From 0fd1323cf2143b84d87a76657704bea6ac716432 Mon Sep 17 00:00:00 2001 From: Sergio Jimenez Jimenez Date: Mon, 8 Dec 2025 11:31:26 +0100 Subject: [PATCH] Extended analysis --- src/paddle_ocr_fine_tune_unir_raytune.ipynb | 479 ++++++++++++++------ src/prepare_dataset.ipynb | 388 ++++++++-------- 2 files changed, 542 insertions(+), 325 deletions(-) diff --git a/src/paddle_ocr_fine_tune_unir_raytune.ipynb b/src/paddle_ocr_fine_tune_unir_raytune.ipynb index 6f9f1ef..c54f356 100644 --- a/src/paddle_ocr_fine_tune_unir_raytune.ipynb +++ b/src/paddle_ocr_fine_tune_unir_raytune.ipynb @@ -345,7 +345,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 16, "id": "8bfa3329", "metadata": {}, "outputs": [], @@ -357,7 +357,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 17, "id": "8bd4ca23", "metadata": {}, "outputs": [ @@ -365,9 +365,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "c:\\Users\\Sergio\\Desktop\\MastersThesis\\src\\dataset\n", - "c:\\Users\\Sergio\\Desktop\\MastersThesis\\src\\paddle_ocr_tuning.py\n", - "c:\\Users\\Sergio\\Desktop\\MastersThesis\\src\n" + "c:\\Users\\sji\\Desktop\\MastersThesis\\src\\dataset\n", + "c:\\Users\\sji\\Desktop\\MastersThesis\\src\\paddle_ocr_tuning.py\n", + "c:\\Users\\sji\\Desktop\\MastersThesis\\src\n" ] } ], @@ -2322,7 +2322,7 @@ "max 0.699247 " ] }, - "execution_count": 7, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -2334,7 +2334,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 28, "id": "50fa5b59", "metadata": {}, "outputs": [ @@ -2366,6 +2366,13 @@ " \"config/text_det_unclip_ratio\",\n", " \"config/text_rec_score_thresh\",\n", "]\n", + "labels = [\n", + " \"Detection Pixel Threshold\",\n", + " \"Detection Box Threshold\",\n", + " \"Unclip Ratio\",\n", + " \"Recognition Score Threshold\",\n", + "]\n", + "\n", "# Correlación de Pearson con CER y WER\n", "corr_cer = df[param_cols + [\"CER\"]].corr()[\"CER\"].sort_values(ascending=False)\n", "corr_wer = df[param_cols + [\"WER\"]].corr()[\"WER\"].sort_values(ascending=False)\n", @@ -2376,7 +2383,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 29, "id": "9462b7a2", "metadata": {}, "outputs": [ @@ -2413,7 +2420,7 @@ "" ] }, - "execution_count": 10, + "execution_count": 29, "metadata": {}, "output_type": "execute_result" }, @@ -2459,45 +2466,15 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 30, "id": "02fc0a87", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAR3pJREFUeJzt3QmcE/X9//HPshwr13KssIAIAl6ICHIJ9awg3ke1Ra2CVNHiXdQKHiDSigcq/Sveoq1UpSqKWrpqUawHLQpFBRUFUUA5FZZLQJf5P97fXycmIdlNdrObZPJ6Ph5hyWQy853vTGY+870mz/M8zwAAAAKiVroTAAAAkEoENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDdVsHnzZrvgggusuLjY8vLy7Morr3TTV69ebWeccYY1b97cTZ84caJl+zblmscff9xt/5dffmm5mkYtV8vXeiqrffv2duKJJ1qmSHV6ksmj8847z60/G910001uO9etW5fupAAJIbiJc8GI9/r3v/8dmveWW25x8w8fPtyeeOIJO/fcc9303/3ud/bKK6/YqFGj3PRjjz3WUk3rfuGFF6plubG2KRadqP18qVWrljVp0sQOPPBAu/DCC+0///lPldJx3333Vemimu58zCUff/yxu/hlciCI2MrKyuyxxx6zI4880po1a2b16tVzv+uhQ4fa+++/H4hse/LJJ2v8BlP5Ge8ast9++1mmyotKa+PGje2II46wv//971mV/1K7xteYJW6++Wbba6+9dpneqVOn0P9ff/11O+SQQ2zMmDER82j6KaecYldffXW1XpRVOnTqqaemdLnxtimebt262VVXXeX+v2nTJvvkk0/smWeesYcfftgFeXfddVelg5uioiJ3t1ud4uWjgrozzzzTnewzVaakUcHN2LFj3Qk9W0smctH3339vv/jFL6ykpMQOP/xwu+6661yAoyD1b3/7m/35z3+2ZcuW2R577GHZTBfXBQsW1HgptPJt/Pjxu0wvLCy0TDZgwAAbPHiw6bGTX331ld1///120kkn2T/+8Q8bOHBg1uQ/wU0cxx13nPXs2bPczFuzZo117tw55nSVYmSjeNsUT5s2beycc86JmHbbbbfZ2WefbXfffbftvfferhQo2+Tn57tXJsuGNFbFli1brEGDBulORmBdc801LrDR7zT6wqObG02vSbqYbtu2zXbbbTfLdDt37rQdO3ZYQUFB3HkUxESfG6ty3Kcif7Zt22Z169Z1Je3x7LPPPhHpPv3009014U9/+lOlgpu00VPB8ZPHHntMT0n33nvvvbjZ8sYbb7h5ol/+d6NfvvXr13tXXHGFt8cee3h169b1Onbs6N16661eWVlZxPL1fuLEiV6XLl28evXqeUVFRd7AgQNDaYq1jiFDhpS7G1evXu395je/8Vq0aOGW2bVrV+/xxx+vcJuWLl0ad5nt2rXzTjjhhJifbdq0yWvWrJnXpk0bb+fOnRHbdvfdd3udO3d26VB6LrzwQu+7776LWG50Oo444ogazUd/X0Zv/6RJk1zatd5WrVp5F198sUtPOKX1gAMO8BYuXOgdeeSR3m677ea1bt3au+2227xEaL2XXHKJN2XKFG+fffZxaT/44IO9N998M2K+6DTOnDnTy8vL82688caI+f7617+6+e67777QtBUrVnhDhw51+a9t0TY9+uijEd/Tcv3jOp54x7yOp/Bj5K233vJ69erltmWvvfby/vznP8dczqxZs7zhw4d7u+++u9ekSZPQ5zNmzPAOPfRQr379+l7Dhg29448/3luwYEHEMlauXOmdd9557pjTNhUXF3snn3xyxD5MND2yZMkS74wzzvCaNm3q9mGfPn28l19+OaE8ev75590xoOXr77Rp09yxpfUnorqPs+XLl3u1a9f2BgwYkFB6xowZ47bz888/d9tRWFjoNW7c2OX3li1bIuadPHmyd9RRR7l9qPTvv//+Ecde9L4oKSnxevTo4fJK54ZkluEfG4cffrg7Lho1auT17NnTHfN+HkUfm+H7YNu2bd7o0aPdOUTr0TnlmmuucdPj/Sa1X5R32sfx+Psm0XzVPjzrrLPcMd+tW7cK8yeRY/ON/53Tn3rqKe/66693x4bOD9HHUaztjKZzp85F4V544QX3O9Txqbzr0KGDd/PNN3s//vhjRD6kIv8rg5KbOEpLS3dpPKc6SDUS3n///V17FFW7qOjRr5bp3r17qJ2KX7Tn27p1q6u7/Prrr+2iiy6yPffc0959913XLmflypURdZLnn3++a2+i0iM17v3xxx/trbfecu19VJqkdWh67969XfsW6dixY7nFz6oyWLx4sV166aWuuk1VR6ry2bBhg11xxRVxt2n33XevVNDcsGFDO+200+zRRx911RYHHHCAm65t17apTv/yyy+3pUuX2r333mv//e9/7Z133rE6deq4vLjsssvcMq6//nr3vZYtW6Y9H9WuRNUv/fv3d6VRixYtckW27733XijtvvXr17u2Vir2/9WvfmXPPvusXXvtta5NktJTkTfffNOmTp3q8kjVTqqm0/LmzJljXbp0ifmdn//853bxxRe7onBVsx188MEuT5SXSvNvf/vbUIN3VT3qeNbxoH2sImfl18aNG5MqPlZ1htL4//7f/3PVGjqOxP8rOu5U9aflDxkyxCZPnuyOvR49eoSOC5/Sr/SMHj3a3cGK9pO+p7tGlQrqGFC+H3rooe648avCdIe5cOFCt72aplLI1157zVWthFeXJZIe5VG/fv3curR9+t2rmubkk092+1LHdjyvvvpq6G5X++Lbb791x3ui1Ts1cZxpf+v3UF6buli0Dp0/tF3z5s2zRx55xFq0aOH2i09pVT4qr2rXrm0vvfSS268q7bjkkksilqdtO+uss9xvediwYbbvvvsmtQz9vn/zm9+4eXUOUIm5jgmVSKn0WOcPnctXrFgRKonSeUW0LC3/7bffdr9/HbMfffSRm++zzz7bpS2equxVXaffjKrMK6qCVXumWA2wVfISXTLzy1/+0pVyq5r8/2KM+PmT7LE5btw4V1qjZhLbt293/0+G8k/HWfS5UXmvvBwxYoT7q/zR71bnkDvuuMPNk8r8T1qVw6OAiXcnqpci50RKLmJFv+PGjfMaNGjgffbZZxHTR44c6eXn53vLli1z719//XX3/csvv3yX5YaXgGhZFZXW+FR6oWXqrsO3Y8cOr2/fvu5uZ+PGjRVuUywVzau7DK13+vTp7r3ulvXev6vy6c4kerruesJLa2o6H6NLRdasWePuLI455piIEqJ7773Xzac7zei7lb/85S+hadu3b3clCaeffrpXEf94e//990PTvvrqK6+goMA77bTT4qZRdBfdqVMnl3+6+9H+0R22vu87//zz3d3WunXrItZ75plnujvyrVu3JlxyI88880xEaU04vxTuX//6V2ia8lK/pauuumqXbVHpTPidn0oAdTc7bNiwiOWuWrXKpdWfrrtRff+OO+4oN62JpufKK6908+mYDU+LSnnat28fOgZi5ZHuvJW/GzZsCE179dVXd7lrjaWmjrPf/e537rv//e9/vUT4JQwq/Q2n47F58+YR0/zjJ5xKTHVnH2tf6PcfLZFlKH9VUqNSi++//z7ub1y/gVj5/sQTT3i1atWK2MfywAMPuHS98847oWl6r3lVwpKIWCUW/uuiiy7aJV9VahMtXv4kemy+8b+SG+VZrPyMRfPr/LB27Vp3LOocdOyxx8b8bcVaprZNpavhJS+pyP/KoLdUHJMmTXJ3feEv3e1UlkpKDjvsMGvatKmL5v2X7s4U4f/rX/9y8z333HPujjpWg15Nr4wZM2a4rt26A/Dp7k9Rv7p+q5SgOvgRuhoa+3mgemiVaoXnge6YNe8bb7yRsfn4z3/+09Wxq1QjvL5ad1PqURDdm0DbE15vrbsllRB98cUXCa2vb9++Ll98KqFSI3X1wtN2xlO/fn13R6WG3SpVUbp0J6Tvi85fyhs1ENT/w/NQJSO6y9IdeSqpBEP7zKeSGd2BxsoL5Wd4OyL97lS6qGM3PK2ap0+fPqFjRnfDyuNZs2a5u8yqpke/Ge0vlQ6F71PdYarBrUojY1FJ2fz5812JUHjDUR3zibRlq6njTHfX0qhRI0uGX/rnUz6qZMpfnoS3CfFLwFXaqjTpfTiVAsVqx5HIMnRs6NwycuTIXdq+JPIb17lEpQXqvRR+bKkEVKLPR1p/Mu0RVbITfQ3RK1bJaHS+lpc/yR6bQ4YMSaqdjkrb9ZtQiZxKuGfOnGm///3vXQlNuPBlaj8o73Q8qETp008/TXn+J4tqqTh08FTUoDgZn3/+uX344Ydxq3lUhC5Lliyx1q1bu14LqaIW7yryjG5E5lcd6PPqoMAp/ASqPNCJST+a8vIgE/PRzyO/2Dz8YtKhQ4dd8lBVENEnWAVkSnsitL9iNfTTiWPt2rUuWI3nZz/7mavOUICuE6OK7X36roKFhx56yL0qux+S4QdW0XkRKwiJ7qGo/S3+CS+aLviiqjtVjag6VVWYqnbTeDaqGo7Oq0TSo/2p4Cla+G8mVvWgfxzE2n86dioKHGvqOPPzzb/xSFR03mldorzzl6mqM91UzJ492x2v4fT7Dw/6YvVITXQZ+o1LvGraiujY0k1AReeSitIaj6qedNOViHjLjjU92WNzryTTrZsoVb0pyFZVqKrKtA+irx+qAr7hhhtcdVR4cCvRQWwq8j9ZBDc1RPWLuntTBByLLlxBo+5/4d3nlQcKbP7617/GnD+R9j3Zko/xejGF16dXF9WrqwRDdAHQiUklOn7+ie72dUcXS9euXdOWF9F3mH561e4mVkCn9hg+3RGrREp19SrhuvHGG13bEJ181R6uMunJdJXdFn+sFbVx0HAOqVqfjrejjz7aLV/DQLRt29YFZiptUAmivz99sUoUkl1GZWk5apsUb7gKrbeitKZKvGWnYp27JbkMBcx+UHb88ce79kUKdo466ijXtkt0g6SSLAW0GjZF7XFUeqbgXW2+EtlHyeZ/sghuaoh2vkoyKorkNZ9OzN999125pQ7JVK20a9fO3cnpYAqPvv2iQ32eatrW559/3h2g/h2Ftk3F7ipZqOgHF2/70pWPfh6pgZ/uoH26u1Gj6ETv0BLll1iEUyM7BSkVBYG649Ud0YQJE9yJRsX2avAr+q5K0lS1lao0V7a6NBF+I0YFxYmkV/Or9EYv5aEu3HfeeadNmTIlqfVqf2tfR6voN+NPj7X/Yi0vXceZGhsrUFG+JNuouDxq+Kvg+sUXX4wo5UmmiiHRZfjHhm6iwscfS+Zc8sEHH7hAqjqP4VSr7LFZWWrMrKBSpTRqrKy80s2TqiOnTZvmqr99OkYzJf9pc1ND1MtARay64EZTFKyeC6JeFroLUm+J8u7GVOSp7yVC0feqVatc7xuf1nfPPfe4ulpF4Kmk3lk6YSqwUGt5/8BVHuiiqtb70ZSe8O2Jt33pykddVHT3qCAh/Puqn1YR7AknnGCppG0Mr8JYvny5TZ8+3Y455phyx7bRyNAKalSKoQu8xjJRbzS/XZW+q7xRuxu/ZC2cqq2S5ff8SPR4TIaq1XR3qKLxH374IW56VTqlMTyiT54K5HShTJZ+M+qZpv3gU+8tVeWpLUW8thetWrVyAZV6r4QXzautRbx2Ouk4znTToXY86tml80A03QgpKFQvl2T4x2Z42pVujYKc6mXot6D9q9K56H0f/RuPVU2ic4l6XWrA0VjnML+3Xqap7LFZWSod1blEN0w6B8XbRwrA1aszWrryn5KbONR4OFajKHXBC7+jSpQuMroTUTsAv9updp6KhdV9Tw3BVPynoj8FBjq56e5P3Tx1olEXZn2m4kHR91UKoiI9tS1RvWqselhRQ7MHH3zQrXfu3LnuB6B1ql5bXaeTbVQYTgenf1esEhWdwNVQTMGUfhCK+n0KovReJyM1utTJSQ2btZ36jgaJUhddf/vUHfQPf/iDuyvTnbvaXaQrH1Xioa6mCpa0LHVh1N2Tfsy9evWq1GBd5VGduS7s4V3BJVaw5tMJXlVNau/xxz/+MTS/7oTVFVl5pBPNrbfe6u6CtZ26wOlkqEBUwZTyQv9Phi7mOtmpzYtOYkqv9lW8tlXJUGCj40D7Ul3bNSKz9oW6d6txrUoBFbypVEt3gDphant0QlbJobrN6jvJUmnXU0895Uo4tA9U+qeARXemCgzLGwRNx7eCEDX4VHsn5acCCHVX9tuhxVOTx5mCF1UBaft0B67flNrQKG/1e9T5L9m8029awZmqB/Vb1/bq4qVjQY2tU7kMHRsqUdBwDsobdf1W+lUaoGBX+8v/jevGTg1iNZ9u6LRsHVPq2q3GvPo96FjSzZe2W9N1A1WVdpf6LcQrMazKfqzKsVlZOteqm7d+4xpmQtdB5bXON0qDbmBVdRyrOjRd+U9X8CS6gkd3+UymK7jfXW/UqFGuq666e2pgpH79+nkTJkxwXbN96gqrbnf77befm08DWR133HHe3LlzQ/N8+umnbuAqDeCU6CB+GrRN69QyDzzwwJhdfJPtCu7niwaHUpdjdUFW99z//Oc/cb/30EMPuUGplHZ15VRafv/733vffPNNRFdfpUOfRw/iVxP5GG8QP3XJ1fLq1KnjtWzZ0g04F29wtWiJDuIWPmDY3nvv7bopd+/efZeu1tFpVPdedYePznt159SgY0pr+PGgdbRt29Zti7oPH3300W7f+BLtCi4PP/yw63Kq9ccaxC+a8ih8n1Y0eKaWp67A6v6tLvEa9EsDyPnd5dWtXdujfaPu/ZpPXYT/9re/RSwn0fSED5SmruhaZ+/evRMexO+5555zA89p32nQt2QH8auJ48z/jTzyyCPeYYcd5vJM69N3da4I7ybud1lWF+FwsX4nL774ohskVHmmrskaVFBd2KPnK+9ck+gy/Hn1+9dvWOcg7ScNXOfbvHmzd/bZZ7v9GN0dX+cLLdsfcFGD4uncNHbsWK+0tLTCc3pluoKHX3bj5WtF+ZPIsfnG/7qCa6iGRJW3nTfddFPEb1tdtQ855JDQ4JE6h7/yyiu7DAuRivyvjLz/bRCADKG7IA1UphIJAEDyaHMDAAACheAGAAAECsENAAAIFHpLARmGZnAAUDWU3AAAgEAhuAEAAIGSc9VSGsjtm2++cQPXZdOQ2wAA5HqV/aZNm9yAqxUNVphzwY0Cm6o+kAsAAKSHHkejB3yWJ+eCG/9RA8ocDd8NAAAy38aNG13hRCKPDMq54MavilJgQ3ADAEB2SaRJCQ2KAQBAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKDk3AjF1aVsp2dzln5nazZtsxaNCqz3Xs0svxYP5gQAoKYR3KRAyYKVNvalj21l6bbQtFaFBTbmpM52bJdWqVgFAABIENVSKQhshk+ZFxHYyKrSbW66PgcAADWH4KaKVVEqsfFifOZP0+eaDwAA1AyCmypQG5voEptwCmn0ueYDAAA1g+CmCtR4OJXzAQCAqiO4qQL1ikrlfAAAoOoIbqpA3b3VKypeh29N1+eaDwAA1AyCmyrQODbq7i3RAY7/Xp8z3g0AADWH4KaKNI7N/eccbMWFkVVPeq/piYxzo95Us5d8a9Pnf+3+0rsKAIDKYxC/FFAAM6BzcaVGKGYAQAAAAlhyM2nSJGvfvr0VFBRYnz59bM6cOXHnffzxxy0vLy/ipe+lmwKZvh2b2ynd2ri/iQY2DAAIAEDAgpupU6faiBEjbMyYMTZv3jw76KCDbODAgbZmzZq432ncuLGtXLky9Prqq68s2zAAIAAAAQ1u7rrrLhs2bJgNHTrUOnfubA888IDVr1/fJk+eHPc7Kq0pLi4OvVq2bGnZhgEAAQAIYHCzY8cOmzt3rvXv3/+nBNWq5d7Pnj077vc2b95s7dq1s7Zt29opp5xiCxcutGzDAIAAAAQwuFm3bp2VlZXtUvKi96tWrYr5nX333deV6kyfPt2mTJliO3futH79+tmKFStizr99+3bbuHFjxCsTMAAgAAABrZZKVt++fW3w4MHWrVs3O+KII2zatGm2++6724MPPhhz/vHjx1thYWHopdKeTMAAgAAABDC4KSoqsvz8fFu9enXEdL1XW5pE1KlTx7p3726LFy+O+fmoUaOstLQ09Fq+fLllAgYABAAggMFN3bp1rUePHjZz5szQNFUz6b1KaBKhaq2PPvrIWrWKPVhevXr1XO+q8FeQBgAEAAAZNoifuoEPGTLEevbsab1797aJEyfali1bXO8pURVUmzZtXPWS3HzzzXbIIYdYp06dbMOGDXbHHXe4ruAXXHCB5doAgAAAIAODm0GDBtnatWtt9OjRrhGx2tKUlJSEGhkvW7bM9aDyrV+/3nUd17xNmzZ1JT/vvvuu60aerfwBAAEAQNXleZ7nWQ5Rbyk1LFb7m0yqogIAAKm5fmddbykAAIDyENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFSO90JQGqU7fRsztLvbM2mbdaiUYH13quZ5dfKI3sBADmH4CYAShastLEvfWwrS7eFprUqLLAxJ3W2Y7u0SmvaAACoaVRLBSCwGT5lXkRgI6tKt7np+hwAgFxCcJPlVVEqsfFifOZP0+eaDwCAXEFwk8XUxia6xCacQhp9rvkAAMgVBDdZTI2HUzkfAABBQHCTxdQrKpXzAQAQBAQ3WUzdvdUrKl6Hb03X55oPAIBcQXCTxTSOjbp7S3SA47/X54x3AwDIJQQ3WU7j2Nx/zsFWXBhZ9aT3ms44NwCAXMMgfgGgAGZA52JGKAYAgOAmOFT11Ldj83QnAwCAtKNaCgAABEpGBDeTJk2y9u3bW0FBgfXp08fmzJmT0Peefvppy8vLs1NPPbXa0wgAALJD2oObqVOn2ogRI2zMmDE2b948O+igg2zgwIG2Zs2acr/35Zdf2tVXX22HHXZYjaUVAABkvrQHN3fddZcNGzbMhg4dap07d7YHHnjA6tevb5MnT477nbKyMvv1r39tY8eOtQ4dOtRoegEAQGZLa3CzY8cOmzt3rvXv3/+nBNWq5d7Pnj077vduvvlma9GihZ1//vkVrmP79u22cePGiBcAAAiutAY369atc6UwLVu2jJiu96tWrYr5nbffftseffRRe/jhhxNax/jx462wsDD0atu2bUrSDgAAMlPaq6WSsWnTJjv33HNdYFNUVJTQd0aNGmWlpaWh1/Lly6s9nQAAIEcH8VOAkp+fb6tXr46YrvfFxcW7zL9kyRLXkPikk04KTdu5c6f7W7t2bVu0aJF17Ngx4jv16tVzLwAAkBvSWnJTt25d69Gjh82cOTMiWNH7vn377jL/fvvtZx999JHNnz8/9Dr55JPtqKOOcv+nygkAAKT98QvqBj5kyBDr2bOn9e7d2yZOnGhbtmxxvadk8ODB1qZNG9d2RuPgdOnSJeL7TZo0cX+jp2ezsp0ej1IAACBbg5tBgwbZ2rVrbfTo0a4Rcbdu3aykpCTUyHjZsmWuB1WuKFmw0sa+9LGtLN0WmtaqsMA93ZuHYAIAULE8z/M8yyHqCq5eU2pc3LhxY8u0wGb4lHkWvUPy/veXp3wDAHLVxiSu37lTJJIFVVEqsYkVafrT9LnmAwAA8RHcZIg5S7+LqIqKppBGn2s+AAAQH8FNhlizaVtK5wMAIFcR3GSIFo0KUjofAAC5iuAmQ/Teq5nrFeU3Ho6m6fpc8wEAgPgIbjJEfq08191bogMc/70+13wAACA+gpsMonFs1N27uDCy6knv6QYOAECWDOKHXQOcAZ2LGaEYAIBKIrjJQKp66tuxebqTAQBAVqJaCgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgZIRwc2kSZOsffv2VlBQYH369LE5c+bEnXfatGnWs2dPa9KkiTVo