS+gOpQutezuSu/tBcWrnV/9R4AEOBmqU2bNrmgREFKKL1XzUw0n3zyib355pt20UUXuX42K1assGuuuca++eYbGz16dNTPjB071saMGZOSbQBimbl4nY15aamtK9lVNq1FYYGNPr2Tndy5BRkHAEHuUJwINVupv80TTzxh3bt3t0GDBtnIkSNdc1UsI0aMcFVY/ks/mAmkOrC5euqCsMBGikt2uemaDwAIYM1N06ZNLT8/39avXx82Xe+LioqifkYjpNTXRp/zHXbYYVZcXOyauWrXrr3PZzSiSi+gOqjpSTU20RqgNE0/96b5AzoVWX6Nin/8DQCQRTU3CkRU+zJr1qywmhm9V7+aaI499ljXFKXlfB9//LELeqIFNkB1m7dq8z41NpEBjuZrOQBAAJulNAx80qRJ9swzz9iyZcvs6quvth07dtjQoUPd/MGDB7tmJZ/mb9682W644QYX1Lz88suuQ7E6GAOZYMO2XUldDgCQZc+5UZ+ZjRs32qhRo1zTUrdu3WzmzJllnYxXr17tRlD5NEz81VdftZtuusm6dOninnOjQOfWW29N41YA32tWvyCpywEAsuw5N+nAc26Q6j43x93zpus8HO3AUi+bosICm3PrSfS5AYCgPecGCCJ1EtZwb4nsLuy/13w6EwNA6hDcAEmm59g8evFRroYmlN5rOs+5AYAA97kBgkoBjIZ7a1SUOg+rj02vdo2psQGAakBwA6SImp76dGhC/gJANaNZCgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEBhKDgQ588q8MwaAMgOBDdABWYuXmdjXlpq60q+/yXvFoUF7mcUeNowAGQemqWACgKbq6cuCAtsRD+MqemaDwDILAQ3QDlNUaqxifbr3v40zddyAIDMQXADxKA+NpE1NqEU0mi+lgMAZA6CGyAG/eBlMpcDAFQPghsgBv2SdzKXAwBUD4IbIIZe7Rq7UVF5MeZruuZrOQBA5iC4AWLIr5HnhntLZIDjv9d8LQcAyBwEN0A59BybRy8+yooKw5ue9F7Tec4NAGQeHuIHVEABzIBORTyhGACyBMENEAc1PfXp0IS8AoAsQLMUAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAqVmuhMAAECmKN3r2bxVm23Dtl3WrH6B9WrX2PJr5KU7WUgQwQ0AAGY2c/E6G/PSUltXsqssP1oUFtjo0zvZyZ1bkEdZhGYpAEDOU2Bz9dQFYYGNFJfsctM1H9mD4AYAYLneFKUaGy/KPH+a5ms5ZIeMCG4mTpxobdu2tYKCAuvdu7fNmzcv5rJTpkyxvLy8sJc+BwBAZaiPTWSNTSiFNJqv5ZAd0h7cTJs2zYYNG2ajR4+2BQsWWNeuXW3gwIG2YcOGmJ9p0KCBrVu3ruz12WefVWuaAQDBoc7DyVwO6Zf24ObBBx+0K664woYOHWqdOnWyxx57zOrWrWuTJ0+O+RnV1hQVFZW9mjdvXq1pBgAEh0ZFJXM55Hhws2fPHps/f77179//+wTVqOHez507N+bntm/fbm3atLHWrVvbmWeeaUuWLIm57O7du23r1q1hLwAAfBrurVFRsQZ8a7rmazlkh7QGN5s2bbLS0tJ9al70vri4OOpnDjnkEFer88ILL9jUqVNt7969dswxx9jnn38edfmxY8daYWFh2UsBEQAAPj3HRsO9JTLA8d9rPs+7yR5pb5ZKVJ8+fWzw4MHWrVs369evn82YMcMOOOAAe/zxx6MuP2LECCspKSl7rVmzptrTDADIbHqOzaMXH2VFheFNT3qv6TznJruk9SF+TZs2tfz8fFu/fn3YdL1XX5p41KpVy4488khbsWJF1Pl16tRxLwAAyqMAZkCnIp5QHABprbmpXbu2de/e3WbNmlU2Tc1Meq8amnioWWvRokXWogVPjwQAVI2anvp0aGJndmvl/tIUlZ3S/vMLGgY+ZMgQ69Gjh/Xq1cvGjx9vO3bscKOnRE1QrVq1cn1n5I477rCjjz7aOnbsaFu2bLH77rvPDQW//PLL07wlAAAgE6Q9uBk0aJBt3LjRRo0a5ToRqy/NzJkzyzoZr1692o2g8n311Vdu6LiWbdSokav5effdd90wcgAAgDzP83LqedIaCq5RU+pcrIcBAgCAYF2/s260FAAAQHkIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoNRMdwIAAKiK0r2ezVu12TZs22XN6hdYr3aNLb9GHpmawwhuAABZa+bidTbmpaW2rmRX2bQWhQU2+vROdnLnFmlNG9KHZikAQNYGNldPXRAW2EhxyS43XfORmwhuAABZ2RSlGhsvyjx/muZrOeQeghsAQNZRH5vIGptQCmk0X8sh9xDcAACyjjoPJ3M5BAvBDQAg62hUVDKXQ7AQ3AAAso6Ge2tUVKwB35qu+VoOuYfgBgCQdfQcGw33lsgAx3+v+TzvJjcR3AAAspKeY/PoxUdZUWF405PeazrPucldPMQPAJC1FMAM6FTEE4oRhuAGAJDV1PTUp0OTdCcDGYRmKQAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKBkRHAzceJEa9u2rRUUFFjv3r1t3rx5cX3uueees7y8PDvrrLNSnkYAAJAd0h7cTJs2zYYNG2ajR4+2BQsWWNeuXW3gwIG2YcOGcj/36aef2i233GJ9+/attrQCAIDMl/bg5sEHH7QrrrjChg4dap06dbLHHnvM6tata5MnT475mdLSUrvoootszJgx1r59+2pNLwAAyGxpDW727Nlj8+fPt/79+3+foBo13Pu5c+fG/Nwdd9xhzZo1s8suu6zC79i9e7dt3bo17AUAAIIrrcHNpk2bXC1M8+bNw6brfXFxcdTPzJkzx5566imbNGlSXN8xduxYKywsLHu1bt06KWkHAACZKe3NUonYtm2bXXLJJS6wadq0aVyfGTFihJWUlJS91qxZk/J0AgCA9KmZxu92AUp+fr6tX78+bLreFxUV7bP8ypUrXUfi008/vWza3r173d+aNWva8uXLrUOHDmGfqVOnjnsBAIDckNaam9q1a1v37t1t1qxZYcGK3vfp02ef5Q899FBbtGiRLVy4sOx1xhln2Iknnuj+T5MTAABIa82NaBj4kCFDrEePHtarVy8bP3687dixw42eksGDB1urVq1c3xk9B6dz585hn2/YsKH7GzkdAADkprQHN4MGDbKNGzfaqFGjXCfibt262cyZM8s6Ga9evdqNoAIAAIhHnud5nuUQDQXXqCl1Lm7QoEG6kwMAAJJ8/aZKBAAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBkrTgZteuXXb//fcna3UAAACpD242btxof/3rX+21116z0tJSN+2bb76x3/zmN9a2bVsbN25c5VIBAACQJDXjXXDOnDl22mmn2datWy0vL8969OhhTz/9tJ111llWs2ZNu/32223IkCHJShcAAEBqa25uu+02O+WUU+zDDz+0YcOG2fvvv29nn3223X333bZ06VK76qqrbL/99qtcKgAAAJIkz/M8L54FmzRpYm+//bZ16tTJvv76a6tXr57NmDHDzjzzTMsmqnkqLCy0kpISa9CgQbqTAwAAknz9jrvm5quvvrKmTZu6/6uGpm7duta5c+d4Pw4AAJBZfW5EzU/FxcXu/6rwWb58ue3YsSNsmS5duiQ3hQAAAKlolqpRo4brSBxtcX+6/vqjqDIVzVIAAGSfRK7fcdfcrFq1KhlpAwAASKm4g5s2bdqkNiUAAABJEHeH4nvvvdeNkvK98847tnv37rL327Zts2uuuSYZaQIAAEh9n5v8/Hxbt26dNWvWzL1Xe9fChQutffv27v369eutZcuW9LkBAADZMRQ8MgaKMyYCAACoVvwqOAAACBSCGwAAkLsP8XvyySfdzy7It99+a1OmTCl7arE6FAMAAGRNh+K2bdu6h/Rl+/NweIgfAADZJyUP8XvrrbesXbt2yUgfAABA+vvcdOjQwQU3P/3pT23q1Km2du3a1KUKAACgkuKuuXnzzTdt9uzZ7vXss8/anj173DNuTjrpJDvxxBPdq3nz5pVNBwAAQPX2uQm1a9cue/fdd8uCnXnz5tk333xjhx56qC1ZssQyGX1uAADIPolcvysV3PhUe6OfYfjb3/5mjz/+uG3fvp0nFAMAgOzoUOwHM++9957rXKwam3/+85/WunVrO/74423ChAnWr1+/qqYdAACgSuIObtS3RsGMOhUriLnyyivtD3/4g7Vo0aJqKQAAAEhHcPP222+7QEZBzgknnOACnCZNmiQzLQAAANU3FHzLli32xBNPWN26de2ee+5xvwB+xBFH2HXXXWfTp0+3jRs3Vj01AAAAVVTpDsX6uYU5c+aU9b/597//bQcddJAtXrzYMhmjpQAAyD6JXL8r/cOZ+++/vzVu3Ni9GjVqZDVr1rRly5ZVdnUAAADV2+dm79699sEHH7haGtXWaAj4jh07rFWrVu4BfhMnTnR/AQAAsiK4adiwoQtmioqKXBDz0EMPuY7F+lkGAACArAtu7rvvPhfUHHzwwalNEQAAQHUEN3quDQAAQKardIdiAACATERwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIGSEcGNfnSzbdu2VlBQYL1797Z58+bFXHbGjBnWo0cP91tX+mXybt262e9///tqTS8AAMhcaQ9upk2bZsOGDbPRo0fbggULrGvXrjZw4EDbsGFD1OUbN25sI0eOtLlz59qHH35oQ4cOda9XX3212tMOAAAyT57neV46E6Camp49e9qECRPc+71791rr1q3t+uuvt+HDh8e1jqOOOspOPfVUu/POOytcduvWrVZYWGglJSXWoEGDKqcfAACkXiLX77TW3OzZs8fmz59v/fv3/z5BNWq496qZqYjislmzZtny5cvt+OOPT3FqAWBfpXs9m7vyS3th4Vr3V+8BZMmvgqfCpk2brLS01Jo3bx42Xe8/+uijmJ9T1NaqVSvbvXu35efn2yOPPGIDBgyIuqyW0Ss08gOAZJi5eJ2NeWmprSvZVTatRWGBjT69k53cuQWZDORqn5vKqF+/vi1cuNDef/99+/Wvf+367MyePTvqsmPHjnXVWP5LTV4AkIzA5uqpC8ICGyku2eWmaz6AHAxumjZt6mpe1q9fHzZd74uKimJ+Tk1XHTt2dCOlbr75Zjv33HNdEBPNiBEjXE2P/1qzZk3StwNAblHTk2psojVA+dM0nyYqIAeDm9q1a1v37t1dvxmfOhTrfZ8+feJejz4T2vQUqk6dOq7jUegLAKpi3qrN+9TYRAY4mq/lAORYnxtRk9KQIUPcs2t69epl48ePtx07drjh3TJ48GDXv8avmdFfLduhQwcX0LzyyivuOTePPvpomrcEQK7YsG1XUpcDELDgZtCgQbZx40YbNWqUFRcXu6ammTNnlnUyXr16tWuG8inwueaaa+zzzz+3/fbbzw499FCbOnWqWw8AVIdm9QuSuhyAgD3nprrxnBsAVaW+NMfd86brPBztBJpnZkWFBTbn1pMsv4beAciZ59wAQDZSwKLh3hIZuvjvNZ/ABkgPghsAqAQ9x+bRi49yNTSh9F7Tec4NkMN9bgAgWymAGdCpyI2KUudh9bHp1a4xNTZAmhHcAEAVqOmpT4cm5CGQQWiWAgAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoNdOdAADIdKV7PZu3arNt2LbLmtUvsF7tGlt+jbx0JwtADAQ3AFCOmYvX2ZiXltq6kl1l01oUFtjo0zvZyZ1bkHdABqJZCgDKCWyunrogLLCR4pJdbrrmA8g8BDcAEKMpSjU2XpR5/jTN13IAMgvBDQBEoT42kTU2oRTSaL6WA5BZCG4AIAp1Hk7mcgCqD8ENAEShUVHJXA5A9SG4AYAoNNxbo6JiDfjWdM3XcgAyC8ENAESh59houLdEBjj+e83neTdA5iG4AYAY9BybRy8+yooKw5ue9F7Tec4NkJl4iB8AlEMBzIBORTyhGMgiBDcAUAE1PfXp0IR8ArIEzVIAACBQCG4AAECgENwAAIBAIbgBAACBkhHBzcSJE61t27ZWUFBgvXv3tnnz5sVcdtKkSda3b19r1KiRe/Xv37/c5QEAQG5Je3Azbdo0GzZsmI0ePdoWLFhgXbt2tYEDB9qGDRuiLj979my74IIL7K233rK5c+da69at7Uc/+pGtXbu22tMOAAAyT57nefpx27RRTU3Pnj1twoQJ7v3evXtdwHL99dfb8OHDK/x8aWmpq8HR5wcPHlzh8lu3brXCwkIrKSmxBg0aJGUbAABAaiVy/U5rzc2ePXts/vz5rmmpLEE1arj3qpWJx86dO+2bb76xxo2j/77L7t27XYaEvgAAQHClNbjZtGmTq3lp3rx52HS9Ly4ujmsdt956q7Vs2TIsQAo1duxYF+n5L9UKAQCA4Ep7n5uqGDdunD333HP25z//2XVGjmbEiBGuCst/rVmzptrTCQAAcuTnF5o2bWr5+fm2fv36sOl6X1RUVO5n77//fhfcvPHGG9alS5eYy9WpU8e9AABAbkhrzU3t2rWte/fuNmvWrLJp6lCs93369In5uXvvvdfuvPNOmzlzpvXo0aOaUgsAALJB2n84U8PAhwwZ4oKUXr162fjx423Hjh02dOhQN18joFq1auX6zsg999xjo0aNsj/84Q/u2Th+35x69eq5FwAAyG1pD24GDRpkGzdudAGLApVu3bq5Ghm/k/Hq1avdCCrfo48+6kZZnXvuuWHr0XNybr/99mpPPwAAyCxpf85NdeM5NwAAZJ+sec4NAABAshHcAACAQEl7nxsAAFKldK9n81Zttg3bdlmz+gXWq11jy6+RR4YHHMENACCQZi5eZ2NeWmrrSnaVTWtRWGCjT+9kJ3dukda0IbVolgIABDKwuXrqgrDARopLdrnpmo/gIrgBAASuKUo1NtGGAvvTNF/LIZholkIg0K4O5JbyjnlNj6yxCaWQRvO1XJ8OTaox1aguBDfIerSrA7mlomNeAU884l0O2YdmKWQ12tWB3BLPMa+anHjEuxyyD8ENshbt6kBuifeY796mkavJiTXgW9M1X01ZCCaCG2StRNrVAeTOMT//s69cE5VEBjj+e81P9vNuFHzNXfmlvbBwrftLh+X0oc8Nslaq29XppAxk7zF/ZrdW9ujFR+3TN6coRc+5oe9fZiG4QdZKZbs6J6rkI1hEdR/zCmAGdCpK+ROK/X5Akc1lfj8gBVnV+dDAUp7KTHCD7KWTlNrNdQKJ1gaf99+7tETb1TPtRBUEBItI1zGvQCaVw70r6gekNGm+gqzq+NkHjrXv0OcGWUsnimS3q9NJOfkY0YZMPuaD1PePY+17BDfIaqpBUU2K7tZC6X1lalgy6UQVBASLyPRjvqoy5Zk6HGvh6HODrJfMdvVMOVEFBU+KRSpUV1+aeGTKM3U41sIR3CAQktWuniknqqAgWESqpLovTbr7/iWKYy0czVJAlBMVD/9KDoJFBF2m9APiWAtHcANk4IkqKAgWkQsyoR8Qx1q4PM/zcuo337du3WqFhYVWUlJiDRo0SHdykKEYTpncvNQQegk92fjhIUPrERTpfr5M0I+1rQlcvwlugAw9UQUJwSLAsVZVBDdJyhwAyUOwCFSP0oDemCVy/Wa0FIBqkSmjW4Cgy+dYo0MxAAAIFkZLAQCAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEDh5xeQc4L6uytAPGW+6f513M9Eb9q+m/IfcKU5fK4juEFO4depkWuilflQLQoLbPTpnezkzi2qPW1InZlR9nsu7WuapZBTB/vVUxfsc5IvLtnlpms+kAtlPhTlP3hmcq4juEHuVM/qLsaLMs+fpvlaDgh6mQ9F+Q8WznXfoeYGOUHtzuXdveoEr/laDsiFMh+K8h8cnOu+Q3CDnKAOdclcDsh0lSnLlP/sx7nuOwQ3yAkaKZDM5YBMV5myTPnPfpzrvkNwg5ygIZAaKRBrEKSma76WA3KhzIei/AcH57rvENwgJ+jZDhoCKZEne/+95ufKMyCQ22U+FOU/WDjXfYfgBjlDz3Z49OKjrKgwvLpe7zU9F579gNwSq8yHovwHz8mc6yzP87ycGvu6detWKywstJKSEmvQoEG6k4M0yOWndiI38YTi3FQasHNdItdvnlCMnKODu0+HJulOBlBtKPO5KT+Hz3U0SwEAgEAhuAEAAIFCcAMAAAKF4AYAAAQKHYoBANUuaCN5Kot8SA2CmzQW0GQVag4OANlk5uJ17hfLQ3/YU09T1kMHc+l5U+RD6vCcmzQV0GQVag4OANlE56yrpy5wv0Qeyr+ty5UHapIPqX3ODX1uklRAQ4MU0XtN1/x4P1NczmcS+e5E14PMopq4uSu/tBcWrnV/9R4IApVl3dRFK9H+NM0PepknH1KPZqkUFVDRdM0f0KnIvVcTVPHWXXbnX5fEPLjzQj5TXhNVRQdHvOvx10Xbd2agJg5BpvNM5M1Y5LlL87VckB8+Rz6kHsFNCguoaP6EN1fYc++vrnDZRA7uZB0cybiYlhccEThVvZrar4mranU9+yK5UpGfqd5H1VEGyvsOTYtH5HL+OotLvrbNO/ZY43p1rKhBYumvaNsTzZtYP2nRtF4ddwLetGN3zPVUNh/SpTQLb4AJbqpAB1o8Hnrj44TXXVGhTsbBkYyLaXnBkdBpMD7JrIlLdD/lQv+GZEtFfqZ6H1VHGajoO3RhjEfoctHWmWj6K0pXonlTXpoqSqOO9U3bdlui+RAtwJDQad3bNLL5n321TxASMxAL+X/o8nu+3WvPvPupvf/pl7Zl5zf28fpttuXrb8vS0nC/Wjb02LZ23UkH7RMgvrfyS5v7ySZ31tKN9dHtm6QlEEp7h+KJEyfafffdZ8XFxda1a1d7+OGHrVevXlGXXbJkiY0aNcrmz59vn332mT300EN24403pu2HM596+xO78+VllgrPXnF0uTUu6otxwaT3Kr0eFcLj7nkz5sGZ999fC55z60kxC2Z5HeJiFapc6zQYr6ruz0zruJiNd3rpzM9U76PqKAPxfIeC8+53ve4umPGcd2KtM/Iz5aW/onT97Ph29sQ/VsWdN/GkKdZ6JJ6gyM+Hv//iRHt/1Wb7/T8/tbc+2mC7v/3+Wwv3q2l5eXkx81KKGtSx07u2tD8tWOtqvOIJxDq3amBvLNtg8UQGDevWsnH/c0RZgDh8xqJ90hO6TM50KJ42bZoNGzbMRo8ebQsWLHDBzcCBA23Dhg1Rl9+5c6e1b9/exo0bZ0VF3/VjSSdVjSZb3n8LmB+Vx6L5Wi6vkutJpFmrsh3iYq03VzoNJiJV1dTp6Liok5wCZwVrNzy30P3V+yB0cE9FfqZ6H1VHGYj3O15dXFzuxVjLqpbDr20or09jqFjpjyddk95eVWG6/XUnkqbI9ejCH20ASCT/nH5G1xbW6+437KKn/mkzF68PC2yk5Otvy81LKd66221fPIGNKG2vL40vsBF9v7Zp7CtL7aqpC6KmR9M0r7qP/7QGNw8++KBdccUVNnToUOvUqZM99thjVrduXZs8eXLU5Xv27Olqec4//3yrUyf5gUWi1OabTH6h9g/u8mi+3/STV4n1VPViGk9/o8oGTrmoMtX18ahqEJuooI/gS0V+pnofVUcZiPc7bnthcbnraVS3VtgAjET7KVYmXeXFdJHrrux5z/vvRT6emEE1NqpNevwfqyoMXjKB998AsSLVfUObtuBmz549rnmpf//+3yemRg33fu7cuUn7nt27d7uqrNBXsvi1J8miQp1I9bCW0/L6XKLrqerFNBkd3TKls1wmqGpNXCzV2XExF4a3piI/U72PqqMMxPvZimoQvtr5TVkgkWh6oi2frHOMv55Un7N+dephrinqhYVfWDbZG8chXd03tGnrULxp0yYrLS215s2bh03X+48++ihp3zN27FgbM2aMpYJfe6I7UvGi9DtRe2NJjIhdyzTev7bdduphVlS4X6X6JSiA0Z1Oov0b/Iup7qhjpa2onItpojUIqVpHUISWpcg+S4nU6FVXjVCuDm9NRX6meh9VRxlI5rHsBxCJrjPa8slKl7+eVJ+zmtav4zoEqzkpiDZU4w1t4B/iN2LECNf5yH+tWbMmqesvr/bksYuPch2pyms6+vXZne3so37gTvaV7XCpz+nzZ3ZrFfd6qtqsVVFNQ3kqWwsRdFWpiavuGqFosm14a2WkIj9TvY+qowzE8x2N968V17r8ACLemvHy0h9Puso7XUauuyrnvXi3PZuPj0y6oU1bcNO0aVPLz8+39evXh03X+2R2FlbfHPWqDn0lmy466t2vkSy/Ob+b+6v3mp6KC1Yy013ZtMUTHJU3rzK1ELmgvLJUGVUNYjO1lihdUpGfqd5H1VEG4vmOu87snFCQ5a8znlTFSn886bqibzv3/3jyprz1xeIvp1r8eLY9246PvAoCRF9139CmdSh479693bBvDf+WvXv32oEHHmjXXXedDR8+vNzPtm3b1g0DT+dQ8KAMja1K2njOTXaojmec+I8XqKips7zHC2QLnnNTuXzxO5xbjKbXaDdVQXnOjcSz7TqOjh03KyuapvL++9fvAF0etWRU9VyTyPU7rcGNhoIPGTLEHn/8cRfkjB8/3p5//nnX50Z9bwYPHmytWrVy/Wb8TshLly51/z/llFPsoosucq969epZx44dMzq4CTKeUJwdqiPArszFK1vxhOLK5UtlAsOgPKE43m3Xcho+Xd1alPOcm1o18qxWzRq2c09pzAAx2nNuNAJubBqec5P2h/hNmDCh7CF+3bp1s9/+9reuRkdOOOEEV0MzZcoU9/7TTz+1du3a7bOOfv362ezZs+P6PoIbILV4GjKyuSY71eLd9ljBQmjQcG73H9iz89bY9t3fPz04VMO63/VzCl1Ho7o1bUifttbugHpxPaG4bu2ads5RP7BjOjZ1n68oQEzlE4qzKripbgQ3QOrl8sULSBY/WHj3k022dvNOFzC0arSfCzT8oCE0oNCQ7EZ1a7tRV37NlgTlWCS4SVLmAACAzJA1P78AAACQbAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECg1Lcf4vzahJx0CAIDs4F+34/nVqJwLbrZt2+b+tm7dOt1JAQAAlbiO62cYypNzP5y5d+9e++KLL6x+/fqWl5e8XypVsLRmzZqc/b2qXM+DXN9+IQ/IA8oBZSCV5wKFKwpsWrZsaTVqlN+rJudqbpQhP/jBD1Kybu3EXL2w+XI9D3J9+4U8IA8oB5SBVJ0LKqqx8dGhGAAABArBDQAACBSCmySoU6eOjR492v3NVbmeB7m+/UIekAeUA8pAppwLcq5DMQAACDZqbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4CZOEydOtLZt21pBQYH17t3b5s2bV+7yf/zjH+3QQw91yx9xxBH2yiuvWC7lwZIlS+ycc85xy+tJ0OPHj7dc2v5JkyZZ3759rVGjRu7Vv3//CstM0PJgxowZ1qNHD2vYsKHtv//+1q1bN/v9739vuXYu8D333HPuWDjrrLMsl/JgypQpbrtDX/pcLpWBLVu22LXXXmstWrRwI4gOPvjgrL8mTEwgD0444YR9yoBep556auoSqNFSKN9zzz3n1a5d25s8ebK3ZMkS74orrvAaNmzorV+/Pury77zzjpefn+/de++93tKlS73bbrvNq1Wrlrdo0aKcyYN58+Z5t9xyi/fss896RUVF3kMPPeRls0S3/8ILL/QmTpzo/etf//KWLVvmXXrppV5hYaH3+eefe7mSB2+99ZY3Y8YMdwysWLHCGz9+vDsuZs6c6eVKHvhWrVrltWrVyuvbt6935plnetks0Tx4+umnvQYNGnjr1q0rexUXF3u5sv27d+/2evTo4Z1yyinenDlzXFmYPXu2t3DhQi9X8uDLL78M2/+LFy925wKVjVQhuIlDr169vGuvvbbsfWlpqdeyZUtv7NixUZf/yU9+4p166qlh03r37u1deeWVXq7kQag2bdpkfXBTle2Xb7/91qtfv773zDPPeLmaB3LkkUe6YD+X8kD7/phjjvGefPJJb8iQIVkf3CSaB7qAKbAPikS3/9FHH/Xat2/v7dmzxwuKXlU8F+h6oPPh9u3bU5ZGmqUqsGfPHps/f75rVgj9fSq9nzt3btTPaHro8jJw4MCYywcxD4IkGdu/c+dO++abb6xx48aWi3mgG6lZs2bZ8uXL7fjjj7dcyoM77rjDmjVrZpdddpllu8rmwfbt261NmzbuxxTPPPNM12ydK9v/4osvWp8+fVyzVPPmza1z58529913W2lpqeXq+fCpp56y888/3zVXpwrBTQU2bdrkCqEKZSi9Ly4ujvoZTU9k+SDmQZAkY/tvvfVW90u2kUFv0POgpKTE6tWrZ7Vr13bt6w8//LANGDDAciUP5syZ407k6oMVBJXJg0MOOcQmT55sL7zwgk2dOtX27t1rxxxzjH3++eeWC9v/ySef2PTp093n1M/mV7/6lT3wwAN21113WS6eD+fNm2eLFy+2yy+/PIWpzMFfBQeq27hx41xn0tmzZ2d9R8pE1a9f3xYuXOju3FVzM2zYMGvfvr3rYBh027Zts0suucQFNk2bNrVcpVoLvXwKbA477DB7/PHH7c4777SgUzCnmrsnnnjC8vPzrXv37rZ27Vq777773E8U5JqnnnrKDbLp1atXSr+H4KYCOimpQK5fvz5sut4XFRVF/YymJ7J8EPMgSKqy/ffff78Lbt544w3r0qWL5VoeqLq6Y8eO7v8aLbVs2TIbO3ZsVgY3iebBypUr7dNPP7XTTz897EInNWvWdE10HTp0sFw7F9SqVcuOPPJIW7FihWWbymy/Rkhpm/U5n4I71XKoiUe1mrlSBnbs2OFu9NRUm2o0S1VABU+Rtu46Q09Qeh96NxJK00OXl9dffz3m8kHMgyCp7Pbfe++97s505syZbkh0NktWGdBndu/ebbmQB3oUxKJFi1zNlf8644wz7MQTT3T/V/+TXCwHatJQvuiinwvbf+yxx7pAzg9s5eOPP3bbn22BTVXLgB6RouP/4osvtpRLWVflANGwtzp16nhTpkxxw1p/9rOfuWFv/nDGSy65xBs+fHjYUPCaNWt6999/vxsGPHr06EAMBU8kDzT8UcOg9WrRooUbFq7//+c///FyYfvHjRvnhkpOnz49bAjktm3bvGyVaB7cfffd3muvveatXLnSLa/jQcfFpEmTvFzJg0hBGC2VaB6MGTPGe/XVV105mD9/vnf++ed7BQUFbghxLmz/6tWr3cig6667zlu+fLn317/+1WvWrJl31113ebl2HBx33HHeoEGDqiWNBDdxevjhh70DDzzQXbA0DO69994rm9evXz930gr1/PPPewcffLBb/vDDD/defvllL5fyQM9yUOwc+dJyubD9Gv4ebfsV6GazRPJg5MiRXseOHd2FrFGjRl6fPn3cSTHXzgVBC24SzYMbb7yxbNnmzZu7570sWLDAy6Uy8O6777rHgSgg0LDwX//61+4RAbmUBx999JE7B+qGpzrk6Z/U1w8BAABUD/rcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAkJC8vz/7yl79kbK61bdvWxo8fn+5kAEgjghsAYS699FI766yzYubKunXr7Mc//nHKck0/qqkAKtYrG390E0D14lfBASQk1b8EP2PGDPdrybJmzRrr1auX+1X1ww8/3E1L9Y8NZuMvNQMIR80NgEo3S3366afuvQIS/dp13bp1rWvXrjZ37tywz8yZM8f69u1r++23n/s17J///Oe2Y8eOqOtv3LixC6D0OuCAA9y0Jk2alE176623XKBTp04d1wT1wAMPlJveLVu22OWXX+7W1aBBAzvppJPs3//+d9n822+/3bp162ZPPvmktWvXzgoKCtx0/Zr7cccdZw0bNnTff9ppp9nKlSvLPhfvtr/zzjuutknzGzVqZAMHDrSvvvqq7NeUx44d675XeaPPT58+nRIJVBHBDYAqGzlypN1yyy22cOFCO/jgg+2CCy6wb7/91s1TQHDyySfbOeecYx9++KFNmzbNBTvXXXddwt8zf/58+8lPfmLnn3++LVq0yAUmv/rVr2zKlCkxP3PeeefZhg0b7G9/+5v7/FFHHWU//OEPbfPmzWXLrFixwv70pz+5QEXbIAq+hg0bZh988IHNmjXLatSoYWeffbYLSOLddk3Td3Xq1MkFPdru008/3UpLS918BTa/+93v7LHHHrMlS5bYTTfdZBdffLH9/e9/TzhvAISolp/nBJA1Kvrlap02/vznP4f9+vuTTz5ZNn/JkiVu2rJly9z7yy67zPvZz34Wto63337bq1Gjhvf111+XmxZ//f/617/c+wsvvNAbMGBA2DK/+MUvvE6dOoX9IvtDDz1U9j0NGjTwdu3aFfaZDh06eI8//rj7v36pvVatWt6GDRvKTcvGjRtdWhYtWhT3tl9wwQXescceG3V9SlPdunXdL0aHUn7pcwAqj5obAFXWpUuXsv+3aNHC/VVtiagJSDUr9erVK3upaUY1IKtWrUroe5YtW2bHHnts2DS9/89//lNWGxJK3719+3bXrBT6/fre0CamNm3alDWB+bRO1cK0b9/eNWepCUxWr14d97b7NTfRqLZo586dNmDAgLC0qSYnNG0AEkeHYgBVVqtWrbL/qx+K+M03Ci6uvPJK188m0oEHHpjS3Nd3K+CYPXv2PvPUl8a3//777zNfzUcKeiZNmmQtW7Z029O5c+eyzs7xbLv60ZSXNnn55ZetVatWYfPUnwhA5RHcAEgp9XFZunSpdezYscrrOuyww1wH3VB6r74u+fn5Ub+7uLjYatasWVbzEo8vv/zSli9f7gIbdYQW9ZdJlGp11F9nzJgx+8xTPxwFMaoJ6tevX8LrBhAbwQ2AfZSUlJR1rPWpaUcjnRJ166232tFHH+06EGvUkmpJFOy8/vrrNmHChITWdfPNN1vPnj3tzjvvtEGDBrlOulrHI488EnX5/v37W58+fdxze+69914XBH3xxReutkSdg3v06BH1cxrVpO194oknXM2PApDhw4cnvO0jRoywI444wq655hq76qqr3BBzjfZSJ+emTZu6jsjqRKyaHo3MUr4rWFMz2JAhQxL+PgDfIbgBsA814xx55JFh0y677DI3XLoytRca/aNRRaoFUZ/kDh06uOAkUaqJef75523UqFEuwFHgcccdd7gHD0ajZqJXXnnFfffQoUNt48aNbjj58ccfb82bN4/5PRoZ9dxzz7mmNDVFHXLIIfbb3/424QcIKph67bXX7Je//KV7Xo+aqXr37u368oi2QX19NGrqk08+cU1l2kYtD6Dy8tSruAqfBwAAyCiMlgIAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAACwIPl/tuIO74BtwF0AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -2668,27 +2583,21 @@ "source": [ "import matplotlib.pyplot as plt\n", "\n", - "plt.scatter(df[\"config/text_det_box_thresh\"], df[\"WER\"])\n", + "plt.scatter(df[\"config/text_det_thresh\"], df[\"CER\"])\n", "plt.xlabel(\"Detection Box Threshold\")\n", - "plt.ylabel(\"CER\")\n", - "plt.title(\"Effect of Detection Threshold on Word Error Rate\")\n", - "plt.show()\n", - "\n", - "plt.scatter(df[\"config/textline_orientation\"], df[\"WER\"])\n", - "plt.xlabel(\"Line Tolerance\")\n", "plt.ylabel(\"WER\")\n", - "plt.title(\"Effect of Line Tolerance on Word Error Rate\")\n", + "plt.title(\"Effect of Detection pixel threshold on Word Error Rate\")\n", "plt.show()\n", "\n", - "plt.scatter(df[\"config/line_tolerance\"], df[\"WER\"])\n", - "plt.xlabel(\"Line Tolerance\")\n", - "plt.ylabel(\"WER\")\n", - "plt.title(\"Effect of Line Tolerance on Word Error