0MC6detmTzzxRI2mFwAAZK60BzdTp061ESNG2JgxY2zevHl20EEH2cCBA23NmjUx52/WrJldf/31Nnv2bPvwww9t6NCh7vXKK6/UeNoBAEDmyfM8z0tnAlRS06tXL7v33nvd+507d1rbtm3tsssus5EjRya0jIMPPthOOOEEGzduXIXzbty40QoLC620tNQaN25c5fQDAIDql8z1O60lNzt27LC5c+da//79f0pQrVruvUpmKqK4bObMmbZo0SI7/PDDY86zfft2lyHhLwAAEFxpDW7WrVtnZWVl1rJly4jper9q1aq431PU1rBhQ6tbt64rsbnnnntswIABMecdP368i/T8l0qFAABAcKW9zU1lNGrUyObPn2/vvfee/fGPf3RtdmbNmhVz3lGjRrlgyH8tX768xtMLAABqTm1Lo6KiIsvPz7fVq1dHTNf74uLiuN9T1VWnTp3c/9Vb6pNPPnElNEceeeQu89arV8+9AABAbkhryY2qlXr06OHazfjUoFjv+/btm/By9B21rQEAAEhryY2oSmnIkCFu7JrevXvbxIkTbcuWLa57twwePNjatGnjSmZEfzVvx44dXUAzY8YMN87N/fffn+YtAQAAmSDtwc2gQYNs7dq1Nnr0aNeIWNVMJSUloUbGy5Ytc9VQPgU+F198sa1YscJ2220322+//WzKlCluOQAAAGkf56amMc4NAADZJ2vGuQEAAEg1ghsAABAoBDcAACBQCG4AAECgENwAAIBASWlws23bNpswYUIqFwkAAFC9wY3GpHn55Zft1VdfdQ+9lB9++MH+9Kc/Wfv27e3WW29NdpEAAADpGcTv7bffthNPPNH1Nc/Ly3MjBT/22GN26qmnWu3ate2mm25yow0DAABkRcnNDTfcYMcff7x9+OGH7rEJeir3aaedZrfccot9/PHH9tvf/taNGgwAAJAVIxQ3b97c3nrrLevcubN9//331rBhQ5s2bZqdcsopli0YoRgAgOxTbSMUr1+/3oqKitz/VUJTv35969KlS9VSCwAAkM4HZ6r6SQ+4FBX6LFq0yD3MMlzXrl1Tl0IAAIDqqpbS07nVkDjWV/zp+uv3ospEVEsBAJB9krl+J1Vys3Tp0qqmDQAAoFolFdy0a9eu+lICAACQAkk1KL799ttdLynfO++8Y9u3bw+937Rpk1188cWpSBcAAED1t7nJz8+3lStXWosWLdx71XnNnz/fOnTo4N6vXr3aWrduTZsbAACQHV3Bo+OgJOIiAACAGsFTwQEAQKAQ3AAAgNwexO+RRx5xj12QH3/80R5//PHQqMVqUAwAAJA1DYrbt2/vBunL5vFwGMQPAIDsU22D+H355ZdVTRsAAEDmtLl5/fXX3RPBFT1FUyR1wAEHuKeGAwAAZEVwM3HiRBs2bFjM4iAVFV100UV21113pTJ9AAAA1RfcfPDBB3bsscfG/fyYY46xuXPnJpcCAACAdAU3GoG4Tp06cT+vXbu2rV27NhXpAgAAqP7gpk2bNrZgwYK4n3/44YfWqlWryqUEAACgpoOb448/3m688Ubbtm3bLp/pgZpjxoyxE088MRXpAgAAqP5xblQtdfDBB7sHaF566aW27777uumffvqpTZo0yT0wc968edayZUvLVIxzAwBA9qm2cW4UtLz77rs2fPhwGzVqVOjBmRrYb+DAgS7AyeTABgAABF/Sj19o166dzZgxw9avX2+LFy92Ac7ee+9tTZs2rZ4UAgAAVGdw41Mw06tXr8p+HQAAoFrwVHAAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAIlI4KbSZMmWfv27a2goMD69Oljc+bMiTvvww8/bIcddpg1bdrUvfr371/u/AAAILekPbiZOnWqjRgxwsaMGWPz5s2zgw46yAYOHGhr1qyJOf+sWbPsrLPOsjfeeMNmz55tbdu2tWOOOca+/vrrGk87AAC5oGynZ7OXfGvT53/t/up9JsvzPC+tKVRJTa9evezee+9173fu3OkClssuu8xGjhxZ4ffLyspcCY6+P3jw4Arn37hxoxUWFlppaak1btw4JdsAAEBQlSxYaWNf+thWlm4LTWtVWGBjTupsx3ZpVWPpSOb6ndaSmx07dtjcuXNd1VIoQbVqufcqlUnE1q1b7YcffrBmzZrF/Hz79u0uQ8JfAAAgscBm+JR5EYGNrCrd5qbr80yU1uBm3bp1ruSlZcuWEdP1ftWqVQkt49prr7XWrVtHBEjhxo8f7yI9/6VSIQAAUD5VPanEJlb1jj9Nn2diFVXa29xUxa233mpPP/20Pf/8864xciyjRo1yRVj+a/ny5TWeTgAAss2cpd/tUmITTiGNPtd8maZ2OldeVFRk+fn5tnr16ojpel9cXFzudydMmOCCm3/+85/WtWvXuPPVq1fPvQAAQOLWbNqW0vlypuSmbt261qNHD5s5c2ZomhoU633fvn3jfu/222+3cePGWUlJifXs2bOGUgsAQO5o0aggpfPlTMmNqBv4kCFDXJDSu3dvmzhxom3ZssWGDh3qPlcPqDZt2ri2M3LbbbfZ6NGj7cknn3Rj4/htcxo2bOheAACg6nrv1cz1ilLj4VitavLMrLiwwM2XadLe5mbQoEGuikkBS7du3Wz+/PmuRMZvZLxs2TJbufKn1tj333+/62V1xhlnWKtWrUIvLQMAAKRGfq08193bD2TC+e/1uebLNGkf56amMc4NAADBHucm7dVSAAAgcx3bpZUN6FzsekWp8bDa2KgqKhNLbHwENwAAoFwKZPp2bG7ZIu1tbgAAAFKJ4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABErtdCcASIeynZ7NWfqdrdm0zVo0KrDeezWz/Fp57AwACACCG+SckgUrbexLH9vK0m2haa0KC2zMSZ3t2C6t0po2AEDVUS2FnAtshk+ZFxHYyKrSbW66PgcAZDeCG+RUVZRKbLwYn/nT9LnmAwBkL4Ib5Ay1sYkusQmnkEafaz4AQPYiuEHOUOPhVM4HAMhMBDfIGeoVlcr5AACZieAGOUPdvdUrKl6Hb03X55oPAJC9CG6QMzSOjbp7S3SA47/X54x3AwDZjeAGOUXj2Nx/zsFWXBhZ9aT3ms44NwCQ/RjEDzlHAcyAzsWMUAwAAUVwg5ykqqe+HZunOxkAgCBWS02aNMnat29vBQUF1qdPH5szZ07ceRcuXGinn366mz8vL88mTpxYo2kFAACZL63BzdSpU23EiBE2ZswYmzdvnh100EE2cOBAW7NmTcz5t27dah06dLBbb73ViouLazy9AAAg86U1uLnrrrts2LBhNnToUOvcubM98MADVr9+fZs8eXLM+Xv16mV33HGHnXnmmVavXr0aTy8AAMh8aQtuduzYYXPnzrX+/fv/lJhatdz72bNnp2w927dvt40bN0a8AABAcKUtuFm3bp2VlZVZy5YtI6br/apVq1K2nvHjx1thYWHo1bZt25QtGwAAZJ60NyiubqNGjbLS0tLQa/ny5elOEgAACGJX8KKiIsvPz7fVq1dHTNf7VDYWVtsc2ucAAJA70lZyU7duXevRo4fNnDkzNG3nzp3ufd++fdOVLAAAkOXSOoifuoEPGTLEevbsab1793bj1mzZssX1npLBgwdbmzZtXLsZvxHyxx9/HPr/119/bfPnz7eGDRtap06d0rkpAAAgQ6Q1uBk0aJCtXbvWRo8e7RoRd+vWzUpKSkKNjJctW+Z6UPm++eYb6969e+j9hAkT3OuII46wWbNmpWUbAABAZsnzPM9LdyJqkrqCq9eUGhc3btw43ckBAAApvn4HvrcUAADILQQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABEpaB/EDACSmbKdnc5Z+Z2s2bbMWjQqs917NLL9WHtlXCeRl8BHcAECGXxhLFqy0sS99bCtLt4WmtSossDEndbZju7Sq1nUHDXmZGxihGAAy+MKodQ6fMs+ih5L3w6n7zzmYAIe8zAkbGaEYAKonyAgPbGRV6TY3XZ9Hl/DMXvKtTZ//tfur98nSdxRMxfqmP02fV2bZuYa8zC1USwFAFS+MKkXR5wM6F7sqqlSV8Kj6KzqYil63Ptd8fTs2Zz/mYF7Sfig2ghsASOGFsfT7HTGrkfwSnmSqkdSuJ5Xz5bJ052V1BCG0H4qP4AYAUnTBW7Vxm91e8mnCJTwV+XLdloTWq4slUpNH1ZGX1RGExGuLVZkgOogY5wYAUnTB+27z9oRLeBK5039qzrIK59NFUqUAKJ/ySHkVL6TMq6a8TLatViJoP1QxghsASNGFsVmDuikrCVIAtGrj9grnO7PXnox3kwCVlKmkRKL3o/9en6eyW391BSHJVJPmKoIbAEjRhbG4cLeUlQQlWhXWvqh+QvPBXDWNqmuKCyPzX++roxqnuoKQdLcfyga0uQGAJC6M0W0nisPaTugOXCU4qnKIdS+e97/5E6n6SGcbkSDTflKbp5oYiLG6ghCOjYoR3ABAii6MfgmP2lJoileFqg+/KiwVgRIiKf9rort3dQUhHBsVo1oKACpxYTylWxv3NzpQSVXVRzraiCA7GjFzbFSMxy8AQAaPa8JYJtnN7y1lcUryqtLWJ9eOjY1JPH6B4AYAMhyj0Ga36gxCcunY2Ehwk5rMAQAgFXIpCMmE6zcNigEACEgjZvwfGhQDAIBAoeQGAIA0VDvVZFVVWY5VixHcAABQww2Ga7KnU0mO9aoSqqUAAKjBB2NWx8M0U5m+ICC4AQCghh6MWZNP9C6rwXVlGoIbAKgEXRBmL/nWps//2v0N4gUCqX8wZk0+0XtODj89nDY3AJCkXGzDgNQ8GLMmn+i9JoefHk7JDQAkIVfbMCA1D8asySd6t8jhJ8sT3ABAgnK5DQNS82DM6nqYZiy9a3BdmYbgBgASlMttGJCap3PX5BO983P4yfIENwCQoFxuw4DY1MZKT/YuLoys2tH7eE/8rsx3KuvYGlxXJqFBMQAkKJfbMCA+BQgDOhcnNQJwZb5TWcfW4LoyBcENACTZhkGNh2O1qsn73x1xENswIPUPxqzJh2nm59iDO6mWAoAE5XIbBiCbENwAQBJytQ0DkE2olgKAJOViGwYgmxDcAEAl5FobBiCbUC0FAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUOgtBUdPMU5Ht9bKrDddaU0FP+2rSr+377bssGYN61lx48htqOr2JfL96Hl6tGtqc79an9I8DV9HUYN6bpS7dZu3p32fZdLxEzoeNm6z7zZvt2YN6lpx4W5Zc0zXxPEcvq5/L/nWZn+xzg2ZqJ5qvdo3S/i4rcn9nknHWK5uD8ENrGTBShv70scRTzvWEPMaabU6BySrzHrTldZUiJX26G2QqmxfIvkTax6dp3aGPU+gqnla3rYmuvxELpypSFdx43p2Vu89rX1Rg2oLJhNNSyryf8ePO+2J2V/aV99ttXbN6tu5fdtb3dq1YgYK7y5ZZ99s+N4FVM0a1LGiRgXWolE9+/GHnfb8B1/b1h1lLoAY0u+nZfjbq/Q/M3eFmyde+iV6GxXAjT35ACtqWC/hAHzp2s320Ftf2NYdO0Of3/vGYsvLM/MqOG61nHtfX2yPvbPUNnz/Q9z9nqoAP5vPUanYnkwJhPI8L/zQCL6NGzdaYWGhlZaWWuPGjS3X6cAdPmXeLs/J8Q/F6hpxtTLrTVdaUyFe2hOR6PYlkj+SSDqqkqeJbGtFy6+OC3+i+yDVwWRV8ijZ/B8/42N7+K2lEYGqrivDDtvLRh3fObTukdM+sg1bf7rQV0RBxIWH7WXd92xabtBaWYkE4Aml839//XxLZltTEeBn8zkqFdtT3YFdMtdvgpscpgj70Ntej3sC8R8C+Pa1P09p5F2Z9aYrralQUdoTUdH2JZI/LRvXc/9TFUgq1lnVbY23/Oq48CebrlQFk/HubBNNS6sk8l+BzYP/Whr384sO/7/g5LdT5lmmqUwAXtFxdeMJ+9vFT/43JWlK5DjL5nNUKranJgK7ZIIbGhTnMBUdlneC1UGqzzVfutebrrSmQkVpT0RF25dI/qzauD3hwCaRdVYmHRUtXydU3fklcmHTfJq/OtJV0fLLS2dF308mLYnmv6qiVGJTHn0++oUFlon8XLrpxYV204uJ7f/ylqV8u2F61bY1keMgXDafo6q6PVX5PVQXgpscpjrRVM5XnetNV1pTIZVpires6tzuZJZdmXSEfyfRC3+yF4pk05WKYDLe95NNSyLzq41NRdcNfb5m8w7LVJUJwMvz3ZYfUpKmRI+zbD5HVXV7MjGwI7jJYWrslcr5qnO96UprKqQyTfGWVZ3bncyyK5OO8O9Ux4W/sukqb/lVuZAlm5ZE5lfjYVSfRPZ3Np+jqro9mRjYEdzkMLViV51+vNpfTdfnmi/d601XWlPBT3tVVLR9ieSPeoeot1Gitf2VydOK0lHR8qvjwp9suhJZflUuZMmkJdH8V68o/B/la/MGdVOaHYns72w+R1V1ezIxsCO4yWFqBOZ314w+gP33+jzVjd8qs950pTUV/LQnE1Qku32J5M9NJx9gN50cex5LUZ6Wl45Elp9oIJjshSLRdCW6/KpcyMLTUlEaEs1/dfeuaDZ93qJhai/6qVSZADzWMmTcKV0qFcxW5TjL5nNUVbcnEwO7jAhuJk2aZO3bt7eCggLr06ePzZkzp9z5n3nmGdtvv/3c/AceeKDNmDGjxtIaNGq9rlbsavUeTu+rs9tiZdabrrSmgp/2eBduTX/gnIPdq7Lbl0j+xJsn+nxblTyNt45Elp9MIJjshSKRdKUymCzv+4kcD8nkv8agUXfv8ujzm0/tYjXBP57VQysRlQnAyzuuju/aKqlgtrw0JXOcZfM5qirbk4mBXdq7gk+dOtUGDx5sDzzwgAtsJk6c6IKXRYsWWYsWLXaZ/91337XDDz/cxo8fbyeeeKI9+eSTdtttt9m8efOsS5eKf7iMcxMbIxTXDEYoTmyE4uoa4C58H6j+/8t1W+2pOcsiGrHWxDg31TVCcbrHuTlq3yK78PBOEemf8eE3rudSeAPfisaUqWicm4b1atsFh+5lFx/VqdyB92Itp8ludezQvYvs/S/XR+z3VA5kmSkD2aVKotvDODdhFND06tXL7r33Xvd+586d1rZtW7vsssts5MiRu2TeoEGDbMuWLfbyyy+Hph1yyCHWrVs3FyBVhOAGyA7VMUJxeeupzsdd1KSaGqH4m/Vbbf6KDe7evH3z2OupyuM+Ih7f0bCe63Kzbkvyj++It39q4hEkuaisGn8PWTOI344dO6x+/fr27LPP2qmnnhqaPmTIENuwYYNNnz59l+/sueeeNmLECLvyyitD08aMGWMvvPCCffDBBxWuk+AGAIDsk8z1O63Pllq3bp2VlZVZy5YtI6br/aeffhrzO6tWrYo5v6bHsn37dvcKzxwAABBcGdGguDqpbY4iPf+lKi8AABBcaQ1uioqKLD8/31avXh0xXe+Li4tjfkfTk5l/1KhRrgjLfy1fvjyFWwAAADJNWoObunXrWo8ePWzmzJmhaWpQrPd9+/aN+R1ND59fXnvttbjz16tXz9XNhb8AAEBwpbXNjahxsBoQ9+zZ03r37u26gqs31NChQ93n6ibepk0bV70kV1xxhR1xxBF255132gknnGBPP/20vf/++/bQQw+leUsAAEAmSHtwo67da9eutdGjR7tGwerSXVJSEmo0vGzZMqtV66cCpn79+rmxbW644Qa77rrrbO+993Y9pRIZ4wYAAARf2gfxq2l0BQcAINjX78D3lgIAALmF4AYAAARK2tvc1DS/Fo7B/AAAyB7+dTuR1jQ5F9xs2rTJ/WUwPwAAsvM6rrY35cm5BsUaR+ebb76xRo0aWZ4edVtBlKggSAP/MT4O+cGxwe8kEZw3yAuOi+r5nShcUWDTunXriF7UseRcyY0yZI899kjqOwz+R35wbPA7SRbnDfKC4yL1v5OKSmx8NCgGAACBQnADAAACheCmHHou1ZgxY9xfkB8cG/xOEsF5g7zguEj/7yTnGhQDAIBgo+QGAAAECsENAAAIFIIbAAAQKAQ3AAAgUHI+uJk0aZK1b9/eCgoKrE+fPjZnzpxyM+yZZ56x/fbbz81/4IEH2owZMyxX82PhwoV2+umnu/k12vPEiRMtV/Pi4YcftsMOO8yaNm3qXv3796/wWApqXkybNs169uxpTZo0sQYNGli3bt3siSeesFw+b/iefvpp91s59dRTLRfz4vHHH3fbH/7S93L1uNiwYYNdcskl1qpVK9draJ999gnUNWVSEvlx5JFH7nJs6HXCCSdUbuVeDnv66ae9unXrepMnT/YWLlzoDRs2zGvSpIm3evXqmPO/8847Xn5+vnf77bd7H3/8sXfDDTd4derU8T766CMvF/Njzpw53tVXX+099dRTXnFxsXf33Xd7QZFsXpx99tnepEmTvP/+97/eJ5984p133nleYWGht2LFCi/X8uKNN97wpk2b5n4jixcv9iZOnOh+NyUlJV4QJJsfvqVLl3pt2rTxDjvsMO+UU07xcjEvHnvsMa9x48beypUrQ69Vq1Z5uZgX27dv93r27Okdf/zx3ttvv+2Oj1mzZnnz58/3cjE/vv3224jjYsGCBe68oWOmMnI6uOndu7d3ySWXhN6XlZV5rVu39saPHx9z/l/96lfeCSecEDGtT58+3kUXXeTlYn6Ea9euXaCCm6rkhfz4449eo0aNvD//+c9erueFdO/e3d0MBEFl8kPHQ79+/bxHHnnEGzJkSGCCm2TzQhcqBf1BlGxe3H///V6HDh28HTt2eEHUu4rnDV1PdA7dvHlzpdafs9VSO3bssLlz57rqg/DnTun97NmzY35H08Pnl4EDB8adP+j5EVSpyIutW7faDz/8YM2aNbNczgvdQM2cOdMWLVpkhx9+uGW7yubHzTffbC1atLDzzz/fgqKyebF582Zr166de2jiKaec4qq3czEvXnzxRevbt6+rlmrZsqV16dLFbrnlFisrK7NstyMF59BHH33UzjzzTFe1XRk5G9ysW7fOHUQ6qMLp/apVq2J+R9OTmT/o+RFUqciLa6+91j25NjoYzpW8KC0ttYYNG1rdunVdnfk999xjAwYMsGxXmfx4++233Yla7bKCpDJ5se+++9rkyZNt+vTpNmXKFNu5c6f169fPVqxYYbmWF1988YU9++yz7ntqZ3PjjTfanXfeaX/4wx8s18+hc+bMsQULFtgFF1xQ6TTk3FPBgep26623uoajs2bNClRjyWQ0atTI5s+f7+7SVXIzYsQI69Chg2s0mEs2bdpk5557rgtsioqKLNeppEIvnwKb/fff3x588EEbN26c5RIFdirNe+ihhyw/P9969OhhX3/9td1xxx3usQS57NFHH3Uddnr37l3pZeRscKMTjQ6o1atXR0zX++Li4pjf0fRk5g96fgRVVfJiwoQJLrj55z//aV27drVczQsVQXfq1Mn9X72lPvnkExs/fnzWBzfJ5seSJUvsyy+/tJNOOinioia1a9d21XUdO3a0XD1n1KlTx7p3726LFy+2bFaZvFAPKW2/vudToKeSDVXrqNQzWxVV4djYsmWLuzlUVW5V5Gy1lA4cRcq6qww/6eh9+J1FOE0Pn19ee+21uPMHPT+CqrJ5cfvtt7u7z5KSEtcVOghSdVzoO9u3b7dcyw8NG/HRRx+5Uiz/dfLJJ9tRRx3l/q92J7l8bKjqQvmjC302q0xe/OxnP3NBnR/symeffebyIpsDm6oeGxpuReeKc845x6rEy2HqqlavXj3v8ccfd91WL7zwQtdVze+aeO6553ojR46M6Apeu3Ztb8KECa6775gxYwLXFTyZ/FBXRnV91qtVq1auW7j+//nnn3u5lhe33nqr6/b47LPPRnRn3LRpk5dreXHLLbd4r776qrdkyRI3v34v+t08/PDDXhAkmx/RgtRbKtm8GDt2rPfKK6+4Y2Pu3LnemWee6RUUFLiuwrmWF8uWLXO9gS699FJv0aJF3ssvv+y1aNHC+8Mf/uDl8u/k0EMP9QYNGlTl9ed0cCP33HOPt+eee7oLk7qu/fvf/w59dsQRR7gTUbi//e1v3j777OPmP+CAA7y///3vXq7mh8ZlUHwc/dJ8uZYX6gofKy8UAOdaXlx//fVep06d3EWradOmXt++fd2JLpfPG0ENbpLNiyuvvDI0b8uWLd0YL/PmzfNy9bh499133XAiCgLULfyPf/yjGzYgV/Pj008/dedN3RxVVZ7+qVrZDwAAQObI2TY3AAAgmAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwCV8vjjj1uTJk1yOvfy8vLshRdeqNF16llVWq8e31AV7du3t4kTJ2bc9gGpQHADpNl5553nLiJ66UF6LVu2tAEDBtjkyZMjnjuTiJtuusk9qDLVYl0IBw0a5J6FU930sE0/f/RS/vzyl7+0r776qsbWGf3K9geAAkFHcANkgGOPPdZWrlzp7sr/8Y9/uAcrXnHFFXbiiSfajz/+aJlot912sxYtWtTIuoYNG+by55tvvrHp06fb8uXLq/5gvXJMmzbNrU+vOXPmuGl60rs/TZ9XhgaEz9T9CQQJwQ2QAerVq2fFxcXWpk0bO/jgg+26665zF3EFOqr+8W3YsMEuuOAC23333a1x48b285//3D744AP3meYbO3ase++XMPjfLe97vpdeesl69eplBQUFVlRUZKeddpqbrlIKlZL87ne/Cy03XrXU/fffbx07dnRPBd53333tiSeeiPhc333kkUfcsuvXr2977723vfjiixXmj+ZV/uiJyYcccohdeumlNm/evIh53nzzTevdu7fLS803cuTIUCDxl7/8xRo2bGiff/55aP6LL77YPbV769atu6yvWbNmbn16Kc+kefPmoWn63Ldu3bq42zNr1iy3zdqPekqy0vb222+7Ernx48fbXnvt5YLEgw46yJ599tnQ99avX2+//vWv3br1uZb72GOPRaTxiy++cEGw1qvvz549O+Lz5557zg444AC3TpW83XnnneXmsfLm8MMPd/u/c+fO9tprr1W4X4CMVeWnUwGokvIepHjQQQd5xx13XOh9//79vZNOOsl77733vM8++8y76qqrvObNm3vffvutt3XrVvdeD3T1n0quaRV9T/RE4vz8fG/06NHuCb7z5893T/cWzbPHHnt4N998c2i58thjj3mFhYWhtE2bNs2rU6eON2nSJPeU4zvvvNMt8/XXXw/No1OOlvXkk0+6p8dffvnlXsOGDUPpiEUP2LviiitC7zWvtuWoo44KTVuxYoVXv3597+KLL/Y++eQT7/nnn/eKiooiHlz6y1/+0uvVq5f3ww8/uO1VWt9///0K94//gFg98T5aRdvzxhtvuHm6du3qHga4ePFi95me/Lzffvt5JSUl7gnZyks9PHHWrFnue5dcconXrVs3t7+0/tdee8178cUXI9Kj72s7lNdnnHGGe3irtk20XbVq1XL7TJ9r+bvttpv769P8d999t/t/WVmZ16VLF+/oo492+/7NN9/0unfv7tajvASyDcENkMHBzaBBg7z999/f/f+tt97yGjdu7G3bti1ino4dO3oPPvig+78u5gqIwiXyPT25+9e//nXcNIZfCH3RwU2/fv28YcOGRcyjgEJPfvbpYnnDDTeE3m/evNlN+8c//lFucKNApEGDBi6A0fz77LOPu8j7rrvuOm/ffff1du7cGZqmIEuBhi7c8t1337lAZPjw4e6J1HoCcyIqCm7K2x4/uHnhhRdC82g/aDv0ROhw559/vnfWWWe5/yt4Gzp0aLnpeeSRR0LTFi5c6KYpsJOzzz7bGzBgQMT3rrnmGq9z584x9+krr7zi1a5d2/v6669Dn2sbCG6QraiWAjKYrp9+NZCqkTZv3uyqR1TF4r+WLl1qS5YsibuMRL6nnjdHH310ldL6ySef2M9+9rOIaXqv6eG6du0a+n+DBg1cNdmaNWvKXbaqaJRGbYuqdTp16mTHHHOMbdq0KbTuvn37hvLKX7e2e8WKFe5906ZN7dFHHw1VnanaKhUS2Z6ePXuG/r948WJXFaZG4+H7Q1Vn/v4YPny4Pf30065x+O9//3t79913y12vquHEX2+8faGqp7Kysl2Wpfnbtm