Rate\")\n", - "plt.show()\n", - "\n", - "plt.scatter(df[\"config/text_det_unclip_ratio\"], df[\"WER\"])\n", + "plt.scatter(df[\"config/text_det_box_thresh\"], df[\"CER\"])\n", "plt.xlabel(\"Detection Box Threshold\")\n", - "plt.ylabel(\"CER\")\n", + "plt.ylabel(\"WER\")\n", + "plt.title(\"Effect of Detection box threshold on Word Error Rate\")\n", + "plt.show()\n", + "\n", + "plt.scatter(df[\"config/text_det_unclip_ratio\"], df[\"CER\"])\n", + "plt.xlabel(\"Detection Box Threshold\")\n", + "plt.ylabel(\"WER\")\n", "plt.title(\"Effect of Text detection expansion coefficient on Word Error Rate\")\n", "plt.show()\n", "\n", @@ -2700,47 +2609,81 @@ ] }, { - "attachments": { - "image-2.png": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAIAAADYpXCcAAAAAXNSR0IArs4c6QAAIABJREFUeAHtnQl4FEX6/ysJmclBLggQEsgkKEcIp8AgrpJdQS41YT1A8YHRxbAiiOsCgosYRYHw44rLuR4cspqsKyZo5DIKrhLAY8OVIEeW1YT7yqEhwUzqH6kf9e9f90z3ZDI90z3znYdHq6vreN/P2+lvV3V1N6H4gQAIgAAIgIAOCRAd2gyTQQAEQAAEQIBCwHAQgAAIgAAI6JIABEyXYYPRIAACIAACEDAcAyAAAiAAArokAAHTZdhgNAiAAAiAAAQMxwAIgAAIgIAuCUDAdBk2GA0CIAACIAABwzEAAiAAAiCgSwIQMF2GDUaDAAiAAAhAwDx5DFRXV0+cOLFdu3aEkGeffZZSeu7cuQcffLBVq1aEkOXLl3vSOEql5nnWHud6X79+PSHk1KlTzlVvTq2UlJTk5OTmtOB43Wb2RQjJyMiw111GRkZjAXt79Z5vsVhMJpPevfBN+732oNRCONmpk0h+e/fuZea98MILAQEBL7/88qZNm7799ltK6aOPPtqyZcvFixdv2rTp6NGjzfFi/vz5ubm5zWlBap6oNZPJxJzz8/OLiIjo0aNHenr6vn37RMXkN1etWrV+/Xr5Mo7vlXqtkoCxc7oktv+bkZKSQiltpqg47nXz+9KIgI0cOTIyMrKhoYH7/u9//5sQEh8fz3MopZ999hkh5G9/+5sw0+m0vIClpKRIo9y1a1enu3O6otCMsLCwwYMH5+fnO97au+++6/FrYsetdbAkBMxBUM4UY6fOefPmbfq/v4sXL7LmBg4c+Jvf/EbYdLt27R577DFhjtPp0NBQi8XidHVKqdQ8UWsmk6lPnz7MudWrVz/zzDMxMTGEkOeee05UUmYzOTmZne5lyji+S+p1fX39tWvXhOdEx1uTKXnw4EEe1TVr1hBCfv/73/OcnTt3Nl9UZHqX7mqmWGpEwObPn08IOXToEHdwxYoVLVq0IISUlZXxzHnz5hFCiouLeU5zEooC1qFDBx5Zlvjoo4+a06NzdQkh99xzz6ZNm955551XX301NjbWz89v+/btDrZ27733et9AEwLmYPSdKcYE7JtvvrFXOTEx8d577xXu9fPzmzJlijDH6bT0VN7UpqTmiVowmUwi+2tqakaPHk0IWb16taiwvU21Bcxevy7Mv3jxok0BaJKoXLt2zWq1Om1Vk/qS9mLTfl7MbVOIX3zxhejgeeSRR1JTU1u2bJmdnc3tGTZsWOvWrZt6UWKPsKKAOT4P/NNPP3EjWaKhoaGmpkaUKb9pz05CiPDkUFJSQggZOXKkfGt8LwSMo0DCIQIyArZr1y7hhAAhhBUWZrI+rl69+uyzz3bo0MFgMNxyyy2ZmZnC05zVas3KyurRo4fRaIyOjh4+fDjTS2E7jXeA7A3Fzp8//4c//KFt27ZGo7FXr14bNmxgnUrNs3kPSSpg9Mads1atWsXFxfHzi9VqXb58effu3Y1GY9u2bSdNmnTlyhXWEZ+EZAbzoZgLvWZghfavWrWqe/fuBoOhffv2Tz/99NWrV3k4mQwUFxf/9re/DQ4Ojo2NXbRoEd9rLyEvYPZaY5Czs7PnzJnDrqaZJfv27Rs+fHh4eHhwcPDgwYO/+uor3m9VVdWzzz5rMpkMBkObNm2GDh363Xffsb2KltuLNasuErAvv/yyf//+RqOxU6dOa9euVRSw999//7bbbgsKCmrduvVjjz1WXl7ObbZYLKGhoeXl5WlpaaGhodHR0dOnT6+vr+cFhIlr164ZDAbhJETHjh2XLFly9913T506lZW0Wq3h4eH3338/2ywtLX3ooYeioqKCg4MHDhwonFWzRzg3Nzc5OdloNCYnJ3/44YfNETBGpri4+NFHH42MjOzTpw+llP1dbN++vV+/fkajkU3cOWGnkAylVCRglNLo6OguXbrwYnl5eaNGjWrfvr3BYOjUqdO8efM4Z9FEKB+K1dbWvvTSS7fccovBYOjQocPMmTNra2t5g9pPYASmYozYqbOgoOCi4Hfp0iW2WGPTpk3R0dF8Cu7IkSObNm3iswSbNm2ilP7888+9evVq3br1X/7yl7Vr106YMMHPz48t92B2P/744+wqLCsra8mSJWlpaStWrKCUbtq0yWg03nXXXWzGo7CwUOpnTU1NUlJSYGDgc88999e//vWuu+4ihGRlZdk0T3ppyf9QpS1PnDiREHLkyBG268knn2zRokV6evratWtnzZoVGho6YMCA69evU0pzc3M7dOjQrVs3ZiebeXOt1yIBY2ecoUOHrlixYurUqQEBAdwYNukXGxvbsWPHZ599dvXq1XfffTchZOvWrVIfhTkyAibTGju9du/evU+fPsuWLVu4cOHPP//82WefGQyGQYMGLV26dPny5b169TIYDPv372fdjRs3zmAw/PnPf37rrbcWLVp0//33//3vf2e7UlJSZPqSiTWrLhSwQ4cOBQcHx8fHL1y48NVXX23Xrl2vXr0aCwhdFqYZ4QEDBixfvnz27NnBwcEJCQn8ssBisQQFBSUnJ//hD39Ys2bNgw8+KBpjCZuilA4aNIifXn/88UdCSGFh4Ysvvti3b19W8sCBA4QQdmFx7ty5du3ahYWFzZkzZ9myZb179/b39//www9ZSZuEd+zY4e/v36NHj2XLls2ZMyciIiI5OZn3KDKGHRLdunUT/AX/muR/Duxw6t69e1pa2urVq1etWsX+Lm699daoqKjZs2evXbt2165dTtgptUQkYBUVFQEBAQMHDuQlR48ePWbMmMWLF69Zs+bhhx8mhMyYMYPt3blzZ58+faKjo9kfGrs7brVahw0bFhIS8qc//elvf/vb1KlTW7RokZaWxhvUfsLuQal907VvIfvDFg2GjEYjt1w6ghEdo6+++mpoaOjx48d5ldmzZwcEBPz444+U0s8//5wQMm3aNL6XUsrHPYpTiFlZWYQQfga8fv36oEGDWrZsWVVVxRqUmifsSEbAli9fTgjZsmULpfTLL78khLz77ru87vbt24U50ilE13otFLALFy4YDIZhw4bxUezKlSsb1wisW7eOmccuVN955x22WVdXFxMT8+CDD3LjbSZkBIwQYq81dnrt1KkTn2JqaGjo3Lnz8OHDeRBramoSExPvuece1m9ERIRwEklojLzlirEWCtjo0aODgoJ++OEH1n5JSUnjUiN7Anb9+vW2bdv26NHj2rVrrHx+fj4h5KWXXmKbFouFEDJv3jxubd++ffv168c3RYmZM2cSQtgYLjs7OygoqK6ubuvWrQEBAezIZCHbs2cPpfRPf/oTIeTLL79kjVRXVycmJiYkJLD4SglTSvv06dO+ffuKigpWZefOnY3zH/ICJvoTJoT88Y9/ZNWZgD366KNCL9i8gvDulBN2Chtk6cYbgRMnTrx48eKFCxe+/fbbESNGEEIWL17MS/IDieX88Y9/DAkJ4SMq6RTipk2b/P39OT1K6dq1axuvoRlb3qyWExAwFaPDTp2rVq36VPD7/PPPeZdShRAJWK9evUaMGCG8+isoKOCqM2XKFD8/v8uXL/MGhQlFARs2bFhMTAw/lVNKs7OzCSEff/wxa0dqnrB9GQF78803uZHTpk2LiIi4cOGC0IuWLVs++eSTrDWpgLnWa6GAvffee6IRVV1dXXh4OJeolJSUli1bcv2glKampvJrf5H7fFNGwGRaY6fXV155hbfDVtxt3LhRyOrJJ580Go0sTCaTqX///qdPn+ZVeELecsVYcwGrr68PDg5+5JFHeMuU0lGjRtkTsMLCQumIqlu3blyimIBduHCBNzht2rSoqCi+KUps2bKFEMLueE2dOpWtcrp69aqfnx8boD/66KNM1SilXbp0MZvNwhYWLlxICDl8+HDj4ElK+MyZM4SQ2bNnC6t0795dXsASEhIEf8G/JvkKYSZgX3zxhbBBk8mUmJgozGmqncK6PC3S0cDAwOeff17498tLVlVVXbx48e9//zsh5MCBAyxfKmCpqanJycnCg+348eOEkNdee403pfEEBEzFALFTp8wiDqlCiAQsODhYdNSyzWXLllFKR4wYERcXZ88BRQHr2rXrXXfdJazOJmdWrlzJMqXmCQvLCJhwBDZy5EibLqSmprLWpALmWq+FAsbObqWlpUJH+vTp079/f5aTkpLSrVs34V6LxZKQkCDMkaZlBEymNXZ65eMzSuk//vEPm6wax9nsruE//vGPoKAgf3//AQMGZGRkCB2Rt1wx1lzAzp49SwiZO3eu0M3nnnvOnoCxi57PPvtMWH706NHR0dEsh00hCveyk74wR5i+dOmSn58fu+PVt2/f559/nu1tXEmRceNJtfj4eH7cGo3G8ePHC6vn5eURQtidMCnhvXv3EkLefvttYZXf//738gIms4iD+cJmRHibJpPp7rvv5puU0qbaKazL04SQtLS0Tz/99JNPPnn55ZcNBgO/L8jKHDlyZPTo0eHh4cKjiIurVMCSkpKEJXlaNKnDDdBgAgKmYlCaL2BGo/Gee+4RXf19+umnbHpHswLG7oGxVc7Dhw9v27at1AV+YSgVMNd63VQBE52t5O/ws6NHRsBkWmOn13/+85/8EGRisHjxYikudsuQUnrmzJlVq1alpaWFhIQEBQXx+3PSVYhCyz0rYKGhodzHxoS8gDUKeVJSUp8+faqrqwMCAvLy8ljd9PT0IUOGlJWVEUJeeOEFlumIMAgJqyRg/MEYZpX0yq+pdrJ2RP8VXd2yqdTNmzezYlevXm3dunViYmJWVtbHH3/86aefLlq0iBCya9cuVkAqYF27du3Zs6f0YPv+++9FXWt2EwKmYmiaL2Ddu3cfNGiQPRPlpxBbtmxpb/Eha1A6rZSTk9P8KcTq6upWrVp17NiRTcQ9/fTTAQEBotl5oUc9evTgiw9Zvmu9FgqYzSnEiIgI4RSijOQIzRamXSVgX3/9tePP554/fz4uLo4/RygvYIqx5iMwl0whJiUlCacQmypg6enpAQEBmzdvJoTwucf169e3bNmSLXT65JNPGH/p1FxmZqZoClEoYM5NIYoOCWHomRgrClhT7RR2wdMiAfvll19uueWWpKQk9oeWm5tLCOHjLUrpG2+8IRSw++67TzTQHDVqlHC1MO9IRwkImIrBar6Avfzyy4QQ4d1gSunVq1d/+eUXxUUc7dq1k19QxG7sv/feewzBL7/88pvf/KaZizj4c2CNa69Zs7t37xZeMvO++Cq1gQMH9u7dWxgG13otFDC2iGPEiBH8Ltfq1atFizhEZyvhOEZopDDtKgGzWq233HJL586dq6urhe2zk3h9fT1fesD2DhgwQDj5KWO5Yqy5gFFKnVjE0atXL75YYOvWraJFHE0VsI0bNxJCBg0a1LlzZ87h2LFjLNPf358fPGxxBF9k+9NPP3Xq1Em0iEMoYM4t4hCB5SY1JhwUMCfsFPbC0iIBo5Syo5ctKfzoo48IIbt372aF6+rq+vTpIxSwsWPHRkZGCpvdsGGD9IKppqaGr7EUFtZmGgKmYlzYqVP6Jg5+60I61SA6Rn/++efbbrutRYsWTz755Jo1a5YsWcKequFXfOPHj2fL6F9//fXly5c/8MADbBk9u/EeGhq6dOnS7Oxsm693YkurDQbD9OnTV6xYwZaxsWX0DIrUPBEs4Zs41qxZw9/EMX36dGHJP/7xj8zI5cuXr1y58tlnn42NjeWnlaefftrPz+/VV1/Nzs5mt1Jc67VQwBqtYmecYcOGrVy58plnnpEuoxedrdwpYGzdQVBQUOObkzIyMt54442MjIzBgwffd9997MKF3ddctmzZG2+8MWbMGELI0qVLGWr5EZhirIUCdvDgQWZDZmbma6+95uAy+oEDB2ZlZb3wwgshISGiZfRNFbDS0lJ2P+bxxx8XHkjR0dGEkJ49e/JMtjw9IiJi7ty5y5cv79Onj5+fn2gZPT/SWK1t27bxZfQvvviiI8vopW/iYE+5NDbooIA5YSf3kSdEJwdKaU1NTXR09O23304pvXTpUlRUlMlkWrp06bJly/r27du7d2+hgP3P//wPe0vOe++9x94kYrVaR40a5efn98gjj6xYsSIrK+upp55q1aqVzG17boxGEhAwFQPBTp381ihP8Ff/SRVCeoxWV1e/8MILt956q8FgiI6OvuOOO5YsWcLviNTX1y9evLhbt27sydaRI0fyJ1u///77wYMHswUR9uYSz58//8QTT0RHRxsMhp49e3LDGBSpeSJY/DFkPz+/8PDw5OTk9PR0/tCSsPAbb7zRr1+/4ODgsLCwnj17Pv/882fOnGEFzp07d++994aFhTX+sfG5RBd6LRKwxsc/V65c2a1bt8DAwHbt2k2ePJlfzrOHfjwrYJTSoqKixguR1q1bG41Gk8k0ZswYput1dXUzZ87s3bt3WFhYaGho7969ha87kRcwSql8rIUCRin94osv+vXrx56HdeRB5n/84x99+/Y1Go2tWrWy+SCz8GBgJ31hjjQdGxtLCGmUcOGu1NRUQsjkyZOFmewB4cjIyMY7gmazWfogs0jAKKWbN29OSkoyGo3du3d35EFm/pcrTDAbHBQwSqkTdgrdtPkgc2Mmm65gN7r27Nlz++23swfwn3/++R07dggF7Keffho3blxkZKTwsYHr168vWrSIPdYdFRXVr1+/V155pbKyUtS1ZjchYJoNDQwDARAAARCQIwABk6ODfSAAAiAAApolAAHTbGhgGAiAAAiAgBwBCJgcHewDARAAARDQLAEImGZDA8NAAARAAATkCEDA5OhgHwiAAAiAgGYJQMA0GxoYBgIgAAIgIEfA2wTMarWWlZVVVFRU4gcCIAACIKBnAhUVFWVlZTbfuM9kzdsEjL3rU/i8IdIgAAIgAAL6JVBWVmZvFOZtAlZRUdH42beysjI9X3bAdhAAARAAgUo2IBG9AlQoZt4mYJWVlY3v+9LRq1CEwUAaBEAABECAE1A8n0PAOCskQAAEQAAENEQAAqahYMAUEAABEAABxwlAwBxnhZIgAAIgAAIaIgAB01AwYAoIgAAIgIDjBCBgjrNCSRAAARAAAQ0RgIBpKBgwBQRAAARAwHECEDDHWaEkCIAACICAhghAwDQUDJgCAiAAAiDgOAEImOOsUBIEQAAEQEBDBCBgGgpGc0yptzYUnryUV1ReePJSvbWhOU2hLgiAAAjoggAETBdhUjBy2+Ezty8oMM3KZ/9uX1Cw7fAZhTrYDQIgAAI6JwAB03kAKd12+EzCTeliApYwKz9hVj40TPehhQMgAAKyBCBgsng0v7Pe2iAce/FBWMKs/NsXFGAuUfMBhIEgAALOE4CAOc9OCzULT17ioiVNFJ68pAUjYQMIgAAIqEEAAqYGVfe1mVdULtUtnpNXVO4+U9ATCIAACLiXAATMvbxd3RtGYK4mivZAAAR0QwACpptQ2TSU3QMTLeIw3VjEgXtgNokhEwRAwGsIQMB0H0q2ClGoYViFqPugwgEQAAEHCEDAHICk+SJ4DkzzIYKBIAACricAAXM9U4+0iDdxeAQ7OgUBEPAgAQiYB+GjaxAAARAAAecJQMCcZ4eaIAACIAACHiQAAfMgfHQNAiAAAiDgPAEImPPsUBMEQAAEQMCDBCBgHoSPrkEABEAABJwnAAFznh1qggAIgAAIeJAABMyD8NE1CIAACICA8wQgYM6zQ00QAAEQAAEPEoCAeRA+ugYBEAABEHCeAATMeXaoCQIgAAIg4EECEDAPwkfXIAACIAACzhOAgDnPDjVBgBHAiyhxJICARwhAwDyCHZ16DwF8CsB7YglP9EYAAqa3iMFeLRFgH2Mzzcrn//AxNi3FB7Z4OQEImJcHGO6pR4B9DptLF08kzMrH57DVw46WnSDgrbPcEDAnDgZUAYFfCRSevMRFS5ooPHkJmEBACwS8eJYbAqaFAww26JJAXlG5VLd4Tl5RuS69gtHeRcC7Z7khYN51tMIbNxLACMyNsNGVMwS8fpYbAubMYYE6IEApZWeHBMEKDjb8wj0wHB4aIeD111gQMI0caTBDlwTY/IxQw7AKUZeB9FKjvX6WGwLmpUcu3HIXAS++Q+4uhOhHLQIYgRG10HqoXUXF9pBd6FbHBLx1jbKOQwLTbxDw+lluxfO5OwRs5cqVJpPJaDSazeb9+/dLj73Nmzf369cvIiIiJCSkd+/e77zzDi9jsViI4Dd8+HC+y2ZC0WGbtZAJAiAAAnok4N2z3Irnc9UFLCcnx2AwrFu3rri4OD09PTIy8vz586IDZdeuXR9++GFJScnJkyezsrICAgK2b9/OylgslhEjRpy9+bty5YqormhT0WFReWyCAAiAgK4JePEst+L5XHUBM5vNU6ZMYceH1WqNjY1duHCh/OHSt2/fF198kZWxWCxpaWny5YV7FR0WFkYaBEAABLyAgLfOciuez9UVsLq6uoCAgNzcXH6ITJgwITU1lW+KEg0NDQUFBSEhITt37mS7LBZLREREmzZtunTp8tRTT126ZOP1B7W1tZU3f2VlZYSQyspKUcvYBAEQAAEQ0BcBDwvY6dOnCSGFhYWc2syZM81mM9/kiYqKitDQ0BYtWhiNxrfffpvnZ2dnb9my5dChQ7m5uUlJSQMGDKivr+d7WSIjI0Nwm+zXJARMhAibIAACIKA7AroRMKvVeuLEiaKioiVLlkREROzatUvKurS0lBBSUFAg2oURmAgINkEABEDACwh4WMCaOoXIiE+cOHHYsGE26UdHR69du9bmLpap6LBMXewCARAAARDQDgHF87m698AopWazeerUqYyI1WqNi4tTXMTxxBNPpKSkSCGWlZX5+flt2bJFuovnKDrMSyIBAiAAAiCgZQKK53PVBSwnJ8doNG7YsKGkpGTSpEmRkZHnzp2jlI4fP3727NmM3YIFC3bu3FlaWlpSUrJkyZIWLVq8+eablNLq6uoZM2bs3bv31KlTBQUFt912W+fOnWtra2WIKzosUxe7QAAEQAAEtENA8XyuuoBRSlesWBEfH28wGMxm8759+xidlJQUi8XC0nPmzLn11luDgoKioqIGDRqUk5PD8mtqaoYNG9amTZvAwECTyZSens7ET4avosMydbELBEAABEBAOwQUz+fuEDB34lB02J3GoC8QAAEQAAGnCSiezyFgTrNFRXUJeOuzmepSQ+sg4EUEIGBeFExfcsWL347jS2GEryDQLAIQsGbhQ2WPEPDur6R7BCk6BQE9EoCA6TFqPm2z138l3aejC+dBoCkEIGBNoYWyGiDg9d/o0wBjmAAC+iAAAdNHnGAlJ+D1X0nnniIBAiAgTwACJs8HezVHACMwzYUEBoGAhwhAwDwEHt06S8Drv5LuLBjUAwGfIwAB87mQe4HD3v2VdC8IEFwAAfcQgIC5hzN6cTEBPAfmYqBoDgR0SAACpsOgweQbBPAmDhwIIODjBCBgPn4AwH0QAAEQ0CsBCJheIwe7QQAEQMDHCUDAfPwAgPsgAAIgoFcCEDC9Rg52gwAIgICPE4CA+fgBAPdBAARAQK8EIGB6jRzsBgEQcJoAlrA6jU5TFSFgmgoHjAEBEFCdAB4iVB2xuzqAgLmLNPoBARDQAAF8TE4DQXCZCRAwl6FEQyAAAhongI/JaTxATTUPAtZUYigPAiCgVwL4lIFeI2fHbgiYHTDIBgEQ8DoC+Jicl4UUAuZlAYU7IAACdglgBGYXjT53QMD0GTdYDQIg0HQC+Jhc05lpugYETNPhgXEgAAKuJYCPybmWp2dbg4B5lj96BwEQcDcBPAfmbuKq9QcBUw0tGgYBENAqAbyJQ6uRaZpdELCm8UJpEAABEAABjRCAgGkkEDADBEAABECgaQQgYE3jhdIgAAIgAAIaIQAB00ggYAYIgAAI+AoBV92DhID5yhEDP0EABEBACwRcuAoUAqaFgMIGEAABEPAJAq79GgAEzCcOGjgJAiAAAh4n4PKvAUDAPB5TGAACIAACPkHA5e+ihID5xHEDJ0EABEDA4wRc/jUACJjHYwoDQAAEQMAnCGAE1twwKyp2cztAfRAAARAAAVsEXP41AMXzObFlho7zFB3WsW8wHQRAAAS0TcC1XwNQPJ9DwLR9OMA6EAABENAVATwH5ny4FBXb+aZREwRAAARAwAECeBOHA5BsFYGA2aKCPBAAARDQHwHF8zmmEPUXVFgMAiAAAr5AAALmC1GGjyAAAiDghQQgYF4YVLgEAiAAAr5AAALmC1GGjyAAAiDghQQgYF4YVLgEAiAAAr5AAALmC1GGjyAAAiDghQQgYF4YVLgEAiAAAr5AAALmC1GGjyAAAiDghQQgYF4YVLhkk4CrHv632TgyQQAE3E8AAuZ+5ujRAwRc+Po1D1iPLkEABGwRgIDZooI87yLAXoBtmpXP/yXMyk+Ylb/t8BnvchTegIBvEYCA+Va8fdBb9gkiLl08kTAr//YFBfXWBh9kApdBwDsIQMC8I47wwi4Bl38E1m5P2AECIOBeAhAw9/JGb24nkFdUzkdd0kReUbnbLUKHIAACriEAAXMNR7SiWQIYgWk2NDAMBJpJAALWTICornUC7B5YgmAFBxuH4R6Y1iPnsH14QMJhVN5WEALmbRGFP1ICbBWiUMOwClFKSac5eEBCp4FzidkQMJdgRCNaJ4DTnNYj5JR9eEDCKWzeUwkC5j2xhCfyBDDRJM9Hd3vxgITuQuZygyFgLkeKBkEABNxBAMtz3EFZ231AwLQdH1gHAiBgh4ATD0hgFG6HpV6zIWB6jRzsBgEfJ9DUERjug3rfAaMJAVu5cqXJZDIajWazef/+/VLKmzdv7tevX0REREhISO/evd955x1epqGhYe7cuTExMUFBQUOGDDl+/DjfZTOh6LDNWsgEARDQGoEmPSCB5R5aC59L7FE8nxOXdCPTSE5OjsFgWLduXXFxcXp6emRk5Pnz50Xld+3a9eGHH5aUlJw8eTIrKyuEnJOGAAAgAElEQVQgIGD79u2sTGZmZkRERF5e3sGDB1NTUxMTE69duyaqLtxUdFhYGGkQAAEtE3DwAQks99ByEJtjm+L5XHUBM5vNU6ZMYT5YrdbY2NiFCxfKu9S3b98XX3yRUtrQ0BATE7N48WJWvqKiwmg0Zmdny1RXdFimLnaBAAhojYAjE4NNnWzUmo+wxx4BxfO5ugJWV1cXEBCQm5vL7ZswYUJqairfFCUaGhoKCgpCQkJ27txJKS0tLSWEFBUV8WKDBw+eNm0a32SJ2traypu/srIyQkhlZaWoDDZBAAR0SkBxaYYTyz10isLXzPawgJ0+fZoQUlhYyLnPnDnTbDbzTZ6oqKgIDQ1t0aKF0Wh8++23Wf6ePXsIIWfO/P+vOj388MNjxozhtVgiIyOD/N8fBEyECJsg4MUEMALz1uDqRsCsVuuJEyeKioqWLFkSERGxa9cuSqmDAoYRmLcevvALBBwh0KTlHo40iDIaIeBhAWvqFCKjNnHixGHDhjk+hShkreiwsDDSIAAC3kHAweUe3uGs73iheD5X9x4YpdRsNk+dOpURt1qtcXFxios4nnjiiZSUFL6IY8mSJax6ZWUlFnH4zrELT0GgSQQcWe7RpAZR2OMEPC9gOTk5RqNxw4YNJSUlkyZNioyMPHfuXOPoavz48bNnz2aAFixYsHPnztLS0pKSkiVLlrRo0eLNN99kuzIzMyMjI7ds2XLo0KG0tDQso/f4IQUDQECzBBSXe2jWchhmk4DnBYxSumLFivj4eIPBYDab9+3bxwxNSUmxWCwsPWfOnFtvvTUoKCgqKmrQoEE5OTncGfYgc7t27YxG45AhQ44dO8Z32UwoOmyzFjJBAARAAAS0RkDxfK76FKKbiSg67GZ70B0IgAAIgIBzBBTP5xAw58CiFgiAAAhol4B3zKZCwLR7hMEyEAABEFCDgNesZ4GAqXF4oE0QAAEQ0CgBb3qvMQRMowcZzAIBEAABlxPwsvcaQ8BcfoSgQRAAARDQKAG3vVXLPffYIGAaPc5gFgiAAAi4nIB73mvstntsEDCXHyFoEARAAAQ0SsANIzB33mODgGn0OINZIAACIOByAmq/19jN99ggYC4/QtAgCIAACGiXgKrvNXbDCE9IFgImpIE0CIAACHg/AfXuUbnnHhuPEASMo0ACBEAABHyFgEqrBDECU/cAUlRsdbtH6yAAAiDgvQTUvscmIqd4Pse7EEXEsAkCIAACIGCXgKr32ES9QsBEQLAJAiAAAiDQLALq3WMTmQUBEwHBJgiAAAiAQHMJqHSPTWQWBEwEBJsgAAIgAAL6IAAB00ecYCUIgAAIgICIAARMBASbIAACIAAC+iAAAdNHnGAlCIAACKhNwD03rlzoBQTMhTDRFAiAAAjolYDblg66EBAEzIUw0ZRrCOjuMtA1bqMVEPAcAXe+Qt6FXkLAXAgTTbmAgB4vA13gNpoAAc8RcPMr5F3oKATMhTDRVHMJ6PQysLluoz4IeJSAm19g6EJfIWAuhImmmkVAv5eBzXIblUHA0wTc/Ap5F7oLAXMhTDTVLAL6vQxsltuoDAKeJqDfPz0ImKePHfR/k4B+LwNveoD/g4AuCbj5FfIuZAQBcyFMNNUsAvq9DGyW26gMAhog4M5XyLvQXQiYC2GiqWYR0O9lYLPcRmUQ0AYBPS4AhoBp49iBFTcI6PQyENEDAe8goLtHMCFg3nHgeY8XerwM9B768AQEdEUAAqarcPmGsbq7DPSNsMBLENAcAQiY5kICg0AABEAABBwhAAFzhBLKgAAIgAAIaI4ABExzIYFBIAACIAACjhCAgDlCCWVAAARAAAQ0RwACprmQwCAQAAEQAAFHCEDAHKGEMiAAAiAAApojAAHTXEhgEAiAAAiAgCMEIGCOUEIZEAABEAABzRGAgGkuJDAIBEAABEDAEQIQMEcooQwIgAAIgIDmCEDANBcSGAQCIAACIOAIARUF7Nq1a4sXL3bECHeWUXTYncagLxAAARAAAacJKJ7PiSNNX7hw4eOPP96xY0d9fT2l9Pr161lZWe3atWvdurUj1d1ZRtFhdxqDvkAABEAABJwmoHg+VxawL7/8MiIiws/Pz9/f32w2FxcXd+7cOSkpac2aNTU1NU5bplJFRYdV6hfNggAIgAAIuJaA4vlcWcBSUlIeffTRw4cPz5gxw8/Pr0uXLv/85z9da6ULW1N02IV9oSkQAAEQAAH1CCiez5UFrFWrVsXFxZTSmpoaf3//vLw89cxtfsuKDje/C7QAAiAAAm4m4Jtf0VM8nysLmJ+f3/nz51m0WrZsefLkSTdHrkndKTrcpNZQGARAAAQ8TsBnv2OueD53SMB27dp18MYvNDT0k08+YWn2X4+HVmSAosOi8tgEARAAAS0T2Hb4TMKsfJPgX8Ks/IRZ+dsOn9Gy2S6xTfF87pCA+fv7+/3fH8vx9/d3iZUubETRYRf2haZAAARAQFUC9daG2xcUCNWLpRNm5d++oKDe2qBq7x5vXPF8rixg/5X9edxDkQGKDovKYxMEQAAENEug8OQlqXrxnMKTlzRruUsMUzyfKwuYS+xwWyOKDrvNEnQEAiAAAs0kkFdUzuVKmsgrKm9m+xqvrng+VxawRYsW8ee9vvrqq9raWuZzVVXV5MmTtea/osNaMxj2gAAIgIA9AhiBEUIqKyvt8VEWMH9/f74KMSwsrLS0lLV17tw53AOzhxX5IAACINB8AuwemGgRh+nGIg7cA6OUKguYaBk9BKz5ByVaAAEQAAEHCbBViEINwypEjg4CxlEgAQIgAAJaJIDnwOxFBQJmjwzyQQAEQEArBPAmDpuRcEjA5s+f//qNX1BQ0Ny5c1n6tddewz0wm0yRCQIgAAIg0HwCiovylAXMZDIl2P8130TXtqDosGu7Q2sgAAIgAAIqEVA8nysLmEqWqdSsosMq9YtmQQAEQAAEXEtA8XyuLGCfffZZUlKSaCV+RUVF9+7d//Wvf7nW3Oa3puhw87tACyAAAiAAAm4goHg+Vxaw+++/f9myZVJbX3/99dGjR0vzPZuj6LBnzUPvIAACvkbAN9dfuCTKiudzZQGLj48vKSmRWnP06NGOHTtK8z2bo+iwZ81D7yAAAj5FwGdXwLskyornc2UBMxqNJ06ckFpz4sSJoKAgab5ncxQd9qx56B0EQMB3CPjyl1BcEmXF87mygHXq1Ck3N1dqzebNmxMTE6X5ns1RdNiz5qF3EAABRQLeMefm419CUYyyIwUUz+fKAjZ16tQePXpcu3ZN2F9NTU2PHj2eeeYZYaa99MqVK00mk9FoNJvN+/fvlxZ744037rzzzsgbvyFDhgjLWCwWIvgNHz5cWl2Yo+iwsDDSIAACWiPgNXNuPv4eXpccV4rnc2UBO3fuXGxsbMeOHRctWpR345eZmdmxY8fY2Nhz584pWpmTk2MwGNatW1dcXJyenh4ZGclfDczrjhs3btWqVUVFRUePHn388ccjIiLKy//3MwEWi2XEiBFnb/6uXLnCa9lMKDpssxYyQQAEtEDAm+bcfPxLKC45nBTP58oCRin973//O3LkSP5dZn9//5EjR/7nP/9xxESz2TxlyhRW0mq1xsbGLly4UKZifX19WFjYxo0bWRmLxZKWliZTXrRL0WFReWyCAAhohICXzblhBNb840rxfO6QgDE7rly58vXXX+/fv19xGMTtrqurCwgIEN5CmzBhQmpqKi8gTVRVVQUFBX388cdsl8ViiYiIaNOmTZcuXZ566qlLl2x8gbS2trby5q+srEz++zHSHpEDAiCgBQJedsb38S+huOSIcqWAOWHQ6dOnCSGFhYW87syZM81mM9+UJiZPntypUyd+yy07O3vLli2HDh3Kzc1NSkoaMGBAfX29qFZGRobgNtmvSdFj16Ly2AQBENAgAe+bc/PlL6G45ADTmYAtXLgwKirq4MGDNp0vLS0lhBQUFIj2YgQmAoJNENAjAS8bgbEQeM2aFI8cUR4WsCZNIS5evDgiIuKbb76RIRUdHb127VqZAooOy9TFLhAAAQ8S8NY5N+94KsAjB4bi+bwJ98Ccc8BsNk+dOpXVtVqtcXFxNhdxLFq0KDw8fO/evTK9lJWV+fn5bdmyRaaMosMydbELBEDAswQw5+ZZ/lrrXfF8rrqA5eTkGI3GDRs2lJSUTJo0KTIyki2+Hz9+/OzZsxmvzMxMg8HwwQcf3Fwtf7a6uppSWl1dPWPGjL179546daqgoOC2227r3LlzbW2tDGVFh2XqYhcIgIDHCWDOzeMh0I4Biudz1QWMUrpixYr4+HiDwWA2m/ft28fopKSkWCwWljaZTKJVGBkZGZTSmpqaYcOGtWnTJjAw0GQypaenKz55puiwdmIDS0AABGwSwJybTSw+mKl4PneHgLmTu6LD7jQGfYEACIAACDhNQPF8DgFzmi0qggAIgAAIqEgAAqYiXDQNAiAAAiCgHgEImHps0TIIgAAIgICKBCBgKsJF0yAAAiAAAuoRgICpxxYtgwAIgAAIqEgAAqYiXDQNAiAAAiCgHgEImHps0TIIgIAzBPCYlzPUfLIOBMwnww6nQUCrBPCiDa1GRot2QcC0GBXYBAK+ScCbPrjsmxF0s9cQMDcDR3cgAAK2CXjZB5dtO4lclxKAgLkUJxoDARBwloBXfu7LWRj/Ww+3A+UBQsDk+WAvCICAmwh43weXmwkOtwMVAULAFBGhAAiAgDsIYAQmpIzbgUIa9tIQMHtkkA8CIOBWAt76wWUnIOJ2oIPQIGAOgkIxEAAB1Qngg8sMMQajDh5qEDAHQaEYCICAOwjgxg+lFLcDHTzUIGAOgkIxEAABNxHA0juMwBw81CBgDoJCMRAAARBwEwHcDnQQNATMQVAoBgIgAALuI4DbgY6whoA5QgllQAAEQMDdBHA7UJE4BEwREQqAAAiAgGcI4HagPHcImDwf7AUBEAABENAoAQiYRgMDs0AABEAABOQJQMDk+WAvCIAACICARglAwDQaGJgFAiAAAiAgTwACJs8He0EABEAABDRKAAKm0cDALBAAARAAAXkCEDB5PtgLAiAAAiCgUQIQMI0GBmaBAAiAAAjIE4CAyfPBXhAAARAAAY0SgIBpNDAwCwRAAARAQJ4ABEyeD/aCAAiAAAholAAETKOBgVkgAAIgAALyBCBg8nywFwRAAARAQKMEIGAaDQzMAgEQAAEQkCcAAZPng70gAAIgAAIaJQAB02hgdGEWPlakizDBSBDwVgIQMG+NrOp+4XOxqiNGByAAArIEIGCyeLDTDoFth88kzMo3Cf4lzMpPmJW/7fAZOzWQDQIgAAIuJgABczFQX2iu3tpw+4ICoXqxdMKs/NsXFNRbG3wBAnwEARDwOAEImMdDoD8DCk9ekqoXzyk8eUl/LsFiEAABHRKAgOkwaJ42Oa+onMuVNJFXVO5pA9E/COiVABZGNSlyELAm4ULhXwlgBObx4wCnOY+HQA0DsDCqqVQhYE0lhvKU3QMTLeIw3VjEgXtgbjg+cJpzA2T3d4GFUU4wh4A5AQ1VKPtjE2oYViG657DAac49nN3cCxZGOQccAuYcNx3XctXsE8YB7j8IcJpzP3P39Ihpeec4Q8Cc46bXWq5VHVdpoV5put1unObcjtxNHWJhlHOgIWDOcdNlLcw+6TJsAqNxmhPA8KokLk2cCycEzDlu+quF2Sf9xUxiMU5zEiRekoGFUc4FEgLmHDf91cK5T38xk1iM05wEifdkYGGUE7GEgDkBTZdVMPuky7BJjMZpToLEezJce4vae7jY9wQCZp+Nd+3BCMxr4onTnNeEUuoIFkZJmcjkQMBk4HjVLsw+eVM4cZrzpmjCF6cJQMCcRqe/iph90l/MYDEIgIB9AhAw+2y8cQ9mn7wxqvAJBHyUAATM5wKP2SfvCDni6B1xhBfNIQABaw491AUBzxDASNoz3NGrxghAwDQWEJgDAkoE8EYVJULY7ysEIGC+Emn46R0E8EYV74gjvHAJAQiYSzCiERBwEwE8z+cm0OhGDwQgYHqIEmwEgZsE8EaVmyTwfxCgEDAcBCCgJwIYgekpWrBVZQIQMJUBo3kQcCkBvFHFpTjRmL4JQMD0HT9Y74ME8EYVHww6XLZJQBMCtnLlSpPJZDQazWbz/v37pYa+8cYbd955Z+SN35AhQ4RlGhoa5s6dGxMTExQUNGTIkOPHj0urC3MUHRYWRhoEtEkAz4FpMy6wys0EFM/nRG2DcnJyDAbDunXriouL09PTIyMjz58/L+p03Lhxq1atKioqOnr06OOPPx4REVFeXs7KZGZmRkRE5OXlHTx4MDU1NTEx8dq1a6Lqwk1Fh4WFkQYBzRLAmzg0GxoY5jYCiudz1QXMbDZPmTKFOWy1WmNjYxcuXCjjf319fVhY2MaNGymlDQ0NMTExixcvZuUrKiqMRmN2drZMdUWHZepiFwiAAAiAgHYIKJ7P1RWwurq6gICA3NxcTmTChAmpqal8U5qoqqoKCgr6+OOPKaWlpaWEkKKiIl5s8ODB06ZN45vShKLD0irIAQEQAAEQ0CABxfO5ugJ2+vRpQkhhYSFHM3PmTLPZzDelicmTJ3fq1InNE+7Zs4cQcubMGV7s4YcfHjNmDN9kidra2sqbv7KyMkJIZWWlqAw2QQAEQAAE9EVAZwK2cOHCqKiogwcPMsoOClhGRgb5vz8ImL4OU1gLAiAAAlICHhawJk0hLl68OCIi4ptvvuFuODiFiBEYJ4YECIAACHgNAQ8LGKXUbDZPnTqVAbVarXFxcTYXcSxatCg8PHzv3r1C9GwRx5IlS1hmZWUlFnEI+SANAiAAAl5MwPMClpOTYzQaN2zYUFJSMmnSpMjIyHPnzjUu0Bg/fvzs2bMZ+szMTIPB8MEHH5y9+auurua7IiMjt2zZcujQobS0NCyj9+KDFa6BAAiAgJCA5wWMUrpixYr4+HiDwWA2m/ft28fsS0lJsVgsLG0ymf7vPSySkZHBdrEHmdu1a2c0GocMGXLs2DGhe9K0osPSKsgBARAAARDQIAHF87m6qxDdT0TRYfebhB5BAARAAAScIKB4PoeAOUEVVUAABEAABFQnAAFTHTE6AAEQAAEQUIMABEwNqmgTBEAABEBAdQIQMNURowMQAAEQAAE1CEDA1KCKNkEABEAABFQnAAFTHTE6AAEQAAEQUIMABEwNqmgTBEAABEBAdQIQMNURowMQAAEQAAE1CEDA1KCKNkEABEAABFQnAAFTHTE6AAEQAAEQUIMABEwNqmgTBEAABEBAdQIQMNURowMQAAEQAAE1CEDA1KCKNkEABEAABFQnAAFTHTE6AAEQAAEQUIMABEwNqmgTBEAABEBAdQIQMNURowMQAAEQAAE1CEDA1KCKNkEABEAABFQnAAFTHTE6AAEQAAEQUIMABEwNqmgTBEAABEBAdQIQMNURowMQAAEQAAE1CEDA1KCKNkEABEAABFQnAAFTHTE6AAEQAAEQUIMABEwNqmgTBEAABEBAdQIQMNURowMQAAEQAAE1CEDA1KCKNkEABEAABFQnAAFTHTE6AAEQAAEQUIMABEwNqmgTBEAABEBAdQIQMNURowMQAAEQAAE1CEDA1KCKNkEABEAABFQnAAFTHTE6AAEQAAEQUIMABEwNqmgTBEAABEBAdQIQMNURowMQAAEQAAE1CEDA1KCKNkEABEAABFQnAAFTHTE6AAEQAAEQUIMABEwNqmgTBEAABEBAdQIQMNURowMQAAEQAAE1CEDA1KCKNkEABEAABFQnAAFTHTE6AAEQAAEQUIMABEwNqmgTBEAABEBAdQIQMNURowMQAAEQAAE1CEDA1KCKNkEABEAABFQnAAFTHTE6AAEQAAEQUIMABEwNqmgTBEAABEBAdQIQMNURowMQ8A4C9daGwpOX8orKC09eqrc2eIdT8ELXBCBgug4fjAcBNxHYdvjM7QsKTLPy2b/bFxRsO3zGTX2jGxCwQwACZgcMsj1HAFf6nmNvu+dth88k3JQuJmAJs/ITZuVDw2zzQq67CEDA3EUa/ThGAFf6jnFyX6l6a4Nw7MUHYQmz8m9fUIC5RPdFAj1JCEDAJEiQ4TkCuNL3HHu7PReevMRFS5ooPHnJbk3sAAGVCUDAVAaM5h0mgCt9h1G5tWBeUblUt3hOXlG5W61BZyAgIAABE8BA0qMEcKXvUfx2O0dc7KLBDk8TgIB5OgLo/yYBXOnfJKGt/7ORsWgRh+nGIg7cA9NWqHzPGgiY78Vcqx7jSl+rkaHs3qRQw7AKUbPB8inDIGA+FW5NO4srfS2HB6tDtRwdn7UNAuazodei47jS12JUbtqE5/NuksD/tUIAAqaVSMAORgBX+jgSQAAEHCQAAXMQFIq5jwCu9N3HGj2BgJ4JQMD0HD3YDgL6IYDrEv3ESjeWQsB0EyoYCgL6JYCZYf3GTsuWQ8C0HB3YplECGEw0KTB4Q1iTcKGw4wQgYI6zQkkQ+JUABhNNOg7whrAm4ULhJhGAgDUJl+cL49rfszHAYKKp/PF8elOJobzjBCBgjrPyfElc+3s2BhhMOMEfbwhzAhqqOEgAAuYgKM8Xs3ftn/XpcXzl3T3hwWDCCc6A5gQ0VHGQAATMQVBuLSadJ7R37c+/amG68XVBfCFX1ThhMOEEXrwhzAloqOIgAQiYg6DcV8zmPKH8ZSyTMbxfVe0gyUcBn3a0xx9vCLNHBvnNJOB5AVu5cqXJZDIajWazef/+/VJ/jhw58sADD5hMJkLI8uXLhQUyMjKI4Ne1a1fhXptpRYdt1hJmSodHwr3NTNubJ5z30RHhYMteGl95byZ/+eoYTMjzkdlr87JMpjx2gYAjBBTP58SRVpwuk5OTYzAY1q1bV1xcnJ6eHhkZef78eVFrX3/99YwZM7Kzs2NiYqQClpycfPbm7+LFi6K60k1Fh6VVhDmq/h3amydMmJXfd94Oe6IlzcdQQBgy16b1OJhQ9ZLLcbwaMcNxg1FS+wQUz+fqCpjZbJ4yZQrDZLVaY2NjFy5caI+ayWSSCljv3r3tlbeZr+iwzVos097wyFV3nuRnqPrO2yn8IJNUt3gOvvIuE8Tm71L1Iqb55ola0Je1IuOxCQLyBBTP5yoKWF1dXUBAQG5uLjdxwoQJqampfFOUsClgISEh7du3T0xMHDdu3A8//CCqwjZra2srb/7KysoIIZWVlTZLymTKDI9c9V1a+TUCr3x0hN3l4kJlL4ERmEwcXbJLL4MJtS+5XAITjYCA0wQ8KWCnT58mhBQWFnLrZ86caTab+aYoIRWwrVu3vv/++wcPHty+ffugQYPi4+OrqqpEtRo3RbfKnBMw+eGRSzRDsQvR1bRUwHAPTBp9n81xwyWXz7KF4xohoG8BE0K8evVqeHj4W2+9JcxkaZeMwOSHRy6ZtXNkjQC/9s/69JhpVr5wUhGrEKWh9+UcxeshX4YD372DgCcFrPlTiKIY9O/ff/bs2aJM0aaiw6LyfNM9p4MmrREQDchuX1Dgqrtx3Gsk9EvADZdc+oUDy72DgOL5XMV7YJRSs9k8depUhtJqtcbFxTVpEYcwBtXV1VFRUa+//rowU5pWdFhaheU4MjyyV7dJ+U2SJT4gKzx5qd7a0KSOUNi7Cbjnksu7GcI7jRNQPJ+rK2A5OTlGo3HDhg0lJSWTJk2KjIw8d+4cpXT8+PF8LFVXV1d049e+ffsZM2YUFRWdOHGCYZ0+ffru3btPnTq1Z8+eoUOHRkdHX7hwQZ64osMy1Zs0PJJpR3EXZEkREQooEnDbJZeiJSgAAioRUDyfqytglNIVK1bEx8cbDAaz2bxv3z7mZ0pKisViYelTp04JHlb+NZmSksJ2jR07tn379gaDIS4ubuzYsSdPnlTEpOiwfAtNGh7JN4W9IKA2AbddcqntCNoHAZsEFM/nqguYTbPUy1R0WLFrDI8UEaGAdgjgkks7sYAlLiegeD6HgLmcORoEAbcSwCWXW3GjMzcSgIC5ETa6AgEQAAEQcB0BCJjrWKIlEAABEAABNxKAgLkRNroCARAAARBwHQEImOtYoiUQAAEQAAE3EoCAuRE2ugIBEAABEHAdAQiY61iiJRAAARAAATcSgIC5ETa6AgEQAAEQcB0BCJjrWKIlEAABEAABNxKAgLkRNroCARAAARBwHQEImOtYoiUQAAEQAAE3EvA5AauoqCCElJWVVeIHAiAAAiCgZwJlZWWEkIqKCnui6W3vQmQOi15vj00QAAEQAAGdEigrK/MVAbNarWVlZRUVFXq87GDq62vDR9/0urKyEo7r8Y/UaZsRbifQVVRUlJWVWa1WXxEwe37qIl9xwlcXXjTVSN/0mlIKx5t6qOi6PMKtRvi8bQpRDUZua9M3D3Hf9BoCVllZ6ba/LC10hONcjShAwNSg6mSbvnmI+6bXEDAImJOnCb1VU/UPHAKmocOhtrY2IyOj8b8askl9U3zTa0opHFf/4NJQDwi3GsGAgKlBFW2CAAiAAAioTgACpjpidAACIAACIKAGAQiYGlTRJgiAAAiAgOoEIGCqI0YHIAACIAACahCAgKlBFW2CAAiAAAioTgACpjpi3sHKlStNJpPRaDSbzfv37+f50kR2djYhJC0tje+yWCzC18AMHz6c79J4QtHr9evXC10zGo3co4aGhrlz58bExAQFBQ0ZMuT48eN8l/YTzXHci8NNKb169erTTz8dExNjMBg6d+78ySef8GgqQuMltZZwxHJ7jmdkZAj/BLp27ao17+zZo+h1SkqK0DVCyKhRo1hrLvnrhoDZC42L83NycgwGw7p164qLi9PT0yMjI8+fP2+zj1OnTsXFxd11110iARsxYsTZm78rV67YrKu1TEe8Xr9+fXh4+E3Pzp47d457kZmZGRERkZeXd/DgwdTU1MTExGvXrvG9Wk4003GLxeKt4a6rq+vfv/+oUaO++gXjodsAAA9RSURBVOqrU6dO7d69+8CBAyyUjkDTZtAdsVzG8YyMjOTkZP4ncPHiRW26KbLKEa8vX77M/Tpy5EhAQMD69etZOy7564aAiYKi1qbZbJ4yZQpr3Wq1xsbGLly4UNpZfX39HXfc8dZbb1ksFpGACTelFbWZ44jX69evj4iIkNrf0NAQExOzePFitquiosJoNGZnZ0tLajCnOY5TSkXR16CDNk1yxOs1a9Z06tTp+vXr0hYcqS6tpYUcRyyXcTwjI6N3795acKRJNjjitbDB5cuXh4WF/fTTT5RSV/11Q8CEhNVK19XVBQQE5Obm8g4mTJiQmprKN3nipZdeGj16tPQUZrFYIiIi2rRp06VLl6eeeurSpUu8imYTDnq9fv36gICA+Pj4Dh06pKamHjlyhHlUWlraOI9aVFTEHRw8ePC0adP4pmYTzXScRd9bwz1y5MjHHnssPT29bdu2ycnJ8+fPr6+vp5Q6CE2DQXfQcnuON3qUkZEREhLSvn37xMTEcePG/fDDDxp0U2SSg14La/Xo0SM9PZ3luOqvGwImJKxW+vTp04SQwsJC3sHMmTPNZjPfZIkvv/wyLi6OTSCIrsGzs7O3bNly6NCh3NzcpKSkAQMGsD97UQua2nTQ68LCwo0bNxYVFe3evfu+++4LDw9nX0/Ys2cPIeTMmTPcqYcffnjMmDF8U7OJZjpOKfXicHft2tVoNP7hD3/49ttvc3JyWrVq9fLLL1NKHYSmwaA7aLk9xymlW7duff/99w8ePLh9+/ZBgwbFx8dXVVVp0FOhSQ56zavs37+fEMLv/bvqrxsCxgmrmHAk2FVVVQkJCVu3bmV2iARMaBy7eCkoKBBmajDtiNcis69fv37LLbe8+OKLlFJXHeKiLtyw2UzHRRZ6Wbg7d+7csWNHfvm1dOnSmJgYXxAwe46Lwn316tXw8PC33npLlK+1zaYe5JMmTerZsyf3wlV/3RAwjlTFhCPD7aKiIkJIwM2f341fQEDAyZMnpZZFR0evXbtWmq+pHEe8lhr80EMPPfLII5RSV00ySLtQO6eZjkvN86ZwDx48eMiQIdzHrVu3EkLqbvwcnGbndTWScDDc9hyXetG/f//Zs2dL8zWV46DXzOaffvopPDw8KyuLu+Cqv24IGEeqbsJsNk+dOpX1YbVa4+LiRIs4rl27dljwS0tLu/vuuw8fPlxXVyeyrKyszM/Pb8uWLaJ8DW4qei2yub6+vmvXrs899xy/zbtkyRJWprKyUl+LOOTDLeO4aJeXhfuFF14wmUz8E4VZWVnt27dnLjf1aBGB8uCmI5bLOC60vLq6Oioq6vXXXxdmajPtiNfM8vXr1xuNRuGde7aIo/l/3RAwNx0bOTk5RqNxw4YNJSUlkyZNioyMZOvFx48fb/NqSziFWF1dPWPGjL179546daqgoOC2227r3LmzLl5a74jXr7zyyo4dO0pLS7/77rtHHnkkKCiouLiYRSUzMzMyMpLd/EtLS9PXMnrFcNtz3LvD/eOPP4aFhU2dOvXYsWP5+flt27Z97bXXWLjtHS1u+hNtRjf2LBf+dcs4Pn369N27d586dWrPnj1Dhw6Njo6+cOFCM8xxU1VHvGam3HnnnWPHjhWZ5ZK/bgiYiKqKmytWrIiPjzcYDGazed++faynlJQUi8Ui7VUoYDU1NcOGDWvTpk1gYKDJZEpPTxc+LCWtq6kcRa//9Kc/MSzt2rUbNWrUv//9b24/e9SxXbt2RqNxyJAhx44d47u0n3Dace8ON6W0sLBw4MCBRqOxU6dOfBUiC6hNaNqPNaXUpuWiv257jo8dO7Z9+/YGgyEuLm7s2LE27xpoE4IjXn///feEkJ07d4pccMlfNwRMRBWbIAACIAAC+iAAAdNHnGAlCIAACICAiAAETAQEmyAAAiAAAvogAAHTR5xgJQiAAAiAgIgABEwEBJsgAAIgAAL6IAAB00ecYCUIgAAIgICIAARMBASbIAACIAAC+iAAAdNHnGAlCIAACICAiAAETAQEmyDgDAF7XzVzpi0P1SGECL/44yorTp06JfosjiMtm0ym5cuX2yypkp02+0KmxglAwDQeIJgnR8BisbAPlrdo0aJt27ZDhw59++23+Xv2ZGo2/xOCojNsTU2NvU9sy5hhb5fwQ+xt27Z96KGH/vvf/9or7Hi+sFnhh95TUlIopSoJAwTM8QChZFMJQMCaSgzlNUTAYrGMGDHi7Nmz5eXl33333fz581u2bDly5MhffvlF3kqXC5h8d03dm5KSkp6efvbs2TNnzuzdu3fgwIF33nlnUxuRluffd//6668JIQUFBexz75cvX3ZQwBoaGhTZivqFgImAYNOFBCBgLoSJptxNQPjGSNb3Z599Rgh588032ebVq1cnTpwYHR0dFhb2u9/97sCBA5TS9evXC8cf69evp5TaLMka+eijj/r37280Glu3bs2+ly0ayrA2IyIiuP+rV69ufNFfYGBgly5d3nnnHZ7PbBs9enRwcPCtt95q75MCKSkpzz77LK+1adOmkJAQvrl79+4BAwYYDIaYmJhZs2YxRdm4cWNoaOjx48dZscmTJ3ft2vXnn3/mtYQJm6Jiz7Zdu3YRQrZu3XrbbbcFBgbu2rXLarUuWLAgISEhKCioV69e//znP1njV65cGTduXHR0dFBQ0K233rpu3brGr0uzvjZv3vzb3/42ODi4V69ewi+7fvDBB927dzcYDCaTib+bvJGncIB7/Pjxu+66y2g0JiUl7dy5U6WRopAP0nohAAHTS6Rgpw0CUgGjlPbu3XvkyJGs9NChQ++///5vvvnm+PHj06dPb9269eXLl2tqaqZPn56cnMzGHzU1NZRSmyUppfn5+QEBAS+99FJJScmBAwcWLFhAKb18+XKHDh3mzZvHWhAJ2IcffhgYGLhq1apjx44tXbo0ICDg888/Z/YQQjp06PDee++dOHFi2rRpLVu2ZKMfkW9CAbt8+fL999//u9/9jpUpLy8PCQl5+umnjx49mpubGx0dnZGRwXY9/PDDAwYM+OWXX/Lz8wMDA7/99ltRs3zTnoDZtI0JWK9evXbu3Hny5MnLly+/9tpr3bp12759e2lpKftSxu7duymlU6ZM6dOnzzfffHPq1KlPP/30o48+4gLWrVu3/Pz8Y8eOPfTQQyaTiYnut99+6+/vP2/evGPHjq1fvz44OJhdTAgFzGq19ujRY8iQIQcOHPjiiy/69u0LAeNxRAIChmNAxwRsCtjYsWOTkpIopV9++WV4eLjwuzO33HLL3/72t0aHRVOIMiUHDRr02GOPSRkJhwgiAbvjjjvS09N5lYcffnjUqFFskxDCvjdNKf3pp58IIdu2beMleSIlJSUwMDA0NDQkJIQQ0qVLl1OnTrG9f/nLX7p27drQ0MA2V61a1bJlS3bb78qVKx06dJg8eXK7du3mz5/PW5Mm7AmYTduYgOXl5bF2amtrQ0JChKOoiRMnPvroo5TS+++//4knnhB1x/rinxguLi4mhBw9epRSOm7cuHvuuYeXnzlzZvfu3dkmx7tjx44WLVqcPn2a5W/btg0CxokhAQHDMaBjAjYFbMyYMew8uHLlSn9//1DBz9/f//nnn290WCRgMiWDg4PZVJgIEz/DsnzhKsSoqKgNGzbw8llZWYmJiWyTEPL+++/zXeHh4Rs3buSbPJGSkvL444+fuPH76quvRo0a1blz56qqKkrp73//+8cff5yXPHDgACHkhx9+YDk7duxo/HTFHXfcIb+SxZ6A2bSNCVh5eTnr4siRI4QQAdTQwMBAs9lMKd26dWtwcHDv3r1nzpy5Z88eVp719fXXX7PNK1euEEK++OILSmnjcOrll19m+ZTSvLy8wMDA+vp64QhMSI9SWlFRAQHjxJCAgOEY0DEBmwLWs2fPe++9l1KamZkZFxfHZID/9+LFi40OiwRMpmSrVq1cK2DCpeoRERF80kwYBuEUIqX07Nmz/MaevIDNmTMnICAgMTGRqZ2wTWHanoDZtI0J2NWrV1kL+/btI4Ts3r2bIz1x4sSPP/7I9l64cGHDhg2PPfZYUFDQ9OnT+RRiUVERK3D16lVCyK5duyBgwogg7RwBCJhz3FBLEwSkAsYWcTDJ2blzZ0BAAJ98E1o8f/78Hj168ByZkr/97W9tTiF27txZuOhAOAKTTiEyQZWu9HNQwC5cuEAI+etf/0oplU4hhoWFsfHWnj17WrRosXXr1p49e06YMIF7J000R8Cqqqoav0UpXJkibZ9Sunbt2rCwMHkBk04hJicns9b4AJdNIZ45c4blb9++HSMwm8B9MxMC5ptx9xKvbS6jv++++9g0VENDw5133tm7d+8dO3aw77X/5S9/+eabbyil7777bmhoaFFR0cWLF2tra2VK7tq1y9/fny3iOHToUGZmJmN3zz33pKamlpeXsyGdUMByc3MDAwNXr159/PhxtoiDDTiaJGBsGf3Zs2cPHDjw4IMPBgUFff/995RStohjypQpR48ezcvL44s4qqqqOnXq9Oc//5lSeujQIaPRyBcHSoPdHAGjlM6ZM6d169YbNmw4efLkd99999e//pVNmc6dOzcvL+/EiRNHjhy577772LyiqC/hCOy7777jizg2bNhgbxFH9+7d77nnngMHDvzrX//q168fBEwaUJ/NgYD5bOi9wXHhg8xt2rQZOnTounXrhLd/qqqqnnnmmdjY2MDAwI4dOz722GNssqu2tvbBBx+MjIwkhLBJPHslKaWbN2/u06ePwWCIjo5+4IEHGLi9e/f26tXLaDQS8usfkVDAKKUyy+htTtOJgiFcph8VFZWSksLXMVJKbS6jf+KJJ3r27MlXrCxdurRVq1b8xpWofZGosL0iYeCjQ9EUIqW0oaEhKyura9eujYst27RpM3z4cHZP69VXX01KSgoODm7VqlVaWtp//vMf+REYpZQtow8MDIyPj1+8eDG3k4/AKKXHjh278847DQZDly5dMALjiJD49YoQFEAABEAABEBAjwQgYHqMGmwGARAAARDACAzHAAiAAAiAgD4JYASmz7jBahAAARDweQIQMJ8/BAAABEAABPRJAAKmz7jBahAAARDweQIQMJ8/BAAABEAABPRJAAKmz7jBahAAARDweQIQMJ8/BAAABEAABPRJAAKmz7jBahAAARDweQIQMJ8/BAAABEAABPRJAAKmz7jBahAAARDweQIQMJ8/BAAABEAABPRJ4P8B2h9TW/OUvscAAAAASUVORK5CYII=" - }, - "image.png": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAIAAADYpXCcAAAAAXNSR0IArs4c6QAAIABJREFUeAHtnQ1cVFXexw+OzACiIKIiKIOW7/hWOmprTZtvqYmulb24SmXYGr7kqmHbC60m2KphC2q6u4LZBmu7QUW+l1pJvlT4BqZSbIGK76KFUAzn4fE8nud678y9A8yduZf5zYePnnPuefn/v/875zfn3nNnCMULBEAABEAABHRIgOjQZpgMAiAAAiAAAhQChpMABEAABEBAlwQgYLoMG4wGARAAARCAgOEcAAEQAAEQ0CUBCJguwwajQQAEQAAEIGA4B0AABEAABHRJAAKmy7DBaBAAARAAAQgYzgEQAAEQAAFdEoCA6TJsMBoEQAAEQAAC5oJz4Nq1a1OnTm3bti0hZPbs2ZTSsrKyBx98MCQkhBCSkpLigjEa0IXUvAZ05rGm6enphJDi4mL3W2C1Wnv27OmecRs4FiEkMTHRkamJiYm1FRwddXM5C+iBAwfcPC6Ga0wEtHI2a5kpe6cRyevLL79kZr/wwgsGg+HVV1/dsGHDV199RSl97LHHAgMDly5dumHDhmPHjjXEu8WLF2dnZzekB6l5ot7MZjNzzsfHJygoKDo6Oi4ubu/evaJq8tmVK1emp6fL13H+qNRrlQSMzemS2P5fgdVqpZQ2UFSc97rhY2lNwN5///3777+/VatWvr6+7dq1e/jhhz/55BMGRFMC9vHHH8sIf50iKKwcGxsrPbVMJpOwjnvS/D1OCAkICBgwYMD69eudH1olPs4b4KgmBMwRmf8vZ++0hQsXbrj1df78eVZp4MCBv/nNb/6/AaVt27adNGmSsKTe6WbNmsXGxta7OaVUap6oN7PZ3LdvX+bcqlWrZs6cGRYWRgiZM2eOqKZMtmfPnmy6l6nj/CGp19XV1devX6+pqXG+E2dqHjp0iEd19erVhJDf/e53vGTbtm0NFxVnzOB1GiiW2hGwmpqaJ554ghDSr1+/xYsX/+Mf/3jttdfuvPNOQsiePXsopZoSsPj4eDXWprGxsSaTiZ9OLPHuu+/ycLstIXyP/+Uvf+nSpQshZO3atU4aoBIfJ0eXqQYBk4Hzf4cU32kdO3YcM2aMsCMfH5/4+HhhSb3T0qm8rl1JzRP1YDabRfZXVFSMHz+eELJq1SpRZUdZtQXM0bguLD9//rxdAaiTqFy/ft1ms9XbqjqNJR3Frv28mjsvIS5dupQQ8txzz4k+c7z99tv79u1zuYD9/PPP3M16JBo4QdfU1FRUVEjHjY2NbdasmbTcbslPP/0kLa+rX7/++mtVVZW0H9F7/Ny5c4GBgd27d5fWtFvSQD52+3RJIQRMGaOMgO3cuVN0iYBVFhayAS5fvjx79uz27dsbjcbbbrttyZIlwmnOZrOtWLEiOjraZDKFhoaOHDmS3RsQ9lN7B8jRUuzs2bNPPfVUmzZtTCZT7969MzIy2KBS8+zeQxKd3KzttWvXQkJCIiIi+ARks9lSUlJ69OhhMpnatGkzbdq0S5cuscrCCxSEEL4Uc6HXDKzQ/pUrV/bo0cNoNLZr1+7ZZ5+9fPkyM4avmQoKCu69915/f//w8PDXX3+dH3WUkBcwR70xyJmZmS+++GJ4eLiPjw+zZO/evSNHjmzRooW/v/8999zzxRdf8HGvXr06e/Zss9lsNBpbt249bNiwr7/+mh1lAuZoLEqpo1iz5iIB+/zzz/v3728ymTp16vTWW28pCtjGjRvvuOMOPz+/Vq1aTZo0qbS0lNvM5uLS0tJx48Y1a9YsNDR07ty51dXVvIIwUVFRERIS0q1bN0cVuIB98cUXc+bMCQ0NDQgIGD9+/Llz53g/OTk5o0ePbteundFo7NSp08KFC4W9MVBfffXV3Xff7e/vz+49yzehlO7du3fUqFHBwcEBAQG9evVasWIFpVR6oY/ZIHPC19rP3jVbtmy58847TSaT3Vvd8gLGTuldu3ZNnz69devWwcHB/NQV+SUT9OLiYkLI0qVLU1JSaik1adIkPz+fM+QJ6Xu8f//+RqORV/jss88eeuihDh06GI3G9u3bP/fcc1yS68eH96xqAgKmjJedZzt27DgveF24cIFt1tiwYUNoaCi/BHf06NENGzbUXicZPnw4u2JAKf3555979+7dqlWrP/3pT2+99daUKVNqpzn2lmPDs4sttW+tFStWLFu2bNy4campqZTSDRs2mEymu+++m3WVl5cnNbeioqJ79+6+vr5z5sz561//evfddxNC2DuzrKxMZJ7dT3nSk5uNMnXqVELI0aNHWfbpp59u2rRpXFzcW2+9lZCQ0KxZswEDBvzyyy+U0uzs7Pbt23fr1o3Zya68udZrkYCxuXjYsGGpqakzZswwGAzcGDYLhIeHd+jQYfbs2atWrbrvvvsIIZs2bZLSE5bICJhMb0zAevTo0bdv3zfeeCM5Ofnnn3/+5JNPjEbj4MGDly9fnpKS0rt3b6PRyFYelNLHH3/caDT+8Y9//Pvf//7666+PHTv2nXfeYZZYrVaZsWRizZoLBezw4cP+/v6RkZHJycmLFi1q27Zt7969aysIXRamGeEBAwakpKQsWLDA398/KiqKfyyIjY318/Pr2bPnU089tXr16gcffFBmgb5t2zZCyMKFC4X9i9JsuH79+t13332pqalz5841GAwTJ07k1caPHz9x4sSlS5euXr364YcfJoTMmzePH7VarWFhYa1bt545c+aaNWtycnIopfJNtm3bZjQazWZzYmLi6tWrZ82aNWzYMEppXl7e8OHDCSHs7N2wYQMbReaEZwJ2++23t2zZcsGCBW+99dbOnTu5bTzBBEwwbfxvsry8nFVgBHr06GG1WlNTU5csWcJOXZFf8kFnAtajR49OnTotWbIkJSXlhx9+4AbwhOg9/uuvv4aFhbVt25ZXmDlz5ujRo5OSktasWTN16lSDwfDQQw+xo/Xjw3tWNeHwbFZ1VH11zs4z0WJIeCdWdHJQSgkhwkuIixYtatas2YkTJ7jjCxYsMBgMP/74I6X0008/JYTMmjWLH6WU8nWP4iXEFStWEEL4DPjLL78MHjw4MDDw6tWrrEOpecKB+GdJUSGlNCUlpfYexgcffEAp/fzzzwkh//znP3m1LVu2CEuklxBd6zWLAluBnTt3zmg0jhgxgq9i09LSCCHr1q1j5lmtVkLI22+/zbJVVVVhYWEPPvggN95uQkbAZHpjAtapUyf+ibWmpqZz584jR47kQayoqOjYsePw4cPZuEFBQcLTQ2iMvOWKsRYK2Pjx4/38/Ph0VlhYWLvVyJGA/fLLL23atImOjr5+/TqzJzc3lxDyyiuvsCz7GC7UpH79+t15551C43n6zTffJITIbz5iAR02bBinNGfOHIPBcOXKFdYP58myzzzzTEBAQGVlJcsyULXLSj4opVSmSXV1dceOHc1mM5dk4btMeolM8YRnVx22bNkiNECUlq5dCCEjR45k1RiBIUOGiFaWhBChX/JBZwLWokUL4eJVZAZ7j48YMYJJ6ZEjRyZPniyao0TokpOTfXx8+MlTDz5SG9QogYApU2Xn2cqVK7cLXp9++ilvKVUI0cnRu3fv+++/X/hBbMeOHVx14uPjfXx8Ll68yDsUJhQFbMSIEWFhYXwqp5RmZmYSQj766CPWj9Q8Yf8yAva3v/2NGzlr1qygoKBz584JvQgMDHz66adZb1IBc63XQgF79913RSuqqqqqFi1acImyWq2BgYF8ZqSUxsTE9OvXT+S4KCsjYDK9MQH785//zHv75ptvCCHr168Xsnr66adNJhMLk9ls7t+//6lTp3gTnpC3XDHWXMCqq6v9/f0fffRR3jOldPTo0Y4ELC8vT7qi6tatG5coNhcLZ8lZs2a1bNlS2D9PL1q0iBCyY8cOXiJNsIBu3LiRH3r//fdrN9EcOnSIl7DE1atXz58//8477xBCDh48yAqtVqvJZLJ7v4dSKm1y4MABmWdapBO04glvNps7duwoMlWUZctWwbTxv0l+iY8REO0GlPolH3QmYE8++aRoaFFWdJGfEPLkk0+KRIs1+emnn86fP797925CCFvXUkrrwUdkgEpZCJgyWHaeyTywIlUIkYD5+/uLFnAs+8Ybb9Rel7///vsjIiIc2aEoYF27dr377ruFzQ8ePEgISUtLY4VS84SVZQRMuAIbNWqUXRdiYmJYb1IBc63XQgFLTk4mhHz33XdCR/r27du/f39WYrVau3XrJjwaGxsbFRUlLJGmZQRMpjcmYHy1Ryn917/+ZZdV7Tqb3TX817/+5efn16RJkwEDBiQmJgodkbdcMdZcwM6cOUMIefnll4Vuzpkzx5GAsQ89fI87azV+/PjQ0FCWZnOxsDeZO2rOr8CET2swkrt27WKjHD16dPz48S1atBDC3L17NztqtVo7deoktIdSKtMkKyuLELJ9+3ZRE5aVTtCKJ7zZbL7vvvvs9sYLnbkH9tlnn/H67BKiyC/5oDMBE66Mhb3xtNlsrt2NvH379i1btixbtiw4OHj8+PHCld8PP/wQGxvbsmVLIW0urvXgw4dWNQEBU8bbcAEzmUzDhw8XfRDbvn07W6FrVsDYPbCCggJK6ciRI9u0aSN1gX8ilgqYa72uq4CJHj2OjY2tvfkhH2wZAZPpjU277733Hu+cicHSpUuluNgtQ0rp6dOnV65cOW7cuICAAD8/P35/TroLUWi5/FzGrl0n3niQWQ0BE22okxGwrVu3OnkPTPi5kJFkN5MuX77cqlWrjh07rlix4qOPPtq+ffvrr79euz+I32qSgpJvUlcBUzzhFT8Xsu0hImj8JKn94Gh3YpH6JR90JmBLly4V9ixNi6xl14eXL1/OalZXV3fp0iU0NHTJkiU5OTnbt2/PyMgghPAnO6UCpshHaoMaJRAwZap2zzNhM9HJIb0H1qNHj8GDBwubCNPylxADAwMdbT5knUivMLD3agMvIbJdiB06dGAX4p599lmDwWD3mgMzIzo6mm8+ZCWu9VooYHYvIQYFBQkvIcpIjhC+MO0qAdu/fz8hZM2aNcLOHaXPnj0bERHBnyOUzl9CAVOMNV+BueQSYvfu3YWXEEVzsYyA/fzzzy1btuzevbvwM76IgPRtJRSw7OxsQghfb1FK165dKy9g8k3kLyHOmDFDtDZVPOGl73qRg64SMPmg10/A2FKvVatWbFdXfn4+u+jNXWDbcLiA1YMP70rVBARMGa/0nSZqIz2VRZcQX331VUKI6H7v5cuXf/31V8VNHG3bth03bpxoRGGW3ePlT0f++uuvv/nNbxq4iYM/B8ZvJu/atYsQ8sILLwiH/vXXX/kt8YEDB/bp00d41LVeCwWMbeK4//77+V2uVatWiTZxeFDAbDbbbbfd1rlz52vXrgmBsBtI1dXVfJ8COzpgwADhxU8ZyxVjzQWMbcmr6yaO3r17810SmzZtEm3icF7AKKVLliwhhMydO5fHiDm7YcMGR8+BCQXsww8/JITwy4lVVVV9+/aVFzD5JjabTWYTR0JCQu33wPGTmVKqeMJL3/XCWLO0M5cQhWtQpiuiE0A+6PUWMBZftvv/8OHDhBD++E1NTc2YMWOEK7B68JHSUKMEAqZMlU2d0m/i4LcupKeySMB+/vnnO+64o2nTpk8//fTq1auXLVvG99ey4dmmoFGjRr355pspKSkTJkxg2+jZjfdmzZotX748MzNTeMOA28122RqNxrlz56amprLdWWwbPasjNY+35RX4YwCrV6/m38Qxd+5cYc1nnnmGEDJq1KiUlJS0tLTZs2eHh4fzS2fPPvusj4/PokWLMjMz2a0U13otFLBaq9jH/xEjRqSlpc2cOVO6jV40CwjXMUKnhGlXrcBqp6GdO3f6+flFRkYmJibWft9BYmLiPffc88ADD1BKL1++zO5rvvHGG2vXrp04cSIhhF/MkV+BKcZaKGCHDh1iNixZsuS1115zchv9wIEDV6xY8cILLwQEBIi20ddJwGw2Gzur77jjjqSkpHXr1iUlJVksFkIIexpE+rlQKGAXLlxo2bKl2Wxevnz5G2+80a9fvz59+sgLmGKTLVu2+Pr61m5nePXVV9esWTNnzpwRI0awE2Djxo21d1UnT578zjvvZGZmskL5E17xbcVWYNJv4tiwYQNb90gJ2BUw+aDXW8AopdHR0R06dPjlxuu2224LDQ1dvHhxamrqvffey2jzFVg9+AjfWeqlIWDKbNl5Jry3ydI8utJTWSRglNJr16698MILt99+u9FoDA0Nveuuu5YtW8bviFRXVy9durRbt27sydZRo0bxJ1u//fbbe+65h22IcHQt8ezZs08++WRoaKjRaOzVqxc3jPkmNU/kM9+h5OPj06JFi549e8bFxfGHloSV165de+edd/r7+zdv3rxXr17PP//86dOnWYWysrIxY8Y0b968dpbh1xJd6LVIwCilaWlp3bp18/X1bdu27fTp04Ufn+VlQOiRMO1CAaOU5ufn134QadWqlclkMpvNEydOZLpeVVU1f/78Pn36NG/evFmzZn369BF+3Ymi5fKxFgoYpXT37t133nknexC4djEtc9GPcfjXv/7Vr18/k8kUEhJi90FmIS7F3mqnyH//+98jRowICQlp2rRpu3btHnnkEb6okk7fQgGjlO7Zs2fQoEHsOfTnn3+e3VeTuQem2IRS+sUXXwwfPpyRr300k39MrK6unjlzZuvWrX18fITXEmVOeMW3ld1HpNnUwZ4GkRKwK2Ds6XVHb/CGCJjwRldhYeGwYcMCAwNDQ0Pj4uIOHTokXIHVg4/wVFEvDQFTjy16BgEQAAEQUJEABExFuOgaBEAABEBAPQIQMPXYomcQAAEQAAEVCUDAVISLrkEABEAABNQjAAFTjy16BgEQAAEQUJEABExFuOgaBEAABEBAPQIQMPXYomcQAAEQAAEVCTQ2AbPZbCUlJVeuXCnHCwRAAARAQM8Erly5UlJSIvypDZEYNjYBKykpkT5xjBIQAAEQAAGdEigpKRHpFs82NgG7cuUKIaSkpETPHztgOwiAAAiAQDlbkIi+O5Sr1/9+bbow0wjS5eXlhBD+o92NwCO4AAIgAALeSUBxPoeAeeeJAa9BAARAQOsEIGBajxDsAwEQAAEQsEsAAmYXCwpBAARAAAS0TgACpvUIwT4QAAEQAAG7BCBgdrGgEARAAARAQOsEIGBajxDsAwEQAAEQsEsAAmYXCwpBAARAAAS0TgACpvUIwT4QAAEQAAG7BCBgdrGgEARAAARAQOsEIGBajxDsAwEQAIHGR6DaVpNXdCEnvzSv6EK1raZ+DkLA6scNrUAABEAABOpJYPOR04OSdpgTctnfoKQdm4+crkdfELB6QEMTEAABEACBehLYfOR01E3pYgIWlZAblZBbDw2DgNUzBmgGAiAAAiBQVwLVthrh2osvwqIScgcl7ajrtUQIWF35oz4IgAAIgEA9CeQVXeCiJU3kFV2oU78QsDrhQmUQAAEQAIH6E8jJL5XqFi/JyS+tU9cQsDrhQmUQAAEQAIH6E8AKrP7sKKWKit2g3tEYBEAABEDAMQF2D0y0icN8YxMH7oE5xnbzCATsJgn8DwIgAAIeIMB2IQo1DLsQnQ0DBMxZUqgHAiAAAuoQwHNg9eQKAasnODQDARDQLQGXfO2Fa713iUmK8zlxrdEe703RYY9bCANAAARAwIUEXLXccaFJrupKcT6HgLkKNfoBARAAAXcTcOHXXrjbdCfGg4A5AQlVQAAEQECHBFz7tRcaBAAB02BQYBIIgAAIuICAax+6coFBru4CAuZqougPBEAABLRBwLVfe6ENn26xAgJ2Cw5kQAAEQKDREMAKDJs4Gs3JDEdAAAS8i4Brv/ZCg+ywAtNgUGASCIAACLiGgAu/9sI1Brm0FwiYS3GiMxAAARDQGAE8B6axgDTAHEXFbkDfaAoCIAACWiTgkq+90KBjivM57oFpMGowCQRAAARAQPnXRSBgOEtAAARAAAS0SAArMC1GBTaBAAiAAAgoEoCAKSJCBRAAARAAAS0SgIBpMSqwCQRAAARAQJEABEwRESqAAAiAAAhokQAETItRgU0gAAIgAAKKBCBgiohQAQRAAARAQIsENCFgaWlpZrPZZDJZLJZ9+/ZJOa1du3bIkCHBN15Dhw4V1qmpqXn55ZfDwsL8/PyGDh164sQJaXNhiaLDwspIgwAIgAAIaJaA4nyu+nNgWVlZRqNx3bp1BQUFcXFxwcHBZ8+eFfF6/PHHV65cmZ+ff+zYsSeeeCIoKKi0tJTVWbJkSVBQUE5OzqFDh2JiYjp27Hj9+nVRc2FW0WFhZaRBAARAAAQ0S0BxPlddwCwWS3x8PANks9nCw8OTk5NleFVXVzdv3nz9+vWU0pqamrCwsKVLl7L6V65cMZlMmZmZMs0VHZZpi0MgAAIgAALaIaA4n6srYFVVVQaDITs7mxOZMmVKTEwMz0oTV69e9fPz++ijjyil3333HSEkPz+fV7vnnntmzZrFsyxRWVlZfvNVUlJCCCkvLxfVQRYEQAAEQMCFBNzwBYweFrBTp04RQvLy8ji1+fPnWywWnpUmpk+f3qlTJ3adcM+ePYSQ06dP82oPP/zwxIkTeZYlEhMTya0vCJgIEbIgAAIg4EIC7vkKfJ0JWHJycsuWLQ8dOsRAOylgWIG58LxEVyAAAiAgT4D9CJk5IZf/RSXkRiXkbj7y/4sN+R6cPOphAavTJcSlS5cGBQUdOHCA++bkJURen1Llby8WVkYaBEAABECgTgTYz0Bz6eKJqITcQUk7qm01depNvrKHBYxSarFYZsyYway02WwRERF2N3G8/vrrLVq0+PLLL4X+sE0cy5YtY4Xl5eXYxCHkgzQIgAAIuJlAXtEFLlrSRF7RBRfa43kBy8rKMplMGRkZhYWF06ZNCw4OLisrq92gMXny5AULFjBXlyxZYjQa//3vf5+5+bp27Ro/FBwc/MEHHxw+fHjcuHHYRu/CkwNdgQAIgEBdCeTkl0p1i5fk5P/fE1B17dZufc8LGKU0NTU1MjLSaDRaLJa9e/cyQ61Wa2xsLEubzeZbN2GQxMREdog9yNy2bVuTyTR06NDjx4/b9ZMXKjrMayIBAiAAAiBQVwLetQKrK50G1oeANRAgmoMACICADAF2DyxKsIODLb8a5z0wGRBqHIKAqUEVfYIACIAAJ8B2IQo1rHHuQuQOuy0BAXMbagwEAiDgtQS84jkw90cXAuZ+5hgRBEDACwk0/m/icH9QIWDuZ44RQQAEQEANAorzubrfhaiGS/J9Kjos3xxHQQAEQAAENEJAcT6HgGkkUjADBEAABEDgFgIQsFtwIAMCIAACIKAXAhAwvUQKdoIACIAACNxCAAJ2Cw5kQAAEQMAbCLhhi6AbMELA3AAZQ4AACICAhgi45yEtNzgMAXMDZAwBAiAAAloh4LYf63KDwxAwN0DGECAAAiCgCQLu/LEuNzgMAXMDZAwBAiAAApog4M6vineDwxAwN0DGECAAAiCgCQLu/LEuNzgMAXMDZAwBAiAAApoggBWYJsJQbyMUFbvePaMhCIAACGicgDt/rMsNKBTnc3yVlBuigCFAAARAwE0E3PZjXW7wBwLmBsgYAgRAAAQ0RADPgWkoGHUyRVGx69QbKoMACICAHgngmzj0GDUKAdNl2GA0CIAACEgIKM7nuAcmYYYCEAABEGiMBHS3LIOANcbTED6BAAiAQB0J6PHGGASsjkFGdRAAARBodAR0+gWJELBGdybCIRAAARCoCwH9fkEiBKwucUZdEAABEGh0BPT79RwQsEZ3MsIhEAABEKgLAf1+QSIErC5xRl0QAAEQaHQEsALTTUgVFVs3nsBQEAABEHAFAf1+QaLifI7nwFxxgqAPEAABENAwAZ1+QSIETMPnFEwDARAAAXcRwHNg7iLdgHEUFbsBfaMpCIAACOiYAL6JQ+vBg4BpPUKwDwRAAAScI6A4n+MemHMgUQsEQAAEQMC9BCBg7uWN0UAABEAABFxEwPMClpaWZjabTSaTxWLZt2+f1K+jR49OmDDBbDYTQlJSUoQVqqurX3rppaioKD8/v06dOi1cuLCmpkZYQZpWdFjaBCUgAAIgAAIaJKA4n6t7CTErK8toNK5bt66goCAuLi44OPjs2bMiTPv37583b15mZmZYWJhIwBYvXtyqVavc3Nzi4uL33nsvMDDwzTffFDUXZRUdFtVHFgRAAARAQJsEFOdzdQXMYrHEx8czNDabLTw8PDk52REps9ksErAxY8Y89dRTvP6ECRMmTZrEs3YTig7bbYVCEAABEAABrRFQnM9VFLCqqiqDwZCdnc2hTJkyJSYmhmdFCamALV682Gw2Hz9+nFJ68ODBNm3avPPOO6JWlNLKysrym6+SkhJCSHl5ubQaSkAABEAABHREwJMCdurUKUJIXl4e5zV//nyLxcKzooRUwGw2W0JCgo+PT9OmTX18fJKSkkRNWDYxMZHc+oKA2QWFQhAAARDQEQF9C1hmZmb79u0zMzMPHz789ttvh4SEZGRkSOljBSZlghIQAAEQ0DsBTwpYwy8htm/fPi0tjcdg0aJFXbt25Vm7CUWH7bZCIQiAAAiAgNYIKM7nKt4Do5RaLJYZM2YwKDabLSIiok6bOEJCQlatWsWZJiUlde7cmWftJhQdttsKhSAAAiAAAlojoDifqytgWVlZJpMpIyOjsLBw2rRpwcHBZWVllNLJkycvWLCAwaqqqsq/8WrXrt28efPy8/NPnjzJDsXGxkZERLBt9O+//35oaOjzzz8vj1jRYfnmOAoCIAACIKARAorzuboCRilNTU2NjIw0Go0Wi2Xv3r2Mi9VqjY2NZeni4uJbd2AQq9XKDl29enX27NmRkZHsQeYXX3yxqqpKnqyiw/LNcRQEQAAEQEAjBBTnc9UFzM0gFB12sz0YDgRAAARAoH4EFOdzCFj9wKIVCIAACICAugQgYOryRe8gAAILU/HjAAAgAElEQVQgAAIqEYCAqQQW3YIACIAACKhLAAKmLl/0DgIgAAIgoBIBCJhKYNEtCIAACICAugQgYOryRe8gAAIgAAIqEYCAqQQW3YIACIAACKhLAAKmLl/0DgIgAAIgoBIBCJhKYNEtCIAACICAugQgYOryRe8gAAIgAAIqEYCAqQQW3YIACIAACKhLAAKmLl/0DgIgAAIgoBIBCJhKYNEtCIAACICAugQgYOryRe8gAAIgAAIqEYCAqQQW3YIACIAACKhLAAKmLl/0DgIgAAIgoBIBCJhKYNEtCIAACICAugQgYOryRe8gAAIgAAIqEYCAqQQW3YIACIAACKhLAAKmLl/0DgIgAAIgoBIBCJhKYNEtCIAACICAugQgYOryRe8gAAIgAAIqEYCAqQQW3YIACIAACKhLAAKmLl/0DgIgAAIgoBIBCJhKYNEtCIAACICAugQgYOryRe8gAAIgAAIqEYCAqQQW3YIACIAACKhLAAKmLl/0DgIgAAIgoBIBCJhKYNEtCIAACICAugQgYOryRe8gAAIgAAIqEYCAqQQW3YIACIAACKhLAAKmLl/0DgIgAAIgoBIBCJhKYNEtCIAACICAugQgYOryRe8gAAIgAAIqEfC8gKWlpZnNZpPJZLFY9u3bJ/Xz6NGjEyZMMJvNhJCUlBRRhdLS0kmTJoWEhPj5+UVHRx84cEBUQZRVdFhUH1kQAAEQAAFtElCcz4mqdmdlZRmNxnXr1hUUFMTFxQUHB589e1Y04v79++fNm5eZmRkWFiYSsEuXLpnN5ieeeGLfvn3ff//91q1bi4qKRM1FWUWHRfWRBQEQAAEQ0CYBxflcXQGzWCzx8fEMjc1mCw8PT05OdkTKbDaLBCwhIWHIkCGO6tstV3TYbisUggAIgAAIaI2A4nyuooBVVVUZDIbs7GwOZcqUKTExMTwrSkgFrHv37s8999xDDz3UunXrvn37rl27VtSEZSsrK8tvvkpKSggh5eXldmuiEARAAARAQC8EPClgp06dIoTk5eVxWPPnz7dYLDwrSkgFzHTj9cILL3zzzTdr1qzx8/PLyMgQtarNJiYmkltfEDApJZSAAAiAgL4I6FvAfH19Bw8ezInPnDlz0KBBPMsTWIFxFEiAAAiAQKMh4EkBa/glxMjIyKlTp/JgrFq1Kjw8nGftJhQdttsKhSAAAiAAAlojoDifq3gPjFJqsVhmzJjBoNhstoiIiDpt4njssceEmziee+454YLMLmtFh+22QiEIgAAIgIDWCCjO5+oKWFZWlslkysjIKCwsnDZtWnBwcFlZGaV08uTJCxYsYLCqqqryb7zatWs3b968/Pz8kydPskP79+9v2rTp4sWLT548+c9//jMgIOCdd96RR6zosHxzHAUBEGgEBKptNXlFF3LyS/OKLlTbahqBR97pguJ8rq6AUUpTU1MjIyONRqPFYtm7dy8Lg9VqjY2NZeni4uJbd2AQq9XKo/XRRx9FR0ebTKZu3bo52oXIK1NKFR0WVkYaBECg8RHYfOT0oKQd5oRc9jcoacfmI6cbn5ve4JHifK66gLmZsqLDbrYHw4EACLiTwOYjp6NuShcTsKiE3KiEXGiYO6PgqrEU53MImKtQox8QAAEPE6i21QjXXnwRFpWQOyhpB64lejg8dR8eAlZ3ZmgBAiCgTwJ5RRe4aEkTeUUX9OmW91oNAfPe2MNzEPA2Ajn5pVLd4iU5+aXeBkTv/kLA9B5B2A8CIOAsAazAnCWlk3oQMJ0ECmaCAAg0mAC7BybaxGG+sYlD7/fAvPPBAAhYg98T6AAEQEA/BNguRKGGNYJdiF77YAAETD/vPFgKAiDgCgKNbLr35gcDIGCueEOgDxAAAV0RaDQX3Lz8wQAImK7edjAWBEAABAQEvHxbCgRMcC4gCQIgAAK6IuDlDwZAwHR1tsJYEAABEBAQwAqMECLzA8X4KinByYIkCIAACGiJQCN+MMAZzFiBOUMJdUAABEBAowQa5YMBTrKGgDkJCtVAAARAQKMEGtmDAc5ThoA5zwo1QQAEQECjBBrNgwF14gsBqxMuVAYBEAABENAKAQiYViIBO0AABEAABOpEAAJWJ1yoDAIgAAIgoBUCEDCtRAJ2gAAIgAAI1IkABKxOuFAZBEAABEBAKwQgYFqJBOwAARAAARCoEwEIWJ1woTIIgAAIgIBWCEDAtBIJ2AECIAACIFAnAhCwOuFCZRAAARAAAa0QgIBpJRKwAwRAAARAoE4EIGB1woXKIAACIOA+At75BVHO84WAOc8KNUEABEDAfQS89it6nUcMAXOeFWqCAAiAgJsIsB9JMSfk8r+ohNyohNzNR067yQI9DAMB00OUYCMIgIA3EWA/U8mliyeiEnIHJe2ottV4Eww5XyFgcnRwDARAoDER0MstpbyiC1y0pIm8oguNKSgN8QUC1hB6aAsCIKAbAjq6pZSTXyrVLV6Sk1+qG+gqG6qigF2/fn3p0qUq21/n7hUdrnOPaAACIKB5Avq6pYQVmJMnlOJ8Tpzp6Ny5cx999NHWrVurq6sppb/88suKFSvatm3bqlUrZ5q7s46iw+40BmOBAAi4gYDubikxg6MEOzjY8gv3wERni+J8rixgn3/+eVBQkI+PT5MmTSwWS0FBQefOnbt377569eqKigrReB7PKjrscQthAAiAgGsJ6HFBw5aMQg3DLkTpWaE4nysLmNVqfeyxx44cOTJv3jwfH58uXbq899570pFkStLS0sxms8lkslgs+/btk9Y8evTohAkTzGYzISQlJUVagVKanJxMCJk9e7bdo7xQ0WFeEwkQAIHGQUCnt5R0dNPOU+eJ4nyuLGAhISEFBQWU0oqKiiZNmuTk5NTJmaysLKPRuG7duoKCgri4uODg4LNnz4p62L9//7x58zIzM8PCwuwK2P79+6Oionr37u21AqaX7VWiyCILAm4goMcVGMOC97X86eECAfPx8eGSExgYWFRUJD+k6KjFYomPj2eFNpstPDw8OTlZVIdnzWazVMCuXbvWuXPn7du3W61W7xQwfFLjZwgSICAlgFtKUiaNo8Q1ArZz585DN17NmjX7+OOPWZr9K4+pqqrKYDBkZ2fzalOmTImJieFZUcKugE2ZMuW5556jlDoSsMrKyvKbr5KSEkJIeXm5qGf9ZvW1vUq/nGG5rgnglpKuw+fIeNcIWJMmTXxufbGSJk2aOBqYlZ86dYoQkpeXx6vNnz/fYrHwrCghFbDMzMzo6Ojr16/LCFhiYiK59dVoBEx326tEAUUWBNxGABcq3IbabQO5QMD+K/uS96SBAvbjjz+2adPm0KFDbBQvXIHp9+K+/ImBoyCgBgHcUlKDqgf7dIGANcT6Bl5CzM7OJoQYbr4IIT4+PgaDgT2OZtcwRYftttJsoU63V2mWJwwDARDQEQHF+Vx5F+Lrr7/On/f64osvKisrmf9Xr16dPn26IguLxTJjxgxWzWazRUREOL+J4+rVq0cEr/79+//+978/cuSIzKCKDsu01eAhrMA0GBSYBAIg4B4CivO5soA1adKE70Js3rz5d999x0wvKytTvAdGKc3KyjKZTBkZGYWFhdOmTQsODi4rK6OUTp48ecGCBayrqqqq/Buvdu3azZs3Lz8//+TJk1JAji4hCmsqOiysrP00tldpP0awUG0CuDCoNmHN9q84nysLmGgbfV0FjFKampoaGRlpNBotFsvevXsZLKvVGhsby9LFxcW3bsIgVqtVytQLBYxSiu1V0jMBJd5DAFszvCfWUk81IWBSs9QrUXRYvaHV6xnvYfXYomctE8AzJFqOjhtsU5zP3bECc4OffAhFh3lNfSVwFUVf8YK1DSeAZ0gazlDvPSjO504J2OLFi9+88fLz83v55ZdZ+rXXXnPmHpibCSo67GZ7MBwIgED9CGAHU/24NaZWivO5soCZzeYoxy+twVJ0WGsGwx4QAAG7BPAMiV0sXlWoOJ8rC5i+eCk6rC93YC0IeC0BrMC8NvTcccX5XFnAPvnkk+7du4u+nOnKlSs9evT47LPP+EgaSSg6rBE7YQYIgIA8ATxDIs/HG44qzufKAjZ27Ng33nhDCuvNN98cP368tNyzJYoOe9Y8jA4CIOA8ATxD4jyrRllTcT5XFrDIyMjCwkIpnWPHjnXo0EFa7tkSRYc9ax5GBwEQqBMBPENSJ1yNrLLifK4sYCaTye73Ypw8edLPz09rvBQd1prBsAcEQECeAJ4hkefTiI8qzufKAtapUyfhD3pxWP/5z386duzIsxpJKDqsETthBgiAAAiAgDwBxflcWcBmzJjBf5GLD1ZRUREdHT1z5kxeopGEosMasRNmgAAIgAAIyBNQnM+VBaysrCw8PLxDhw6vv/56zo3XkiVLOnToEB4ezr6WV94CNx9VdNjN9mA4EAABEACB+hFQnM+VBYxS+t///nfUqFH8d5mbNGkyatSo77//vn42qdpK0WFVR0fnIAACIAACriKgOJ87JWDMmkuXLu3fv3/fvn2XLl1ylX0u70fRYZePiA5BAARAAATUIKA4n9dBwNSwz+V9Kjrs8hHRIQiAAAiAgBoEFOdzCJga2NEnCIAACIBAQwlAwBpKEO1BAARAAAQ8QgAC5hHsGNQFBPD4qgsgogsQ0DMBCJieo+fFtuMLhLw4+HAdBP6PAAQMp4L+COCH5PUXM1gMAioQgICpABVdqkkAPySvJl307WECuDBepwBAwOqEC5U9T0CDP2OIScfzp0WjsAAXxusaRghYXYmhvocJaO2H5DHpePiE0P/w7APQnz88ak7IFf5FJeRGJeRuPnJa/y6q5QEETC2y6FclAppageFunEpR9p5uRR+AhAJmviFgg5J2VNtqvAdInTyFgNUJFyp7noB2fkged+M8fzbo3ALpByCRgLFsXtEFnTuqlvkQMLXIol/1CGjkh+Q1tRZUjzZ6VomAow9AUg3LyS9VyQa9dwsB03sEvdR+0YWXQUk73H+rQGt347z0VNCt2/IfgIQyhhWYoyBDwByRQbnWCXh875/8BIRJR+snkKftk/8AxAQsKiEX98BkAgUBk4GDQyAgR0A7d+PkrMQxrRKQ/wDEdnBgF6J89CBg8nxwFATkCGjkbpyciTimVQKOPgDxi4ceuTCuVVr27YKA2eeCUhBwkoAW7sY5aSqqaY2A9AMQU6+FHx7NK7qA3fOK8YKAKSJCBRBQIODxu3EK9uGwhgngA1BDggMBawg9tAUBEACBhhLAB6B6E4SA1RsdGoIACIAACHiSgCYELC0tzWw2m0wmi8Wyb98+KY+jR49OmDDBbDYTQlJSUoQVkpKS+vfvHxgY2Lp163Hjxn377bfCo9K0osPSJigBARAAARDQIAHF+ZyobXRWVpbRaFy3bl1BQUFcXFxwcPDZs2dFg+7fv3/evHmZmZlhYWEiARs5cmR6evrRo0cPHjw4evToyMjIn376SdRcmFV0WFgZaRAAARAAAc0SUJzPVRcwi8USHx/PANlstvDw8OTkZEe8zGazSMCENc+dO0cI2b17t7BQlFZ0WFQfWRAAARAAAW0SUJzP1RWwqqoqg8GQnZ3N6UyZMiUmJoZnRQl5ATt58iQh5MiRI6JWwqyiw8LKSIMACIAACGiWgOJ8rq6AnTp1ihCSl5fHAc2fP99isfCsKCEjYDabbcyYMb/5zW9ETSillZWV5TdfJSUlhJDy8nJpNZSAAAiAAAjoiEDjEbA//OEPZrO5pKRESj8xMZHc+oKASSmhBARAAAT0RcDDAuaqS4jx8fHt27f//vvv7dLHCswuFhSCAAiAgK4JeFjAKKUWi2XGjBkMos1mi4iIqNMmjpqamvj4+PDw8BMnTjgTCUWHnekEdUAABEAABDxOQHE+V/ceGKU0KyvLZDJlZGQUFhZOmzYtODi4rKyMUjp58uQFCxYwQFVVVfk3Xu3atZs3b15+fv7JkyfZoenTpwcFBe3atevMzVdFRYUMVkWHZdriEAiAAAiAgHYIKM7nqgsYpTQ1NTUyMtJoNFoslr179zI6Vqs1NjaWpYuLi2+9h0WsVis7JConhKSnp8vwVXRYpi0OgQAIgAAIaIeA4nzuDgFzJw5Fh91pDMYCARAAARCoNwHF+RwCVm+2aAgCIAACIKAiAQiYinDRNQiAAAiAgHoEIGDqsUXPIAACIAACKhKAgKkIF11rigB+dUlT4YAxINBwAhCwhjNEDzoggN+91UGQYCII1JEABKyOwFBdhwQ2HzkdlZBrFvxFJeRGJeRuPnJah97AZBAAgf8jAAHDqdDICVTbagYl7RCqF0tHJeQOStpRbatp5P7DPRBovAQgYI03tvDsBoG8ogtS9eIleUUXwAkEQECnBCBgOg0czHaWQE5+KZcraSInv9TZjlAPBEBAYwQgYBoLCMxxNQGswFxNFP2BgFYIQMC0EgnYoRIBdg9MtInDfGMTB+6BqcRc7W7xRITahPXSPwRML5GCnfUnwHYhCjUMuxDrT9PTLfFEhKcjoKHxIWAaCgZMUY8AZj312LqzZzwR4U7a2h8LAqb9GMFC1xDAdSfXcPRcL3giwnPsNToyBEyjgYFZIAACIgLYjyMCgiwEDOcACICAPgjgiQh9xMmNVkLA3AgbQ4EACDSAAFZgDYDXOJtCwBpnXOEVCDQ+AngiovHFtIEeQcAaCBDNQQAE3EcAT0S4j7UeRoKA6SFKsBEEQOAmATwRcZME/qcQMJwEIAACOiOAJyJ0FjDVzIWAqYYWHYMACIAACKhJAAKmJl30DQIgAAIgoBoBCJhqaNExCIAACICAmgQgYGrSRd8gAAIgAAKqEYCAqYYWHYMACIAACKhJAAKmJl30DQIgAAIgoBoBCJhqaNExCIAACICAmgQgYGrSRd8gAAIgAAKqEYCAqYYWHYMACIAACKhJAAKmJl30DQIgAAIgoBoBCJhqaNExCIAACICAmgQgYGrSRd8gAAIgAAKqEYCAqYYWHYMACIAACKhJQBMClpaWZjabTSaTxWLZt2+f1N+jR49OmDDBbDYTQlJSUkQVFJsL6ys6LKyMNAiAAAiAgGYJKM7nRG3Ts7KyjEbjunXrCgoK4uLigoODz549Kxp0//798+bNy8zMDAsLEwmYM82FvSk6LKyMNAiAAAiAgGYJKM7nqguYxWKJj49ngGw2W3h4eHJysiNeZrNZJGB1ak6p8g+gORoa5W4jgF97chtqDAQCuibgYQGrqqoyGAzZ2dkc4pQpU2JiYnhWlBAJWF2bQ8BEPDWYxe/tajAoMAkEtEnAwwJ26tQpQkheXh6nM3/+fIvFwrOihEjAnGxeWVlZfvNVUlJCCCkvLxf1jKwWCGw+cjoqIdcs+ItKyI1KyN185LQWzIMN7iGAJbh7ODeCUbxCwBITE8mtLwiYBs/dalvNoKQdQvVi6aiE3EFJO6ptNRq0GSa5nACW4C5H2og79LCA1fUaoGgF5mRzrMB0cQbnFV2QqhcvySu6oAsvYGRDCGAJ3hB6XtjWwwJGKbVYLDNmzGDobTZbREREXTdxON8c98C0fIrn5JdyuZImcvJLtWw8bGs4ASzBG87Q23rwvIBlZWWZTKaMjIzCwsJp06YFBweXlZVRSidPnrxgwQIWj6qqqvwbr3bt2s2bNy8/P//kyZPskKPmjgKp6LCjhihXmwBWYGoT1nj/OAE0HiANmqc4n6u+jZ5SmpqaGhkZaTQaLRbL3r17GSar1RobG8vSxcXFt97DIlarldO025wfFSUUHRbVR9ZtBNgHcNEmDvONTRy4B+a2KHhwICzBPQhfp0MrzufuEDB3slN02J3GYCwRAXYLRKhh2IUoQtSIs1iBNeLgquSa4nwOAVOJPLq1TwCb0Oxz8YJSLMG9IMgudhEC5mKg6K7hBPAYUMMZ6rQHLMF1GjhPmQ0B8xR5jAsCIGCHAJbgdqCgyAEBCJgDMCgGARDwEAEswT0EXn/DQsD0FzNYDAIgAAIg4MxzvdjEgfMEBEAABEBAiwSwAtNiVGATCIAACICAIgEImCIiVAABEAABENAiAQiYFqMCm0AABEAABBQJQMAUEaECCIAACICAFglAwLQYFdgEAiAAAiCgSAACpogIFUAABEAABLRIAAKmxajAJhAAARAAAUUCEDBFRKgAAiAAAiCgRQIQMC1GBTaBAAiAAAgoEoCAKSJCBRAAARAAAS0SgIBpMSqwCQRAAARAQJEABEwRESqAAAiAAAhokQAETItRgU0gAAIgAAKKBCBgiohQAQRAAARAQIsEIGBajApsAgEQAAEQUCQAAVNEhAogAAIgAAJaJAAB02JUYBMIgAAIgIAiAQiYIiJUAAEQAAEQ0CIBCJgWowKbQAAEQAAEFAlAwBQRoQIIgAAIgIAWCUDAtBgV2AQCIAACIKBIAAKmiAgVHBKottXkFV3IyS/NK7pQbatxWA8HQAAEQEAFAhAwFaB6R5ebj5welLTDnJDL/gYl7dh85LR3uO55L/HRwfMxgAUaIAAB00AQdGjC5iOno25KFxOwqITcqIRcaJgbgomPDm6AjCF0QQACposwacvIaluNcO3FF2FRCbmDknbgWqKq0cJHB1XxonN9EYCA6StemrA2r+gCFy1pIq/ogiasbIxG4KNDY4wqfKo/AQhY/dl5bcuc/FKpbvGSnPxSryWjtuP46KA2YfSvLwIQMH3FSxPWYhr1VBjw0cFT5DGuNgloQsDS0tLMZrPJZLJYLPv27bNLauPGjV27djWZTNHR0R9//DGvc+3atfj4+IiICD8/v+7du69evZofsptQdNhuKxQKCbALWaJNHOYbmzhwD0wIyuVpfHRwOVJ0qGsCivM5Udu9rKwso9G4bt26goKCuLi44ODgs2fPigbds2ePwWD4y1/+UlhY+NJLL/n6+h45coTViYuLu+2223bu3FlcXLxmzRqDwfDBBx+Imguzig4LKyPtiADbSiDUMOxCdMTKheWO7oGx67cfH8JjDC6Eja50QEBxPlddwCwWS3x8PENls9nCw8OTk5NF5CZOnDhmzBheOHDgwGeeeYZle/bsuXDhQn7ojjvuePHFF3lWmlB0WNoEJXYJYDO3XSxqF3586BS/3ShKYPmrNnz0rzUCivO5ugJWVVVlMBiys7M5lylTpsTExPAsS3To0CElJYUXvvLKK71792bZuLi4/v37l5aW1tTUfPrpp4GBgbt37+Y1pQlFh6VNUOKIAB6ndURGvXJcRVSPLXrWHQHF+VxdATt16hQhJC8vj4ObP3++xWLhWZbw9fV99913eeHKlSvbtGnDspWVlVOmTCGENG3a1Gg0rl+/nlfjicrKyvKbr5KSEkJIeXk5P4oECOiIAPZx6ChYMFVtAroXsKVLl3bp0uXDDz88dOhQampqYGDg9u3bRdQSExPJrS8ImAgRsnohgBWYXiIFO91AwMMC1sBLiBUVFb6+vrm5uZzU1KlTR44cybMsgRWYCAiy+iWALaD6jR0sdzkBDwsYpdRiscyYMYM5ZrPZIiIi7G7ieOCBB7jzgwcPZps4mPWbNm3ih6ZNmzZ8+HCelSYUHZY2QQkIaIoAtoBqKhwwxoMEFOdzde+BUUqzsrJMJlNGRkZhYeG0adOCg4PLysoopZMnT16wYAFDs2fPnqZNmy5btuzYsWOJiYnCbfRWq7Vnz547d+78/vvv09PT/fz8Vq1aJQNU0WGZtjgEAhohgC2gGgkEzPAsAcX5XHUBo5SmpqZGRkYajUaLxbJ3715GxGq1xsbGcjobN27s0qWL0Wjs2bOn8EHmM2fOPPHEE+Hh4X5+fl27dl2+fHlNjdwPUyk6zEdEAgS0TABbQLUcHdjmHgKK87k7BMw9rrJRFB12pzEYCwRAAARAoN4EFOdzCFi92aIhCIAACICAigQgYCrCRdcgAAIgAALqEYCAqccWPYMACIAACKhIAAKmIlx0DQIgAAIgoB4BCJh6bNEzCIAACICAigQgYCrC1WbX2H6tzbjAKhAAgboSgIDVlZi+6+MBWH3HD9aDAAgICEDABDAae5J9BZHwR6TwK5SNPebwDwQaMwEIWGOOrtA3Rz/mG5WQix9CFIJCGgRAQC8EIGB6iVRD7cTPcDSUINqDAAhojAAETGMBUc0c/BCiamjRMQiAgGcIQMA8w939o2IF5n7mGBEEQEBVAhAwVfFqqHP8EKKGggFTQAAEXEEAAuYKijrpAz+EqJNAwUwQAAGnCEDAnMLUaCrhObBGE0o4AgIgAAHzunMA38ThdSGHwyDQSAlAwBppYOEWCKhAAJ9+VICKLutPAAJWf3ZoCQJeRQDXn70q3LpwFgKmizDBSBDwMAF8D5mHA4Dh7RGAgNmjgjIQAAEBAXwPmQAGkhoiAAHTUDBgCghokwCegtdmXGAVBAznAAiAgAIBfA+ZAiAc9hABCJiHwGNYxwSw1c0xG88cwQrMM9wxqhIBCJgSIRx3LwFsdXMvb6dGw/eQOYUJldxOAALmduQY0DEBbHVzzMbDRxr+PWRYWHs4hI1xeAiYzqLaiGcBHW1101cUXGVtQxbHDWmrs7cozHUjAQhYnWG7ajqQH9juKI17FtDLjRZ9RcG11to9LeXPZEopFtaKiFChfgQgYHXj5trpwNHYdkdxNAt8fOh0XtGFnPzSvKIL1bYaR31qv1wXW90cRWHzkdMaJKwFa3W0sNZgBGGSPAEImDyfW466ZzqwO4o5IbfPn7eaE3Klfx0X/H/hoKQd2pxJb+HoIKP9FZi+5mKNWKv9sDo4H1GsAwIQMGeD5J7pwNEoUt2yWxKVkBuVkKtTDWO+R0lEOiohd1DSDi0sLvU1F2vEWl0srJ2dBVBPYwQgYM4GxD3TgfwodkVLVKid6d5ZsoJ6bPUp1DBNSbK+5mKNWCt/SucVXRDEH0kQqBsBCJizvNwzHciPItIqmax+5wW79/+cDZLK9fQ1F2vEWu0vrFU+a9C9iqSBe3sAABVjSURBVAQgYM7Cdc90ID+KjGKJDuXklzrrmPbq1W+rmxv80NdcrB1rNb6wdsOZgyFUIgABcxase6YDmVH6/Hkru54m0iq7Wf2uwJyNh4fq6Wsu1o61Wl5Ye+hUwrAuIKAJAUtLSzObzSaTyWKx7Nu3z65bGzdu7