1rrVu3Dk1TfgLZqna6EwAgPl101C5DdKHWRUztOKKV1yU7ke+pXUdNUY+wcApIKuoVVlhY6AIa0V8FKdqmqVOnurZEifrXv/5l+fn5rlHwli1brFGjRlYT26OgJ3x/yN///nfXxiqc2sfIcccd59o5zZgxw7V9UeB5ySWX2IQJE2Ku1w/qku1dBwQVJTdAhnr99dfto48+stNPP929V0PjVatWWe3atd0FPvylBsCihrzRd+aJfE+lADNnzoyblljLjbb//vvbO++8EzFN79U4NdUUoMj3338fWrca1P5fTdFP61bwsscee7j3Kv247bbbXMNplZSoUXI6KD8UxCxbtmyX/aHSE58aEw8ZMsSmTJniuuE/9NBDCa8j3r7YZ599QnkXPb96oCno8/373/+u9DYC6UbJDZABtm/f7gIQBRCrV6+2kpIS15tGXcEHDx7s5unfv7+rKjj11FPt9ttvdxcqdY1WCYB666jqQ71iVN2kKhxd1HVxT+R7Y8aMcaUDqq4588wzXS8jlRpce+21bt1arko99JkuzH5QFO6aa66xX/3qV9a9e3e3TgUR6jKtLtRVpWoc5Y8of8aNG+d69ahqyu/5pADgsssuc0HLokWL3DaNGDHCatWq5aqvzj33XLv88stdqYjyRj3DTjrpJDvjjDOsJmmfXH311a73mUpaDj30UCstLXXBh6q0FNCMHj3a9a5SbycdGy+//LILQBJ11VVXue1TPmk8IgV+9957r913330x59f+0nGhdd9xxx22ceNGu/7661O41UANS3ejHyDXqUGxfop6qVHn7rvv7no3TZ48OdQY1rdx40bvsssu81q3bu0a2bZt29Y1BF62bFmoserpp5/uNWnSxC3P7x1T0ffkueeecz106tat63oa/eIXvwh9Nnv2bNfjRz16/NNGdINiue+++7wOHTq4dajR71/+8peIz2M1UNUywnvxxGpQ7OePXk2bNnXTwnthiXoaqTeU0l9cXOxde+21od5Dapx74IEHRjSqVm+uZs2auZ5WVWlQXN72+A2K169fHzGPGj5PnDjRNYJWXmmfDxw40PVSknHjxrmG5OrhpDSqwfkXX3wRNz1avqZpfb5nn33WNSDW8vfcc0/vjjvuKLeRuHpVHXrooS7/tO/Uk4sGxchWefqnpgMqAACA6kKbGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAAALkv8Ppxpa0o1qbKoAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAPeCAYAAADd/6nHAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAA6S9JREFUeJzs3Ql8FOX9x/FfDnKQkHDfCOVQiwgICOJZ60HrUa20RdsKpUpba72obaW14llvS1XqfbRaq1Vpba1/akWtF60KHniDihxyKiQhhoQk8399nzBxd9kku8lmdrP7eb9eS9jZ2TmemZ35zW+e55ksz/M8AwAAAAAAAAKUHeTMAAAAAAAAACEpBQAAAAAAgMCRlAIAAAAAAEDgSEoBAAAAAAAgcCSlAAAAAAAAEDiSUgAAAAAAAAgcSSkAAAAAAAAEjqQUAAAAAAAAAkdSCgAAAAAAAIEjKYWk27Ztm5166qnWt29fy8rKsrPPPtsN37Bhg33jG9+wHj16uOHz5s2zjr5Omebuu+92679y5UpLRVouLZ+Ws70MGTLEvve97yV0esccc4ylikQvTzzbROWq+QMAiKfSWarHU6lIMUJxcbGl8/LEGmOy/yDVkZRCu/APfk29/vvf/zaO+5vf/MaNf9ppp9k999xjJ598sht+zjnn2L/+9S+bM2eOG/6Vr3wl4cupef/tb39rl+lGW6emTih+uWRnZ1vXrl1t7733th/84Af2v//9r03L8fvf/75dEy7tXY5tEVquevXu3dsOOugg++tf/2qpRMFEc78V/5XIxBbaT11dnd111132pS99ybp37275+fluX5w5c6a9/PLLrTpGRn5WUlJihxxyiP3zn/9kUwJpjniKeCrV4qmCggIbMWKE/exnP7NPP/00ZX4L/oubVR3H008/bSeccIK7iZ+Xl+di9WOPPdYWLFiwy83Kpl5XXHFF47iKvUI/KywstNGjR7uKDfX19UlaS8QiN6axgFa6+OKL7Qtf+MIuw4cPH974/yeffNL2228/mzt3btg4Gn7cccfZueee267JFNXGOv744xM63abWqSljx461n/70p+7/FRUV9vbbb9uDDz5ot912m0vOXXfdda1OSvXs2bPdExpNlaOScSeeeKK7ME+G0HL9+OOP7ZZbbnEnv5tuusl+9KMf2eDBg62qqso6depkyfLDH/7QDj/88Mb3H374oV1wwQUuKakkmm/YsGFJWkLESvuS9q+FCxfawQcfbL/85S9dYkoB1V/+8hf7wx/+YKtWrbKBAwfGdYyUI444wqZPn26e59lHH33k9mEFbv/3f/9nU6ZMYSMBaY54ingqVeKp7du325IlS9yF/n/+8x978cUXA1kGnVd1ozeUWiVMnDjRxUy+VKodhabpGknHNSU4FQsrJv/kk0/sscces6lTp9qf/vQn+/a3v904/kknnWRHHXXULtPZZ599wt4rxrr88svd/zdv3mz33Xefu5batGmTXXbZZWySFEVSCu3qq1/9qk2YMKHZcTZu3GgjR46MOly1hjqiptapKQMGDLDvfve7YcOuvPJKdzD+7W9/6w7YqnXV0eTk5LhXskSWqy7qdbGvMlVSyr/jl0yTJ092L59q0ygppWGR+0RbVVZWWlFRUUKnic/prrESUtq/IpvsKvjS8NYcI2X33XcP2x8UsOkY87vf/Y6kFJABiKdiQzzVPiLLVckgJX+uueYaW758uYtT29vQoUPdK5RiOQ1LdLxUW1vratao9g4S76GHHnIJKd3QVtIo9OawYim1lNmxY0fYd8aNGxfTdi4tLQ0bT/vInnvuaTfccIObZzKvS9A0mu8hqVU2lRRQzRA1Q/GrWvrVc1UjYP78+Y3DfVu3bnUXfIMGDXJ3jJRkUAInslqm3uuCTU3hlHjo1auXawLoN6HRNHWRrtoLsTaRUrLplFNOsT59+rhpjhkzxn2/pXVqTR8AqnKqO0KqaaHMvsojdN10h2qvvfZyy6Hl0V2GLVu2NI6j6stvvvmmu4vlL4eqtQZZjk21YVcNLi275tu/f387/fTT3fKE0rKOGjXK3nrrLTv00EOtc+fOLii66qqrrLVUPfiLX/yi2z7R+i/S9tX6ad6h5b1ixQqXzJk2bVrjsOrqapdoULlpPVSOP//5z93wIDz33HPu7qC2iQKyP/7xj2Gf+2Wv7f/jH//YVYkOraGjGjaqiaX16tKlix199NFufwm1fv161+xM39M69uvXz9VejLY/t7Q88sEHH9g3v/lNt09re6o2YaxN0NQ8VPuDpq+/8TbDbO99bs2aNa4mnmo0RetDTkGQan2GboO20H6sWpDvv/9+QqYHoOMinmoe8VTi4yk/ppLc3NxdWgv48YVuLituUAsAn5q4Kz658847d6l1r+GqKZNIa9eudTX5lURTjKdzsZra+/xYUAk2xdaqma5YQeUl77zzjkueKHZRDKIbSX//+9/D5qEEykUXXeSScxpH/eEeeOCB9u9//zvu5RHF1aqZ5sfoe+yxh1u+0Ni0KYrlvvzlL7v9XjHHpZdeGlfTtZa2n1x44YWuzBQfK+bXeEoGKWb87LPPWpzHr3/9a1ee2geitVZQDfBE9Veq7bHvvvu6liiK85GaqCmFdlVWVuaqTobSQUwHa11UKemiKpU6aPrVglUN0++HyW+y4tOBTn2p6ICuJMxuu+1mL7zwgut3at26dWGdoSt5pAtz3V3UHR3d9Xj22WddXy06oWgekdV+m2sipaY5umjVAfgnP/mJa3KjJnY6GOvi9qyzzmpynXTSaQ2dsL7+9a/bHXfc4U6OuqgWrbvWTQf/M8880yVZbrzxRnvllVfs+eefdwd4lcUZZ5zhpvGrX/3KfU/Jq2SXo05kOnGryZpqf7377ruuKdJLL73UuOw+JdmUAFOTqG9961vuzsovfvELlyDT8sRLQcPq1avd/heNEjdaFiVOdEdFZasTubaxEjdKbIiGfe1rX3OJGK2ztvuyZctcTZj33nuv3fvX0j6oAEnbZsaMGe6krmUcP3584z7iU0JK+59qXynIEW0zfU8nfSUitT9ovRVAaR/y+2NQbRwFN9qPNEwncwVYaoIW2mdDLMujBxfsv//+bl4qV20DJTJVjtqu2s+b8vjjjzfWDFKVbFXv9pNlsQhin1OST7+N5vqPi/cY2dL3tKw06wQyA/EU8VQy4ynFT/65Ss33FCuoawk1qQttgv7EE0+46enmlJZPsbPiqQMOOMCWLl3a2Mei+gyaPXu2i/OVeFEMpXVRHBGtiVZrKdmjWGfSpEkuqaPlu/baa925M7IFgpJlWjfFdUoEKWmiGEjLriTeeeed5xI1ao6vpNLDDz/cGLtoXRWf+PFweXm5u3mrddY6xrM8SjwpNnrqqadceajppGoOqQaR4vZota5DbyYq8ah4xF/eW2+91SWoYhHL9gulfUnbX+uuz2+//XYXSyu2bIpq1inR9/3vf9/F1rFS/BgZL4kSYpGJ0Uh+4rGjtsDJCB7QDu666y6l8qO+8vPzw8YdPHiwd/TRR+8yDY17+umnhw275JJLvKKiIu+9994LG37eeed5OTk53qpVq9z7J5980n3/zDPP3GW69fX1jf/XtGbMmBHTOs2bN89N8957720cVlNT402ePNkrLi72ysvLW1ynaFoa97e//a2b7yOPPOLeP/vss+79n/70p7DxFi5cuMvwvfbayzvkkEN2mWZQ5ejvBx9++KF7v3HjRi8vL8878sgjvbq6usbxbrzxRjfenXfe2ThMy61hf/zjHxuHVVdXe3379vWmTp3qxVKums+mTZvc67XXXvNOPPFEN80zzjjDjaPl0nstZ6iTTjrJ69y5syufq6++2o3zt7/9rfHze+65x8vOznbbItTNN9/sxn3++efDliPWfUxeeumlqMsUOj19/swzzzQOU7nqd/XTn/50l7I/8MADvdra2sbhFRUVXteuXb1Zs2aFTXf9+vVeaWlp4/AtW7a472v9mxPr8px99tluvNAy07J84Qtf8IYMGdK4P0TbJmPHjvX69evnbd26tXHY448/7sbT/JsT1D53zjnnuO++8sorXqKPkRp2yimnuP1Y6/Pyyy97X/nKV2LaPgA6NuIp4qlUiKeinasOOOAAb/PmzWHj6nzdu3dv75NPPmkcpvhLMdP06dMbh61bt87r3r27d8QRR7hl2WeffbzddtvNKysri+v30Vwcr+FazosvvjhsuOY1fvz4xvd+3FFSUuLKNdRhhx3m7b333t727dvD4t/999/fGzFiROOwMWPGtBj3x7o8ijc13qWXXho23je+8Q0vKyvLW7FiRZMxph9r/e9//2scpnVSfBe6/zQl1u03d+5cN73vf//7Yd//+te/7vXo0aPZeeh6Rt/V9U0s/O3T1Gvx4sVh+/qee+7ZGPu/88473s9+9jM3XqzXZUgOmu+hXan5nWpWhL5Uo6C1VDNJVUq7devmsuX+S3eJdPfhmWeecePp7oUy4tE6Gg9tChgPVSdWVWV1tOfTXSjV+ti2bZtrJtUe/A4bVe3ULwNVkdWdl9AyUK0Ujas7K6lajroDU1NT45o36UmDvlmzZrknikU25dL6hLYLV9t+3YFSM7BYqIaNagnppaaWWm/VZGnuDo6o1pnKWLV/VMVY31H1ZZ+mo9pRaqMeWn6qLi2xbIO2UI2h0E7QtX6q2h2tXFS2oe3n9RtUzT7tx6HLrnF0585fdt1VU3mrWUhos9DWLo9+P9p2qo0Vun11R1J3sPxq8pFUc+/VV191NbC0TXza/2Ppty2ofU53RSWeu37xHCNVW1LlqjuQqqG4aNEi11xUd5oBpD/iqbYjnmp9PKX4wD9HPfroo65bCdUiUo0e1aYJPV+rprRqGfn09DOds0Ob5Sme9vdpxQ/6nmpZ67ycaOpTKJTmF229VSM7tGWDniyopmyqDaQY3I+XVFtbtZ1U40c1l0Q1cFQeGtbW5VE5KSbT9UUotb7QfarmrqP0XXWNoG3r0zp95zvfaXG54tl+za2LysePiRIZLylejIyX9IqMBVULy4/9FadfffXVbj8N4mnkaD2a76Fd6aAYSye+sdLB/vXXX2+yOZzfVlj9rKjfmNCDalvpiVdqKx56YStKTviftwclvEIP3ioDVePXxWk0sbSXTlY5+mWkhEUoBUeqKhxZhmqeFZn8UiJNyx5rEKW29JqG+lDQtoql6q7W9/rrr3fN+NTkUf+PLD+1r2+p/NqLmltGUrlESx5FPtnND5j8BFokPyBU1XUl7xQEqQwU5Kh9v5rT+v1IxLM82rbaHpFCfz/q8yKSv09E60RV+5Gqi6fCPueXm588TvQxUklRNRtWgk1NM9T3hqqyRx6PAKQn4qm2I55qfTylPgxDnxSsfih1XtXNOzXZUjP/ps63/rleTdBCH7iipwnee++97uaQEg6HHXaYJZrfF2pr4iV1TaAkkG5O6tVUvKemfepAW+dpPZREsYyaSuqGphI68S6PylGxd2TSJpbrjaZirWjbJNp349l+0eI/rYtofZpKMLY2XlIcGLoPNkVNDPX0cnW1oesYJVD15L1kP9gIzSMphQ5FBxhl61VDIBqdDNLNG2+8EfaIeJWBElJ6VGo0sfRf1VHKsaknZMTS0WO0ICoeOvn6J1Z1Yh2azFL5qR8G9acQjfpHSJVyiexHwO/sUv1KRSaXJLRdvmoXHXvssa6PLJWHgjL1G6A7h6GP4G3rdkolrV0X3Y0T9Yuh/h8STckyf19Wfxvat5WkUt8R6iMEAOLRUeKARCKeSux52k8iqXa9klLxUo0a/6E5qi2tfTLRN1riedJaU/GSOiJXzaho/NhcfWspAfLII4+4WvpK1Knvp5tvvtn1M9Wa5UnXmCk0XmoPSpqFxv7qD0tP7vvlL3+5y01mpA6SUuhQ1BGg7nS1lGjQeLqIVtXb5mr5xNMEbfDgwe6OUuRJU9VE/c8TTeuqp4wpyeHfIdG6qUmSDrItdVzY1Polqxz9MlJnnKGP9VXtD3XW3toEUqItXLjQBRQK1pX8U9Ox//3vf40JG5XLa6+95gKy1jYHTRa/Y2wlNmMpb42v2lJ6qZaVEi7qlFN3N+Ohba/tHqml348/PFqV+GjTS9Y+p45BFZypXOLt7Lw19IACBbznn3++62i1o+2HAJKLeIp4qq3UmXZoDbTQ8220c71upoTWstFTcFVbRje79KAdPWQnlZqk+zGDuuqIJVZQnKxO3PVSmShRpc7CQ5NSsVA5Ks5X2YTWlorlekOfJSJeimX7tZYS3qqNpQSenu7tN6ttL6qtpm4Z9IRkJRij1e5H8lHvHx2K2nUvXry4sRZLKPWT458g1S5cWXo9yaO57L0OrpGPhW+KaifoqRYPPPBA4zDNT0+l0AFVT7NLJLXR18WtEkJ6ep5/0akyUL9Pl1xyyS7f0fKErk9T65esctRJXc2mdKci9PvqL0dNElUdPNm0Hv7TU9RESskpNRHT/0PLT/0IqHpwtO3mP+UuFelun6pOa330NJ1IquIsahqmp9BEXsQoQKquro57vvr9vPjii26/86mc9FQYVbVuqn+ofv36uUSYntSnfcSnfgSa6ocqGfucEsfqp0p3SHVMiKRktpJ5qnWXCEqQKlGoZqQK7AAgHsRTxFNt9Y9//MP9VZ+dkefr0JhQNdR0bgx9qp6e/qd4+oorrnBPiVNTPt1k0ROMU4Vu3ump20pmqL+lpuIlv9ZXKF0XqBZVa+Mlxfnq3zSUbkTpWqC5pyXqu3o6tuKt0OVsqnVFqHi2X1vpukJl5j/VO5Lmp77LEkU3mRXzNtXCAclHTSm0K3XG52f2Q+nR8KG1FmKlx6H+/e9/d33b+I+c14WtqoDqBKcOk5XJV5MWJXR0Iao7BmrbrYvCZ5991n2mZi+i7+tuhA5Sar+t9uTR2mKL2rvrxKT5LlmyxF1Ia5567K7u7sTbYV8oJTj8mie6u6KLbXWmrSSYLjxVK8Kn5Jfe686SOiQ88sgj3V0crae+o7sOauPvr58eD6x+lXRy1AlWfQklqxzVtFB3w3Qy0rTU8aDuyPz+97+3fffdN6yD6WQ566yz3IlS66OaL1pOnTRVhuovQMGXykSPBFYHj+oYXLXWFEBoX9dwJfsS2ZdaIikhpX1C66DqzAoEtV1WrVrl+nXQuigQUmCommC6cFHCSEkQ1drbsGGD+068FHT++c9/dsGUOu/UHUUFPqqtpA71m6uyr31dySN1kq5HCCtRq8TPXnvt1XiHtilB7nNKOqn6vtZPj7vW70v9K6hs9dvU/hFZdm05Ruq3e8EFF7i+v/R4agDpi3gqNsRT7RNPhZarahqrtrhiYsWKoU331Km0zvOTJ0+2U045xd2o0/laDypRrSG/H6bTTjstLI5U3KF4Sue15557LmX6S1Rn7Io91GWDbjzpvKw4SDfYdJNJ5SCKk5TAUjys+EbNEhVP++sXD3WboLLRDWnF44o7laTRDSh1q+DXeG8q+aLuGRTvKJ7VTWPd/PNbe7Qklu2XCNOmTXPXHOrv6ZVXXnEP39EyKv5WawU9zOW+++4L+45uEEerpa/y0PI2R9tHSTXdaFZXFD169EjYuiBBkvTUP2TwI4wjH/eux5lGe0ynxjv99NN3Ga7HyM+ZM8cbPny4exxuz5493aNZr7nmGq+mpqZxvNraWve4dD0aVOP16tXL++pXv+otWbKkcRw9KvTggw/2CgsL3fyaeqysb8OGDd7MmTPdPDVNPSY2dF1aWqeWHrWrR73qkbR77bWXN2vWrLBHuka69dZb3SNktexdunRxy/Lzn//c+/jjjxvHWb9+vVsOfa7p61GpQZZj5COMQx9ZrOl16tTJ69Onj3faaad5W7ZsCRtHy6pyiKRpq8xiKdeWtoH/mFl/G/qPqb322mvDxisvL3fT0yN//bLR3yuvvNItY35+vtetWze3PS666KKwRxpHPq63JS+99NIuv5FY1kvlFbp9/bLX9KJ56qmnvClTprjHBBcUFHjDhg3zvve973kvv/yy+1yPedbvT9tJj1zWeJMmTfL+8pe/tGp55P3333ePNO7ataub58SJE71HH3202W3ie/jhh70vfvGLrqxHjhzpLViwIOZ9Iah9zv+93H777d5BBx3kykzz03d13HjllVdadYxs6lgoF154oftc2xNA+iGeIp5KhXgq9PyUnZ3t9e7d2zvppJO8FStW7DL+E0884R1wwAEuJlRMe+yxx3pvvfVW4+cnnHCCi0tXrlwZ9j0/BlNsFSvFJ03FWBquzyPNnTvXzScy7lCsG41il+nTp3t9+/Z15TxgwADvmGOO8R566KHGcS699FIX0yi+0Xprm1x22WVh8XSsy+PH6Oecc47Xv39/N88RI0a45auvrw8bL1qM+frrr7ttrjhLy3rJJZd4d9xxR9T9J5qWtl/oMm/atClseFP7aVMWLVrkHXfccW5/ys3NddcYmp/2hcjt09QrdP2b2tfl6aefduNr2ZF6svRPohJcAAAAAAAAQCxSo24kAAAAAAAAMgpJKQAAAAAAAASOpBQAAAAAAAACR1IKAAAAAAAAgSMpBQAAAAAAgMCRlAIAAAAAAEDgci3D1NfX28cff2xdunSxrKysZC8OAABIcZ7nWUVFhfXv39+yszP3fh4xFAAASHT8lHFJKSWkBg0alOzFAAAAHczq1att4MCBlqmIoQAAQKLjp4xLSqmGlF8wJSUlyV4cAACQ4srLy90NLT+GyFTEUAAAINHxU8Ylpfwme0pIkZQCAADxxhCZihgKAAAkOn7K3I4RAAAAAAAAkDQkpQAAAAAAABA4klIAAAAAAAAIHEkpAAAAAAAABI6kFAAAAAAAAAJHUgoAAAAAAACBIykFAAAAAACAwJGUAgAAAAAAQOBISgEAAAAAACBwJKUAAAAAAAAQOJJSAAAAAAAACFxu8LNMX/X1nq38pNIqttdal4JcG9KjyLKzs5K9WAAAAAAAtBrXumgvJKUS5I21Zfbw0jW2YuM2q95Rb/mdsm1472KbOm6gjRpQmqjZAAAAAAAQGK510Z5ISiXoR3r9ouX2aWWN9SsttMLSHKuqqbNla8ps7ZYqO/OwESSmAAAAAAAdCte6aG/0KZWAaoyqIaWElGpGFRfkWk52lvur9xq+YOlaNx4AAAAAAB0B17oIAkmpNlIfUmqypxpSWVnh/UfpvYYv31jhxgMAAAAAoCPgWhdBICnVRurUXH1IFeblRP1cw/W5xgMAAAAAoCPgWhdBICnVRnrKnjo1Vx9S0Wi4Ptd4AAAAAAB0BFzrIggkpdpoSI8i13fUurIq87zwfqP0XsNH9O7ixgMAAAAAoCPgWhdBICnV1gLMzrKp4wZa96I817fUtu21Vlfvub96r+EnjBvgxgMAAAAAoCPgWhdBICmVAKMGlNqZh42wvQeW2taqGlu5udL9HT2wqxuuzwEAAAAA6Ei41kV7o6OjBP5YR/YrcU8oUIdwan+r6o7x1pDSYzfbOg0AAAAAAFLpWheJV58G+QOSUgmkjT+0V3Grv//G2jJ7eOka1+xPT+xTB+nqr0rNA6ltBQAAAADoiNe6SLw30iR/kBLN9+bPn29DhgyxgoICmzRpkr344otNjnv33XdbVlZW2EvfS4cd6vpFy23ZmjLrWphnQ3oWub96r+H6HAAAwEf8BABAZnojjfIHSU9KPfDAAzZ79mybO3euLV261MaMGWNTpkyxjRs3NvmdkpISW7duXePro48+so5e5U4Zzk8ra1xms7gg13Kys9xfvdfwBUvXuvEAAACInwAAyEz1aZY/SHpS6rrrrrNZs2bZzJkzbeTIkXbzzTdb586d7c4772zyO6od1bdv38ZXnz59rCNTG1BVuetXWujWLZTea/jyjRVuPAAAAOInAAAy08o0yx8kNSlVU1NjS5YsscMPP/zzBcrOdu8XL17c5Pe2bdtmgwcPtkGDBtlxxx1nb775pnVk6pRMbUAL83Kifq7h+lzjAQCAzEb8BABA5kq3/EFSk1KbN2+2urq6XWo66f369eujfmePPfZwtageeeQRu/fee62+vt72339/W7NmTdTxq6urrby8POyVatRLvjolq6qpi/q5hutzjQcAADJbEPFTR4mhAADINF3SLH+Q9OZ78Zo8ebJNnz7dxo4da4cccogtWLDAevXqZbfcckvU8S+//HIrLS1tfKl2VarRYxvV9nNdWZV5Xni7T73X8BG9u7jxAAAA2jt+6igxFAAAmWZImuUPkpqU6tmzp+Xk5NiGDRvChuu9+oqKRadOnWyfffaxFStWRP18zpw5VlZW1vhavXq1peLjNfXYxu5Fea5t6LbttVZX77m/eq/hJ4wb4MYDAACZLYj4qaPEUAAAZJrsNMsfJDUplZeXZ+PHj7dFixY1DlN1cr3XHb1YqPr6smXLrF+/flE/z8/Pd0/rC32lolEDSu3Mw0bY3gNLbWtVja3cXOn+jh7Y1Q3X5wAAAEHETx0phgIAINOMSqP8QdIbGc6ePdtmzJhhEyZMsIkTJ9q8efOssrLSPY1PVNV8wIABrgq5XHzxxbbffvvZ8OHDbevWrXb11VfbRx99ZKeeeqp1dNpxRvYrcb3kq1MytQFVlbuOkuEEAADBIH4CACCzjUqT/EHSk1LTpk2zTZs22QUXXOA651RfBwsXLmzsvHPVqlXuiXy+LVu22KxZs9y43bp1c3cKX3jhBRs5cqSlA+1AQ3sVJ3sxAABACiN+AgAA2WmQP8jyInvGSnN6cow661TfCFRDBwAAxA7EUAAAIDm5lw739D0AAAAAAAB0fCSlAAAAAAAAEDiSUgAAAAAAAAgcSSkAAAAAAAAEjqQUAAAAAAAAAkdSCgAAAAAAAIEjKQUAAAAAAIDAkZQCAAAAAABA4EhKAQAAAAAAIHAkpQAAAAAAABA4klIAAAAAAAAIHEkpAAAAAAAABI6kFAAAAAAAAAJHUgoAAAAAAACBIykFAAAAAACAwJGUAgAAAAAAQOBISgEAAAAAACBwJKUAAAAAAAAQOJJSAAAAAAAACBxJKQAAAAAAAASOpBQAAAAAAAACR1IKAAAAAAAAgSMpBQAAAAAAgMCRlAIAAAAAAEDgSEoBAAAAAAAgcCSlAAAAAAAAEDiSUgAAAAAAAAgcSSkAAAAAAAAEjqQUAAAAAAAAAkdSCgAAAAAAAIEjKQUAAAAAAIDAkZQCAAAAAABA4EhKAQAAAAAAIHAkpQAAAAAAABA4klIAAAAAAAAIHEkpAAAAAAAABI6kFAAAAAAAAAJHUgoAAAAAAACBIykFAAAAAACAwJGUAgAAAAAAQOBISgEAAAAAACBwJKUAAAAAAAAQOJJSAAAAAAAACBxJKQAAAAAAAASOpBQAAAAAAAACR1IKAAAAAAAAgSMpBQAAAAAAgMCRlAIAAAAAAEDgSEoBAAAAAAAgcCSlAAAAAAAAELjc4GeJ9lZf79nKTyqtYnutdSnItSE9iiw7O4uCBwAAAMA1BoCUQVIqzbyxtsweXrrGVmzcZtU76i2/U7YN711sU8cNtFEDSpO9eAAAAAA6GK4xALQXklJpdrK4ftFy+7SyxvqVFlphaY5V1dTZsjVltnZLlZ152AgSUwAAAAC4xgCQEuhTKo2a7KmGlBJSqhlVXJBrOdlZ7q/ea/iCpWvdeAAAAADANQaAZCMplSbUh5Sa7KmGVFZWeP9Req/hyzdWuPEAAAAAgGsMAMlGUipNqFNz9SFVmJcT9XMN1+caDwAAAAC4xgCQbCSl0oSesqdOzdWHVDQars81HgAAAABwjQEg2UhKpYkhPYpc31HryqrM88L7jdJ7DR/Ru4sbDwAAAAC4xgCQbCSl0kR2dpZNHTfQuhflub6ltm2vtbp6z/3Vew0/YdwANx4AAAAAcI0BINlISqWRUQNK7czDRtjeA0tta1WNrdxc6f6OHtjVDdfnAAAAAMA1BoBUQAdDaUaJp5H9StxT9tSpufqQUpM9akgBAAAA4BoDQCohKZWGlIAa2qs42YsBAAAAIE1wjQGgPdB8DwAAAAAAAIEjKQUAAAAAAIDMTErNnz/fhgwZYgUFBTZp0iR78cUXY/re/fffb1lZWXb88ce3+zICAACkEuInAADQ0SU9KfXAAw/Y7Nmzbe7cubZ06VIbM2aMTZkyxTZu3Njs91auXGnnnnuuHXTQQYEtKwAAQCogfgIAAOkg6Ump6667zmbNmmUzZ860kSNH2s0332ydO3e2O++8s8nv1NXV2Xe+8x276KKLbOjQoYEuLwAAQLIRPwEAgHSQ1KRUTU2NLVmyxA4//PDPFyg7271fvHhxk9+7+OKLrXfv3nbKKae0OI/q6morLy8PewEAAHRUQcRPQgwFAADSOim1efNmV+upT58+YcP1fv369VG/89xzz9kdd9xht912W0zzuPzyy620tLTxNWjQoIQsOwAAQLrGT0IMBQAA0r75XjwqKirs5JNPdgFVz549Y/rOnDlzrKysrPG1evXqdl9OAACAjhw/CTEUAABob7mWRAqMcnJybMOGDWHD9b5v3767jP/++++7Ds6PPfbYxmH19fXub25urr377rs2bNiwsO/k5+e7FwAAQDoIIn4SYigAAJDWNaXy8vJs/PjxtmjRorAgSe8nT568y/h77rmnLVu2zF599dXG19e+9jU79NBD3f9pmgcAANId8RMAAEgXSa0pJbNnz7YZM2bYhAkTbOLEiTZv3jyrrKx0T+OT6dOn24ABA1y/BgUFBTZq1Kiw73ft2tX9jRwOAACQroifAABAOkh6UmratGm2adMmu+CCC1znnGPHjrWFCxc2dt65atUq90SZTFRf79nKTyqtYnutdSnItSE9iiw7OyvZiwUAAJKM+AkAwPUi0kGW53meZZDy8nL3FD51el5SUmKp6o21Zfbw0jW2YuM2q95Rb/mdsm1472KbOm6gjRpQmuzFAwAgY3SU2KG9UQ4AkDq4XkS6xA1JrymF6AeY6xctt08ra6xfaaEVluZYVU2dLVtTZmu3VNmZh40gMQUAAAAAGYjrRaSTzGwXl+JVMFVDSgkp1YwqLsi1nOws91fvNXzB0rVuPAAAAABA5uB6EemGpFSKUR9SarKnGlJZWeH9R+m9hi/fWOHGAwAAAABkDq4XkW5ISqUYdWquPqQK83Kifq7h+lzjAQAAAAAyB9eLSDckpVKMnrKnTs3Vh1Q0Gq7PNR4AAAAAIHNwvYh0Q1IqxQzpUeT6jlpXVmWRD0bUew0f0buLGw8AAAAAkDm4XkS6ISmVYrKzs2zquIHWvSjP9S21bXut1dV77q/ea/gJ4wa48QAAAAAAmYPrRaQbklIpaNSAUjvzsBG298BS21pVYys3V7q/owd2dcP1OQAAAAAg83C9iHRCx0QpfKAZ2a/EPV1Bndmp7bCqalJDCgAAAAAyG9eLSBckpVKYElBDexUnezEAAAAAACmG60WkA5rvAQAAAAAAIHAkpQAAAAAAABA4klIAAAAAAAAIHEkpAAAAAAAABI6kFAAAAAAAAAJHUgoAAAAAAACBIykFAAAAAACAwJGUAgAAAAAAQOBISgEAAAAAACBwJKUAAAAAAAAQOJJSAAAAAAAACBxJKQAAAAAAAASOpBQAAAAAAAACR1IKAAAAAAAAgSMpBQAAAAAAgMCRlAIAAAAAAEDgSEoBAAAAAAAgcCSlAAAAAAAAEDiSUgAAAAAAAAgcSSkAAAAAAAAEjqQUAAAAAAAAAkdSCgAAAAAAAIEjKQUAAAAAAIDAkZQCAAAAAABA4EhKAQAAAAAAIHAkpQAAAAAAABA4klIAAAAAAAAIHEkpAAAAAAAABI6kFAAAAAAAAAJHUgoAAAAAAACBIykFAAAAAACAwJGUAgAAAAAAQOBISgEAAAAAACBwJKUAAAAAAAAQOJJSAAAAAAAACBxJKQAAAAAAAASOpBQAAAAAAAACR1IKAAAAAAAAgSMpBQAAAAAAgMCRlAIAAAAAAEDgSEoBAAAAAAAgcCSlAAAAAAAAEDiSUgAAAAAAAAgcSSkAAAAAAAAEjqQUAAAAAAAAAkdSCgAAAAAAAIEjKQUAAAAAAIDAkZQCAAAAAABA4EhKAQAAAAAAIHAkpQAAAAAAABA4klIAAAAAAAAIHEkpAAAAAAAABI6kFAAAAAAAADIzKTV//nwbMmSIFRQU2KRJk+zFF19sctwFCxbYhAkTrGvXrlZUVGRjx461e+65J9DlBQAASDbiJwAA0NElPSn1wAMP2OzZs23u3Lm2dOlSGzNmjE2ZMsU2btwYdfzu3bvbr371K1u8eLG9/vrrNnPmTPf617/+FfiyAwAAJAPxEwAASAdZnud5yVwA1Yzad9997cYbb3Tv6+vrbdCgQXbGGWfYeeedF9M0xo0bZ0cffbRdcsklLY5bXl5upaWlVlZWZiUlJW1efgAAkN5SMXYIOn5K1XIAAACpKda4Iak1pWpqamzJkiV2+OGHf75A2dnuvWpCtUT5tEWLFtm7775rBx98cNRxqqurXWGEvgAAADqqIOInIYYCAADtLalJqc2bN1tdXZ316dMnbLjer1+/vsnvKdNWXFxseXl57g7fDTfcYEcccUTUcS+//HKXnfNfuosIAADQUQURPwkxFAAASPs+pVqjS5cu9uqrr9pLL71kl112meuT6umnn4467pw5c1wQ5r9Wr14d+PICAAB0pPhJiKEAAEB7y7Uk6tmzp+Xk5NiGDRvChut93759m/yeqqgPHz7c/V9P33v77bfd3bwvfelLu4ybn5/vXgAAAOkgiPhJiKEAAEBa15RS9fHx48e7fg186qhT7ydPnhzzdPQd9XsAAACQ7oifAABAukhqTSlR1fEZM2bYhAkTbOLEiTZv3jyrrKy0mTNnus+nT59uAwYMcHfyRH817rBhw1wi6rHHHrN77rnHbrrppiSvCQAAQDCInwAAQDpIelJq2rRptmnTJrvgggtc55yqTr5w4cLGzjtXrVrlqpv7lLD68Y9/bGvWrLHCwkLbc8897d5773XTAQAAyATETwAAIB1keXoucAYpLy93T+FTp+clJSXJXhwAAJDiiB0oBwAA0D7xU4d8+h4AAAAAAAA6NpJSAAAAAAAACBxJKQAAAAAAAASOpBQAAAAAAAACR1IKAAAAAAAAgSMpBQAAAAAAgMCRlAIAAAAAAEDgSEoBAAAAAACgYyeltm/fbtdcc00iJwkAAJDWiJ8AAECmijsptWnTJnv00Uft8ccft7q6Ojdsx44d9rvf/c6GDBliV1xxRXssJwAAQIdF/AQAALCrXIvDc889Z8ccc4yVl5dbVlaWTZgwwe666y47/vjjLTc31y688EKbMWNGPJMEAABIa8RPAAAACagpdf7559tRRx1lr7/+us2ePdteeukl+/rXv26/+c1v7K233rIf/ehHVlhYGM8kAQAA0hrxEwAAQHRZnud5FqMePXrYs88+ayNHjrSqqiorLi62BQsW2HHHHWcdhWp5lZaWWllZmZWUlCR7cQAAQJrHDukQPwkxFAAASHTcEFdNqS1btljPnj3d/1UjqnPnzjZq1Kh4JgEAAJBRiJ8AAAAS0KeUqJne+vXr3f9Vyerdd9+1ysrKsHFGjx4d72QBAADSFvETAABAG5vvZWdnuw7Oo33FH66//lP5UhFVzwEAQJCxQzrET0IMBQAAEh03xFVT6sMPP4xndAAAgIxH/AQAAJCApNTgwYPjGR0AACDjET8BAAAkoKPzq666yj01xvf8889bdXV14/uKigr78Y9/HM8kAQAA0hrxEwAAQAL6lMrJybF169ZZ79693Xu1C3z11Vdt6NCh7v2GDRusf//+Kd0nAv0hAACAIGOHdIifhBgKAAAkOm6Iq6ZUZP4qjnwWAABARiJ+AgAASEBSCgAAAAAAAEgEklIAAAAAAABI7afvye23327FxcXu/7W1tXb33Xdbz549Gzs6BwAAAPETAABAQjs6HzJkiGVlZbU43ocffmipik46AQBAkLFDOsRPQgwFAAASHTfEVVNq5cqV8YwOAACQ8YifAAAAEtCn1JNPPmkjR450Ga9Iyn7ttdde9uyzz8YzSQAAgLRG/AQAAJCApNS8efNs1qxZUateqVrWD3/4Q7vuuuvimSQAAEBaI34CAABIQFLqtddes6985StNfn7kkUfakiVL4pkkAABAWiN+AgAASEBSasOGDdapU6cmP8/NzbVNmzbFM0kAAIC0RvwEAACQgKTUgAED7I033mjy89dff9369esXzyQBAADSGvETAABAApJSRx11lP3617+27du37/JZVVWVzZ0714455ph4JgkAAJDWiJ8AAACiy/I8z7M4qp+PGzfOcnJy7Cc/+Yntsccebvg777xj8+fPt7q6Olu6dKn16dPHUpWeHKhO2fW0wGgdtgMAACQydkiH+EmIoQAAQKLjhtyYp2jmgqUXXnjBTjvtNJszZ475+aysrCybMmWKC6xSPaACAAAIEvETAABAApJSMnjwYHvsscdsy5YttmLFCpeYGjFihHXr1i3eSQEAAGQE4icAAIAEJKV8SkLtu+++rf06AABAxiF+AgAAaGVH5wAAAAAAAEAikJQCAAAAAABA4EhKAQAAAAAAIHAkpQAAAAAAABA4klIAAAAAAAAIHEkpAAAAAAAABI6kFAAAAAAAAAJHUgoAAAAAAACBIykFAAAAAACAwJGUAgAAAAAAQOBISgEAAAAAACBwJKUAAAAAAAAQOJJSAAAAAAAACBxJKQAAAAAAAASOpBQAAAAAAAACR1IKAAAAAAAAgSMpBQAAAAAAgMCRlAIAAAAAAEDgSEoBAAAAAAAgcCSlAAAAAAAAEDiSUgAAAAAAAAgcSSkAAAAAAAAEjqQUAAAAAAAAAkdSCgAAAAAAAIEjKQUAAAAAAIDAkZQCAAAAAABA4EhKAQAAAAAAIDOTUvPnz7chQ4ZYQUGBTZo0yV588cUmx73tttvsoIMOsm7durnX4Ycf3uz4AAAA6Yj4CQAAdHRJT0o98MADNnv2bJs7d64tXbrUxowZY1OmTLGNGzdGHf/pp5+2k046yZ566ilbvHixDRo0yI488khbu3Zt4MsOAACQDMRPAAAgHWR5nuclcwFUM2rfffe1G2+80b2vr693iaYzzjjDzjvvvBa/X1dX52pM6fvTp09vcfzy8nIrLS21srIyKykpScg6AACAxKmv92zlJ5VWsb3WuhTk2pAeRZadnZW0Ik7F2CHo+ClVywEAAKRmrBVr3JBrSVRTU2NLliyxOXPmNA7Lzs52TfJUCyoWn332me3YscO6d+/ejksKAACC8MbaMnt46RpbsXGbVe+ot/xO2Ta8d7FNHTfQRg0oZSMQPwEAgDSKtZKalNq8ebO7U9enT5+w4Xr/zjvvxDSNX/ziF9a/f3+XyIqmurravUKzdQAAIDWDpOsXLbdPK2usX2mhFZbmWFVNnS1bU2Zrt1TZmYeNIDEVUPwkxFAAAKSXN1Iw1kp6n1JtccUVV9j9999vf/3rX10n6dFcfvnlrsqY/1LVdgAAkHrVyHXXTkGS7tYVF+RaTnaW+6v3Gr5g6Vo3Hto/fhJiKAAA0kd9isZaSU1K9ezZ03JycmzDhg1hw/W+b9++zX73mmuucUHV448/bqNHj25yPDUNVBtG/7V69eqELT8AAEgM9WugauS6a5eVFd6ngd5r+PKNFW68TBdE/CTEUAAApI+VKRprJTUplZeXZ+PHj7dFixY1DlNHnXo/efLkJr931VVX2SWXXGILFy60CRMmNDuP/Px816lW6AsAAKQWdbSpfg0K83Kifq7h+lzjZbog4ichhgIAIH1UpGisldQ+pWT27Nk2Y8YMFxxNnDjR5s2bZ5WVlTZz5kz3uZ4IM2DAAFeFXK688kq74IIL7L777rMhQ4bY+vXr3fDi4mL3AgAAHY+e/KKONtWvgaqRR9Jwfa7xQPwEAADSI9ZKemQ3bdo027Rpk0s0KcE0duxYdwfP77xz1apV7ol8vptuusk9te8b3/hG2HTmzp1rF154YeDLDwAA2k6PIlZ/Bupoc3h+cVi1cs/zbF1ZlY0e2NWNB+InAACQHrFWlqe5ZxA9fU8dnqt/KZryAQCQwk+EyWt4IoyCpO5FeUl7+h6xA+UAAEA6eCPAWCvW+KlDP30PAACkDwVBCob2HlhqW6tqbOXmSvdXd+2SlZACAABIF6NSMNZKevM9AAAAn4Khkf1K3JNf1NGm+jVQNfLs7PCnxAAAAKDjx1okpQAAQEpRUDS0Fw8vAQAASPdYi+Z7AAAAAAAACBxJKQAAAAAAAASOpBQAAAAAAAACR1IKAAAAAAAAgSMpBQAAAAAAgMCRlAIAAAAAAEDgSEoBAAAAAAAgcCSlAAAAAAAAEDiSUgAAAAAAAAgcSSkAAAAAAAAEjqQUAAAAAAAAAkdSCgAAAAAAAIEjKQUAAAAAAIDAkZQCAAAAAABA4EhKAQAAAAAAIHAkpQAAAAAAABA4klIAAAAAAAAIHEkpAAAAAAAABI6kFAAAAAAAAAJHUgoAAAAAAACBIykFAAAAAACAwJGUAgAAAAAAQOBISgEAAAAAACBwJKUAAAAAAAAQOJJSAAAAAAAACBxJKQAAAAAAAASOpBQAAAAAAAACR1IKAAAAAAAAgSMpBQAAAAAAgMCRlAIAAAAAAEDgSEoBAAAAAAAgcCSlAAAAAAAAEDiSUgAAAAAAAAgcSSkAAAAAAAAEjqQUAAAAAAAAAkdSCgAAAAAAAIEjKQUAAAAAAIDAkZQCAAAAAABA4EhKAQAAAAAAIHAkpQAAAAAAABA4klIAAAAAAAAIHEkpAAAAAAAABI6kFAAAAAAAAAJHUgoAAAAAAACBIykFAAAAAACAwJGUAgAAAAAAQOBISgEAAAAAACBwucHPEkh99fWerfyk0iq211qXglwb0qPIsrOzkr1YAAAAAIAUw/Vj65GUAiK8sbbMHl66xlZs3GbVO+otv1O2De9dbFPHDbRRA0opLwAAAAAA148JQFIKiEhIXb9ouX1aWWP9SgutsDTHqmrqbNmaMlu7pcrOPGwEiSkAAAAAANePCUCfUkBIlUvVkFJCSjWjigtyLSc7y/3Vew1fsHStGw8AAAAAkLm4fkwMklLATupDSk32VEMqKyu8/yi91/DlGyvceAAAAACAzMX1Y2KQlAJ2Uqfm6kOqMC8naplouD7XeAAAAACAzMX1Y2KQlAJ20lP21Km5+pCKRsP1ucYDAAAAAGQurh8Tg6QUsNOQHkWu76h1ZVXmeeH9Rum9ho/o3cWNBwAAAADIXFw/JgZJKcD/MWRn2dRxA617UZ7rW2rb9lqrq/fcX73X8BPGDXDjAQAAAAAyF9ePiUFSCggxakCpnXnYCNt7YKltraqxlZsr3d/RA7u64focAAAAAACuH9uOznGAKAeWkf1K3NMU1Hmd2gqraiY1pAAAAAAAXD8mDkkpIAoloIb2KqZsAAAAAADN4vqx9Wi+BwAAAAAAgMxLSs2fP9+GDBliBQUFNmnSJHvxxRebHPfNN9+0qVOnuvGzsrJs3rx5gS4rAABAqiCGAgAAHV1Sk1IPPPCAzZ492+bOnWtLly61MWPG2JQpU2zjxo1Rx//ss89s6NChdsUVV1jfvn0DX14AAIBUQAwFAADSQVKTUtddd53NmjXLZs6caSNHjrSbb77ZOnfubHfeeWfU8ffdd1+7+uqr7cQTT7T8/PzAlxcAACAVEEMBAIB0kLSkVE1NjS1ZssQOP/zwzxcmO9u9X7x4cbIWCwAAIKURQwEAgHSRtKfvbd682erq6qxPnz5hw/X+nXfeSdh8qqur3ctXXl6esGkDAAAEjRgKAACki6R3dN7eLr/8cistLW18DRo0KNmLBAAAkPKIoQAAQNompXr27Gk5OTm2YcOGsOF6n8hOzOfMmWNlZWWNr9WrVyds2gAAAEEjhgIAAOkiaUmpvLw8Gz9+vC1atKhxWH19vXs/efLkhM1HHaKXlJSEvQAAADoqYigAAJAuktanlMyePdtmzJhhEyZMsIkTJ9q8efOssrLSPY1Ppk+fbgMGDHDVx/2OPd96663G/69du9ZeffVVKy4utuHDhydzVQAAAAJDDAUAANJBUpNS06ZNs02bNtkFF1xg69evt7Fjx9rChQsbOz9ftWqVeyKf7+OPP7Z99tmn8f0111zjXocccog9/fTTSVkHAACAoBFDAQCAdJDleZ5nGURP31OH5+pfiqZ8AACA2IEYCgAAJCf3kvZP3wMAAAAAAEDqISkFAAAAAACAwJGUAgAAAAAAQOBISgEAAAAAACBwJKUAAAAAAAAQOJJSAAAAAAAACBxJKQAAAAAAAASOpBQAAAAAAAACR1IKAAAAAAAAgSMpBQAAAAAAgMDlBj9LAEAy1dd7tvKTSqvYXmtdCnJtSI8iy87OYqNQtgAAoANr7xiPGBLtgaQUAAQsmSf0N9aW2cNL19iKjduseke95XfKtuG9i23quIE2akBpIMuQrihbAACQrnFIKsY5JMnSA0kpAAhQMk/omvf1i5bbp5U11q+00ApLc6yqps6WrSmztVuq7MzDRpCYomwBAEAH094xXirGkKmYJEPr0KcUAATEP6HrBN61MM+G9Cxyf/Vew/V5e95J0olbwYRO2MUFuZaTneX+6r2GL1i61o0HyhYAAHQM7R3jpWIMmcyYGolHUgoAAtCaE7r+/8Gmbfba6q3ub1tO9mouuGLDNtdccEtljVVs32HmNUwvKyvL3fVavrHCjYdWlO3Gba4MVZahKFsASKxEnhuTMX2go8UhqRbnpGKSDG1D8z0ACEA8J/ShvYoTXiX51dVb7b2NFWaemc7ROnmXFOba0J7F1q0ozwrzcmxDeb3r5wrxUZlpG6kqezRBlS2dmwJId6nWZw792SAT4pBET7+tv5t4Y2qkPpJSABCAeE7oiW6374LsJWvcNIrzc62oU47V1ntu+p9Vl7lpdcrJdsG3ggPER2WmsnPlG6X8NLy9yzbVLtQAIN37zOG4iEyJQxI5/UT8blLlZiASh+Z7ABCA0BN6NP4JvSg/J6FVkv0qztt31FnfkgKrqat3w5WEKi3sZNtr61zzhHVlVTaidxd3twrxUZlp26gMvZ1NIn16395l2979KtBvA4BkS7U+czguIpPikERNP1G/m1hjam60dhwkpQAgALGe0CWR7fb9Ks79u3a2L/QqtvzcHCvfvsN21NW7Znx5Odm2rny7O3mfMG5AXNWn0UBlpjt83YvyXFlv215rdfWe+6v3Gt5eZZtqF2oAkO595nBcRKbFIYmYfiJ/N8m+GYjEIykFAAGI9YReWV3XUCU5r+kqyfo81irJjVWc83LcPFQ1Wn9rausblsHzrHOnHPsGzbDaROWqph17Dyy1rVU1tnJzpfs7emDXdn1McipdqAFAewk9lyXi3NiW6XNcRCbGIW2dfiJ/N8m8GYj2QechABAQ/4Tut6VXe3fVUNIJXSdPfa6mdInsFyCyHwCdqLt17uYCa9WW2lHn2Y66OhszqGs7rHFm0fYb2a+kTZ13pnvnpgDQ0fvM4biITI1D2jL9RP9uYomp0XGQlAKAALV0QverJKt9/fD84rC7SX6VZJ1wY62SHG16epUUdnLT04k8numhedqOQT7pJZUu1ACgvST63NiW6ev8zXERmRqHtHb67RFPJONmINoHzfcAIGD+CV21k/Q39OSZ6CrJVHFObx2lc1MASJc+czguAvFrr99NczE1Og6SUgCQ5v0CJKu/I2TWhRoAZEKfORwXgfjxu0FzsrzIVGWaKy8vt9LSUisrK7OSkpJkLw4ANElPIElkleRETw+pQ49R9vtVUJ8NqgKvO46J6lehvaef6ogdKAekjvY+l8U6/Uw/LgKtwe8ms5THmHshKQUAQBpIlQu1dERSinIAosnk4yLQWvxuMkd5jEkpeiYFACANpGrnpgCQrjguAvxu0Hb0KQUAAAAAAIDAkZQCAAAAAABA4EhKAQAAAAAAIHD0KQUAQBp3DBp0h6J0YAoAHEc5TyATEPMkBkkpAAA64COUh/cutqnjBjb76PHWfi/o5QQAZMZxNN3XD5mDfTlxSEoBAJDiQc/1i5bbp5U11q+00ApLc6yqps6WrSmztVuq7MzDRkQN5Fv7vaCXEwCQGcfRdF8/ZA725cSiTykAAFK4WrjuKCuA153k4oJcy8nOcn/1XsMXLF3rxkvE94JeTgBAZhxH0339kDnYlxOPpBQAJPGk9sGmbfba6q3uL4EYIqkvKDVx0B3lrKzwfqD0XsOXb6xw4yXie60V9PwAIN2k+3E03dcPmSMV9+X6Dn5NQfM9AEgC2qEjFuqcXH1uqIlDNIV5ObahvN6Nl4jvtVbQ8wOAdJPux9F0Xz9kjlTbl99Ig37aqCkFAElqh64+FLoW5tmQnkXur95ruD4HRE/LU3ChPjei0XB9rvES8b3WCnp+AJBu0v04mu7rh8yRSvvyG2lyTUFSCgACRDt0xGNIjyJ3t2tdWZV5XnhVbL3X8BG9u7jxEvG91gp6fgCQbtL9OJru64fMkSr7cn0a9dNGUgoAMrwdOlJXdnaWq37dvSjP7TfbttdaXb3n/uq9hp8wboAbLxHfC3o5AQCZcRxN9/VD5kiVfXllGl1TkJQCgGS0Q89ruh26PqdPBfjUH4Aek733wFLbWlVjKzdXur+jB3Zt9vHZrf1eawU9PwBIN+l+HE339UPmSIV9uSKNrilotAsASWqHruq1kehTAdEouBnZr8Td7VJwof1I1cJbugvX2u+1VtDzA4B0k+7H0XRfP2SOZO/LXdLomiL1lxAA0rAdujogHJ5fHFbd1m+Hrrss9KmASApyhvYqDux7rRX0/AAg3aT7cTTd1w+ZI5n78pA0uqag+R4AZGA7dAAAAAAdU3YaXVOQlAKADGyHDgAAAKDjGpUm1xQ03wOADGyHDgAAAKBjG5UG1xQkpQAgSehTAQAAAEAmX1PQfA8AAAAAAACBIykFAAAAAACAwJGUAgAAAAAAQOBISgEAAAAAACBwJKUAAAAAAAAQOJJSAAAAAAAACBxJKQAAAAAAAAQuN/hZoiOor/ds5SeVVrG91roU5NqQHkWWnZ2V8vNP9nInir8eZVU7rLxqh5UUdrLSwk5h65OIdU2X8gIAdGw6H32weZu9t2GbmXm2e58uNrRncZvOSck+xyV7/kCmiiWOBhK5r3GcbxuSUtjFG2vL7OGla2zFxm1WvaPe8jtl2/DexTZ13EAbNaC03UustfNP9nInir8er67aah9vrbLqunrLz822/qWFNna3rm59pK3rGk95RTvgSqIPwpHz2a1bZ1u15bO45hE6jaL8HDessroupZaxpWnGO432Cr5iuUgMHafe86w4P8dKC/Ma5y/xLFusF6a1tfX2/PubbVNFtfXqkm+Tv9DD1pRVtViG0fYP/b+sqsa2VdeZvqJ5Dule1OJ2barco+0Tif69pHMQFO+6pXNZZAqdj2595n17+aMtVlG1w+o9s8K8HBs9sKudffgI9zdTYpl4xXPOS+RvJdHnws+P/RVmlmW79ymO6TjcHufE9o4jUuV4mKrHzrYuV2Qcvb22znKzs6x75zwb0qvIvrJXX9tnt27tur5Nxc2R+3hofJOo7dGW6YT+DnUc9mM6Tactv4NYl6k1y56smEHT+fdbG+wfr39s68q2u+ZnBXk5Ycf5RP/G6lP0N5sIWZ7neZZBysvLrbS01MrKyqykpCTZi5NydCC/ftFy+7SyxvqVFrqgsKqmztaVVVn3ojw787AR7RrMtXb+yV7uRPHXY82Wz+yTyh1WV19veTnZVl1bZ52ys617cZ4Lrswzq633Wr2u8ZRXtMC6W+dO7oS65bOahAXbkfPZUVfv1js/N8c65WTHNI/QaXy6rca2VNW44d0657n1SoVlbGma8U4jLPgqq7Lq2nrLz8m2/l0/T2K2Zn1DLxK3ba91w4oLcm3C4O72g4OHummGjlP22Q5XHpaVZcV5OdantMB6FudZp5wc+2TbdluzZXvDsnXKtkHdOts+Icvmn2SXfLTF7v3vR/bRJ59ZTV29CyIj5ymPvLrWbvnP+/Zx2XarrfNMp+NOOVkuOaXgqakyDNs/Kmvc/rujVtuw3rbX1ptOh/q9dc7LcfPtWpjX5HZtKnnctbCT5WRnhe0Tif69JPtiuz3Fu25BlQWxQ/uVg7bhpY++Ze+s10WQ51476jyr0xWRmTuOzDnqi3bc2AFpH8u0Zj6xnvMS+VtJ9Lmw4Vzygb380aeN5xsdT1s6Drf2xl6sNzjbI45IleNhqp5HEhEThcbR1TtqrabOs5oddVbnuRDF7U9Dena2/Yf1bJf1bSpuVpJ0+cZtETFVN/vBwcPc+0Rsj9B5b6+ps3oz61daYMeO7m9HjOzTbAIj9HeomE5xWFZWlhXmZltebrYrt6K8XCsqyLVhPYvsewcMsb1juGGwbM1Wu/v5lfb+5koX7ylBPLxP8zFarGWwy3dys613l3w7cERPGzOo6y43BdeXVdl/P/jUVmxqezmrrJ5fsdnFkAVuG+e54/1nNbXuWHH06H726uqtCfuNvZGiv9lExQ0kpdBIB4pL/vmWLVtT5nZyHYh8uljTj0B3K88/+ovtkpVt7fyTvdyJ4q/H66u3ugPnp5/VWElBp53r47mTmX9S0wXuoXv0suzs7LjXNZ7yemtd+S6B9fqy7fb6mq1u/NEDS61vaWGbg+3IAF53tV5fU2aV23dYcX6uW578TjnNziN0Gp3zcm3Fpgp3QtZlTedOOTasd7F9VlOX1GVM9IVLaPCl4HlHvU7IOS6QyMnOth5FnWxgt85xr2/oRaJ2o6L8hjtk26prTbcx9uzXxU6auJv9+X+rGi8kNU/tWw0XlWbZWVnu/9oA2sW0n2laGqbgpm9Jodv//JP2k29vsFWfVrnt5cvNtsaLHM3z/KNH2vubtrllUzm5BK2ZfVJZ4y6KNN4+g7pary4Fu5Rh+P6RY+9v3Gbl1bVuOrr4zcluWGYtbH1dvSnV1bVzJxu/W7ddtqtESx5XVte65JbWs7Sgk9sn9D6Rv5dkX2y3p3jXLciyICnVPuWgY8bFj75pjy1bbzW1de7iUcOUkNbPUcG+DiP9uhbY/G+Pi+kCKNkxQVDzj+ecp+PsP19fl5DfSqLPhe5888+37J11FW6baxo1tfVu+jpfKNE/fnD3mKYZy4295s6J7R1HpMrxMFXPI21drsg4emPFdndMqa2rd+d5xSY5WS4scfvTkB6dWxUjxbsOipuXrtpi23fUuffap0Uxg5ZpULdCl+jRTba2bI/I/Vff182w7TuTNQcM7xl2g6+p32GduzHweUxXW6/4yNwNNx3PCnKzXRnqmuSnR+7R7A0D3US89vF3bctnO9xvUDcQtX6Kw0LLvjXbPvI71Tvq7L2NFS4mzMnKsi/0LLJB3QsbbwoqTl5fvt2tx559u7Q6HtN8f7doub22eqsrJ5WDykjJKMWso/qX2Ootn7na90qQJeI39kaK/mYTGTfQ0TkaKYusYEk7e2gQJXqv4cs3VrjxUmn+yV7uRPHXo6Qwz8q317oTyufrk+Xe66CuO8g6Sehg15p1jbW8VH1XGXkdABVY646OTkrry6ssNyfLXcRvKK92J3h9pnE07oKla92JLFYaN3Q+qir/0SeVLpjsXZJvtZ5nH336matC3NQ8QqcxrFeRW0YFtV133tnUnVIt6/BeRUlbxpamqTLUiTLWsgz9vk6KWgatb2FerktmatlUm+6TbdVxra/Ge2jJavtgc6XbzppmXm6Oe6kstd0/2FRpNz+9wj7YtM2N40I8zyxXH5qSUdYYAOoune5Oap/V5wWdcqym1rMN5dvdHcNrH3/Pnnp7/S4JKVHFq6oddVZbX28fbqq0B19e7earE7HKXSflyppaV1NKAY7m+c6GCivKyw4rQzX1ayxrt39sd/uEvucSZzv3fQVLdXWeW47sLM8FGCs/rQzbrg8vWePKR+WqAFLlrPLWemmCWoZO2Vlue+i3prtyifq9tHWfSWXxrls6l0Um0W9k2dryncerhu2q36GSNfpN6rij844uJu5+YWVM2zPZMUEQ84/3nKeapTpmtfW3kuhzoZvekjXunKJjpJZdNy2U6NJ21zmjckedK6uWpukvW+SxWedElYuWTcNb+n57xRGpcjxM1WNnIpYrNI7WDVwdU+p0k8nzz+tmXpZqMme7uEnn+ESub7R1cHFzWZWLY7Qceq99XMc27VuKD1Rr54ON29y+1drtETrvHkV57gaeEjG6dujdJc/FOv/74BOXTFGCo6nfoWIflyv3Gmor6pjVECuZ+/34Sgty3XFZMZx/4y2ShishpfGUiNONPiUDdYNTNbGUPN4lRotx20eWtbanbqRr2pqXynVDxXb7z3ub7Jn3NumOgLt5qm2gY4PWVU17W1vOSgapXLq4ygMNtch0vFEC/MNPKu2z6lpX/n1K8tv8G6tP0d9sopGUQiPdVVB1QF3oRaPh+lzjpdL8k73cieKvhwKzup13ikPpvZIM/kW0ayrVinWNtbzUp09kYK3vllc1JMyK8htqbVVU17Yp2I4M4EPnoQO9/vrzaWoeodNQsu7z72c1JvQ0jW01dUlbxpamGSqWafjfV5vyiu11bhlcVmTn9/Vey6jgLJ719S8StZ+FJ0bdlN12176nJNKOenN3oXfUNdxBU8CiE7724WinRt2tVG0kBTqqAbGpfLt9um27bdq2o3F8zU27fsOWc3GEG1d37l54/xNbs3W7qyGlcleCVgkuXbhougr0Pquus/UV1WFlqL6nGvePmob9Q8utCw5/fg01vLKsIXRV9f4cN2+d7EO367K1Za58IpPH/rJoGfxy0XdV4zFRv5dkX2y3p3jXLZ3LIpPoWKokc0Miu6HJbuj29GtZZmVn2fubKmPansmOCYKYfzznPJ0j1NRZx6y2/lYSfS5sON+UueOvjpFadv9Y2km1ZF0WYdfjcHM3KJu7safhKo+WbnC2RxyRKsfDVD12JmK5QuNoJSB0TFFsomhZu5KrmagTu6u5rf234feRqPWNtg5+ywfNVgkZ7dvax/31Uqyg2H5Hvef2rdasd+i8+5YUuKSIkiNKkihZot+mkieiZEpkAiP0d5jfSTUVG65BVGPcv+ZoWJ6GaxEtv6apmodbP6uxP7zwUdQkr24kbP1shxtPSbiGm3/ZrvmekrxVNfW2fEN4jBbrtg8r6519dSmZrWlrXoWdcmxr5Q63nbU/qAuJCtXmLFByLM+N++HmSrc/tKacuxV2cuet0Gs1P/b2j1eqGRaayIt3m/pS9TebaCSl0EgHZrVPVYAYjYbrc7+zu1SZf7KXO1H89VCuyV3gRxzg9V4HP9fEyF00Z7dqXWMtL0WCkYG1khF+wkwv/V998rQl2I4M4EPnIZHziTaP0GlEfj9yGslaxpamGamlafjfz83KiprE1D7kN0uLZ339i0R/vSJpWEN17oYEVEPiqGFfVeKo4a7art/TbttQY6ohMNR+rFpQeq8q7dEasbg7mzuTtGrao1pROsErqeUHPW4Zdn7ZTy6puUVoGaoz9Mb9Qwmu+obv+Hvuzhayjc0N3drsnGZtxHb9bEedK5/I5LG+698F9ZdJ303k7yXZF9vtKd51S+eyyCQ6H2lb+c1+I+JtdyEneTlZ7vcey/ZMdkwQxPzjOeepGYuOm1FChrh/K4k+F2q4jqmupm1IZ8/+MTSrieNwczcom7ux586JWVkt3uBsjzgiVY6HqXrsTMRyhcbRDV0I7PzACzme7Nyp/PxUU/tDotbB35c0My2T9u3QBI5/860+Ij6IZ71D5604LDyhGhq7mUumRCYwQn+Hfkynr7oaZn5M5NsZ6+iYrW4icrOz7f1N0ZO8rjb9znHCNSRvVFNNid7QGC2aluJ+JYD8dfaDNy2z69JC/WDld7Ly7Tsak22hSWb/RmG85azkVrRrNX/YDiXWc7Ks0854taX1aU6q/mYTjaQUGqkzOFUDVBY9sv97vdfwEb27NHYalyrzT/ZyJ4q/HuVV6kuq4WD9+fo0NCVSu2XXtEGdSe98Iky86xpreekJZJGBtRJh/gFXL/0/9IDbmmA7MoAPnYdEzifaPEKnEfn9yGkkaxlbmmaklqbhf19NEqKdGBsSUgqiLa719S8S/fWKpGHa//waDQ0xnt9/VEOSKhqXqNoZzOy8Ufn58M9zQJ+PnxUesHn15jrYVJVs1ZwSv4mPvxv7fVnp6SehZagO0Bv3j9yGbafv+HtuQ6Dq9ym1c1l2TjM3YruqXxGVT2TyWN9tKIeG8tA09d1E/l6SfbHdnuJdt3Qui0yi89HeA0oaajPsTEyF0gWdfpa6y6874LFsz2THBEHMP55zni5SddyMUrk67t9Kos+FGq5jqg66jcfSkOO618RxuLkblM3d2HPnRFcbpPkbnO0RR6TK8TBVj52JWK7QOLpLfm7DzSJ9sDOecDW5dUPKJRwbOu9uan9I1Dr4+5Lrr3LnjbvQvuT8PJmGRUtgxLo9/HmrE/VoSVl//1UyJTKBEfo79GO6hjgtSkS3M9ZRzOO6K8htOLZES/JquD6PFkv6Na603qExWjQtxf3+zcbQdfZbk6hM/Zup/s3CaAn0eMtZN4RLChuu1ULTdv5yaL9S4kv7YSzr05xU/c0mGkkpfL4zZGe5HvzVdl7VBP0Dm/7qvYafMG5Au3UW3tr5J3u5E8Vfjx7F+Tv7oMl2mf2qmlpXPVYHQJ3chvbSI2SLXFOG1qxrrOWlx9RGBtY64PkH4crqHQ0XCTsPuK0NtiMD+NB5eF5Dm39/Pk3NI3QaStZ9/n2vMaGnaeipcMlaxpamGSqWafjfb3gsbE7YiVHf13sto4KzeNbXv0hUwBGeGHVTdttd++Fu3Qut084q8oplXA3lnQGNq4kU8q3G2lQ7kz5qxue6ojIlkNT07vMklNtiIRcj7gaj7j7lZNv+w3rYwK4Frh8AlbsStHkKeNQhp/oLqK23zvk51rdLflgZHjCs5+f7R17D/qHlVkDqhSSz1JeCnyTbUVfnlkm/h9DtuveAUlc+kcljf1m0DH656Lt6BHWifi/JvthuT/GuWzqXRSbR+egb4wfZiF7F7penhLPfKXHDEzEbOr5Wn3Ej+sS2PZMdEwQx/3jOeTpH9C/VcbOmzb+VRJ8LG843pe74q2Oklt0/lu6orXNNmizKcbi5G5TN3djTcJVHSzc42yOOSJXjYaoeOxOxXKFxdGFeQw0dnZN1oleOoiFB1ZAUysnJanZ/SNQ66DeiOMA9uGFHndu3tY/76+U/aVhNVbVvtWa9Q+etfoxUWzA8EfT5/qtricgERujvUE8rdHGVi+MabkI2lu/OhJ5iJ+XPNE0lXkoLG5KdofRew5Xs2jWWbEgaqSaT+m8LjdFi3fahZd1wzfR58suVq2Ix13SxoSzUTDL0uBCaZG5NOa8r325f6FFkBbk5rsZVQ8fw9bZt+w6XXOlepP7sGmLM1m5TX6r+ZhONpBTCqOd+9eC/98BS21pVYys3V7q/eppKED37t3b+yV7uRPHXY9LQHi6IVLViVanNzcmxfl0Lbb+hPd0TyM4/ZmSb1jWW8ooWWOt4r6emNXQiaq4DPyUj2hJsR86nsrrOBvcockm5jeXV7gS6W/fOro+HpuYROg0l67SMOmkqmae23aq+q2VdsakyacuY6AuX0O/rxKtl0PoqialkZkOV6SwXnMWzvv5FohKf2s6apnsqVm2dK0tt96G9iuxHXxruEqQN7eUbEjr19TsDoZ39DjT25uGa1Wmw5zq09JNXqnHUqzhvZ18iDQGPeCGvhoSR2R59u9g3Jwxy89X3VO66O1SUl+vG0xORFGDs0aeLVdbUh5Vhbm7252Xt9o8Ct080dHz6eXCou3YKVBs69Wyo3j24e1HYdp06fqArn8jksZogaoJaBl1IaXtoH9HTXRL1e0n2xXZ7infd0rksMo3ON78+di+bPLSHO24oGaX+UHTd1rM4z91F11Oa4tmeyY4J2nv+8Z7zfnjIMHfMautvJdHnQje98QPdOUXHSC27LiZ1odfQsXK9FXXKcfNoaZqx3NjT8FhucLZHHJEqx8NUPXYmarn8395+w3q6m2e6odVYG0k3d5WIyMmyAsVNzewPiVoHFzeXFrqYzK9NrX1cMZX2LcUHw3WzuXex27dau97+vPuVFrh5KDmiJImSJUqa6Delpw0qmRKZwAj9HSr2cbmdnU8/Da0FpOhI46q/JjV7U1cKhZ2ybfc+JVGTvLqRoHhN4+m36BI3Ltaqsy2VNdatc559b/8h4TFajNs+tKz1AIKCTnoCsuZR5+al+fYsznexoYarHynXAiQ3x32u/qWUOMvyrFXlrPH1lD+VmTpwV7Jr07Yat40nD+tp507Z0523EvEby07R32yiZXmRKbc0x2OdY6NMuNoDN9TCyHUHlyB39tbOP9nLnSj+euhEoloh6thZdzhC1ycR6xrLNPSUDj31QQc+VfnVHRbd9dGBQ3dk/GE6yemg2NpgO3I+OnnphKiTmZIuscwjdBp62seWqho3XCc+HbRTYRlbmma80/C//+qqrfZxWVXD8uRkW/+uhbbPbt1avb6a7q3PvG8vf7TFnfhET/rYd3B3m7XzkcKh4+hJKpq39qmG5ja5LgjaWtUwXJSw8Zu06cJh2r4D7bXVZa5/g7Vbt+98Ss7nfT2Jdsd9dutqF31tVON66BHDepqUOu9VQKc9VlXEexXnW2lhXpNlGLZ/VNa4/VdVt7V8DbUyGu6mqVZGw12+hoRftOmFlfvWKtdpp4KdroV6Kkp22D6R6N9LW/eZVBbvugVVFsQO7V8OOnb866319peXVtu6su3uwrFrYZ67sGnt9kx2TNDe84/nnJfI30qiz4UN55IP7OWPPm0832harlPiwk5xTbOpY7Nu9MVyTmzvOCJVjoepeh5J1HL5v71XVm2xf7253lZu/swlEXQxrw7HY90fErUOigOUmNZTh6PFVJKI9fbjsudXfOJ+k0rWaN9VskoJGu3DTSXGQ3+HiulUi8t1xp6d1fDkOt1M3NmFgW7aKSGlxEtz07t+0XL3lD3dRNRNdvW1pCcRKkn00yN3t+PGDmi23GKN+/V7Vwfv2u6KL1WzSNPwnww4emCpSw6uL9tu76zXE18961ta0OrfdOSyKtmmfero0f3siJF93XE+0b+xN1L0N5uouCElklLz58+3q6++2tavX29jxoyxG264wSZOnNjk+A8++KD9+te/tpUrV9qIESPsyiuvtKOOOiqmeRFYAokJrCXRwXbkfHbr1tlWbfksrnmETkOPqxbdzU2lZWxpmvFOI5YkZmtounqiiZ7EqLtlusukZp2h0wwdRyflzduq7eUPP7X15dXurqQuVnRHquGJelkumBnWu4vN2H+wqzXgn2RfWLHZVn36WUNV+539MKiWxMn7D7FZBw7dZT1U40pPbFEHmapJMfkLPWxNWVWLZRht/9D/y6pq3J14fUXrOaR7UYvbtalyj7ZPJPr3kuyL7fYU77oFURapGjsEGT8FVQ7pvG+3h3jOeYks20SfCz8/l1S4Ohm79ymO6TjcHufE9o4jUuV4mKq/tUQvV3vFSLHMMzIOiNzHQ2OqRK23pvPvt9bbo6+vcwl+99TjGBMYob9D1ZhSU1bdoFMy5/G31rsn1qlWo5rmqYZUrElePWWvrKrWNS0c1uvzGDCWcos17n919VZ7bsVm21i+3XVq3tRNQdVM229oD5eUams5t7Ss7bUvV6TYbzYtklIPPPCATZ8+3W6++WabNGmSzZs3zwVN7777rvXu3XuX8V944QU7+OCD7fLLL7djjjnG7rvvPhdULV261EaNGtVhA0sASBfxXqz44ytoWLFhm6tp1aekwPUzoGrdQLKlYuwQdPyUquUAANhVqiREgkykBHUTHWmYlFIgte+++9qNN97o3qv966BBg+yMM86w8847b5fxp02bZpWVlfboo482Dttvv/1s7NixLjBrCQEVAACIRyrGDkHHT6laDgAAIDXFGjck9RZ0TU2NLVmyxA4//PDPFyg7271fvHhx1O9oeOj4MmXKlCbHr66udoUR+gIAAOiogoifhBgKAAC0t6QmpTZv3mx1dXXWp0+fsOF6r/4RotHweMZXNXVl5/yX7iICAAB0VEHET0IMBQAA2lvad9YxZ84cV13Mf61evTrZiwQAAJDyiKEAAEB7y7Uk6tmzp+Xk5NiGDRvChut93759o35Hw+MZPz8/370AAADSQRDxkxBDAQCAtK4plZeXZ+PHj7dFixY1DlNHnXo/efLkqN/R8NDx5d///neT4wMAAKQT4icAAJAuklpTSmbPnm0zZsywCRMm2MSJE90jjfV0mJkzZ7rP9bjjAQMGuH4N5KyzzrJDDjnErr32Wjv66KPt/vvvt5dfftluvfXWJK8JAABAMIifAABAOkh6UkqPKN60aZNdcMEFrrNNPZp44cKFjZ1xrlq1yj1Rxrf//vvbfffdZ+eff7798pe/tBEjRtjf/vY3GzVqVBLXAgAAIDjETwAAIB1keZ7nWQYpLy93T+FTp+clJSXJXhwAAJDiiB0oBwAA0D7xU9o/fQ8AAAAAAACph6QUAAAAAAAAMq9PqaD5rRVVlQwAAKAlfsyQYT0e7IIYCgAAJDp+yrikVEVFhfs7aNCgZC8KAADoYDGE+kbIVMRQAAAg0fFTxnV0Xl9fbx9//LF16dLFsrKyYsruKYG1evVqOkanbOLCvkPZtBb7DmXDvpNavyuFSgqo+vfvH/ZE4EwTbwwVL459lAn7Cb8fjinti+Ms5RLkvhJr/JRxNaVUGAMHDoz7e9oQPK2PsmkN9h3KprXYdygb9p3U+V1lcg2ptsZQ8eLYR5mwn/D74ZjCcTYZOP8kvkxiiZ8y93YfAAAAAAAAkoakFAAAAAAAAAJHUqoF+fn5NnfuXPcXlE082Hcom9Zi36Fs2HcSj99V6mMbUSbsJ/x+OKZwnOX8k3nn5Izr6BwAAAAAAADJR00pAAAAAAAABI6kFAAAAAAAAAJHUgoAAAAAAACBIykFAAAAAACAwJGUMrP58+fbkCFDrKCgwCZNmmQvvvhis4X24IMP2p577unG33vvve2xxx6zdBVP2bz55ps2depUN35WVpbNmzfP0l085XPbbbfZQQcdZN26dXOvww8/vMV9LVPKZsGCBTZhwgTr2rWrFRUV2dixY+2ee+6xdBbvccd3//33u9/X8ccfb+kqnrK5++67XXmEvvS9dBbvvrN161Y7/fTTrV+/fu4JKrvvvnvanrfiKZsvfelLu+w7eh199NGBLnMmId5qe7lkSqxFfNW2MsmkuIp4qm1lkilxFLFTisdNXoa7//77vby8PO/OO+/03nzzTW/WrFle165dvQ0bNkQd//nnn/dycnK8q666ynvrrbe8888/3+vUqZO3bNkyL9PL5sUXX/TOPfdc789//rPXt29f77e//a2XzuItn29/+9ve/PnzvVdeecV7++23ve9973teaWmpt2bNGi/Ty+app57yFixY4H5TK1as8ObNm+d+ZwsXLvTSUbzl4/vwww+9AQMGeAcddJB33HHHeeko3rK56667vJKSEm/dunWNr/Xr13vpKt7yqa6u9iZMmOAdddRR3nPPPef2oaefftp79dVXvUwvm08++SRsv3njjTfccUf7FJK/fTIl3iLWanuZZEJ8RVyVmHLJhHiKOKrtZZIpsdP9KRQ3ZXxSauLEid7pp5/eWCB1dXVe//79vcsvvzxqgX3rW9/yjj766LBhkyZN8n74wx96mV42oQYPHpz2Sam2lI/U1tZ6Xbp08f7whz946aatZSP77LOPuwhJR60pH+0v+++/v3f77bd7M2bMSLsgqrVloxOhLj4yRbzlc9NNN3lDhw71ampqvHTX1uOOzlk6Jm/btq0dlzJzEW8lplwyIdYivkp8maRrXEU81fYyyYQ4itgp9eOmjG6+V1NTY0uWLHHNqHzZ2dnu/eLFi6N+R8NDx5cpU6Y0OX4mlU0mSUT5fPbZZ7Zjxw7r3r27pZO2lo2S5YsWLbJ3333XDj74YEs3rS2fiy++2Hr37m2nnHKKpavWls22bdts8ODBNmjQIDvuuONc85Z01Jry+fvf/26TJ092zff69Oljo0aNst/85jdWV1dn6SQRx+Q77rjDTjzxRNfUBcnfPpkQbxFrtU+ZpFt8RVyV2HJJ53iKOCoxZZIJsVNNisVNGZ2U2rx5s9u5tLOF0vv169dH/Y6GxzN+JpVNJklE+fziF7+w/v377xJ0Z2rZlJWVWXFxseXl5bm2yTfccIMdccQRlm5aUz7PPfecO/CrX7J01pqy2WOPPezOO++0Rx55xO69916rr6+3/fff39asWWPppjXl88EHH9hDDz3kvqd+pH7961/btddea5deeqmlk7Yek9WHwhtvvGGnnnpqOy5l5iLeSly5pDviq8SVSbrHVcRTiSmTdI+jiJ06RtyUm5CpAIjLFVdc4Tqsfvrpp9OyM8HW6NKli7366quu1otqSs2ePduGDh3qOtXLZBUVFXbyySe7hFTPnj2TvTgpR3ey9PIpkPriF79ot9xyi11yySWW6RRc6o7wrbfeajk5OTZ+/Hhbu3atXX311TZ37txkL17KUNJXDy6ZOHFishcFQBsQX32OuCoc8VR0xFG7InYKPm7K6KSULvAUpG/YsCFsuN737ds36nc0PJ7xM6lsMklbyueaa65xQdMTTzxho0ePtnTT2rJRldHhw4e7/+spMW+//bZdfvnlaZeUird83n//fVu5cqUde+yxYSdLyc3Ndc0chw0bZukgEcedTp062T777GMrVqywdNOa8tET91Qm+p5PSTvdBVPVbd1BTwdt2XcqKyvdTQI16UDqbJ9MiLeItRJbJukaXxFXJaZcMiGeIo5KTJlkQuzUM8XipoxuvqcdSneNVSsj9OCk96F33kNpeOj48u9//7vJ8TOpbDJJa8vnqquucrU3Fi5c6B7Vm44Ste/oO9XV1Zbp5bPnnnvasmXLXC0y//W1r33NDj30UPd/9aOULhKx76gqsspLAUW6aU35HHDAAS5B5wfe8t5777nySYegKhH7zoMPPuiONd/97ncDWNLMRLyVuHJJd8RXiSuTdI+riKfaXiaZEEcRO3WQuMnLcHoUYn5+vnf33Xe7Rw7/4Ac/cI9C9B8pfvLJJ3vnnXde2COKc3NzvWuuucY9dnbu3Llp+Yji1pSNHp+px/Hq1a9fP+/cc891/1++fLmXjuItnyuuuMI9dvOhhx4Ke5xmRUWFl+ll85vf/MZ7/PHHvffff9+Nr9+Xfme33Xabl47iLZ9I6fz0vXjL5qKLLvL+9a9/uX1nyZIl3oknnugVFBS4R9umo3jLZ9WqVe7JKD/5yU+8d99913v00Ue93r17e5deeqmXblr7uzrwwAO9adOmJWGJMwvxVmLKJRNiLeKrtpdJpsRVxFNtL5NMiKOInVI/bsr4pJTccMMN3m677eYSBno04n//+9/GAjrkkEPcBWCov/zlL97uu+/uxt9rr728f/7zn166iqdsPvzwQ095zsiXxktX8ZSPHt0crXyU2