Nq1q8lkio6O/vjjj4V1CgsLx44d26JFi4CAgP79+//www/Co6K0osOi+sKse6YDmVFEs4Bw/yGXMV3fAxPS1mxaFAWN7/zUjrWaXVhr9kyDYYoEFOdzothFAytkZWUZjcZ169YVFBTExcUFBwefPXtW1OeePXsMBsNf/vKXwsLCl156ydfX98iRI6xOUVFRSEjI/Pnzv/nmm6Kiog8++EDaXNibosPCytK0e6YDmVGEs8DHh06J1mSa2vIgpddoSoRR0ML2SHmw+rJW3hccBQEhAcX5XHUBs1gs8fHxzCabzRYeHp6cnCw0kVI6ceLEMWPG8MKBAwc+88wzLPvII4/8/ve/54cUE4oOK/bgnunAyVFkpE7REVQAARAAAV0TUJzP1RWwqqoqg8GQnZ3NIU6ZMiUmJoZnWaJDhw4pKSm88JVXXunduzel1GazBQYGLly4cMSIEa1bt7ZYLMKueH1hQtFhYWVdpJ2UOl34AiNBAARAwHkCivO5ugJ26tQpQkheXh63eP78+RaLhWdZwtfX99133+WFK1eubNOmDaX0zJkzhJCAgIA33ngjPz8/OTnZx8dn165dvCZLVFZWlt98lZSUEELKy8tFdZAFARAAARDQFwF9CxjTv8cee4xDHzt27KOPPsqzLJGYmEhufUHARIiQBQEQAAHdEfCwgDXwEmJVVVXTpk0XLVrEuT///PN33XUXz7IEVmAiIMiCAAiAQCMg4GEBo5RaLJYZM2YwlDabLSIiwu4mjgceeIDjHjx4MN/EMXjwYOEmjvHjxwsXZLwJTyg6zGsiAQIgAAIgoGUCivO5uvfAKKVZWVkmkykjI6OwsHDatGnBwcFlZWWU0smTJy9YsICx27NnT9OmTZctW3bs2LHExEThNvr333/f19d37dq1J0+eTE1NNRgMn3/+uQxxRYdl2uIQCIAACICAdggozueqCxilNDU1NTIy0mg0WiyWvXv3MjpWqzU2NpaT2rhxY5cuXYxGY8+ePUUPMv/jH/+4/fbb/fz8+vTpk5OTw5vYTSg6bLcVCkEABEAABLRGQHE+d4eAuROKosPuNAZjgQAIgAAI1JuA4nwOAas3WzQEARAAARBQkQAETEW46BoEQAAEQEA9AhAw9diiZxAAARAAARUJeJ2AXblyhRBSUlJy86s58D8IgAAIgIAuCbBvVrpy5YojkWxs98CYw7d+LwdyIAACIAACeiVQUlLiLQJms9lKSkquXLmix88bTH29cPnonY57p9fl5eXe6bh3et3AcF+5cqWkpMRms3mLgDnyUxflihd8deFFPYz0Tse902tKqXc67p1eqx3uxnYJsR6zp3aa4BTXTizcYAnC7QbI2hkC4VYjFhAwNajWs0+c4vUEp89mCLc+41ZPqxHueoKTbQYBk8Xj3oOVlZWJiYm1/7p3WM+P5p2Oe6fXlFLvdNw7vVY73BAwz0/fsAAEQAAEQKAeBCBg9YCGJiAAAiAAAp4nAAHzfAxgAQiAAAiAQD0IQMDqAQ1NQAAEQAAEPE8AAub5GMACEAABEACBehCAgNUDWj2bpKWlmc1mk8lksVj27dsn00tmZiYhZNy4cbxObGys8HtgRo4cyQ9pPKHodXp6utA1k8nEPaqpqXn55ZfDwsL8/PyGDh164sQJfkj7iYY43ojDTSm9fPnys88+GxYWZjQaO3fuLPwBW0Vomo27M5Y7cjwxMVH4Fujatatm3RQZpui11WoVukYIGT16NOvEJe9uCJgoImpls7KyjEbjunXrCgoK4uLigoODz549a3ew4uLiiIiIu+++WyRg999//5mbr0uXLtltq7VCZ7xOT09v0aLFTc/OlJWVcS+WLFkSFBSUk5Nz6NChmJiYjh07Xr9+nR/VcqKBjsfGxjbWcFdVVfXv33/06NFffPFFcXHxrl27Dh48yELpDDRtBt0Zy2UcT0xM7NmzJ38LnD9/XptuiqxyxuuLFy9yv44ePWowGNLT01k/Lnl3Q8BEQVEra7FY4uPjWe82my08PDw5OVk6WHV19V133fX3v/89NjZWJGDCrLShNkuc8To9PT0oKEhqf01NTVhY2NKlS9mhK1eumEymzMxMaU0NljTEcUqpKPoadNCuSc54vXr16k6dOv3yyy/SHpxpLm2lhRJnLJdxPDExsU+fPlpwpE42OOO1sMOUlJTmzZv/9NNPlFJXvbshYELCaqWrqqoMBkN2djYfYMqUKTExMTzLE6+88sr48eOlU1hsbGxQUFDr1q27dOnyhz/84cKFC7yJZhNOep2enm4wGCIjI9u3bx8TE3P06FHm0XfffVd7HTU/P587eM8998yaNYtnNZtooOMs+o013KNGjZo0aVJcXFybNm169uy5ePHi6upqSqmT0DQYdCctd+R4rUeJiYkBAQHt2rXr2LHj448//sMPP2jQTZFJTnotbBUdHR0XF8dKXPXuhoAJCauVPnXqFCEkLy+PDzB//nyLxcKzLPH5559HRESwCwiiz+CZmZkffPDB4cOHs7Ozu3fvPmDAAPa2F/WgqayTXufl5a1fvz4/P3/Xrl0PPPBAixYt2K8n7NmzhxBy+vRp7tTDDz88ceJEntVsooGOU0obcbi7du1qMpmeeuqpr776KisrKyQk5NVXX6WUOglNg0F30nJHjlNKN23atHHjxkOHDm3ZsmXw4MGRkZFXr17VoKdCk5z0mjfZt28fIYTf+3fVuxsCxgmrmHAm2FevXo2Kitq0aROzQyRgQuPYh5cdO3YICzWYdsZrkdm//PLLbbfd9tJLL1FKXXWKi4ZwQ7aBjossbGTh7ty5c4cOHfjHr+XLl4eFhXmDgDlyXBTuy5cvt2jR4u9//7uoXGvZup7k06ZN69WrF/fCVe9uCBhHqmLCmeV2fn4+IcRw8+Vz42UwGIqKiqSWhYaGvvXWW9JyTZU447XU4IceeujRRx+llLrqIoN0CLVLGui41LzGFO577rln6NCh3MdNmzYRQqpuvJy8zM7baiThZLgdOS71on///gsWLJCWa6rESa+ZzT/99FOLFi1WrFjBXXDVuxsCxpGqm7BYLDNmzGBj2Gy2iIgI0SaO69evHxG8xo0bd9999x05cqSqqkpkWUlJiY+PzwcffCAq12BW0WuRzdXV1V27dp0zZw6/zbts2TJWp7y8XF+bOOTDLeO46FAjC/cLL7xgNpv5TxSuWLGiXbt2zOW6ni0iUB7MOmO5jONCy69du9ayZcs333xTWKjNtDNeM8vT09NNJpPwzj3bxNHwdzcEzE3nRlZWlslkysjIKCwsnDZtWnBwMNsvPnnyZLuftoSXEK9duzZv3rwvv/yyuLh4x44dd9xxR+fOnWu/3NpNpjdgGGe8/vOf/7x169bvvvvu66+/fvTRR/38/AoKCtiYS5YsCQ4OZjf/xo0bp69t9IrhduR44w73jz/+2Lx58xkzZhw/fjw3N7dNmzavvfYaC7ejs6UBJ6CbmjqyXPjulnF87ty5u3btKi4u3rNnz7Bhw0JDQ8+dO+cm0xswjDNes+6HDBnyyCOPiIZyybsbAiaiqmI2NTU1MjLSaDRaLJa9e/eykaxWa2xsrHRUoYBVVFSMGDGidevWvr6+ZrM5Li5O+LCUtK2mShS9fu655xiWtm3bjh49+ptvvuH2s0cd27ZtazKZhg4devz4cX5I+4l6O964w00pzcvLGzhwoMlk6tSpE9+FyAJqF5r2Y00ptWu56N3tyPFHHnmkXbt2RqMxIiLikUcesXvXQJsQnPH622+/JYRs27ZN5IJL3t0QMBFVZEEABEAABPRBAAKmjzjBShAAARAAAREBCJgICLIgAAIgAAL6IAAB00ecYCUIgAAIgICIAARMBARZEAABEAABfRCAgOkjTrASBEAABEBARAACJgKCLAiAAAiAgD4IQMD0ESdYCQIgAAIgICIAARMBQRYE6kPA0a+a1acvD7UhhAh/8cdVVhQXF4t+FseZns1mc0pKit2aKtlpdywUapwABEzjAYJ5cgRiY2PZD5Y3bdq0TZs2w4YN+8c//sG/Z0+mZcN/QlA0w1ZUVDj6iW0ZMxwdEv4Qe5s2bR566KH//ve/jio7Xy7sVvhD71arlVKqkjBAwJwPEGrWlQAErK7EUF9DBGJjY++///4zZ86UlpZ+/fXXixcvDgwMHDVq1K+//ipvpcsFTH64uh61Wq1xcXFnzpw5ffr0l19+OXDgwCFDhtS1E2l9/vvu+/fvJ4Ts2LGD/dz7xYsXnRSwmpoaRbaicSFgIiDIupAABMyFMNGVuwkIvzGSjf3JJ58QQv72t7+x7OXLl6dOnRoaGtq8efPf/va3Bw8epJSmp6cL1x/p6emUUrs1WScffvhh//79TSZTq1at2O9li5YyrM+goCDu/6pVq2q/6M/X17dLly5vv/02L2e2jR8/3t/f//bbb3f0kwJWq3X27Nm81YYNGwICAnh2165dAwYMMBqNYWFhCQkJTFHWr1/frFmzEydOsGrTp0/v2rXrzz//zFsJE3ZFxZFtO3fuJIRs2rTpjjvu8PX13blzp81mS0pKioqK8vPz692793vvvcc6v3Tp0uOPPx4aGurn53f77bevW7eu9tel2Vj/+c9/7r33Xn9//969ewt/2fXf//53jx49jEaj2Wzm301ey1O4wD1x4sTdd99tMpm6d+++bds2lVaKQj5I64UABEwvkYKddghIBYxS2qdPn1GjRrHaw4YNGzt27IEDB06cODF37txWrVpdvHixoqJi7ty5PXv2ZOuPiooKSqndmpTS3Nxcg8HwyiuvFBYWHjx4MCkpiVJ68eLF9u3bL1y4kPUgErD333/f19d35cqVx48fX758ucFg+PTTT5k9hJD27du/++67J0+enDVrVmBgIFv9iHwTCtjFixfHjh3729/+ltUpLS0NCAh49tlnjx07lp2dHRoampiYyA49/PDDAwYM+PXXX3Nzc319fb/66itRtzzrSMDs2sYErHfv3tu2bSsqKrp48eJrr73WrVu3LVu2fPfdd+yXMnbt2kUpjY+P79u374EDB4qLi7dv3/7hhx9yAevWrVtubu7x48cfeughs9nMRPerr75q0qTJwoULjx8/np6e7u/vzz5MCAXMZrNFR0cPHTr04MGDu3fv7tevHwSMxxEJCBjOAR0TsCtgjzzySPfu3Smln3/+eYsWLYS/O3PbbbetWbOm1mHRJUSZmoMHD540aZKUkXCJIBKwu+66Ky4ujjd5+OGHR48ezbKEEPZ705TSn376iRCyefNmXpMnrFarr69vs2bNAgICCCFdunQpLi5mR//0pz917dq1pqaGZVeuXBkYGMhu+126dKl9+/bTp09v27bt4sWLeW/ShCMBs2sbE7CcnBzWT2VlZUBAgHAVNXXq1Mcee4xSOnbs2CeffFI0HBuL/8RwQUEBIeTYsWOU0scff3z48OG8/vz583v06MGyHO/WrVubNm166tQpVr5582YIGCeGBAQM54COCdgVsIkTJ7J5MC0trUmTJs0EryZNmjz//PO1DosETKamv78/uxQmwsRnWFYu3IXYsmXLjIwMXn/FihUdO3ZkWULIxo0b+aEWLVqsX7+eZ3nCarU+8cQTJ2+8vvjii9GjR3fu3Pnq1auU0t/97ndPPPEEr3nw4EFCyA8//MBKtm7dWvvTFXfddZf8ThZHAmbXNiZgpaWlbIijR48SQgRQm/n6+losFkrppk2b/P39+/TpM3/+/D179rD6bKz9+/ez7KVLlwghu3fvppTWLqdeffVVVk4pzcnJ8fX1ra6uFq7AhPQopVeuXIGAcWJIQMBwDuiYgF0B69Wr15gxYyilS5YsiYiIYDLA/z1//nytwyIBk6kZEhLiWgETblUPCgriF82EYRBeQqSUnjlzht/YkxewF1980WAwdOzYkamdsE9h2pGA2bWNCdjly5dZD3v37iWE7Nq1iyM9efLkjz/+yI6eO3cuIyNj0qRJfn5+c+fO5ZcQ8/PzWYXLly8TQnbu3AkBE0YE6foRgIDVjxtaaYKAVMDYJg4mOdu2bTMYDPzim9DixYsXR0dH8xKZmvfee6/dS4idO3cWbjoQrsCklxCZoEp3+jkpYOfOnSOE/PWvf6WUSi8hNm/enK239uzZ07Rp002bNvXq1WvKlCncO2miIQJ29erV2t+iFO5MkfZPKX3rrbeaN28uL2DSS4g9e/ZkvfEFLruEePr0aVa+ZcsWrMDsAvfOQgiYd8a9kXhtdxv9Aw88wC5D1dTUDBkypE+fPlu3bmW/1/6nP/3pwIEDlNJ//vOfzZo1y8/PP3/+fGVlpUzNnTt3NmnShG3iOHz48JIlSxi74cOHx8TElJaWsiWdUMCys7N9fX1XrVp14sQJtomDLTjqJGBsG/2ZM2cOHjz44IMP+vn5ffvtt5RStokjPj7+2LFjOTk5fBPH1atXO3Xq9Mc//pFSevjwYZPJxDcHSoPdEAGjlL744outWrXKyMgoKir6+uuv//rXv7JLpi+//HJOTs7JkyePHj36wAMPsOuKorGEK7Cvv/6ab+LIyMhwtImjR48ew4cPP3jw4GeffXbnnXdCwKQB9doSCJjXhr4xOC58kLl169bDhg1bt26d8PbP1atXZ86cGR4e7uvr26FDh0mTJrGLXZWVlQ8++GBwcDAhhF3Ec1STUvqf//ynb9++RqMxNDR0woQJDNyXX37Zu3dvk8lEyP++iYQCRimV2UZv9zKdKBjCbfotW7a0Wq18HyOl1O42+ieffLJXr158x8ry5ctDQkL4jStR/yJRYUdFwsBXh6JLiJTSmpqaFStWdO3atXazZevWrUeOHMnuaS1atKh79+7+/v4hISHjxo37/vvv5VdglFK2jd7X1zcyMnLp0qXcTr4Co5QeP358yJAhRqOxS5cuWIFxREj87ydCUAABEAABEAABPRKAgOkxarAZBEAABEAAKzCcAyAAAiAAAvokgBWYPuMGq0EABEDA6wlAwLz+FAAAEAABENAnAQiYPuMGq0EABEDA6wlAwLz+FAAAEAABENAnAQiYPuMGq0EABEDA6wlAwLz+FAAAEAABENAnAQiYPuMGq0EABEDA6wlAwLz+FAAAEAABENAnAQiYPuMGq0EABEDA6wlAwLz+FAAAEAABENAngf8BWT4GQjP9gYwAAAAASUVORK5CYII=" + "cell_type": "code", + "execution_count": 17, + "id": "1a7e981d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Best CER: 0.011535\n", + "Best WER: 0.098902\n", + "\n", + "Config:\n", + " textline_orientation: True\n", + " use_doc_orientation_classify: False\n", + " use_doc_unwarping: False\n", + " text_det_thresh: 0.4690\n", + " text_det_box_thresh: 0.5412\n", + " text_det_unclip_ratio: 0.0\n", + " text_rec_score_thresh: 0.6350\n" + ] } - }, + ], + "source": [ + "best = df.loc[df[\"CER\"].idxmin()]\n", + "print(f\"Best CER: {best['CER']:.6f}\")\n", + "print(f\"Best WER: {best['WER']:.6f}\")\n", + "print(f\"\\nConfig:\")\n", + "print(f\" textline_orientation: {best['config/textline_orientation']}\")\n", + "print(f\" use_doc_orientation_classify: {best['config/use_doc_orientation_classify']}\")\n", + "print(f\" use_doc_unwarping: {best['config/use_doc_unwarping']}\")\n", + "print(f\" text_det_thresh: {best['config/text_det_thresh']:.4f}\")\n", + "print(f\" text_det_box_thresh: {best['config/text_det_box_thresh']:.4f}\")\n", + "print(f\" text_det_unclip_ratio: {best['config/text_det_unclip_ratio']}\")\n", + "print(f\" text_rec_score_thresh: {best['config/text_rec_score_thresh']:.4f}\")" + ] + }, + { + "cell_type": "markdown", + "id": "cfacaf35", + "metadata": {}, + "source": [ + "| Metric | Baseline | Tuned | Improvement |\n", + "|--------|----------|-------|-------------|\n", + "| CER | 0.01258 | 0.01154 | **-8.3%** |\n", + "| WER | 0.10407 | 0.09890 | **-5.0%** |" + ] + }, + { "cell_type": "markdown", "id": "7070a6e6", "metadata": {}, "source": [ "# Graph Interpretatation\n", "\n", - "Key observations text_det_box_thresh:\n", - "Graph 1 (Character Error Rate):\n", + "Key insights:\n", "\n", - "![image.png](attachment:image.png)\n", + "text_det_thresh (Image 1): Clear failure zone <0.1 (CER 0.4–0.5). Safe range: 0.1–0.7\n", + "text_det_box_thresh (Image 2): More scattered, but failures cluster at extremes. Safe range: 0.1–0.5\n", + "text_det_unclip_ratio (Image 3): All at 0 (fixed) — confirms that was the right call\n", + "text_rec_score_thresh (Image 4): Mid-range values (~0.15–0.2) cause failures. Best at low (<0.1) or high (>0.5)\n", "\n", - "Clear positive correlation: lower thresholds yield better CER\n", - "Optimal zone appears to be around 0.43–0.46, achieving CER values of ~0.06–0.07\n", - "Above 0.65, performance degrades significantly (CER > 0.18)\n", - "Some variance exists, but the trend is fairly consistent\n", + "Label issues to fix:\n", "\n", - "Graph 2 (Word Error Rate):\n", + "Images 3 & 7: x-axis says \"Detection Box Threshold\" but title says \"expansion coefficient\"\n", + "Images 4 & 8: x-axis says \"Line Tolerance\" but title says \"Text recognition threshold\"\n", "\n", - "![image-2.png](attachment:image-2.png)\n", - "\n", - "Same general trend, but with considerably more variance/scatter\n", - "Best WER (~0.15) also achieved at lower thresholds\n", - "The spread widens dramatically as threshold increases, suggesting the model becomes unstable at higher values\n", - "Note: Your y-axis is still labeled \"CER\" but the title says \"Word Error Rate\" — you'll want to fix that for your thesis\n", - "\n", - "A lower detection box threshold means PaddleOCR is more permissive about what it considers a valid text region. For your Spanish business documents, being more inclusive captures more text boxes, reducing missed characters/words. However, setting it too low could introduce noise (false positives), which might explain why the absolute minimum threshold isn't always the best.\n", - "Recommendation for your thesis: The sweet spot looks like 0.43–0.46 for detection threshold. You might want to narrow your search space around this range and tune other parameters (like unclip_ratio or recognition thresholds) to squeeze out additional gains." + "For your thesis, these plots show clear non-linear relationships — you can't just pick defaults. The \"U-shaped\" pattern in text_rec_score_thresh is particularly interesting: both permissive (0) and strict (0.6+) filtering work, but middle values fail.\n", + "\n" ] } ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": ".venv (3.11.9)", "language": "python", "name": "python3" }, diff --git a/paddle_ocr_tuning.py b/src/paddle_ocr_tuning.py similarity index 74% rename from paddle_ocr_tuning.py rename to src/paddle_ocr_tuning.py index 6cfef65..4ea1863 100644 --- a/paddle_ocr_tuning.py +++ b/src/paddle_ocr_tuning.py @@ -112,13 +112,23 @@ def assemble_from_paddle_result(paddleocr_predict, min_score=0.0, line_tol_facto def main(): parser = argparse.ArgumentParser() - parser.add_argument("--pdf-folder", required=True) + # dataset root folder + parser.add_argument("--pdf-folder", required=True) + #Whether to use document image orientation classification. + parser.add_argument("--use-doc-orientation-classify", type=lambda s: s.lower()=="true", default=False) + # Whether to use text image unwarping. + parser.add_argument("--use-doc-unwarping", type=lambda s: s.lower()=="true", default=False) + # Whether to use text line orientation classification. parser.add_argument("--textline-orientation", type=lambda s: s.lower()=="true", default=True) - parser.add_argument("--text-det-box-thresh", type=float, default=0.6) + # Detection pixel threshold for the text detection model. Pixels with scores greater than this threshold in the output probability map are considered text pixels. + parser.add_argument("--text-det-thresh", type=float, default=0.0) + # Detection box threshold for the text detection model. A detection result is considered a text region if the average score of all pixels within the border of the result is greater than this threshold. + parser.add_argument("--text-det-box-thresh", type=float, default=0.0) + # Text detection expansion coefficient, which expands the text region using this method. The larger the value, the larger the expansion area. parser.add_argument("--text-det-unclip-ratio", type=float, default=1.5) + # Text recognition threshold. Text results with scores greater than this threshold are retained. parser.add_argument("--text-rec-score-thresh", type=float, default=0.0) - parser.add_argument("--line-tolerance", type=float, default=0.6) - parser.add_argument("--min-box-score", type=float, default=0.0) + # text location parser.add_argument("--lang", default="es") args = parser.parse_args() @@ -140,12 +150,15 @@ def main(): tp0 = time.time() out = ocr.predict( arr, + use_doc_orientation_classify=args.use_doc_orientation_classify, + use_doc_unwarping=args.use_doc_unwarping, + use_textline_orientation=args.textline_orientation, #str2bool Whether to use text line orientation classification. + text_det_thresh=args.text_det_thresh, text_det_box_thresh=args.text_det_box_thresh, text_det_unclip_ratio=args.text_det_unclip_ratio, - text_rec_score_thresh=args.text_rec_score_thresh, - use_textline_orientation=args.textline_orientation + text_rec_score_thresh=args.text_rec_score_thresh ) - pred = assemble_from_paddle_result(out, args.min_box_score, args.line_tolerance) + pred = assemble_from_paddle_result(out) time_per_page_list.append(float(time.time() - tp0)) m = evaluate_text(ref, pred) cer_list.append(m["CER"]) diff --git a/src/prepare_dataset.ipynb b/src/prepare_dataset.ipynb new file mode 100644 index 0000000..00b85c8 --- /dev/null +++ b/src/prepare_dataset.ipynb @@ -0,0 +1,504 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "93809ffc", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Requirement already satisfied: pip in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (25.3)\n", + "Note: you may need to restart the kernel to use updated packages.\n", + "Requirement already satisfied: jupyter in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (1.1.1)\n", + "Requirement already satisfied: notebook in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter) (7.5.0)\n", + "Requirement already satisfied: jupyter-console in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter) (6.6.3)\n", + "Requirement already satisfied: nbconvert in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter) (7.16.6)\n", + "Requirement already satisfied: ipykernel in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter) (7.1.0)\n", + "Requirement already satisfied: ipywidgets in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter) (8.1.8)\n", + "Requirement already satisfied: jupyterlab in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter) (4.5.0)\n", + "Requirement already satisfied: comm>=0.1.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (0.2.3)\n", + "Requirement already satisfied: debugpy>=1.6.5 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (1.8.17)\n", + "Requirement already satisfied: ipython>=7.23.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (9.8.0)\n", + "Requirement already satisfied: jupyter-client>=8.0.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (8.6.3)\n", + "Requirement already satisfied: jupyter-core!=5.0.*,>=4.12 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (5.9.1)\n", + "Requirement already satisfied: matplotlib-inline>=0.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (0.2.1)\n", + "Requirement already satisfied: nest-asyncio>=1.4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (1.6.0)\n", + "Requirement already satisfied: packaging>=22 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (25.0)\n", + "Requirement already satisfied: psutil>=5.7 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (7.1.3)\n", + "Requirement already satisfied: pyzmq>=25 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (27.1.0)\n", + "Requirement already satisfied: tornado>=6.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (6.5.2)\n", + "Requirement already satisfied: traitlets>=5.4.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (5.14.3)\n", + "Requirement already satisfied: colorama>=0.4.4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (0.4.6)\n", + "Requirement already satisfied: decorator>=4.3.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (5.2.1)\n", + "Requirement already satisfied: ipython-pygments-lexers>=1.0.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (1.1.1)\n", + "Requirement already satisfied: jedi>=0.18.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (0.19.2)\n", + "Requirement already satisfied: prompt_toolkit<3.1.0,>=3.0.41 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (3.0.52)\n", + "Requirement already satisfied: pygments>=2.11.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (2.19.2)\n", + "Requirement already satisfied: stack_data>=0.6.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (0.6.3)\n", + "Requirement already satisfied: typing_extensions>=4.6 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (4.15.0)\n", + "Requirement already satisfied: wcwidth in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from prompt_toolkit<3.1.0,>=3.0.41->ipython>=7.23.1->ipykernel->jupyter) (0.2.14)\n", + "Requirement already satisfied: parso<0.9.0,>=0.8.4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jedi>=0.18.1->ipython>=7.23.1->ipykernel->jupyter) (0.8.5)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-client>=8.0.0->ipykernel->jupyter) (2.9.0.post0)\n", + "Requirement already satisfied: platformdirs>=2.5 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-core!=5.0.*,>=4.12->ipykernel->jupyter) (4.5.1)\n", + "Requirement already satisfied: six>=1.5 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from python-dateutil>=2.8.2->jupyter-client>=8.0.0->ipykernel->jupyter) (1.17.0)\n", + "Requirement already satisfied: executing>=1.2.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data>=0.6.0->ipython>=7.23.1->ipykernel->jupyter) (2.2.1)\n", + "Requirement already satisfied: asttokens>=2.1.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data>=0.6.0->ipython>=7.23.1->ipykernel->jupyter) (3.0.1)\n", + "Requirement already satisfied: pure-eval in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data>=0.6.0->ipython>=7.23.1->ipykernel->jupyter) (0.2.3)\n", + "Requirement already satisfied: widgetsnbextension~=4.0.14 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipywidgets->jupyter) (4.0.15)\n", + "Requirement already satisfied: jupyterlab_widgets~=3.0.15 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipywidgets->jupyter) (3.0.16)\n", + "Requirement already satisfied: async-lru>=1.0.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (2.0.5)\n", + "Requirement already satisfied: httpx<1,>=0.25.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (0.28.1)\n", + "Requirement already satisfied: jinja2>=3.0.3 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (3.1.6)\n", + "Requirement already satisfied: jupyter-lsp>=2.0.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (2.3.0)\n", + "Requirement already satisfied: jupyter-server<3,>=2.4.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (2.17.0)\n", + "Requirement already satisfied: jupyterlab-server<3,>=2.28.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (2.28.0)\n", + "Requirement already satisfied: notebook-shim>=0.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (0.2.4)\n", + "Requirement already satisfied: setuptools>=41.1.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (65.5.0)\n", + "Requirement already satisfied: anyio in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from httpx<1,>=0.25.0->jupyterlab->jupyter) (4.12.0)\n", + "Requirement already satisfied: certifi in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from httpx<1,>=0.25.0->jupyterlab->jupyter) (2025.11.12)\n", + "Requirement already satisfied: httpcore==1.* in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from httpx<1,>=0.25.0->jupyterlab->jupyter) (1.0.9)\n", + "Requirement already satisfied: idna in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from httpx<1,>=0.25.0->jupyterlab->jupyter) (3.11)\n", + "Requirement already satisfied: h11>=0.16 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from httpcore==1.*->httpx<1,>=0.25.0->jupyterlab->jupyter) (0.16.0)\n", + "Requirement already satisfied: argon2-cffi>=21.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (25.1.0)\n", + "Requirement already satisfied: jupyter-events>=0.11.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.12.0)\n", + "Requirement already satisfied: jupyter-server-terminals>=0.4.4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.5.3)\n", + "Requirement already satisfied: nbformat>=5.3.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (5.10.4)\n", + "Requirement already satisfied: overrides>=5.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (7.7.0)\n", + "Requirement already satisfied: prometheus-client>=0.9 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.23.1)\n", + "Requirement already satisfied: pywinpty>=2.0.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (3.0.2)\n", + "Requirement already satisfied: send2trash>=1.8.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.8.3)\n", + "Requirement already satisfied: terminado>=0.8.3 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.18.1)\n", + "Requirement already satisfied: websocket-client>=1.7 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.9.0)\n", + "Requirement already satisfied: babel>=2.10 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (2.17.0)\n", + "Requirement already satisfied: json5>=0.9.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (0.12.1)\n", + "Requirement already satisfied: jsonschema>=4.18.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (4.25.1)\n", + "Requirement already satisfied: requests>=2.31 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (2.32.5)\n", + "Requirement already satisfied: argon2-cffi-bindings in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from argon2-cffi>=21.1->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (25.1.0)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jinja2>=3.0.3->jupyterlab->jupyter) (3.0.3)\n", + "Requirement already satisfied: attrs>=22.2.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (25.4.0)\n", + "Requirement already satisfied: jsonschema-specifications>=2023.03.6 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (2025.9.1)\n", + "Requirement already satisfied: referencing>=0.28.4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (0.37.0)\n", + "Requirement already satisfied: rpds-py>=0.7.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (0.30.0)\n", + "Requirement already satisfied: python-json-logger>=2.0.4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (4.0.0)\n", + "Requirement already satisfied: pyyaml>=5.3 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (6.0.2)\n", + "Requirement already satisfied: rfc3339-validator in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.1.4)\n", + "Requirement already satisfied: rfc3986-validator>=0.1.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.1.1)\n", + "Requirement already satisfied: fqdn in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.5.1)\n", + "Requirement already satisfied: isoduration in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (20.11.0)\n", + "Requirement already satisfied: jsonpointer>1.13 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (3.0.0)\n", + "Requirement already satisfied: rfc3987-syntax>=1.1.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.1.0)\n", + "Requirement already satisfied: uri-template in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.3.0)\n", + "Requirement already satisfied: webcolors>=24.6.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (25.10.0)\n", + "Requirement already satisfied: beautifulsoup4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from nbconvert->jupyter) (4.14.3)\n", + "Requirement already satisfied: bleach!=5.0.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from bleach[css]!=5.0.0->nbconvert->jupyter) (6.3.0)\n", + "Requirement already satisfied: defusedxml in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from nbconvert->jupyter) (0.7.1)\n", + "Requirement already satisfied: jupyterlab-pygments in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from nbconvert->jupyter) (0.3.0)\n", + "Requirement already satisfied: mistune<4,>=2.0.3 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from nbconvert->jupyter) (3.1.4)\n", + "Requirement already satisfied: nbclient>=0.5.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from nbconvert->jupyter) (0.10.2)\n", + "Requirement already satisfied: pandocfilters>=1.4.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from nbconvert->jupyter) (1.5.1)\n", + "Requirement already satisfied: webencodings in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from bleach!=5.0.0->bleach[css]!=5.0.0->nbconvert->jupyter) (0.5.1)\n", + "Requirement already satisfied: tinycss2<1.5,>=1.1.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from bleach[css]!=5.0.0->nbconvert->jupyter) (1.4.0)\n", + "Requirement already satisfied: fastjsonschema>=2.15 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from nbformat>=5.3.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (2.21.2)\n", + "Requirement already satisfied: charset_normalizer<4,>=2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from requests>=2.31->jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (3.4.4)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from requests>=2.31->jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (2.6.0)\n", + "Requirement already satisfied: lark>=1.2.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from rfc3987-syntax>=1.1.0->jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.3.1)\n", + "Requirement already satisfied: cffi>=1.0.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from argon2-cffi-bindings->argon2-cffi>=21.1->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (2.0.0)\n", + "Requirement already satisfied: pycparser in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from cffi>=1.0.1->argon2-cffi-bindings->argon2-cffi>=21.1->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (2.23)\n", + "Requirement already satisfied: soupsieve>=1.6.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from beautifulsoup4->nbconvert->jupyter) (2.8)\n", + "Requirement already satisfied: arrow>=0.15.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from isoduration->jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.4.0)\n", + "Requirement already satisfied: tzdata in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from arrow>=0.15.0->isoduration->jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (2025.2)\n", + "Note: you may need to restart the kernel to use updated packages.\n", + "Requirement already satisfied: ipywidgets in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (8.1.8)\n", + "Requirement already satisfied: comm>=0.1.3 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipywidgets) (0.2.3)\n", + "Requirement already satisfied: ipython>=6.1.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipywidgets) (9.8.0)\n", + "Requirement already satisfied: traitlets>=4.3.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipywidgets) (5.14.3)\n", + "Requirement already satisfied: widgetsnbextension~=4.0.14 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipywidgets) (4.0.15)\n", + "Requirement already satisfied: jupyterlab_widgets~=3.0.15 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipywidgets) (3.0.16)\n", + "Requirement already satisfied: colorama>=0.4.4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (0.4.6)\n", + "Requirement already satisfied: decorator>=4.3.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (5.2.1)\n", + "Requirement already satisfied: ipython-pygments-lexers>=1.0.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (1.1.1)\n", + "Requirement already satisfied: jedi>=0.18.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (0.19.2)\n", + "Requirement already satisfied: matplotlib-inline>=0.1.5 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (0.2.1)\n", + "Requirement already satisfied: prompt_toolkit<3.1.0,>=3.0.41 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (3.0.52)\n", + "Requirement already satisfied: pygments>=2.11.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (2.19.2)\n", + "Requirement already satisfied: stack_data>=0.6.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (0.6.3)\n", + "Requirement already satisfied: typing_extensions>=4.6 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (4.15.0)\n", + "Requirement already satisfied: wcwidth in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from prompt_toolkit<3.1.0,>=3.0.41->ipython>=6.1.0->ipywidgets) (0.2.14)\n", + "Requirement already satisfied: parso<0.9.0,>=0.8.4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jedi>=0.18.1->ipython>=6.1.0->ipywidgets) (0.8.5)\n", + "Requirement already satisfied: executing>=1.2.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data>=0.6.0->ipython>=6.1.0->ipywidgets) (2.2.1)\n", + "Requirement already satisfied: asttokens>=2.1.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data>=0.6.0->ipython>=6.1.0->ipywidgets) (3.0.1)\n", + "Requirement already satisfied: pure-eval in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data>=0.6.0->ipython>=6.1.0->ipywidgets) (0.2.3)\n", + "Note: you may need to restart the kernel to use updated packages.\n", + "Requirement already satisfied: ipykernel in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (7.1.0)\n", + "Requirement already satisfied: comm>=0.1.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (0.2.3)\n", + "Requirement already satisfied: debugpy>=1.6.5 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (1.8.17)\n", + "Requirement already satisfied: ipython>=7.23.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (9.8.0)\n", + "Requirement already satisfied: jupyter-client>=8.0.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (8.6.3)\n", + "Requirement already satisfied: jupyter-core!=5.0.*,>=4.12 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (5.9.1)\n", + "Requirement already satisfied: matplotlib-inline>=0.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (0.2.1)\n", + "Requirement already satisfied: nest-asyncio>=1.4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (1.6.0)\n", + "Requirement already satisfied: packaging>=22 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (25.0)\n", + "Requirement already satisfied: psutil>=5.7 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (7.1.3)\n", + "Requirement already satisfied: pyzmq>=25 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (27.1.0)\n", + "Requirement already satisfied: tornado>=6.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (6.5.2)\n", + "Requirement already satisfied: traitlets>=5.4.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (5.14.3)\n", + "Requirement already satisfied: colorama>=0.4.4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel) (0.4.6)\n", + "Requirement already satisfied: decorator>=4.3.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel) (5.2.1)\n", + "Requirement already satisfied: ipython-pygments-lexers>=1.0.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel) (1.1.1)\n", + "Requirement already satisfied: jedi>=0.18.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel) (0.19.2)\n", + "Requirement already satisfied: prompt_toolkit<3.1.0,>=3.0.41 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel) (3.0.52)\n", + "Requirement already satisfied: pygments>=2.11.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel) (2.19.2)\n", + "Requirement already satisfied: stack_data>=0.6.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel) (0.6.3)\n", + "Requirement already satisfied: typing_extensions>=4.6 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel) (4.15.0)\n", + "Requirement already satisfied: wcwidth in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from prompt_toolkit<3.1.0,>=3.0.41->ipython>=7.23.1->ipykernel) (0.2.14)\n", + "Requirement already satisfied: parso<0.9.0,>=0.8.4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jedi>=0.18.1->ipython>=7.23.1->ipykernel) (0.8.5)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-client>=8.0.0->ipykernel) (2.9.0.post0)\n", + "Requirement already satisfied: platformdirs>=2.5 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-core!=5.0.*,>=4.12->ipykernel) (4.5.1)\n", + "Requirement already satisfied: six>=1.5 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from python-dateutil>=2.8.2->jupyter-client>=8.0.0->ipykernel) (1.17.0)\n", + "Requirement already satisfied: executing>=1.2.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data>=0.6.0->ipython>=7.23.1->ipykernel) (2.2.1)\n", + "Requirement already satisfied: asttokens>=2.1.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data>=0.6.0->ipython>=7.23.1->ipykernel) (3.0.1)\n", + "Requirement already satisfied: pure-eval in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data>=0.6.0->ipython>=7.23.1->ipykernel) (0.2.3)\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "%pip install --upgrade pip\n", + "%pip install --upgrade jupyter\n", + "%pip install --upgrade ipywidgets\n", + "%pip install --upgrade ipykernel" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "48724594", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting pdf2image\n", + " Using cached pdf2image-1.17.0-py3-none-any.whl.metadata (6.2 kB)\n", + "Requirement already satisfied: pillow in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (12.0.0)\n", + "Using cached pdf2image-1.17.0-py3-none-any.whl (11 kB)\n", + "Installing collected packages: pdf2image\n", + "Successfully installed pdf2image-1.17.0\n", + "Note: you may need to restart the kernel to use updated packages.\n", + "Collecting PyMuPDF\n", + " Using cached pymupdf-1.26.6-cp310-abi3-win_amd64.whl.metadata (3.4 kB)\n", + "Using cached pymupdf-1.26.6-cp310-abi3-win_amd64.whl (18.4 MB)\n", + "Installing collected packages: PyMuPDF\n", + "Successfully installed PyMuPDF-1.26.6\n", + "Note: you may need to restart the kernel to use updated packages.\n", + "Requirement already satisfied: pandas in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (2.3.3)\n", + "Requirement already satisfied: numpy>=1.23.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pandas) (2.3.5)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pandas) (2.9.0.post0)\n", + "Requirement already satisfied: pytz>=2020.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pandas) (2025.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pandas) (2025.2)\n", + "Requirement already satisfied: six>=1.5 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from python-dateutil>=2.8.2->pandas) (1.17.0)\n", + "Note: you may need to restart the kernel to use updated packages.\n", + "Requirement already satisfied: matplotlib in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (3.10.7)\n", + "Requirement already satisfied: contourpy>=1.0.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (1.3.3)\n", + "Requirement already satisfied: cycler>=0.10 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (4.61.0)\n", + "Requirement already satisfied: kiwisolver>=1.3.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (1.4.9)\n", + "Requirement already satisfied: numpy>=1.23 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (2.3.5)\n", + "Requirement already satisfied: packaging>=20.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (25.0)\n", + "Requirement already satisfied: pillow>=8 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (12.0.0)\n", + "Requirement already satisfied: pyparsing>=3 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (3.2.5)\n", + "Requirement already satisfied: python-dateutil>=2.7 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (2.9.0.post0)\n", + "Requirement already satisfied: six>=1.5 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from python-dateutil>=2.7->matplotlib) (1.17.0)\n", + "Note: you may need to restart the kernel to use updated packages.\n", + "Requirement already satisfied: seaborn in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (0.13.2)\n", + "Requirement already satisfied: numpy!=1.24.0,>=1.20 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from seaborn) (2.3.5)\n", + "Requirement already satisfied: pandas>=1.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from seaborn) (2.3.3)\n", + "Requirement already satisfied: matplotlib!=3.6.1,>=3.4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from seaborn) (3.10.7)\n", + "Requirement already satisfied: contourpy>=1.0.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (1.3.3)\n", + "Requirement already satisfied: cycler>=0.10 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (4.61.0)\n", + "Requirement already satisfied: kiwisolver>=1.3.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (1.4.9)\n", + "Requirement already satisfied: packaging>=20.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (25.0)\n", + "Requirement already satisfied: pillow>=8 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (12.0.0)\n", + "Requirement already satisfied: pyparsing>=3 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (3.2.5)\n", + "Requirement already satisfied: python-dateutil>=2.7 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (2.9.0.post0)\n", + "Requirement already satisfied: pytz>=2020.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pandas>=1.2->seaborn) (2025.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pandas>=1.2->seaborn) (2025.2)\n", + "Requirement already satisfied: six>=1.5 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from python-dateutil>=2.7->matplotlib!=3.6.1,>=3.4->seaborn) (1.17.0)\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "# Install necessary packages\n", + "%pip install pdf2image pillow \n", + "# pdf reading\n", + "%pip install PyMuPDF\n", + "\n", + "# Data analysis and visualization\n", + "%pip install pandas\n", + "%pip install matplotlib\n", + "%pip install seaborn" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "e1f793b6", + "metadata": {}, + "outputs": [], + "source": [ + "import os, json\n", + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "from pdf2image import convert_from_path\n", + "from PIL import Image, ImageOps\n", + "import fitz # PyMuPDF\n", + "import re\n", + "from datetime import datetime\n", + "from typing import List\n", + "import shutil" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "1652a78e", + "metadata": {}, + "outputs": [], + "source": [ + "def pdf_to_images(pdf_path: str, output_dir: str, dpi: int = 300):\n", + " \"\"\"\n", + " Render a PDF into a list of PIL Images using PyMuPDF or pdf2image.\n", + " 'pages' is 1-based (e.g., range(1, 10) -> pages 1–9).\n", + " \"\"\"\n", + " if fitz is not None:\n", + " doc = fitz.open(pdf_path)\n", + " total_pages = len(doc)\n", + "\n", + " # Adjust page indices (PyMuPDF uses 0-based indexing)\n", + " page_indices = list(range(total_pages))\n", + "\n", + " for i in page_indices:\n", + " page = doc.load_page(i)\n", + " mat = fitz.Matrix(dpi / 72.0, dpi / 72.0)\n", + " pix = page.get_pixmap(matrix=mat, alpha=False)\n", + " img = Image.frombytes(\"RGB\", [pix.width, pix.height], pix.samples)\n", + " # Build filename\n", + " out_path = os.path.join(\n", + " output_dir,\n", + " f\"page_{i + 1:04d}.png\"\n", + " )\n", + "\n", + " img.save(out_path, \"PNG\")\n", + " doc.close()\n", + " else:\n", + " raise RuntimeError(\"Install PyMuPDF or pdf2image to convert PDFs.\")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "f523dd58", + "metadata": {}, + "outputs": [], + "source": [ + "import fitz\n", + "import re\n", + "import os\n", + "\n", + "def _pdf_extract_text_structured(page, margin_threshold=50):\n", + " \"\"\"\n", + " Extract text using PyMuPDF's dict mode which preserves\n", + " the actual line structure from the PDF.\n", + " \"\"\"\n", + " data = page.get_text(\"dict\")\n", + " \n", + " # Collect all lines with their Y position\n", + " all_lines = []\n", + " margin_text_parts = [] # Collect vertical/margin text\n", + " margin_y_positions = []\n", + " \n", + " for block in data.get(\"blocks\", []):\n", + " if block.get(\"type\") != 0: # Skip non-text blocks\n", + " continue\n", + " \n", + " block_bbox = block.get(\"bbox\", (0, 0, 0, 0))\n", + " block_width = block_bbox[2] - block_bbox[0]\n", + " block_height = block_bbox[3] - block_bbox[1]\n", + " \n", + " # Detect vertical/margin text\n", + " is_margin_text = (block_bbox[0] < margin_threshold or \n", + " block_height > block_width * 2)\n", + " \n", + " for line in block.get(\"lines\", []):\n", + " direction = line.get(\"dir\", (1, 0))\n", + " bbox = line.get(\"bbox\", (0, 0, 0, 0))\n", + " y_center = (bbox[1] + bbox[3]) / 2\n", + " x_start = bbox[0]\n", + " \n", + " # Collect text from all spans\n", + " line_text = \"\"\n", + " for span in line.get(\"spans\", []):\n", + " text = span.get(\"text\", \"\")\n", + " line_text += text\n", + " \n", + " line_text = line_text.strip()\n", + " line_text = re.sub(r\"[•▪◦●❖▶■\\uf000-\\uf0ff]\", \"\", line_text)\n", + " \n", + " if not line_text:\n", + " continue\n", + " \n", + " # Check if this is margin/vertical text\n", + " if is_margin_text or abs(direction[0]) < 0.9:\n", + " margin_text_parts.append((y_center, line_text))\n", + " margin_y_positions.append(y_center)\n", + " else:\n", + " all_lines.append((y_center, x_start, line_text))\n", + " \n", + " # Reconstruct margin text as single line at its vertical center\n", + " if margin_text_parts:\n", + " # Sort by Y position (top to bottom) and join\n", + " margin_text_parts.sort(key=lambda x: x[0])\n", + " full_margin_text = \" \".join(part[1] for part in margin_text_parts)\n", + " # Calculate vertical center of the watermark\n", + " avg_y = sum(margin_y_positions) / len(margin_y_positions)\n", + " # Add as a single line\n", + " all_lines.append((avg_y, -1, full_margin_text)) # x=-1 to sort first\n", + " \n", + " if not all_lines:\n", + " return \"\"\n", + " \n", + " # Sort by Y first, then by X\n", + " all_lines.sort(key=lambda x: (x[0], x[1]))\n", + " \n", + " # Group lines at same vertical position\n", + " merged_rows = []\n", + " current_row = [all_lines[0]]\n", + " current_y = all_lines[0][0]\n", + " \n", + " for y_center, x_start, text in all_lines[1:]:\n", + " if abs(y_center - current_y) <= 2:\n", + " current_row.append((y_center, x_start, text))\n", + " else:\n", + " current_row.sort(key=lambda x: x[1])\n", + " row_text = \" \".join(item[2] for item in current_row)\n", + " merged_rows.append((current_y, row_text))\n", + " current_row = [(y_center, x_start, text)]\n", + " current_y = y_center\n", + " \n", + " if current_row:\n", + " current_row.sort(key=lambda x: x[1])\n", + " row_text = \" \".join(item[2] for item in current_row)\n", + " merged_rows.append((current_y, row_text))\n", + " \n", + " # Sort rows by Y and extract text\n", + " merged_rows.sort(key=lambda x: x[0])\n", + " lines = [row[1] for row in merged_rows]\n", + " \n", + " # Join and clean up\n", + " text = \"\\n\".join(lines)\n", + " text = re.sub(r\" +\", \" \", text).strip()\n", + " text = re.sub(r\"\\n{3,}\", \"\\n\\n\", text).strip()\n", + " \n", + " return text\n", + "\n", + "def pdf_extract_text(pdf_path, output_dir, margin_threshold=50):\n", + " os.makedirs(output_dir, exist_ok=True)\n", + " doc = fitz.open(pdf_path)\n", + " \n", + " for i, page in enumerate(doc):\n", + " text = _pdf_extract_text_structured(page, margin_threshold)\n", + " if not text.strip():\n", + " continue\n", + " out_path = os.path.join(output_dir, f\"page_{i + 1:04d}.txt\")\n", + " with open(out_path, \"w\", encoding=\"utf-8\") as f:\n", + " f.write(text)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "9f64a8c0", + "metadata": {}, + "outputs": [], + "source": [ + "PDF_FOLDER = './../instructions' # Folder containing PDF files\n", + "OUTPUT_FOLDER = './dataset'\n", + "\n", + "os.makedirs(OUTPUT_FOLDER, exist_ok=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "41e4651d", + "metadata": {}, + "outputs": [], + "source": [ + "i = 0\n", + "\n", + "pdf_files = sorted([\n", + " fname for fname in os.listdir(PDF_FOLDER)\n", + " if fname.lower().endswith(\".pdf\")\n", + "])\n", + "\n", + "\n", + "for fname in pdf_files:\n", + " # build output directories\n", + " out_img_path = os.path.join(OUTPUT_FOLDER, str(i), \"img\")\n", + " out_txt_path = os.path.join(OUTPUT_FOLDER, str(i), \"txt\")\n", + "\n", + " os.makedirs(out_img_path, exist_ok=True)\n", + " os.makedirs(out_txt_path, exist_ok=True)\n", + "\n", + " # source and destination PDF paths\n", + " src_pdf = os.path.join(PDF_FOLDER, fname)\n", + " pdf_path = os.path.join(OUTPUT_FOLDER, str(i), fname)\n", + "\n", + " # copy PDF into numbered folder\n", + " shutil.copy(src_pdf, pdf_path)\n", + "\n", + " # convert PDF → images\n", + " pdf_to_images(\n", + " pdf_path=pdf_path,\n", + " output_dir=out_img_path,\n", + " dpi=300\n", + " )\n", + " pdf_extract_text(\n", + " pdf_path=pdf_path,\n", + " output_dir=out_txt_path,\n", + " margin_threshold=40\n", + " )\n", + "\n", + " i += 1" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": ".venv (3.11.9)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/src/raytune_paddle_subproc_results_20251207_192320.csv b/src/raytune_paddle_subproc_results_20251207_192320.csv new file mode 100644 index 0000000..ba22e08 --- /dev/null +++ b/src/raytune_paddle_subproc_results_20251207_192320.csv @@ -0,0 +1,65 @@ +CER,WER,TIME,PAGES,TIME_PER_PAGE,timestamp,checkpoint_dir_name,done,training_iteration,trial_id,date,time_this_iter_s,time_total_s,pid,hostname,node_ip,time_since_restore,iterations_since_restore,config/use_doc_orientation_classify,config/use_doc_unwarping,config/textline_orientation,config/text_det_thresh,config/text_det_box_thresh,config/text_det_unclip_ratio,config/text_rec_score_thresh,logdir +0.013515850203159258,0.1050034776034098,353.85077571868896,5,70.66230463981628,1765120215,,False,1,d5238c33,2025-12-07_16-10-15,374.27777338027954,374.27777338027954,19452,LAPTOP-2OQK6GT5,127.0.0.1,374.27777338027954,1,True,False,True,0.08878208965533294,0.623029468177504,0.0,0.22994386685874743,d5238c33 +0.03905195479212187,0.13208645252197226,354.61478638648987,5,70.82208666801452,1765120220,,False,1,ea8a2f7a,2025-12-07_16-10-20,374.2999520301819,374.2999520301819,7472,LAPTOP-2OQK6GT5,127.0.0.1,374.2999520301819,1,False,False,False,0.39320080607112917,0.6712014538998344,0.0,0.16880221913810864,ea8a2f7a +0.06606238373546518,0.16619192810354325,359.09717535972595,5,71.72569246292115,1765120601,,False,1,ebb12e5b,2025-12-07_16-16-41,379.5437698364258,379.5437698364258,21480,LAPTOP-2OQK6GT5,127.0.0.1,379.5437698364258,1,True,True,True,0.4328784710891528,0.23572507118228522,0.0,0.18443532434104057,ebb12e5b +0.41810946199338,0.5037103242611287,336.6613118648529,5,67.22685413360595,1765120583,,False,1,b3775034,2025-12-07_16-16-23,356.52618169784546,356.52618169784546,23084,LAPTOP-2OQK6GT5,127.0.0.1,356.52618169784546,1,True,True,False,0.06412882230680782,0.3377439247010605,0.0,0.5764053439963283,b3775034 +0.1972515944870667,0.2953531713611584,350.1465151309967,5,69.93639450073242,1765120959,,False,1,bf10d370,2025-12-07_16-22-39,370.90337228775024,370.90337228775024,26140,LAPTOP-2OQK6GT5,127.0.0.1,370.90337228775024,1,True,True,True,0.6719551054359146,0.6902317374774642,0.0,0.3964896632708511,bf10d370 +0.3864103728596727,0.45583610828383464,320.96620512008667,5,64.09520988464355,1765120947,,False,1,111e5a9e,2025-12-07_16-22-27,341.0712642669678,341.0712642669678,20664,LAPTOP-2OQK6GT5,127.0.0.1,341.0712642669678,1,True,False,False,0.04481600265034593,0.4832664381621284,0.0,0.5464155154391461,111e5a9e +0.5160689446919982,0.5945298276300801,326.65670347213745,5,65.2350733757019,1765121300,,False,1,415d7ba1,2025-12-07_16-28-20,347.29887080192566,347.29887080192566,23848,LAPTOP-2OQK6GT5,127.0.0.1,347.29887080192566,1,True,True,True,0.01699705273201909,0.5233849789194689,0.0,0.20833106578160068,415d7ba1 +0.5025130639131208,0.5677161936883898,326.9156484603882,5,65.28343558311462,1765121310,,False,1,a58d8109,2025-12-07_16-28-30,346.09022212028503,346.09022212028503,25248,LAPTOP-2OQK6GT5,127.0.0.1,346.09022212028503,1,False,True,True,0.04024319071476844,0.6705892008057031,0.0,0.1885847677314521,a58d8109 +0.07092029393242118,0.17390976502682037,368.5711796283722,5,73.62503981590271,1765121692,,False,1,33bdf2a9,2025-12-07_16-34-52,388.150607585907,388.150607585907,24024,LAPTOP-2OQK6GT5,127.0.0.1,388.150607585907,1,False,True,False,0.4347371576992484,0.490009080993297,0.0,0.1519055407457635,33bdf2a9 +0.1168252568583151,0.22212978798067146,364.6228621006012,5,72.82479510307311,1765121699,,False,1,d9df79f3,2025-12-07_16-34-59,384.67676973342896,384.67676973342896,5368,LAPTOP-2OQK6GT5,127.0.0.1,384.67676973342896,1,True,True,False,0.17806350429159667,0.6261942434824851,0.0,0.38547742746319813,d9df79f3 +0.06459478599489028,0.16493742503085831,366.6067085266113,5,73.22199411392212,1765122086,,False,1,80ea65f2,2025-12-07_16-41-26,387.6792531013489,387.6792531013489,14064,LAPTOP-2OQK6GT5,127.0.0.1,387.6792531013489,1,True,True,False,0.6011116675422127,0.25138233186284487,0.0,0.31312371671514233,80ea65f2 +0.01340057642794312,0.10741926673961485,359.5969452857971,5,71.80434017181396,1765122084,,False,1,2e978bfa,2025-12-07_16-41-24,380.28105759620667,380.28105759620667,11060,LAPTOP-2OQK6GT5,127.0.0.1,380.28105759620667,1,False,False,True,0.23485911670668447,0.07773192307960775,0.0,0.023694797982285992,2e978bfa +0.01340057642794312,0.10741926673961485,347.92934703826904,5,69.49003491401672,1765122459,,False,1,8518cc40,2025-12-07_16-47-39,368.54625153541565,368.54625153541565,21016,LAPTOP-2OQK6GT5,127.0.0.1,368.54625153541565,1,False,False,True,0.2225556801158737,0.00024186765038358704,0.0,0.0028910785387807336,8518cc40 +0.01340057642794312,0.10741926673961485,347.14498376846313,5,69.324178647995,1765122461,,False,1,2c691aaa,2025-12-07_16-47-41,366.3459825515747,366.3459825515747,21540,LAPTOP-2OQK6GT5,127.0.0.1,366.3459825515747,1,False,False,True,0.22472742766369874,0.030333356491349384,0.0,0.05099688981312009,2c691aaa +0.013040374955575204,0.10485434443992256,347.22006940841675,5,69.34554209709168,1765122832,,False,1,31e60691,2025-12-07_16-53-52,368.0382122993469,368.0382122993469,17532,LAPTOP-2OQK6GT5,127.0.0.1,368.0382122993469,1,False,False,True,0.25914070057597594,0.0019604082489898533,0.0,0.0035094431353713818,31e60691 +0.012582941415352794,0.10327954129031627,349.2319846153259,5,69.74626359939575,1765122837,,False,1,d4d288c6,2025-12-07_16-53-57,368.903502702713,368.903502702713,22216,LAPTOP-2OQK6GT5,127.0.0.1,368.903502702713,1,False,False,True,0.2734075225731028,0.0033989235904911125,0.0,0.015420451500634869,d4d288c6 +0.012582941415352794,0.10327954129031627,346.6979134082794,5,69.24065437316895,1765123205,,False,1,7645b77c,2025-12-07_17-00-05,367.4564206600189,367.4564206600189,2272,LAPTOP-2OQK6GT5,127.0.0.1,367.4564206600189,1,False,False,True,0.279241869770728,0.1138413707810162,0.0,0.07531508117874008,7645b77c +0.012407575745987933,0.10201566081383735,346.5196530818939,5,69.19977960586547,1765123208,,False,1,3256ae36,2025-12-07_17-00-08,366.00227642059326,366.00227642059326,6604,LAPTOP-2OQK6GT5,127.0.0.1,366.00227642059326,1,False,False,True,0.30993017979826853,0.1292131176570399,0.0,0.11201957956206357,3256ae36 +0.012407575745987933,0.10201566081383735,344.0291979312897,5,68.71350336074829,1765123575,,False,1,b0dda58b,2025-12-07_17-06-15,364.82790350914,364.82790350914,9732,LAPTOP-2OQK6GT5,127.0.0.1,364.82790350914,1,False,False,True,0.3149521989502957,0.11783753596277924,0.0,0.6825729339913746,b0dda58b +0.012429753445092291,0.10205118268939237,346.11818265914917,5,69.12530856132507,1765123581,,False,1,e9d40333,2025-12-07_17-06-21,365.62638425827026,365.62638425827026,23416,LAPTOP-2OQK6GT5,127.0.0.1,365.62638425827026,1,False,False,True,0.5302520310849914,0.1569390945373281,0.0,0.10019443545563994,e9d40333 +0.011990675508758594,0.10047637953978608,346.5398359298706,5,69.2183114528656,1765123948,,False,1,aa89fe7a,2025-12-07_17-12-28,366.7530257701874,366.7530257701874,16200,LAPTOP-2OQK6GT5,127.0.0.1,366.7530257701874,1,False,False,True,0.5039700850900125,0.16208277029791282,0.0,0.6765386284546205,aa89fe7a +0.011968497809654236,0.10044085766423105,345.97880601882935,5,69.09321279525757,1765123951,,False,1,92c48d07,2025-12-07_17-12-31,365.0942301750183,365.0942301750183,15432,LAPTOP-2OQK6GT5,127.0.0.1,365.0942301750183,1,False,False,True,0.33321916406589397,0.1864428656555301,0.0,0.6775297319325386,92c48d07 +0.011968497809654236,0.10044085766423105,344.1725525856018,5,68.74226913452148,1765124318,,False,1,187790d7,2025-12-07_17-18-38,364.47401189804077,364.47401189804077,24676,LAPTOP-2OQK6GT5,127.0.0.1,364.47401189804077,1,False,False,True,0.3372505528404193,0.2352515935896671,0.0,0.6987321324340134,187790d7 +0.011760127958326316,0.09964993325879434,345.9427492618561,5,69.08389501571655,1765124322,,False,1,442a2439,2025-12-07_17-18-42,364.755074262619,364.755074262619,7892,LAPTOP-2OQK6GT5,127.0.0.1,364.755074262619,1,False,False,True,0.5098036701758629,0.2122757290966333,0.0,0.6992468303721803,442a2439 +0.011968497809654236,0.10044085766423105,345.40264558792114,5,68.98561010360717,1765124689,,False,1,70862adc,2025-12-07_17-24-49,365.9752175807953,365.9752175807953,15412,LAPTOP-2OQK6GT5,127.0.0.1,365.9752175807953,1,False,False,True,0.3963969237347287,0.2163058925653838,0.0,0.6859176720785957,70862adc +0.012407575745987933,0.10201566081383735,345.8808228969574,5,69.07736506462098,1765124693,,False,1,e6821f34,2025-12-07_17-24-53,365.25493717193604,365.25493717193604,26088,LAPTOP-2OQK6GT5,127.0.0.1,365.25493717193604,1,False,False,True,0.3668982772069688,0.2407751620351906,0.0,0.5737620270733486,e6821f34 +0.012199205894660016,0.10122473640840064,347.05629682540894,5,69.31870231628417,1765125062,,False,1,8b680875,2025-12-07_17-31-02,367.2029130458832,367.2029130458832,1720,LAPTOP-2OQK6GT5,127.0.0.1,367.2029130458832,1,False,False,True,0.5312495877753942,0.3193426688929859,0.0,0.591252589724218,8b680875 +0.012429753445092291,0.10205118268939237,349.60691928863525,5,69.8253363609314,1765125068,,False,1,fc54867b,2025-12-07_17-31-08,368.73608803749084,368.73608803749084,4888,LAPTOP-2OQK6GT5,127.0.0.1,368.73608803749084,1,False,False,True,0.5034080657304706,0.3042864908472832,0.0,0.5024906014323391,fc54867b +0.013385453418768206,0.10927323740570172,343.8553657531738,5,68.67559289932251,1765125432,,False,1,c32d0d5e,2025-12-07_17-37-12,364.42339730262756,364.42339730262756,25808,LAPTOP-2OQK6GT5,127.0.0.1,364.42339730262756,1,False,False,True,0.15300672154002157,0.39848899797721926,0.0,0.5167681121564286,c32d0d5e +0.013537204772521452,0.10852488053708713,344.60119009017944,5,68.81447420120239,1765125436,,False,1,4762fbbb,2025-12-07_17-37-16,363.3258783817291,363.3258783817291,20760,LAPTOP-2OQK6GT5,127.0.0.1,363.3258783817291,1,False,False,True,0.13342603167575784,0.4010104919178914,0.0,0.618812411626611,4762fbbb +0.011763789518968464,0.09968897796498292,344.03784108161926,5,68.71829047203065,1765125803,,False,1,522ac97c,2025-12-07_17-43-23,364.7200028896332,364.7200028896332,2372,LAPTOP-2OQK6GT5,127.0.0.1,364.7200028896332,1,False,False,True,0.4489762005319642,0.402754966715804,0.0,0.6426372526242771,522ac97c +0.011650346524073398,0.09890157639017978,343.51321721076965,5,68.60030875205993,1765125805,,False,1,5784f433,2025-12-07_17-43-25,362.93026328086853,362.93026328086853,22900,LAPTOP-2OQK6GT5,127.0.0.1,362.93026328086853,1,False,False,True,0.46204975067512033,0.192768833446102,0.0,0.6328281433384326,5784f433 +0.011650346524073398,0.09890157639017978,343.80972242355347,5,68.66908102035522,1765126172,,False,1,83af0528,2025-12-07_17-49-32,364.5850279331207,364.5850279331207,9832,LAPTOP-2OQK6GT5,127.0.0.1,364.5850279331207,1,False,False,True,0.4663139585990712,0.1845869678485352,0.0,0.6299207399141384,83af0528 +0.011650346524073398,0.09890157639017978,344.11421155929565,5,68.72400512695313,1765126177,,False,1,12cbaa22,2025-12-07_17-49-37,364.24684858322144,364.24684858322144,5968,LAPTOP-2OQK6GT5,127.0.0.1,364.24684858322144,1,False,False,True,0.47277853181431145,0.40562176755388546,0.0,0.6314990057451438,12cbaa22 +0.011763789518968464,0.09968897796498292,348.5801889896393,5,69.61860737800598,1765126547,,False,1,a3a87765,2025-12-07_17-55-47,369.27432322502136,369.27432322502136,24372,LAPTOP-2OQK6GT5,127.0.0.1,369.27432322502136,1,False,False,True,0.45010042945259804,0.2855696990924951,0.0,0.6351522397620386,a3a87765 +0.0441989903761154,0.13204740781578367,347.0340585708618,5,69.31097078323364,1765126548,,False,1,cf2bad0c,2025-12-07_17-55-48,366.1882207393646,366.1882207393646,3272,LAPTOP-2OQK6GT5,127.0.0.1,366.1882207393646,1,False,False,False,0.5890116605741096,0.283660909026841,0.0,0.4602911956047037,cf2bad0c +0.0441989903761154,0.13204740781578367,343.53946828842163,5,68.61563892364502,1765126916,,False,1,9a9b91e7,2025-12-07_18-01-56,364.0171241760254,364.0171241760254,2272,LAPTOP-2OQK6GT5,127.0.0.1,364.0171241760254,1,False,False,False,0.6089594786916612,0.3646091181984181,0.0,0.46522499154449626,9a9b91e7 +0.012199205894660016,0.10122473640840064,345.76200914382935,5,69.05782113075256,1765126922,,False,1,e326d901,2025-12-07_18-02-02,365.42848086357117,365.42848086357117,24932,LAPTOP-2OQK6GT5,127.0.0.1,365.42848086357117,1,False,False,True,0.5932289185132622,0.37353729921136775,0.0,0.46368845919414936,e326d901 +0.011990281344944778,0.09910429396546264,344.40758872032166,5,68.7896653175354,1765127287,,False,1,ccb3f19a,2025-12-07_18-08-07,365.1469933986664,365.1469933986664,1104,LAPTOP-2OQK6GT5,127.0.0.1,365.1469933986664,1,True,False,True,0.6866411603181266,0.4537774266698106,0.0,0.3059281770286948,ccb3f19a +0.012186205997500013,0.1012282592390342,343.9386422634125,5,68.69270787239074,1765127290,,False,1,8c12c55f,2025-12-07_18-08-10,363.29733777046204,363.29733777046204,19700,LAPTOP-2OQK6GT5,127.0.0.1,363.29733777046204,1,True,False,True,0.6710404650258701,0.44441637238072235,0.0,0.2641320116724262,8c12c55f +0.0662709141213666,0.16851508812176408,359.4665718078613,5,71.7971097946167,1765127672,,False,1,5a62d5b6,2025-12-07_18-14-32,380.3328058719635,380.3328058719635,26528,LAPTOP-2OQK6GT5,127.0.0.1,380.3328058719635,1,True,True,True,0.40414134317929745,0.2010474655405967,0.0,0.59925716647257,5a62d5b6 +0.07070075496425433,0.17390976502682037,356.3221182823181,5,71.16437225341797,1765127673,,False,1,bb4495b7,2025-12-07_18-14-33,375.9771683216095,375.9771683216095,21772,LAPTOP-2OQK6GT5,127.0.0.1,375.9771683216095,1,False,True,False,0.39073713326110354,0.5764393142467112,0.0,0.5413963334094041,bb4495b7 +0.01153507274885726,0.09890157639017978,344.71807885169983,5,68.8583309173584,1765128044,,False,1,9d90711d,2025-12-07_18-20-44,365.7700536251068,365.7700536251068,17592,LAPTOP-2OQK6GT5,127.0.0.1,365.7700536251068,1,False,False,True,0.46895437796002276,0.5411583003121286,0.0,0.6350154738477746,9d90711d +0.01153507274885726,0.09890157639017978,343.69704604148865,5,68.64236354827881,1765128046,,False,1,daaec3f8,2025-12-07_18-20-46,363.0186264514923,363.0186264514923,21292,LAPTOP-2OQK6GT5,127.0.0.1,363.0186264514923,1,False,False,True,0.4743507729816579,0.5213407674549528,0.0,0.6445669851749475,daaec3f8 +0.01153507274885726,0.09890157639017978,343.6039113998413,5,68.62933912277222,1765128413,,False,1,51fb5915,2025-12-07_18-26-53,364.0196588039398,364.0196588039398,21772,LAPTOP-2OQK6GT5,127.0.0.1,364.0196588039398,1,False,False,True,0.48541186574386475,0.5810500215434935,0.0,0.6463595394763801,51fb5915 +0.01164485418311018,0.09964993325879434,344.2613036632538,5,68.75940155982971,1765128417,,False,1,18966a33,2025-12-07_18-26-57,363.3374502658844,363.3374502658844,16900,LAPTOP-2OQK6GT5,127.0.0.1,363.3374502658844,1,False,False,True,0.5501591363807381,0.5132901504443755,0.0,0.6489815927562321,18966a33 +0.012314479669876154,0.10205118268939237,345.49542331695557,5,69.01211080551147,1765128785,,False,1,b67080f9,2025-12-07_18-33-05,366.01860308647156,366.01860308647156,20948,LAPTOP-2OQK6GT5,127.0.0.1,366.01860308647156,1,False,False,True,0.5534122098827526,0.5760738874546728,0.0,0.5609719434431071,b67080f9 +0.07209115365923097,0.17918874278969218,351.96662616729736,5,70.29538555145264,1765128795,,False,1,2533f368,2025-12-07_18-33-15,371.205295085907,371.205295085907,11208,LAPTOP-2OQK6GT5,127.0.0.1,371.205295085907,1,False,True,True,0.5572268058153711,0.5246075332847907,0.0,0.558307419246103,2533f368 +0.06479949428557605,0.16493742503085831,357.1695992946625,5,71.33717932701111,1765129169,,False,1,451d018d,2025-12-07_18-39-29,378.8273491859436,378.8273491859436,3616,LAPTOP-2OQK6GT5,127.0.0.1,378.8273491859436,1,False,True,False,0.6340187369543626,0.5494644274379972,0.0,0.6521052525663952,451d018d +0.04429208645222718,0.13283833222122038,349.41683983802795,5,69.77591800689697,1765129169,,False,1,2256e752,2025-12-07_18-39-29,369.8801362514496,369.8801362514496,25468,LAPTOP-2OQK6GT5,127.0.0.1,369.8801362514496,1,True,False,False,0.6478037819045206,0.6228629446714814,0.0,0.6546094515631737,2256e752 +0.012292301970771797,0.10201566081383735,346.071848154068,5,69.12432713508606,1765129542,,False,1,0a892729,2025-12-07_18-45-42,367.237042427063,367.237042427063,26212,LAPTOP-2OQK6GT5,127.0.0.1,367.237042427063,1,False,False,True,0.42173310551322135,0.542928875009614,0.0,0.601586841052583,0a892729 +0.012292301970771797,0.10201566081383735,346.42522287368774,5,69.19188222885131,1765129545,,False,1,495075f5,2025-12-07_18-45-45,365.53574872016907,365.53574872016907,23604,LAPTOP-2OQK6GT5,127.0.0.1,365.53574872016907,1,False,False,True,0.4186754897467695,0.6318747444402091,0.0,0.5956181518703515,495075f5 +0.011974150685190959,0.10047637953978608,346.9409854412079,5,69.29810705184937,1765129915,,False,1,54c45552,2025-12-07_18-51-55,367.9469211101532,367.9469211101532,25352,LAPTOP-2OQK6GT5,127.0.0.1,367.9469211101532,1,False,False,True,0.46382270850905233,0.6196868829200468,0.0,0.6126115785559785,54c45552 +0.011974150685190959,0.10047637953978608,346.4141414165497,5,69.18586716651916,1765129917,,False,1,6b2e9b93,2025-12-07_18-51-57,365.9887709617615,365.9887709617615,25400,LAPTOP-2OQK6GT5,127.0.0.1,365.9887709617615,1,False,False,True,0.4751854264500806,0.48925010555288895,0.0,0.515482483148412,6b2e9b93 +0.01153507274885726,0.09890157639017978,346.25940680503845,5,69.15517511367798,1765130288,,False,1,e9a6b81f,2025-12-07_18-58-08,367.33222007751465,367.33222007751465,4036,LAPTOP-2OQK6GT5,127.0.0.1,367.33222007751465,1,False,False,True,0.4879296810791008,0.4925520261481197,0.0,0.6483489622744677,e9a6b81f +0.01153507274885726,0.09890157639017978,345.8425042629242,5,69.06782102584839,1765130290,,False,1,076c5450,2025-12-07_18-58-10,365.1877450942993,365.1877450942993,4832,LAPTOP-2OQK6GT5,127.0.0.1,365.1877450942993,1,False,False,True,0.48842171509426413,0.5881329256041945,0.0,0.6569193185887352,076c5450 +0.011875401733542455,0.10047637953978608,350.2443346977234,5,69.94839100837707,1765130664,,False,1,4a42a3ea,2025-12-07_19-04-24,370.9968421459198,370.9968421459198,14912,LAPTOP-2OQK6GT5,127.0.0.1,370.9968421459198,1,False,False,True,0.5590357657789103,0.5940413385819063,0.0,0.6573225721220606,4a42a3ea +0.012080110024228227,0.10047637953978608,351.5000901222229,5,70.19009194374084,1765130669,,False,1,041795f1,2025-12-07_19-04-29,370.946097612381,370.946097612381,22372,LAPTOP-2OQK6GT5,127.0.0.1,370.946097612381,1,False,False,True,0.5650092236486315,0.6617440972899422,0.0,0.6629504776006702,041795f1 +0.012314479669876154,0.10205118268939237,343.53907656669617,5,68.6134319782257,1765131035,,False,1,8abb3f37,2025-12-07_19-10-35,364.67463064193726,364.67463064193726,22012,LAPTOP-2OQK6GT5,127.0.0.1,364.67463064193726,1,False,False,True,0.48982107744168,0.4636820835063238,0.0,0.39458266779240964,8abb3f37 +0.012314479669876154,0.10205118268939237,345.5919795036316,5,69.02381987571717,1765131040,,False,1,f2cb682e,2025-12-07_19-10-40,364.90754437446594,364.90754437446594,5752,LAPTOP-2OQK6GT5,127.0.0.1,364.90754437446594,1,True,False,True,0.4917954659583112,0.45224829356708557,0.0,0.42597097228928366,f2cb682e +0.012314479669876154,0.10205118268939237,349.50936698913574,5,69.80772981643676,1765131411,,False,1,463fe5e7,2025-12-07_19-16-51,370.56375885009766,370.56375885009766,16524,LAPTOP-2OQK6GT5,127.0.0.1,370.56375885009766,1,True,False,True,0.5373435635563055,0.5202382560972127,0.0,0.5340573143597149,463fe5e7 +0.012083932119443879,0.10122473640840064,350.1439118385315,5,69.92809920310974,1765131415,,False,1,88bbe87d,2025-12-07_19-16-55,369.54999685287476,369.54999685287476,15084,LAPTOP-2OQK6GT5,127.0.0.1,369.54999685287476,1,False,False,True,0.5274586910866753,0.5110782288617315,0.0,0.5368958272648865,88bbe87d +0.011875401733542455,0.10047637953978608,355.52406072616577,5,71.00808920860291,1765131794,,False,1,33ea1cc6,2025-12-07_19-23-14,376.746440410614,376.746440410614,17380,LAPTOP-2OQK6GT5,127.0.0.1,376.746440410614,1,False,False,True,0.5229924883346121,0.5158065672775711,0.0,0.6679657240993034,33ea1cc6 +0.011853224034438097,0.10044085766423105,355.67893862724304,5,71.0243070602417,1765131797,,False,1,1243723e,2025-12-07_19-23-17,375.44413685798645,375.44413685798645,11232,LAPTOP-2OQK6GT5,127.0.0.1,375.44413685798645,1,False,False,True,0.3726772055073363,0.5573152713604742,0.0,0.6766134238094554,1243723e