Mz0svnVr37lDR8+3J0Eu3Xr5k2ePNkdKNNZvMedTElKxVs2Z599duO4ffr08Y466ihv6dKlXjqLd9954YUXvEmTJrnAY+jQod5ll13m1dbWeuko3rJ555133HFYF29Ive2TKfEWsVbbyiRT4iviqraXS6bEU8RRbSuTTIqdbkiRuClL/ySu3hUAAAAAAADQsozuUwoAAAAAAADJQVIKAAAAAAAAgSMpBQAAAAAAgMCRlAIAAAAAAEDgSEoBAAAAAAAgcCSlAAAAAAAAEDiSUgAAAAAAAAgcSSkAgbj77ruta9euSS/tL33pS3b22WcnbHoXXnihjR07NqWWKVZDhgyxefPmtWka3/ve9+z4449PyfUDACDdpEo8lUxZWVn2t7/9LdB5rly50s331VdfbffYKxnrByQTSSmgg1ESQCcrvTp16mR9+vSxI444wu68806rr68PPKES6wl32rRp9t5771l7UwLEL5+CggIbOXKk/f73v2/8fMGCBXbJJZdYEFS+/rI09QIAAMEjnoo9ntJL8eY3v/lN++ijjwKbZ+RLnwNIPySlgA7oK1/5iq1bt87dtfm///s/O/TQQ+2ss86yY445xmpray0VFRYWWu/evQOZ16xZs1z5vPXWW/atb33LTj/9dPvzn//sPuvevbt16dIlkOU499xz3XL4r4EDB9rFF18cNqy1duzYkdBlBQAg0xBPxRZPffzxx/bII4/Y6tWr7bvf/W67bQ/dOPTjoxdffNENe+KJJxqH6fPW8DwvZeNjACSlgA4pPz/f+vbtawMGDLBx48bZL3/5SxcsKEGlat2+rVu32qmnnmq9evWykpIS+/KXv2yvvfaa+0zjXXTRRe69fwfK/25z3/P94x//sH333dfVRurZs6d9/etfd8N1F0t30c4555yw2kDRqpvfdNNNNmzYMMvLy7M99tjD7rnnnrDP9d3bb7/dTbtz5842YsQI+/vf/95i+Whclc/QoUNdbaXQ74U2JXvnnXfcuPfdd1/jd//yl7+4BJoSWrGWRVOKi4vdcvivnJwclxALHeZTLbef//znLmmm4VruyLJQeX3ta1+zoqIiu+yyy9xwbXftA9oOWl9tUz/wUhCm6ey2225un+nfv7+deeaZYdP97LPP7Pvf/75bLo136623hn2+bNkyt84qkx49etgPfvAD27ZtW5PrXFlZadOnT3fr3q9fP7v22mtjKisAAIJGPBVbPKXz+X777Wc/+clPbOnSpWHj/Oc//7GJEye6stR45513XmMc8sc//tHFA8uXL28c/8c//rHtueeeLv6I5MdAeinuEsUe/jB97tu8eXOT8eHTTz/t4ibFxePHj3fL9txzz7lY6/LLL7cvfOELLq4ZM2aMPfTQQ43f27Jli33nO99x89bnmu5dd90VtowffPCBuxms+er7ixcvDvv84Ycftr322svNUy0HWoqDVDYHH3xwY+3+f//73y1sFSD9UFMKSBNKHOjkGHoXSdWsN27c6E7KS5YsccmLww47zD799FPXnO6nP/2pO3H6d6A0rKXvyT//+U8XCBx11FH2yiuv2KJFi1xAIpp/ZI2gaP7617+62l1ahjfeeMN++MMf2syZM+2pp54KG09JFtV2ev311938FCz4yxErBRY1NTW7DFdQdM0117gAadWqVbZmzRr70Y9+ZFdeeaULDGIpi0T5wx/+4JJN//vf/+yqq65y5RcZmCjBpHJXokiJpGeffdYlgFSOSqLdcsstLvnnJ6wUGP32t791wxX0qH+CvffeO2yaCpYmTJjgtqPK4bTTTrN33323McE0ZcoU69atm7300kv24IMPujuWCkqb8rOf/cwFqEqWPf744y4wjAxgAQBIVcRT0Snu0Y27SZMmNQ5bu3ati810k1I37HTz7I477rBLL73Ufa4YxY/dlKhS/KibjX/6059cUqctYokPlSC74oor7O2337bRo0e7hJQSZTfffLO9+eab7gaqan4pbpFf//rXLp5SzKfvaH104zXUr371K1cTXn1L7b777nbSSSc1JuEUJ2qZTjzxRBerKW7TNENvGIdSkuyEE05wN2cV/2m5fvGLX7SpXIAOyQPQocyYMcM77rjjon42bdo074tf/KL7/7PPPuuVlJR427dvDxtn2LBh3i233OL+P3fuXG/MmDFhn8fyvcmTJ3vf+c53mlzGwYMHe7/97W/Dht11111eaWlp4/v999/fmzVrVtg43/zmN72jjjqq8b0OUeeff37j+23btrlh//d//9fkvA855BDvrLPOcv+vra317rnnHvedG2+8cZfPfUcffbR30EEHeYcddph35JFHevX19W0qw3jKxV+mAw88MGzYvvvu6/3iF78IK4uzzz47bBwt729+85uwYVrffv36uf9fe+213u677+7V1NQ0uTzf/e53G99rvXv37u3ddNNN7v2tt97qdevWzZW775///KeXnZ3trV+/fpf9saKiwsvLy/P+8pe/NI7/ySefeIWFhbuUOQAAyUQ81XI81alTJ6+oqMjr3Lmzi0MUU3z44YeN4/zyl7/09thjj8a4SebPn+8VFxd7dXV17v2nn37qDRw40DvttNO8Pn36eJdddllM20fz0TxfeeWVXT5rKT586qmn3Pu//e1vjeMoltN6vPDCC2HTOuWUU7yTTjrJ/f/YY4/1Zs6c2ezy3H777Y3D3nzzTTfs7bffdu+//e1ve0cccUTY9372s595I0eOjBoL/utf//Jyc3O9tWvXNn6uddA0//rXv8ZUTkA6oKYUkEZ0nvaby+mOlZpZqdqzqk77rw8//NDef//9JqcRy/d0d0i1hdpCd6AOOOCAsGF6r+GhdGfLp5pEakKnmkvNUcfmWmbVkFJ/CLoTphpATVEn8brTpho9upvV1jJsjdD1FFWBj1xP1WgKpeVTjarQZfP7f1C1eNXyqqqqcs36NFy10yL7VAidr9Zb1eP9+WpbqPadyj10G+nOnl+bKpTKRDXSQu+iqqq9mmYCANBREE81UO0jxXyKN9T8bfjw4XbkkUdaRUVFY5wwefLksAe3KE5Q7KTa56La1qo95XfZoNpLiRBLfBgaN61YscLFRno4UGjcpJpTfkynWPH+++93DwFSlwovvPBCs/NVrCahcVO02Fa11evq6naZlsYfNGiQ617Bp/IEMk1ushcAQOLo5KZ28qKAQCdLNZ+K1NyjhGP5npI9QdETBkMp8GnpKYMKolS9WsupdcnObj7/rmBLTdU0nhI6fpDR2jJsr/UMTQ75y6fq66r6HUl9EyjQUfJITe7UFFDN866++mpXTd2fX2vKFwCAdEY81aC0tNQlokR/lVxSXPTAAw+4/jZj9cwzz7h+NRVjKd5KxANn4o2b/P4w1YRQfbKGUv9P8tWvftX1i/rYY4+5uEk3YPWwHHX1EG2+fjKOuAloG2pKAWniySefdO3Xp06d6t6r76P169dbbm6uCyRCX377eLVhj7xzE8v3dJdI/Ug1Jdp0I33xi1+0559/PmyY3vt9ObWFH0Qp6GgpIaX+B/RYaCWx9FcJLdUuirUskknLp6RT5LLp5a+3EnPHHnusXX/99S65pg45tZ/EQtvIT9iFbiNNO1rtJ90BVbCmfhFCOw197733ErK+AAC0N+KppimxJH6cpDhBcUVDi7rP4wQlndS/qKi2kfrq1ANyVDOpuX4p25PiSyWf1IdoZMykm3g+dXI+Y8YMu/fee23evHm7PACmNbGt+p7yyy5yfD3RMLT/1f/+97+tXkego6KmFNABVVdXu2SJEj8bNmywhQsXus4bjznmGNeppBx++OGuCvDxxx/vOs7WCVGP9PU7KVeVZj0VRE3RVDVbwYOCiFi+N3fuXHf3SEkIdeaoJmG6q+R3zqjp6q6YPlMAEC2Bow6x1RnkPvvs4+apYEWdpKtWT5DUsbmCkfPPP9+Vq5ZHHVjOnz8/prJIpgsuuMBtcz017xvf+IZLFimJpI7j1cmomiJqH1FzOnUoqgBLSarBgwfHNH0l6LStFZyps85NmzbZGWecYSeffLL16dNnl/EVbJ5yyilu26rJY+/evV2yr6XEIAAAyUA81Tw1d1O8KYo3L7nkElcTW034RDWwlbhRbKBkk26UKW6YPXu2O/ermZ9iBj35V7WQFGuqU3TdLFPcEiTFuIrv1KWDajYdeOCBVlZW5pJGavqnWEdxlZ7Wp4cAad949NFHXeIoVnp4j9ZP5aSHBylhd+ONN7puJaJRnKnYUvNWTfby8nIXNwEZJ9mdWgGIv2NO/XT1UueIvXr18g4//HDvzjvvbOxU0ldeXu6dccYZXv/+/V1nlYMGDXIdlK9ataqx08epU6d6Xbt2ddNTZ+SxfE8efvhhb+zYsa5j6549e3onnHBC42eLFy/2Ro8e7eXn57vpRuvoXH7/+997Q4cOdfNQ55l//OMfwz6P1tGjpuEvZzTROjJv6vM//OEPrgPP9957r/Hz//3vf255HnvssZjKIlEdnUcuszoP17b2NdXp5cKFC12n8epMXJ2yT5w40XVQLhp/0qRJbrjWc7/99vOeeOKJZpdH66J18r3++uveoYce6hUUFHjdu3d3ndOrQ/OmOorVZ+o8XZ2JqkPTq666qsVtAgBA0IinWo6n/HhTLz34RMOefPLJsPGefvpp93AWxYN9+/Z1D2nZsWOH+0ydhu+9995hD4zRQ1gUT6xZs6ZNHZ03Fx/6HZ1v2bIlbBx1yD5v3jzXObtiOsXQU6ZM8f7zn/+4zy+55BL3wCDFVFpGxTcffPBBk8uj6WuY5ud76KGHXMfmmv5uu+3mXX311WHLEBl7vfvuu+5hNyo/xcKK6+joHJkmS/8kOzEGAAAAAACAzEKbCgAAAAAAAASOpBQAAAAAAAACR1IKAAAAAAAAgSMpBQAAAAAAgMCRlAIAAAAAAEDgSEoBAAAAAAAgcCSlAAAAAAAAEDiSUgAAAAAAAAgcSSkAAAAAAAAEjqQUAAAAAAAAAkdSCgAAAAAAAIEjKQUAAAAAAIDAkZQCAAAAAABA4EhKAQAAAAAAIHAkpQAAAAAAABA4klIAAAAAAAAIHEkpAAAAAAAABI6kFNDOtm3bZqeeeqr17dvXsrKy7Oyzz3bDN2zYYN/4xjesR48ebvi8efM6/DqlIi3fhRde2Pj+7rvvdsNWrlxpHZGWW8uv9QAApA/ihcyj+ETn9Fh09PilI1J5/+QnP7F0XZ6nn37aTVN/W/KlL33JvYD2QFIKaAU/MGjq9d///rdx3N/85jdu/NNOO83uueceO/nkk93wc845x/71r3/ZnDlz3PCvfOUrCd8Wmvff/va3dplutHWK9wT60EMPxXwyTGWR27+kpMQOOeQQ++c//9nqad53330dKlEZKyVjzz33XNtzzz2tc+fOVlRUZOPHj7dLL73Utm7d2jieAp+mfl/6blO/xdzcXBswYIB973vfs7Vr1yZpLQGgAfFC7PHCkCFDwo7nOj9MnDjR/vjHP2bU7tResVtb1NTU2O9+9zvbZ599XIzTtWtX22uvvewHP/iBvfPOO9ZRNBdbhL5Cb2YidW3fvt1++9vf2qRJk6y0tNQKCgps9913d9cd77333i7J36Ze69evD7vx67+ys7Ote/fu9tWvftUWL16cxDVNf7nJXgCgI7v44ovtC1/4wi7Dhw8f3vj/J5980vbbbz+bO3du2Dgaftxxx7kL9PYMbFQb6/jjj0/odJtap45AAfGJJ55o+fn5CZ3uEUccYdOnTzfP8+yjjz6ym266yY499lj7v//7P5syZUqrklJvvPHGLrXQBg8ebFVVVdapUyfraF566SU76qijXG2A7373uy4ZJS+//LJdccUV9swzz9jjjz/eOP7AgQPt8ssv32U6Cjya+i0qQFFSWBdBzz33nCtDBSkAkEzEC7HFC2PHjrWf/vSn7v/r1q2z22+/3WbMmGHV1dU2a9YsSzfnn3++nXfeeTHFbu0Vv8Ri6tSpLp456aST3HbYsWOHS0Y9+uijtv/++4fdLEplv/rVr1xN/9C45Prrr7df/vKX9sUvfrFx+OjRo5O0hIjV5s2b3Q39JUuW2DHHHGPf/va3rbi42N599127//777dZbb3XJ1FCKzTVOJCVZQ2k/V7xaV1fnklu///3v7dBDD3X7y957781GagckpYA2UOZ8woQJzY6zceNGGzlyZNThkQfBjqKpdeoIcnJy3CvRdGdGiZbQAE5lpDuLrUlKNUV3bjpikkW1oL7+9a+7sn/llVd2CWAvu+wyu+2223ZJPoWWaay/RQWcPXv2tCuvvNL+/ve/27e+9a0ErgkAxI94ITaq6Rp63Fet16FDh7raEOmYlFLtXr2SGb+0RBfiSj7pPK3kTagbb7wxrJZze9ONp7y8PFeDpbU3EEMpnlJSSsMT3TStsrLS1fZD+9CxQfGkWl0o5g51ySWXuARkJCV7FR+2ZNy4cWHHoYMOOsgdw5XUUoIKiUfzPaCd+O20P/zwQ9eMy68K6lflV42a+fPnNw736eSu2jGDBg1yd8NU60oX1/X19WHT13slPJSx10m1V69e7o6Bap2IpqkT4h/+8IfGeegA3lKy6ZRTTrE+ffq4aY4ZM8Z9v6V1SmT/BgoKRo0aZW+99Za7K6EmXgpSr7rqqqjBiarkKiGk5e3Xr5+dcMIJ9v7778fVJ4OaDOgui2rp6C6tpqWE0oIFC1q9HrrjphNf5LI88sgjdvTRR1v//v3d9h02bJg7eepuTGgZqHxV48ovYy1jc31KqfaaTpoKgJTsVC28t99+O6ZlbWm7h873mmuucXeftNxa/n333dcFrC255ZZbXHO66667LuodVc1bd4wTRWUhze0LAJAKiBeapthG54zIY7liIDVxVxMynbd0DvnhD39oW7Zs2WUaquGjJvVdunRxTc903lJt5FAPPvigq71bWFjozt26II3WBFzjKT7QPBWr/PWvf3WxlX+Ojvd8GdmnVHOxW1N9SukiWeWgeSi2OP3003dJFMUTW0Xyy/6AAw7Y5TMlydQ3aiiVm2IKP85RLWY13wyttfLBBx/YN7/5Tdc0Ssui2veRXR74vwvVelF8oOXVuOXl5e7z//3vfy7u1Q0sDdc2fv755609qDmlyk/ro7JeuHBh1O2o8lWNnW7dutmBBx7Y+Pm9997buH9pnVXjbfXq1WHTWL58uUuuqL9W7V+qLa7xysrK4l4eUcJGiRTt86oddNhhh4V1L9Icf7/V8qoJ7bPPPhtzWdXW1rq41t/v9dtQMlO1HUP5sbdqtWseWmcloGNprqttr/1F+1lkQko0X/3+EoWYsv1RUwpoA50oVH00lE5KOkErKaH+E9R3lE4sfnV0tcf3+1Xwm3z5PvvsM3dS1QldwdVuu+1mL7zwgut3StXYQ/sY0oFYAYpOOKoZopOATho64ajGiOah4TrQq82/6ATRFDUJU9CyYsUK1xZbQYSCLwVDCm7OOuusJtdJQWMiKahUoKEEk2q56C7IL37xC5eA0/qKkjg6mS1atMidtLV8FRUV9u9//9s12WpuXaNRMDBt2jT70Y9+5JoK3HXXXS5g0ok+8s5arPuG1iNyObTNFBzMnj3b/VUy6YILLnBB1tVXX+3G0d0dfX/NmjXu7rBEq27se+KJJ1y56GSuwEjb8oYbbnAB5NKlS8OC5dZs91AK5FXO2j+1ryug1XZSgNlck0LVWFJwo7tUsdI2jvx9iabT0t1HP2hXYAgAyUa80Lp4QbGNzoWRx3Kdg3Q+nTlzpp155pnuZplq7ehCXIkJ/3ykcb7//e+7C3fFUrppo3F0blfywB9H01HSSE3G1fehbvppOhrXr9Wui2DFCYpFNJ7O8YrFlCyJpjXny3hjN53zL7roIjv88MNd4kdNl1SbQ8mv0HKINbaKRt0GyJ/+9CcXVzRXs+vjjz92y674QcuvhKJiWs1LMa5qOal81eRP77XtFDMrCfe1r33Njada1aGU4ND31N2FEhv6v2InLbMSPepKQjWnFLd9+ctfdrGwliFRlDTRTcof//jHLrGpmlVKhKxatWqXhJzixhEjRrgmmLr5LKph9utf/9qVubbtpk2bXIx28MEHN+5fStipVr3W74wzznCJKZWbaqipLEO7LYhled58802XSFFC6uc//7nbD3RzUPHef/7zH9cHU1PuuOMOt89qG+kmufZXbRsl03TDvCVaR21PxXu6TlACSb8X3ShVEjeUYk+Np9+RYu8777zTxZ/arvrNNhdTSnN91EXz6aef7jJM+3NLLVeIKQPgAYjbXXfdpTNN1Fd+fn7YuIMHD/aOPvroXaahcU8//fSwYZdccolXVFTkvffee2HDzzvvPC8nJ8dbtWqVe//kk0+675955pm7TLe+vr7x/5rWjBkzYlqnefPmuWnee++9jcNqamq8yZMne8XFxV55eXmL6xRNtPX0Pfjgg+7zp556qnHYIYcc4ob98Y9/bBxWXV3t9e3b15s6dWrjsDvvvNONd9111zVbBhpn7ty5u2y7Dz/8MGx9NOzhhx9uHFZWVub169fP22effWJax1NOOcXbtGmTt3HjRu/ll1/2vvKVr7jhV199ddi4n3322S7f/+EPf+h17tzZ2759e+Mwla+WK5KWW9PVevjGjh3r9e7d2/vkk08ah7322mtedna2N3369IRsd3++PXr08D799NPGcR955BE3/B//+Eez8+nWrZs3ZswYL1b+fhDtpfKK3J5PPPGEK//Vq1d7Dz30kNerVy/3W9R7AEgW4oXY4wWd84488kh3LNdr2bJl3sknn7xLHPHss8+6YX/605/Cvr9w4cKw4Vu3bvW6dOniTZo0yauqqooaJ+h8p/PnqFGjwsZ59NFH3bQuuOCCxmF77723N3DgQK+ioqJx2NNPP+3GCz1fx3O+VHwSeTnWVOwWGb8o3sjLy3NlVldX1zjejTfe6MZTnBRvbBWNysr/fp8+fbyTTjrJmz9/vvfRRx/tMq5iDsUeL730UtTpyNlnn+2mpe3oU5l+4Qtf8IYMGdK4LooNNd7QoUPDYidNZ8SIEd6UKVPC4j2No2kcccQRXqyixaGh9JnKeMWKFWHxlYbfcMMNu2xHlU2olStXuvj9sssuCxuufTs3N7dx+CuvvOK+r+VpTqzLc/zxx7vx3n///cZhH3/8sfs9HHzwwY3D/DL219//PSiu1P7hu/XWW9142g+a8+qrr7rxTj311LDh5557rhuu65fI2PuZZ55pHKZ9WrHbT3/602bn8/Wvf919d8uWLV4s/O0T7bXHHnvs8tu96KKL3DFo/fr1bj/dd999Y9o+aD2a7wFtoOZ3qpkT+lI18dZSDRXd2dAdQdUQ8V+6A6ZaI+oIWh5++GF31y1aR+OxPlo40mOPPebuzKhzP5/urOguljqm1p2VoKhWUGhbbt0V010v3a3xqQxUxV53lBJRBqpmHnp3TneXVItNd7H8p3I0R3eWdAe4d+/erqaaanDp7pRqREXW8vHpDqq2r7a57hi25gk2qkH36quvujtLuosV2kmnanhpuyZyu+sucegda79Kc+i2iUY1wXRHLx6q4RX5+9IrsvN30W9E5a+7eLrrpppUupOmGn0AkGzEC7FRM3ody/VSDR7VHFItJr8msShWUs0RneNCYyXVrlD88NRTT7nxdL7QeVYdiUf2xejHCeryQE3YVeskdBw1s1ctH79JmWoALVu2zMUFoTWXVbu9qY6PW3u+jJVqSauGjc6JoX0sqe8txTCRzeFiia2iUVnpadF6Sq7W589//rNrIqgaVFpHv6mgmlSqWZke8hKtv1W/zBV3aL6hzdu0bKpZpRopagIXSjVoQmMnxTyq3a6abp988knj9lezRzVRU6wc2eVFWyi+CK2tpvhK5Rut3FTbPpRqNGlZVEsqdF9V3KUaVf6+6teEUjkrHmzL8uh6Qb8jdZSvGvQ+dXGhMlNNK78JZCT/96D10P7hU4wZ7SEzkfyYMzL29VtWRO6Tagrr/y5Ev/s99tgjpphS4o0rde0QGVOqhl0kXV9pWbSdtHyq5XXttdfGVdsf8aH5HtAGOqm21NF5PHSSff3115us3q4Thd++X0mU0CREW6n/Ip0gIzuP9J9Gos/bS2QSSYmEyGEKhFQ2PpWBTlyxdhDaEvXdFTlP9VUlCpJ0YmqO+nBS8zcFiKo2r6rbCiwiy1NVqtU3gqqeRwYF0foNaIm/XVQWkbTtFOA019lmvNtdTUpD+QF3tH48Qilg0sVBPLTMCr5iveDT9lIZqvq3gtJkPKEIAKIhXoiNmhUp+aELazXF1/91fgm9QFaspGO9bgK1FCuJ+t5pzTlUSSldwIeOF/p0ZZ+Gqal8pNaeL2PV1LKrrJSMiDx/xxJbNUXnU3UtoJduhumGlZo4/uUvf3E3stRnkpqlKa5prrz95Y7WfCw07gidRuRTrrX9/WRVU7R/JKr5fuR2FE072naMtqyq4KQ4Kxq/eaW+p0SO+t1UM0klQtRkTknEyGRQS8uj7aD4s6m4UEky9WcVrXmcv89ELq+WMzTB1RR9X/Fk5O9EMbSayLUUU0auS3MxpSiujOehUWoyGUtH50qQqimm+q5VvK4mkqF9vyLxSEoBKUQnCt35Uw2baPwkSUeiQEb9FkXj3w2KvIPZ1NNl/Pb5qUjBnp9A0WNkddJTkkodiqr/BtHdRN1V1clUjwfXnS6tu4JZ9euQyDt77aW120bBve5uKmkXenHRHhd8ujuoO7C6I6j+NZrrjwsAOqJ0jBdE507/XKo+dnTuUP+RSoD4tS+07kpI6eI9mkT3c9laqRbLJGp5VONGfXmqHyMlNpSYinz4SiKF1pISP1ZS7Tk9nCaaRJ734ym3aMuqRKBaUUSbTuhyqiaOaiTpgTiq6aQa6+qLSX3Fhtb6TrX9KppYWyy0JaYU1V4MrWmVKErK+cchHX+0nKpxqZg+kZUR8DmSUkAKUZJCTaZaqh2i8VQDRh32NVdbKp5mbKqGrbtlOoGG1prxm5T5HV3GS99TYiAaf3hrpq0yUOeJO3bsaLaD7Vips0WdBEPL7L333nN/m+sovCnqJFKdlKtWlJoFarp6koyqmqs6t+7W+NRBa2u3nV920cpY204BfnOdgrfXdo+k6vyLFy92VadDmwq2BwUPCuQUPKjjWwUSAJBO0jFeiEbN6HQzR7WPdV7V+UzrpKZr6nQ7MgkQym/ipBpX0Wo4RZ5D1Ul2KA3zP/f/KlaIFG1YW7Tm/B9ai0U3fxRXxFrTuLUUe6npmGoDqUmaEoW66abybmm5m4pZ/M+b429Xzau917GttKyKLVUTKpZEsZqC6qXYUQ860j5+8803uxqDsVJSVk8jbKqM9ZttqsNyv+y1TUN/D4q1tU/p6czN0fd1XND3/Zpvos7tdWM2kTGl4jzV0GuPpFQk1RC87bbb3HaJ9qRDtB19SgEpRG3OdeGuADKSDuZ6Co3o7pROcnriSnN3FxS8RT4WuCmq3aO+kx544IHGYZqfnhCiOzkKCltD09VdniVLluyyPrrLqbtcLTWNi0ZloCBISYdE3C1SfxGhTwVRFXQ9lra1y6dmhWpDr3bouusVekcodPkUPOpxzpG07WJpzqc7llpGPekkdFsrKNSdNpV/MrZ7JPVPoGVVmfjJvsjmFvEEXS3RE2ZUe0pPrFT1awBIJ+kYLzRFNYl1Q0cXhf66qymNnsoWScvhr8eRRx7p+pzRxWvkecBfd9V6UDJFF/6hj6xXzRadv5UUE3WZoCZliguUDPSpGZtqayRSrNtCCRnVPFbTotBtqT4uFT/4y95WSjDoyW6RtIzaB9XcSokQJTtUU/kf//iH65sokr+M2n9efPFF912fuhm49dZb3U1A9TPUHPUdpmTPNddcE7YtfGq+lipUU16xn35/kbGp3mu/9mNO/zfrU3JKZRq6X8ZC89O+r9jTf2qcnxjSEyFVk9xv/hZJvwdtS/0eFJ/6VBMuln3SjzlDnxYuapYoidonJ0+e7J4kefvtt7t+zCJp2fW0xkRRE0ElxXW8Va1/JB41pYA2UNASrXNqPUY1lrbXkX72s5+5zplVVdR/JKpO1Ap49JhcnVxU80U1QPQYVAUiChZ0YNadCT0GV5+p2Zjo+7qbqJOBAirdqWnqMbBqP63HxWq+SiApMNA89UhhnVzi7UzQp1oq6pRUNYN0QFeVWyWAdIJTvwTROhiMhTobVXCo6vwKbnSnRGWl9VWHperjKR66g6VH0qo/qD59+rh+iXQCb+3yicryggsusCuvvNIFatovFLypHwRVy9bdUHXiGi2Jpm2ngF/rp8dUK9DXnaFoVIVdj0bWSVrroOaSujhQPwR6XHRz2mu7R9J6K+mngEVJNPWToHUUNV9Ux6la/lAKqnUXLJrQzlqb+z2pTwDta5GdjwJAkIgXWk/nNyWEFMuog20lvRRPKNmkC0RdgKvWjuIhxRtq6qcOiXXhrRrLekS9zqNq0q1z0Wuvvea6D9DNHH1P52h1pq7pqiavzv2ahs6H55xzTuNyqLaWYgvVXtH46vdGN8a0bNGSI60Va+ym5MGcOXNcwkNxoPogUu0Y3ejS+sZynoyFyktlp+2gWEs17tauXevKT/GcYgX/ppvKSDfEVJaKL1RbRrGetov659LFveJCnfM1PcVCmp6mpZo4qk0d2cdlJH2uZIS+r+aD2hYDBgxwy6SOw7XdlRhLBUqe6YabtpNieMWCiqu0roqJVEZKnqjfIsXuilkUjypBpfhQ5arEcrw0T3XirQSUYmLdKFWspwTXVVdd1eT39HvQd/X7Uk0pdWSvZVUsHMt1jWpSKcZVgtHvskIxurav1l3XKImiawD99pX4U3ysTu6V0NVx4P7773f7nRKXoRTfRmvaqabQiv2bc9ZZZ7l9/YorrnDTR4K14cl9QMZq7hHPeunzlh6HHPmI49DH4s6ZM8cbPny4e5xrz549vf3339+75ppr3KNafbW1td7VV1/t7bnnnm68Xr16eV/96le9JUuWNI7zzjvvuEe/FhYWuvlFe8RwqA0bNngzZ85089Q09fjj0HVpaZ2asmbNGvd42AEDBrhH4Hbv3t075phjvP/+97+7jKvHze611167DNeyhz5y2X/8769+9Sv3COBOnTq5Rxt/4xvfCHsErtZbj4Jt6pHKoevzr3/9yxs9erR7HK3KNdZHvza1LeXCCy8Me9zu888/7+23335um/Tv39/7+c9/7uYb+Ujibdu2ed/+9re9rl27hj1u2n9cbeR2eeKJJ7wDDjjATbekpMQ79thjvbfeeium5Y9lu/vz1T4Xbf1Dy7g5eiTxOeec4+2+++5eQUGB17lzZ2/8+PHuschlZWWN4/mPn27qFbk9oz1+Wo+VHjZsmHvp9wIAQSNeiD1eaC62uPvuu3c59+kx9Tp/6LynR93r3KVzqs4zof7+97+7OMo/P06cONH785//HDbOAw884O2zzz7u/K8Y5Tvf+Y6LXSLdf//9Lj7QeKNGjXLTnjp1qhvWmvOl/6j6UE3FbtHiF7nxxhvd/BUH9enTxzvttNO8LVu2tDq2ihYjXHHFFW4a/fr1c3Fct27dvC9/+cveQw89tMv4H330kTd9+nQXl6qchg4d6mKk6urqxnEUpyleU4yjWEDb5NFHHw2bjmIirW9Tsdgrr7zinXDCCV6PHj3cfLQe3/rWt7xFixZ5sdK0I+OvWOI7zSs0pva346ZNm6JO5+GHH/YOPPBAr6ioyL20vTTdd999133+wQcfeN///vddvKLy0D546KGHutiuNcsjS5cu9aZMmeIVFxe7WEvTe+GFF6KWceT6//73v3extcp1woQJ3jPPPOO2v14t2bFjh3fRRRc1xuaDBg1y1zXbt2+P6fce63z86wBdH+27775uPRXDjhgxwjvjjDO8FStW7LJ9mnr569/cb1e+973veTk5OWHTRmJk6Z9EJ7oAoCPR3VDd6Xz00UeTvSgAAKADUe1f1VpSzRQAQPzoUwoAAAAAmqHOniP7/dEDTNS8Tf0YAgBahz6lAAAAAKAZ6rNInYurryb19aQ+RdUhtB6GQr+FANB6JKUAAAAAoBnqJF2dkKuTbT3hTZ0q62li6vi4R48elB0AtBJ9SgEAAAAAACBw9CkFAAAAAACAwJGUAgAAAAAAQOBISgEAAAAAACBwGdfReX19vX388cfWpUsXy8rKSvbiAACAFOd5nlVUVLgnbmVnZ+79PGIoAACQ6Pgp45JSSkgNGjQo2YsBAAA6mNWrV9vAgQMtUxFDAQCARMdPGZeUUg0pv2BKSkqSvTgAACDFlZeXuxtafgyRqYihAABAouOnjEtK+U32lJAiKQUAAOKNITIVMRQAAEh0/JS5HSMAAAAAAAAgaUhKAQAAAAAAIHAkpQAAAAAAABA4klIAAAAAAAAIHEkpAAAAAAAABI6kFAAAAAAAAAJHUgoAAAAAAACBIykFAAAAAACAwJGUAgAAAAAAQOBISgEAAAAAACBwJKUAAAAAAAAQuNzgZwkAqaW+3rOVn1RaxfZa61KQa0N6FFl2dlayFwsAADSBczcApAeSUgAy2htry+zhpWtsxcZtVr2j3vI7Zdvw3sU2ddxAGzWgNNmLBwAAInDuBoD0QVIKQEYHtdcvWm6fVtZYv9JCKyzNsaqaOlu2pszWbqmyMw8bQWIKAIAUwrkbANILfUoByNhq/6ohpYSUakYVF+RaTnaW+6v3Gr5g6Vo3HgAASD7O3QCQfkhKAchI6kNKTfZUQyorK7z/KL3X8OUbK9x4AAAg+Th3A0D6ISkFICOpU3P1IVWYlxP1cw3X5xoPAAAkH+duAEg/JKUAZCQ9ZU+dmqsPqWg0XJ9rPAAAkHycuwEg/ZCUApCRhvQocn1HrSurMs8L7zdK7zV8RO8ubjwAAJB8nLsBIP2QlAKQkbKzs2zquIHWvSjP9S21bXut1dV77q/ea/gJ4wa48QAAQPJx7gaA9ENSCkDGGjWg1M48bITtPbDUtlbV2MrNle7v6IFd3XB9DgAAUgfnbgBIL3SWAsAyPbjds08Xe/79zbapotp6dcm3A4b1tNxccvYAALS3+nrPPVVPnZirzyg10WuplrLO3SP7lcT9PQBA6iEpBSCjvbG2zB5eusY12dPT9tS5+dPvbXJN+6gpBQBAsOdg9fcYyzlYCaihvYrZPADQwaVEVYD58+fbkCFDrKCgwCZNmmQvvvhik+PefffdlpWVFfbS9wCgNcHw9YuW27I1Zda1MM+G9Cxyf/Vew/U5AKQq4id0ZJyDAQApkZR64IEHbPbs2TZ37lxbunSpjRkzxqZMmWIbN25s8jslJSW2bt26xtdHH30U6DIDSI/mAro7+2lljbsrW1yQaznZWe6v3mv4gqVr3XgAkGqIn9CRcQ4GAKRMUuq6666zWbNm2cyZM23kyJF28803W+fOne3OO+9s8juqHdW3b9/GV58+fQJdZgAdn/qhUHOBfqWF7pgSSu81fPnGCjceAKQa4id0ZJyDAQApkZSqqamxJUuW2OGHH/75AmVnu/eLFy9u8nvbtm2zwYMH26BBg+y4446zN998s8lxq6urrby8POwFAOoYVf1XFOblRC0MDdfnGg8AUkkQ8ZMQQ6G9cA4GAKREUmrz5s1WV1e3S00nvV+/fn3U7+yxxx6uFtUjjzxi9957r9XX19v+++9va9asiTr+5ZdfbqWlpY0vBWIAoCf1qEPVqpq6qIWh4fpc4wFAKgkifhJiKLQXzsEAgJRpvhevyZMn2/Tp023s2LF2yCGH2IIFC6xXr152yy23RB1/zpw5VlZW1vhavXp14MsMIPXo0dHqO2pdWZV5Xni/UXqv4SN6d3HjAUBHF2/8JMRQaC+cgwEAvqRWAejZs6fl5OTYhg0bwobrvfqKikWnTp1sn332sRUrVkT9PD8/370AIPJR0nrk9NotVY19S6nJnmpIKSHVvSjPThg3wI0HAKkkiPhJiKHQXjgHAwBSoqZUXl6ejR8/3hYtWtQ4TNXJ9V539GKh6uvLli2zfv36teOSAkhHowaU2pmHjbC9B5ba1qoaW7m50v0dPbCrG67PASDVED8hHXAOBgBI0jtLmT17ts2YMcMmTJhgEydOtHnz5lllZaV7Gp+oqvmAAQNcvwZy8cUX23777WfDhw+3rVu32tVXX20fffSRnXrqqUleEwAdNSge2a/EPQlIHa+qnws1K6CGFIBURvyEdMA5GACQ9KTUtGnTbNOmTXbBBRe4zjnV18HChQsbO+9ctWqVe6KMb8uWLTZr1iw3brdu3VxNqxdeeMFGjhyZxLUA0JEpATW0V3GyFwMAYkb8hHTBORgAMluWF9nDb5orLy93T+FTp+clJSXJXhwAAJDiiB0oBwAA0D7xU4d7+h4AAAAAAAA6PpJSAAAAAAAACBxJKQAAAAAAAASOpBQAAAAAAAACR1IKAAAAAAAAgSMpBQAAAAAAgMCRlAIAAAAAAEDgSEoBAAAAAAAgcCSlAAAAAAAAEDiSUgAAAAAAAAgcSSkAAAAAAAAEjqQUAAAAAAAAAkdSCgAAAAAAAIEjKQUAAAAAAIDAkZQCAAAAAABA4EhKAQAAAAAAIHAkpQAAAAAAABA4klIAAAAAAAAIHEkpAAAAAAAABI6kFAAAAAAAAAJHUgoAAAAAAACBIykFAAAAAACAwJGUAgAAAAAAQOBISgEAAAAAACBwJKUAAAAAAAAQOJJSAAAAAAAACBxJKQAAAAAAAASOpBQAAAAAAAACR1IKAAAAAAAAgSMpBQAAAAAAgMCRlAIAAAAAAEDgSEoBAAAAAAAgcCSlAAAAAAAAEDiSUgAAAAAAAAgcSSkAAAAAAAAEjqQUAAAAAAAAAkdSCgAAAAAAAIEjKQUAAAAAAIDAkZQCAAAAAABA4EhKAQAAAAAAIHAkpQAAAAAAABA4klIAAAAAAAAIHEkpAAAAAAAABI6kFAAAAAAAAAJHUgoAAAAAAACBIykFAAAAAACAwJGUAgAAAAAAQOBISgEAAAAAACBwJKUAAAAAAAAQuNzgZwkAqaW+3rOVn1RaxfZa61KQa0N6FFl2dlayFwsAAAAA8XpaIykFIKO9sbbMHl66xlZs3GbVO+otv1O2De9dbFPHDbRRA0qTvXgAAABARiNeT28kpQBk9Anu+kXL7dPKGutXWmiFpTlWVVNny9aU2dotVXbmYSNITAEAAABJQrye/uhTCkDGNtlTDSklpFQzqrgg13Kys9xfvdfwBUvXuvEAAAAABIt4PTOQlAKQkdSHlJrsqYZUVlZ4/1F6r+HLN1a48QAAAAAEi3g9M5CUApCR1Km5+pAqzMuJ+rmG63ONBwAAACBYxOuZgaQUgIykp+ypU3P1IRWNhutzjQcAAAAgWMTrmYGkFICMNKRHkes7al1ZlXleeL9Req/hI3p3ceMBAAAACBbxemYgKQUgI2VnZ9nUcQOte1Ge61tq2/Zaq6v33F+91/ATxg1w4wEAAAAIFvF6ZiApBSBjjRpQamceNsL2HlhqW6tqbOXmSvd39MCubrg+BwAAAJAcxOvpj85SAFimn+hG9itxT/dQZ4pqu66qwtSQAgAAAJKPeD29kZQCkPGUgBraqzjjywEAAABIRcTr6YvmewAAAAAAAAgcSSkAAAAAAABkZlJq/vz5NmTIECsoKLBJkybZiy++GNP37r//fsvKyrLjjz++3ZcRAAAglRA/AQCAji7pSakHHnjAZs+ebXPnzrWlS5famDFjbMqUKbZx48Zmv7dy5Uo799xz7aCDDgpsWQEAAFIB8RMAAEgHSU9KXXfddTZr1iybOXOmjRw50m6++Wbr3Lmz3XnnnU1+p66uzr7zne/YRRddZEOHDg10eQEAAJKN+AkAAKSDpCalampqbMmSJXb44Yd/vkDZ2e794sWLm/zexRdfbL1797ZTTjkloCUFAABIDcRPAAAgXeQmc+abN292tZ769OkTNlzv33nnnajfee655+yOO+6wV199NaZ5VFdXu5evvLy8jUsNAACQ3vGTEEMBAIC0b74Xj4qKCjv55JPttttus549e8b0ncsvv9xKS0sbX4MGDWr35QQAAOjI8ZMQQwEAgLSuKaXAKCcnxzZs2BA2XO/79u27y/jvv/++6+D82GOPbRxWX1/v/ubm5tq7775rw4YNC/vOnDlzXEfqoTWlSEwBAICOKoj4SYihAABAWiel8vLybPz48bZo0SI7/vjjG4Mkvf/JT36yy/h77rmnLVu2LGzY+eef7+4A/u53v4uabMrPz3cvAACAdBBE/CTEUAAAIK2TUqJaTDNmzLAJEybYxIkTbd68eVZZWemexifTp0+3AQMGuCrkBQUFNmrUqLDvd+3a1f2NHA4AAJCuiJ8AAEA6SHpSatq0abZp0ya74IILbP369TZ27FhbuHBhY+edq1atck/kAwAAAPETAABIH1me53mWQdSnlDo8Lysrs5KSkmQvDoAUUF/v2cpPKq1ie611Kci1IT2KLDs7K9mLBSBFEDtQDgCA2BFbI574Kek1pQAgmd5YW2YPL11jKzZus+od9ZbfKduG9y62qeMG2qgBpWwcAAAAgNga7YSkFICMTkhdv2i5fVpZY/1KC62wNMeqaups2ZoyW7ulys48bASJKQAAAIDYGu2EzpoAZGy1YtWQUkJKNaOKC3ItJzvL/dV7DV+wdK0bDwAAAACxNRKPpBSAjKQ+pNRkTzWksrLC+4/Sew1fvrHCjQcAAACA2BqJR1IKQEZSp+bqQ6owLyfq5xquzzUeAAAAAGJrJB5JKQAZSU/ZU6fm6kMqGg3X5xoPAAAAALE1Eo+kFICMNKRHkes7al1ZlXleeL9Req/hI3p3ceMBAAAAILZG4pGUApCRsrOzbOq4gda9KM/1LbVte63V1Xvur95r+AnjBrjxAAAAABBbI/FISgHIWKMGlNqZh42wvQeW2taqGlu5udL9HT2wqxuuzwEAAAAQW6N90FkKgIymxNPIfiXuKXvq1Fx9SKnJHjWkAAAAAGJrtC+SUgAynhJQQ3sVZ3w5AAAAAG1FbI140HwPAAAAAAAAgSMpBQAAAAAAgMCRlAIAAAAAAEDgSEoBAAAAAAAgcCSlAAAAAAAAEDiSUgAAAAAAAAgcSSkAAAAAAAAEjqQUAAAAAAAAAkdSCgAAAAAAAIEjKQUAAAAAAIDAkZQCAAAAAABA4EhKAQAAAAAAIHAkpQAAAAAAABA4klIAAAAAAAAIHEkpAAAAAPj/9u4ETIrqWuD46WX2jX1HBgQxiICsQaNoRDFqNMZENDEiz6hE4/JI8oSIonEBtwSjRCNuiXmJuGDMU4MLaoJCREDABRAQZBGGYZuNWbvrfecONfYMPTM9THd1T9f/59c2XV1VXXWrpurUqXtvAQAcR1IKAAAAAAAAjiMpBQAAAAAAAMeRlAIAAAAAAIDjSEoBAAAAAADAcSSlAAAAAAAA4DiSUgAAAAAAAHAcSSkAAAAAAAA4jqQUAAAAAAAAHEdSCgAAAAAAAI4jKQUAAAAAAADHkZQCAAAAAACA40hKAQAAAAAAwHEkpQAAAAAAAOA4klIAAAAAAABwHEkpAAAAAAAAOI6kFAAAAAAAABxHUgoAAAAAAACOIykFAAAAAAAAx5GUAgAAAAAAgONISgEAAAAAAMBxJKUAAAAAAADgOJJSAAAAAAAAcBxJKQAAAAAAADiOpBQAAAAAAAAcR1IKAAAAAAAAjiMpBQAAAAAAAMeRlAIAAAAAAIDjSEoBAAAAAADAcSSlAAAAAAAA4DiSUgAAAAAAAHAcSSkAAAAAAAA4jqQUAAAAAAAAHEdSCgAAAAAAAI4jKQUAAAAAAADHkZQCAAAAAACA40hKAQAAAAAAwHEkpQAAAAAAAODOpNTcuXMlPz9f0tPTZcyYMbJs2bJGx12wYIGMHDlS2rVrJ1lZWTJs2DB55plnHF1eAACAeCN+AgAAbV3ck1Lz58+XqVOnysyZM2XlypUydOhQmTBhguzevTvs+B06dJCbb75Zli5dKmvWrJHJkyeb1+uvv+74sgMAAMQD8RMAAEgGHsuyrHgugNaMGjVqlDz88MPmczAYlN69e8t1110n06ZNi2gew4cPl3POOUfuuOOOZsctLi6WvLw8KSoqktzc3FYvPwAASG6JGDs4HT8lajkAAIDEFGncENeaUlVVVbJixQoZP3781wvk9ZrPWhOqOZpPW7Rokaxfv15OOeWUGC8tAABA/BE/AQCAZOGP54/v2bNHAoGAdO3atd5w/bxu3bpGp9NMW8+ePaWyslJ8Pp/84Q9/kDPOOCPsuDqOvkKzdQAAAG2VE/GTIoYCAABJnZQ6Ujk5ObJq1SopLS01NaW0T6p+/frJqaeeeti4s2bNkttvvz0uywkAANAW4ydFDAUAAJI6KdWpUydzp66goKDecP3crVu3RqfTJn79+/c3/9an761du9YETuGCqunTp5ugK7SmlPa5AAAA0BY5ET8pYigAABBrce1TKjU1VUaMGGHu1tm0o079PHbs2Ijno9OENtELlZaWZjrVCn0BAAC0VU7ET4oYCgAAJH3zPa3FNGnSJBk5cqSMHj1a5syZI2VlZTJ58mTz/WWXXWb6P9A7eUrfddyjjz7aBFKvvfaaPPPMM/LII4/EeU0AAACcQfwEAACSQdyTUhMnTpTCwkK59dZbZdeuXaY6+cKFC+s679y6daupbm7ThNU111wj27dvl4yMDDn22GPlL3/5i5kPAACAGxA/AQCAZOCxLMsSF9E+pfLy8swTaGjKBwAAiB2IoQAAQHxyL3HtUwoAAAAAAADuRFIKAAAAAAAAjiMpBQAAAAAAAMeRlAIAAAAAAIDjSEoBAAAAAADAcSSlAAAAAAAA4DiSUgAAAAAAAHAcSSkAAAAAAAA4jqQUAAAAAAAA2nZSqqKiQu6///5ozhIAACCpET8BAAC3anFSqrCwUF555RV54403JBAImGHV1dXy4IMPSn5+vsyePTsWywkAANBmET8BAAAczi8t8N5778m5554rxcXF4vF4ZOTIkfLUU0/J9773PfH7/XLbbbfJpEmTWjJLAACApEb8BAAAEIWaUjNmzJCzzz5b1qxZI1OnTpUPP/xQLrjgArn77rvls88+kylTpkhGRkZLZgkAAJDUiJ8AAADC81iWZUmEOnbsKIsXL5ZBgwZJeXm5ZGdny4IFC+T888+XtkJreeXl5UlRUZHk5ubGe3EAAECSxw7JED8pYigAABDtuKFFNaX2798vnTp1Mv/WGlGZmZkyePDglswCAADAVYifAAAAotCnlNJmert27TL/1kpW69evl7KysnrjDBkypKWzBQAASFrETwAAAK1svuf1ek0H5+EmsYfru/1UvkRE1XMAAOBk7JAM8ZMihgIAANGOG1pUU2rz5s0tGR0AAMD1iJ8AAACikJTq06dPS0YHAABwPeInAACAKHR0fu+995qnxtjef/99qaysrPtcUlIi11xzTUtmCQAAkNSInwAAAKLQp5TP55OdO3dKly5dzGdtF7hq1Srp16+f+VxQUCA9evRI6D4R6A8BAAA4GTskQ/ykiKEAAEC044YW1ZRqmL9qQT4LAADAlYifAAAAopCUAgAAAAAAAKKBpBQAAAAAAAAS++l76vHHH5fs7Gzz75qaGnn66aelU6dOdR2dAwAAgPgJAAAgqh2d5+fni8fjaXa8zZs3S6Kik04AAOBk7JAM8ZMihgIAANGOG1pUU2rLli0tGR0AAMD1iJ8AAACi0KfU22+/LYMGDTIZr4Y0+3XcccfJ4sWLWzJLAACApEb8BAAAEIWk1Jw5c+TKK68MW/VKq2VdffXV8tvf/rYlswQAAEhqxE8AAABRSEqtXr1azjrrrEa/P/PMM2XFihUtmSUAAEBSI34CAACIQlKqoKBAUlJSGv3e7/dLYWFhS2YJAACQ1IifAAAAopCU6tmzp3zyySeNfr9mzRrp3r17S2YJAACQ1IifAAAAopCUOvvss+WWW26RioqKw74rLy+XmTNnyrnnntuSWQIAACQ14icAAIDwPJZlWdKC6ufDhw8Xn88nP//5z2XgwIFm+Lp162Tu3LkSCARk5cqV0rVrV0lU+uRA7ZRdnxYYrsN2AACAaMYOyRA/KWIoAAAQ7bjBH/EcRUywtGTJEvnZz34m06dPFzuf5fF4ZMKECSawSvSACgAAwEnETwAAAFFISqk+ffrIa6+9Jvv375eNGzeaxNSAAQOkffv2LZ0VAACAKxA/AQAARCEpZdMk1KhRo450cgAAANchfgIAADjCjs4BAAAAAACAaCApBQAAAAAAAMeRlAIAAAAAAIDjSEoBAAAAAADAcSSlAAAAAAAA4DiSUgAAAAAAAHAcSSkAAAAAAAA4jqQUAAAAAAAAHEdSCgAAAAAAAI4jKQUAAAAAAADHkZQCAAAAAACA40hKAQAAAAAAwHEkpQAAAAAAAOA4klIAAAAAAABwHEkpAAAAAAAAOI6kFAAAAAAAABxHUgoAAAAAAACOIykFAAAAAAAAx5GUAgAAAAAAgONISgEAAAAAAMBxJKUAAAAAAADgOJJSAAAAAAAAcBxJKQAAAAAAADiOpBQAAAAAAAAcR1IKAAAAAAAAjiMpBQAAAAAAAMeRlAIAAAAAAIA7k1Jz586V/Px8SU9PlzFjxsiyZcsaHXfevHly8sknS/v27c1r/PjxTY4PAACQjIifAABAWxf3pNT8+fNl6tSpMnPmTFm5cqUMHTpUJkyYILt37w47/rvvviuXXHKJvPPOO7J06VLp3bu3nHnmmbJjxw7Hlx1AcggGLfmisFRWbztg3vUzACQy4icAbkf8BiQHj2VZcb360ppRo0aNkocffth8DgaDJtF03XXXybRp05qdPhAImBpTOv1ll13W7PjFxcWSl5cnRUVFkpubG5V1ANB2fbKjSF5cuV027i6VyuqgpKV4pX+XbLlweC8Z3DMv3osHIAEkYuzgdPyUqOUAwJ2I34DEF2ncENeaUlVVVbJixQrTBK9ugbxe81lrQUXi4MGDUl1dLR06dAj7fWVlpSmM0BcA2AHN7xdtkI+3F0m7jFTJ75Rl3vWzDtfvASDROBE/KWIoAImI+A1ILnFNSu3Zs8fcqevatWu94fp5165dEc3jpptukh49etQLzELNmjXLZOfsl95FBACt8q01pPaVVZmaUdnpfvF5PeZdP+vwBSt30JQPQMJxIn5SxFAAEg3xG5B84t6nVGvMnj1bnn32WXnppZdMJ+nhTJ8+3VQXs1/btm1zfDkBJJ4te8tMk73ueRni8XjqfaefdfiG3SVmPABIJpHET4oYCkCiIX4Dko8/nj/eqVMn8fl8UlBQUG+4fu7WrVuT095///0mqHrrrbdkyJAhjY6XlpZmXgAQqqSixvQhlZHnC1swGak+KSgOmvEAIJE4ET8pYigAiYb4DUg+ca0plZqaKiNGjJBFixbVDdOOOvXz2LFjG53u3nvvlTvuuEMWLlwoI0eOdGhpASSTnHS/6dS8vCoQ9nsdrt/reACQSIifALgV8RuQfOLefG/q1Kkyb948+dOf/iRr166Vn/3sZ1JWViaTJ0823+sTYbT6uO2ee+6RW265RZ588knJz883fSfoq7S0NI5rAaCtye+YZfqO2llULg0fQqqfdfiALjlmPABINMRPANyI+A1IPnGvAjBx4kQpLCyUW2+91SSXhg0bZmpA2Z13bt261TxRxvbII4+Yp8784Ac/qDefmTNnym233eb48gNom7xej1w4vJfs2F9e17eUNtnTGlKakOqQlSrfH97TjAcAiYb4CYAbEb8BycdjNawikOSKi4vNU/i00/Pc3Nx4Lw6ABHissD6FTxNT2seUNtnTGlKakBrcMy/eiwcgARA7UA4AEgvxG5A88VPca0oBQDxp4mlQ91zzNBftPFP7KtCq4dSQAgAASEzEb0DyICkFwPU0AdWvc7brywEAAKCtIH4DkkPcOzoHAAAAAACA+5CUAgAAAAAAgONISgEAAAAAAMBxJKUAAAAAAADgOJJSAAAAAAAAcBxJKQAAAAAAADiOpBQAAAAAAAAcR1IKAAAAAAAAjiMpBQAAAAAAAMeRlAIAAAAAAIDjSEoBAAAAAADAcSSlAAAAAAAA4DiSUgAAAAAAAHAcSSkAAAAAAAA4jqQUAAAAAAAAHEdSCgAAAAAAAI4jKQUAAAAAAADHkZQCAAAAAACA40hKAQAAAAAAwHEkpQAAAAAAAOA4klIAAAAAAABwHEkpAAAAAAAAOI6kFAAAAAAAABxHUgoAAAAAAACOIykFAAAAAAAAx5GUAgAAAAAAgONISgEAAAAAAMBxJKUAAAAAAADgOJJSAAAAAAAAcBxJKQAAAAAAADiOpBQAAAAAAAAcR1IKAAAAAAAAjiMpBQAAAAAAAMeRlAIAAAAAAIDjSEoBAAAAAADAcSSlAAAAAAAA4DiSUgAAAAAAAHAcSSkAAAAAAAA4jqQUAAAAAAAAHEdSCgAAAAAAAI4jKQUAAAAAAADHkZQCAAAAAACA40hKAQAAAAAAwHEkpQAAAAAAAOA4klIAAAAAAABwHEkpAAAAAAAAOI6kFAAAAAAAABxHUgoAAAAAAACO8zv/kwCQWIJBS7bsLZOSihrJSfdLfscs8Xo98V4sAAAAVyNGA5IfSSkArvbJjiJ5ceV22bi7VCqrg5KW4pX+XbLlwuG9ZHDPvHgvHgAAgCsRowHuQFIKgKuDnd8v2iD7yqqke16GZOT5pLwqIB9vL5Id+8vl+tMHkJgCAAAgRgMQI/QpBcC11cG1hpQmpLRmVHa6X3xej3nXzzp8wcodZjwAAAAQowGIPpJSAFxJ+5DSJntaQ8rjqd9/lH7W4Rt2l5jxAAAAQIwGIPpISgFwJe3UXPuQykj1hf1eh+v3Oh4AAACcQYwGuAtJKQCupE/Z007NtQ+pcHS4fq/jAQAAwBnEaIC7kJQC4Er5HbNM31E7i8rFsur3G6WfdfiALjlmPAAAABCjAYg+klIAXMnr9ciFw3tJh6xU07dUaUWNBIKWedfPOvz7w3ua8QAAAECMBiD6SEoBcK3BPfPk+tMHyPG98uRAeZVs2VNm3of0ameG6/cAAAAgRgMQG3SWAsDVNPE0qHuuecqedqyp/Rhokz1qSAEAAMQPMRrgDiSlALieJqD6dc52fTkAAAAkEmI0IPnRfA8AAAAAAADuS0rNnTtX8vPzJT09XcaMGSPLli1rdNxPP/1ULrzwQjO+x+OROXPmOLqsAAAAiYIYCgAAtHVxTUrNnz9fpk6dKjNnzpSVK1fK0KFDZcKECbJ79+6w4x88eFD69esns2fPlm7dujm+vAAAAImAGAoAACSDuCalfvvb38qVV14pkydPlkGDBsmjjz4qmZmZ8uSTT4Ydf9SoUXLffffJxRdfLGlpaY4vLwAAQCIghgIAAMkgbkmpqqoqWbFihYwfP/7rhfF6zeelS5dG7XcqKyuluLi43gsAAKCtIoYCAADJIm5JqT179kggEJCuXbvWG66fd+3aFbXfmTVrluTl5dW9evfuHbV5AwAAOI0YCgAAJIu4d3Qea9OnT5eioqK617Zt2+K9SAAAAAmPGAoAAMSaX+KkU6dO4vP5pKCgoN5w/RzNTsy17yn6nwIAAMmCGAoAACSLuNWUSk1NlREjRsiiRYvqhgWDQfN57Nix8VosAACAhEYMBQAAkkXcakqpqVOnyqRJk2TkyJEyevRomTNnjpSVlZmn8anLLrtMevbsafqFsjv2/Oyzz+r+vWPHDlm1apVkZ2dL//7947kqAAAAjiGGAgAAySCuSamJEydKYWGh3HrrraZz82HDhsnChQvrOj/funWreSKf7auvvpITTjih7vP9999vXuPGjZN33303LusAAADgNGIoAACQDDyWZVniIsXFxeYpfNrpeW5ubrwXBwAAJDhiB8oBAADEJn5K+qfvAQAAAAAAIPGQlAIAAAAAAIDjSEoBAAAAAADAcSSlAAAAAAAA4DiSUgAAAAAAAHAcSSkAAAAAAAA4jqQUAAAAAAAAHEdSCgAAAAAAAI4jKQUAAAAAAADH+Z3/SQBILMGgJVv2lklJRY3kpPslv2OWeL2eeC8WAAAAkHSIvRGKpBQAV/tkR5G8sHybLP9yvxysqpHMVL+M7NNefjCytwzumRfvxQMAIG64cAQQ7eOFxt4vrtwuG3eXSmV1UNJSvNK/S7ZcOLwXsbdLkZQC4Fp6Upy+YI05KdYELXMy1ZPnpsJSWbF1v8z6/hBOjgAAV+LCEUC0jxc63u8XbZB9ZVXSPS9DMvJ8Ul4VkI+3F8mO/eVy/ekDiL1diD6lALiSJqDue32drN1ZIlU1QUnxeU0tKX3Xzzr8vtfXm/EAAHAT+8JRLxTbZaRKfqcs866fdbh+DwAtOV5oTK2JK01IacIqO90vPq/HvOtnHb5g5Q5ibxciKQXAlTbtLpXlW/aLZVkmGeX1eCRoWeZdP+vw5Vv2mfEAAHALLhwBxOJ4oU37tCaV1pDyeOo369PPOnzD7hIzXrTp739RWCqrtx0w79x0Tiw03wPgSu9tLJSKmqD4vR6pqK6RQFBE60TpKdLnldrhNUEz3oBuOfFeXAAAHNGSC8d+nbOP6Dfoqwpw3/FC+5rSpn3aZC+cjFSfFBQHzXhuaIrMcfBrJKUAuFJFddDUhqoM1h+uiamgGaa1pmrHAwDALWJ94ZioF4jJhgteJNrxQjs/17937UNKa1I1pMP1ex0vWhK1DyuOg/WRlALgSgO7Z0tz3UXp9zoeAABuEcsLx0S9QEw2XPAiEY8X+jQ+TUDr33v/tOx6Nav0RvHOonIZ0qudGS8WTQvt3zNNC9OyTWJcmxYO6p4b9imBscJx8HD0KQXAlbrnZkR1PAAAkoF94agXiHqhGMq+cBzQJafFF470VeUMOqlHoh4vNPGjNSI7ZKWahFBphXafYZl3/azDvz+8Z9QSRPHsw6oxHAfDIykFwJWWfLE3quMBAJAMYnXhmIgXiMmGC14k+vFCa0Jqjcjje+XJgfIq2bKnzLxrDalo15Ssa1qY2njTQv0+2n1YNYXjYHg03wPgSjuLKsy7niLDteKzh9vjAQDgFvaFo933k/YJo01w9MJRLzCP5MIxXp0cu4kTndQDrT1e6GdtMmd3fm437Yt2E7p49GHVHI6D4ZGUAuBK3fPSTOJJ+U2dUY+pZlwbxFnmaXyeQ+MBAOA20b5wTMQLxGTDBS/ayvFCh8c6Mep0H1aR4DgYHs33ALjSyQM6S3pK7SGw9ml7It5DJyv7s36v4wEA4Eb2hePQ3u3Me2tqMsSqryqEv+ANh8Qf2srxIlrL42QfVpHgOBgeSSkArtS/c46Mzu9oTkTWoX4Y9ESl7/pZh+v3Oh4AAEi+C8RkwwUvUJ+TfVhFguNgeNSPBeBKelL41VkDZd+CShMMVwesuuZ7KT6PuZur3xMcAwCQuH1V4fAL3h37y+v6ltK+urSGlNZEI/EHN3KqD6uWLA/Hwfo8VsP6s0muuLhY8vLypKioSHJzc+O9OAAS4NHJLyzfJsu/3C9lVQHJSvXJyD7t5QcjexMcAzCIHSgHRJfWSk6UC8RkjW3sxJ92Lq+JP20aSeIPSBxuOA4WR5h7oaYUAFdLtLsnAAAkOyc6OXYzYhsg8XEc/BpJKQCux0kBAAAkE2IbAG0FHZ0DAAAAAADAcSSlAAAAAAAA4DiSUgAAAAAAAHAcfUoBcL2qqoC8tGqH7DhQLj3bZcgFw3pKaqrP9eUCAACA6D9tLSutNs4sqwzwkB0Xc8MT+CJBUgqAq819Z4M8sXizFFfUSNCyxOvxyD0L18kVJ/eVa08bEO/FAwAAQBv3yY4ieXHldtm4u1T2lVbJ/vIqM7x9Zqp0yEqV/l2y5cLhvcyTE+G+faKyOihpKV7X7gckpQC4OiH14FsbpCZoSarfK36PV2osSw6UV5vhisQUAAAAWpN8+P2iDbKvrEoyU/0mIVVRFRBLRDxWlXTMSpWPtxfJjv3lcv3pA1yXkHD7PtE9L0My8nxSXhVw7X5An1IAXNtkT2tIaUIqM9UnqT6vqS6r7/pZhz/x3mYzHgAAAHAkzbO0NowmH47unCW7isulqiYo7Q7VkKoMBKWguFL6d84y4yxYucNMA3fsE1ozKjvdLz6vx7zrZzfuBySlALiS9iGlTfa0hpQ22dPjfiBomXf9rMOLy2vMeAAAoHl6EfVFYams3nbAvLvpogoIR/sL0uZZWhumtDJgYkutLeXxaL9BHvPvovJqKa0KmHE27C4x08Ad+0TtfvA1/ezG/YDmewBcSTs11z6kPOKRiuqABDRutiw9G4jPI+aOhX6v4wEAgKbRPwpwOO3AWvsL0uZZBw5WmRug/pCOrPXf5UFLqmuCkpeZKgXFQTMN3LFPhJOR6nPdfkBSCoAr6VP2NCSoqA6KxgZ6Z8Lj9Zi8lAYM1QHt9Lx2PAAA0Dj6RwHC0yeqaQfW2l9Qis9rbnpqFxEpegdUxPxbh6X4a8fRcXUauGOf0CZ7DblxP6D5HgBXOn9ID/H7PKaTSWXXnrXfdbh+r+MBAIDw6B8FaFx+xyzTT9DOonLJTvNJboZfDlbViKV3QcUy/87LSJHsVJ8ZZ0CXHDMN3LFP1O4HX9PPbtwPSEoBcKWvSiqkW266SUJp0z0Nqu2XftZaUvq9jgcAAMKjfxSgcfoQnQuH9zKdmm8qLJNuuRmm31JtyqcdWqf5vNI1N002FpaZcb4/vKeZBu7YJ7RvqdKKGtNKQ9/1sxv3A5JSAFxJ22l3zc2Q47rnSqrvUEfnmpyyRFL9HhnUPdd876b23AAAHHH/KKmN94+i33M+hVsN7pkn158+QI7vlSeWWNI+I1XSU33mb6NdVqqpnT+kVzszjo4Ld+0TB8qrZMueMvPu1v3APQ0VASBMe+6uudkyqHuObN57UA5WBSQz1Sd9O2ZKebVlTg5uas8NAEBL0T8K0DxNMugNT61ZqAnarLTaJG5ZZcD8DWlTLTfVjMHh+0SOi/cDrrYAuLo998fbi8x7/y45Ddpzl5q7FW5qzw0AQKvOp2nZ9R5xbvePwvkUqG221a9zNkWBOuwTtWi+B8CVaM8NAADnUwBAfJGUAuBatOcGAIDzKQAgfmi+B8DVaM8NAADnUwBAfJCUAuB6tOcGAKD1OJ8CAFqK5nsAAAAAAABwHEkpAAAAAAAAOI6kFAAAAAAAABxHUgoAAAAAAACOIykFAAAAAAAAx5GUAgAAAAAAgONISgEAAAAAAMBxfud/EgASy7qde+S7D30g1UGRFK/I/103Ro7t3ineiwUArlFTE5T3N+2RwpJK6ZyTJicd3Un8/q/vnQaDlmzZWyYlFTWSk+6X/I5Z4vV6Gh1+JFo7r2gtS3PzieY6uxVl2PbFYhsm434R6Tq1dN2dOt619rcaTntU+0zZuv+g4+vplGAbW14bSSkArtZ32qtihXzWxNRZD34gevjePPucOC4ZALjDy6t2yB//tUm+KqqQmoAlfp9HeuSly9Xjjpbzh/WUT3YUyYsrt8vG3aVSWR2UtBSv9O+SLcN6t5NV2w4cNvzC4b1kcM+8Fi1DY78R6bxaO32k84nW77hZrMswHheFbfVCNJG2oZN/W05tr0jXac32A/L0ki3yRWGpBIIieRl+GdA1p9F1D51vRVVAgiLSPS9dvjukh5wxqGvE6xLJ8h3JdrHLd/W2A/Lehj2yu6RSKmuCUh0ISmVNQNL8PknxecPOK3Tb7CqqkKVf7JFNhWVhf9sed//BKtlYUCoBKyj7SqvNjZVueenm5oqWhY5TVF4tBw5WSUlljRSWVIhHPNIlN12O7ZYj/Tplm3mF3pgZ27ejbC8qbzKZpjYWlsj7G/dKeXWNZKb4ZfOeUvliz8GItktzN4Oc5LEsK/R6LOkVFxdLXl6eFBUVSW5ubrwXB0ACJaQaIjEFQBE7xK4cNCF15yufSXlVQHIzUiTN7zUXD8Xl1ZKR6pPLT8qX1duKZF9ZlXTPyzDDdNxNhSV1gfTRnXPqhu8sKpcOWaly/ekDIr6Q1Iue3y/acNhvRDqv1k4f6XzOGdJdXl2zs9W/42bR2lZNzd/ppKHbEpWx2Iax3i/isb0iXSc9Bj/wxno5cLBa/F6vpPg9kpniM+P3ap952LqHzjcz1W/mp0mZCl0Xv1dO6t9JrjqlX7PrEsnyqZZuF7t8V209IJv3lEnAsqRjVqpJEm0pLJPSyhrJSk+RIb3yJN3vO+z37G2jv6lJKZ/XI8d2yzXTNzwe602RJRv3yNZ9B8221CSQ0txPeopPuuammWRScUWNfLm3TIorqyUQEHPtodcYOu/2mSnSu32m7C+vkv0Hq82NGf0y1euRzrlpkpeeGjaZ1j4zVbbvOyjrCkrMdyajY4nZfn07ZonOpqnt0tzNIKfjBmpKAXBtk73mMvLWofFoygcA0ad3aTUo1kC/S26aeDy1d2gzUr2SnuKVgqIKeWLxZunXOUv6d8kRj6f2Lm92ms8E6TpdTdCSrDSf+S473S/907LNBcWClTtkUPfcZu/Y691pvQjRCxC9MKz7jQjn1drpWzIfLauMFJ+pwXCkv+Nm0dpWEV9k59VeQH+8vUh27C+PSdIwHr+ZbNsw1vtFPLZXpOsUCARNQmpfaZV0yE41SSk9pmptniqtMiUH66176Hw10fPJV8UmIaLJqdx0TYJUywdfaK2dgNzQxLpEsnwvrtgullgt2i52+e4trTS1kjTRkpPiN4ko/c7v85pzjSaJtu4tkxOOam/mrfOa9+8v5GB1QPbrtslNN8mnoGWJxxLZVFhqEmKajNLf1pplD7zxufi8Il8dqJDqmq8TUmb9LDHb9cu9B2Xr3oPmuF1REzC10OxrD30PBC3ZW1olhaVVJpGl89eEoK7zwUDQLPfAbl7ZXVIlZRXVkp3mlyG92pl5vflZgVRUB0SLRZNOVTVBCYhIZY0l63eXSlaq38wv3HbR9al3Myij9maQLqsOV9FMTEWCjs4BuJI20YvmeACAltFmA3qXVoNiOyFl089ZaX5z8eDzeOsuSJReMJVU1AbTxeX675qQ6TzmYm/D7hLTZKI5Oo5ekOg0ob8R6bxaO32k89HmGrVlldqq33GzaG2rSC6y9cJZa0GYC+gu2Wa4XkDreNESj99Mxm0Yy/0iXtsrknX6vKBY5r670SQs2melSoqvNrmvNXFy01NMkqK8OmjGs9fdnm+33HTZvLfMJKR0XJ1Gj9k56SlmPE3oNLUukSzfxzuK5OMdxRFvl9Dy7aq1mqqDJlmW6q+t9aXrEwhYZlodXnTo3KGfdX0+/HKfWW7dFpZHpLQiYNantiwCsmVPqdgNzDSZs6+sUvaUVJqEVOha6pLq2UyH6eprjaVSbUoXmrU6VJvKjHPos2WJVNUEpKyq9nyWmeozSavPC0okEAyaZFqNZcmWfWWy80B5be2oQ/Pxavl4PGK3vNN5VdbUmM8Nt8sLK7bLo+9urLsZlJHqF6/Xa971sw5/7F9fmJtGTiIpBQAAAMdp8zttNqB3ecPx+TzmTrX+F0ovAjRYT/V7zbvWmgplLkCqg/WSVY3RcXRcnSac5ubV2ukjnY/P4zFlpXfmW/M7bhatbRXPxEa8fzMZt2Es94t4ba9I1kmTMlv2HJQUbbLX4MBiJ24OVtXUJW9C56tN4vSGgI4Tui5+rU1libTPSGlyXSJZPq21pAmSSLdLaPnqsVLPDbo8ygrWJm5qgtqvlB5HPfXOHbo+pRU1Zrl1fexzjE7fMImlL102zVxp0zi/31N3hrIr0oVLxR1qXWeSVp5DiaPQUvd4xMxP10l/V5c3xdSA0kRabXJJl0OTbgUllWZmPpPYqj1P1rbf056qamkzQU3MNdwuy7fsk+0HGr8ZpMN3FJWbm0ZOIikFAAAAx2l/UNq8Qu9gh6N3tTUw/zrMrqWBul5UaHMFfW94QaUXMtrnhtYuao6Oo+PqNOE0N6/WTh/pfPSiScuqQf6txb/jZtHaVvFMbMT7N5NxG8Zyv4jX9opkncxh0yOS4tNkzeFpFD22VtfUJsLtdbfnqwmc0KSPTedTW/srpcl1iWT57H6tIt0uoeWr5wRdDnu9tHmfLqp+1BpVuuyh5w5dH6XLHXqOsacPTWKZV42em2pvl2jzvlCaQGqurluDnGQdPbzrT9rf67nPzOvQDP2HlkmTbnW/YXcP7qkdt17zQK2m1WC7aKKxqZtBerNHv9ebRk4iKQUAAADH6ZN+tGNV7dTc0lvZIfRzWWWN5Kb7zRONQp/Lk5Pml5x0n5kuN8Nf72JRx9MmCgO65NQ9nagpOo4219BpGj77J5J5tXb6SOejF1y1ZVXVqt9xs2htq3gmNuL9m8m4DWO5X8Rre0WyTvqAiC456bW1kkyTsfrjaZMxrVmk49nrbs9XO9DWfE79ZJZl5pOXkSJ+j6fJdYlk+Y7vmSfH98yNeLuElq/+W88Nujw6ribetL8s00eUx17O2nOHfq/ro80odbnNvNK+nl7XKzSJpTcHtFwy0vzmpok29au/bLU1oZrS2GPmvHazvkPfa+rJzOvQDLW8NTGly1D3G57aWlWm1pSunz34UG3jhttFa1s1dTNIb/bo93rTyEkkpQC40nNThkV1PABAy+ijp/VJP3pRtLu4Usqr9O67dmBeYz5npvnlipP7SoesNNMsw747X1oZMBcHOp0G6GWV2oFsbfMLHU87d/3+8J4RdUqs4+hTr3Saer8R4bxaO31L5qNl1TG7QVkcwTq7VbS2VTwTG/H+zWTchrHcL+K1vSJZp0kn9pEBXbNN30VpPq8UlVebWkC6LNq3kXZ+3i6zdjx73e35ds9LNzV6SiuqJWiaxAXN9Po0u/yOmbKzuKLJdYlk+S4c0Ut+MKJ3xNsltHxV307Z5ml1xRW16+X1aq0wr+wvq33K4FEds8y5o7bJX7qM7NPBLLfZNh6P9OuUbdZHO0zX9dQElv6SPoCjXWaKeWpeZqpXarR53aH1snN04faUumZ7djM+rblVbx8Q84APTaxp8kkTaNqMMFWbB5rWeUGTXNL17qoJI09tf1VaP0rLoLZfr69Ti5o01PNjw+0yMr+D9GrX+M0gHd4zL8PcNHKSx2r4V5HkeKwzAFv+tFebLYwts8+hwACXI3aIbTmEezS1BsVXjetnngAU7hHqesEztHeeeSR3w+F6oXIkj4QP9xuRzqu100c6n2j9jpvFqgwjecR9zJ++58BvJus2dOJvy+ntFcnxRJdn+/6DcrCqtg8n7XOpOhiU9pmp8oszjwn7FDad7rF/b5L3N+41NW40maLja3JH5xPpukRS5i3ZLg3LV59St7GgRPaWVZnETdfcNNM/nyarNIkTOi/VcNvsKiqXdbu0o3HLdIauTyi0zz2vrtlp+s0K9/S9uiSU9gWlTTPDPH2vbpxDzfa8h56+V5s4qzJPP9Sk0sCuObK79Oun7x3fq53p5PzDLfvrPX1P56PTaAUo/bcms7SD83DbpeHT97TJntaQ0oSUrveMcwdF7el7kcYNCZGUmjt3rtx3332ya9cuGTp0qDz00EMyevToRsd//vnn5ZZbbpEtW7bIgAED5J577pGzzz47ot8isAQQaWKKhBSARI4dnIyfYl0O+qQf7VhV+7HQZgN6l1ZrUtm0HxDtyFabsekda70rbj+iPNzwI9HaeUVrWZqbTzTX2a1iVYbxSBq6NVEZi23oxN+W09uruXWqW56CUlOrRr87unOWXH5ivkmANDXfNz/bJa+s2Sk7iypME7IjWZdIyrwl26Vh+WpypmtuhpzUv6MM691OjmqfKVv3Hww7r3Dbpn/nbPlmvw7SLS+j3vj2uEs27pGt+w6a8e3ElM4uPcVnElm922eYp8h+ubdMiiurTQfkdofnmnTSWle922fK/vIq8yREvTGjX6Z6PdI5N03y0lNNTS9N/mnyyU6mdchMlW37Dsq6ghKTpDIdn/u80qtdhpw2sLPsLqlscrs0dzMoWtpMUmr+/Ply2WWXyaOPPipjxoyROXPmmKBp/fr10qVLl8PGX7JkiZxyyikya9YsOffcc+Wvf/2rCapWrlwpgwcPbrOBJYD4WbZlh1z06Kp6TfZG50fvgAygbUvE2MHp+ClRywFINPFIGpKobFsSbXu1ZnkSbV1au0wtmdYeV/uk0qSe9n+4r7Ta3Fjplpdubq7otDqOJvy0KWBJZY0UllSYTsy75KbLsd1yTFNBnVfojZmxfTvK9qLyuuUIl0xTGwtLTI218uoaGdQ9V751dGdzQyeS9WjuZpCrklIaSI0aNUoefvhh81nbpfbu3Vuuu+46mTZt2mHjT5w4UcrKyuSVV16pG/bNb35Thg0bZgKz5hBQAQCAlkjE2MHp+ClRywEAACSmSOOGuHZ0XlVVJStWrJDx48d/vUBer/m8dOnSsNPo8NDx1YQJExodHwAAIJkQPwEAgGQR12eE7tmzRwKBgHTt2rXecP28bt26sNNovwnhxtfh4VRWVppXaLYOAACgrXIiflLEUAAAINbiWlPKCdp3glYZs19atR0AAADEUAAAwMVJqU6dOonP55OCgoJ6w/Vzt27dwk6jw1sy/vTp000bRvu1bdu2KK4BAABA8sVPihgKAAAkdVIqNTVVRowYIYsWLaobph116uexY8eGnUaHh46v3nzzzUbHT0tLM51qhb4AAADaKifiJ0UMBQAAkrpPKTV16lSZNGmSjBw5UkaPHm0eaaxPh5k8ebL5Xh933LNnT9MMT91www0ybtw4eeCBB+Scc86RZ599VpYvXy6PPfZYnNcEAADAGcRPAAAgGcQ9KaWPKC4sLJRbb73VdLapjyZeuHBhXWecW7duNU/ks5144ony17/+VWbMmCG//vWvZcCAAfL3v/9dBg8eHMe1AAAAcA7xEwAASAYey7IscRF9+p52eK79S9GUDwAAEDsQQwEAgPjkXpL+6XsAAAAAAABIPCSlAAAAAAAA4DiSUgAAAAAAAHBfR+dOs7vQ0vaNAAAAzbFjBpd1w3kYYigAABDt+Ml1SamSkhLz3rt373gvCgAAaGMxhHbY6VbEUAAAINrxk+uevhcMBuWrr76SnJwc8Xg88V6chMxmasJu27ZtPJ2Q8ncV9n3K383Y/5umoZIGVD169BCv1709H8QqhmL/ozzYR/i74VgSfRxbKZN47yeRxk+uqymlhdGrV694L0bC0x0y2jslKP+2gH2f8ncz9v/GubmGlFMxFPsf5cE+wt8NxxKOrU7gfONcmUQSP7n3dh8AAAAAAADihqQUAAAAAAAAHEdSCvWkpaXJzJkzzTucR/nHD2UfX5Q/5Q/34u+f8mAf4e+GYwnHVs437j0Hu66jcwAAAAAAAMQfNaUAAAAAAADgOJJSAAAAAAAAcBxJKQAAAAAAADiOpJTL7Nu3T3784x9Lbm6utGvXTq644gopLS1tcpqKigq59tprpWPHjpKdnS0XXnihFBQUhB1379690qtXL/F4PHLgwIEYrUXbFYvyX716tVxyySXSu3dvycjIkG984xvy4IMPOrA2iW/u3LmSn58v6enpMmbMGFm2bFmT4z///PNy7LHHmvGPP/54ee211+p9r13w3XrrrdK9e3dT1uPHj5cNGzbEeC3armiWf3V1tdx0001meFZWlvTo0UMuu+wy+eqrrxxYk7Yn2vt+qClTpphj/Jw5c2Kw5EhWsdwnk708Pv30U3Pu1/GT+W+vJWUyb948Ofnkk6V9+/bmpefj5vapZC+TBQsWyMiRI018qefJYcOGyTPPPCNuPo7Ynn32WfO3873vfU+STUvK5OmnnzblEPrS6ZJNS/cTvWbVay2N77Wz72OOOcbV55xTTz31sP1EX+ecc07sFlA7Ood7nHXWWdbQoUOt//znP9bixYut/v37W5dcckmT00yZMsXq3bu3tWjRImv58uXWN7/5TevEE08MO+75559vfec739HO8639+/fHaC3arliU/xNPPGFdf/311rvvvmtt2rTJeuaZZ6yMjAzroYcestzs2WeftVJTU60nn3zS+vTTT60rr7zSateunVVQUBB2/Pfff9/y+XzWvffea3322WfWjBkzrJSUFOvjjz+uG2f27NlWXl6e9fe//91avXq1dd5551l9+/a1ysvLHVwzd5b/gQMHrPHjx1vz58+31q1bZy1dutQaPXq0NWLECIfXzJ37vm3BggXmGNajRw/rd7/7nQNrg2QQy33SDeWxbNky65e//KX1t7/9zerWrVtS/u21tEx+9KMfWXPnzrU++ugja+3atdbll19uzs/bt2+33Fom77zzjjlG69/Mxo0brTlz5pi/o4ULF1puLA/b5s2brZ49e1onn3yyuU5JJi0tk6eeesrKzc21du7cWffatWuX5eYyqaystEaOHGmdffbZ1nvvvWf2F72mWrVqleXWMtm7d2+9feSTTz4xxxLdf2KFpJSL6ElKk0Uffvhh3bB//vOflsfjsXbs2BF2Gr0Q1EDw+eefrxumJ3+dj14UhvrDH/5gjRs3ziRPSEo5X/6hrrnmGuu0006z3EwTFtdee23d50AgYC6kZ82aFXb8iy66yDrnnHPqDRszZox19dVXm38Hg0FzMXDffffV2z5paWnmQgGxLf/GLtT0b+HLL7+k+B0oe73Y08Beg5M+ffok5YUx2u7xIJnLI1Sy/u21pkxUTU2NlZOTY/3pT3+ykkVry0SdcMIJJqnr1vLQ/UJv5D7++OPWpEmTki4p1dIy0aSCJm+TWUvL5JFHHrH69etnVVVVWclqdCuPJXrO0eNraWlpzJaR5nsusnTpUlOlV6v22rS6s9frlQ8++CDsNCtWrDDNZnQ8m1anP+qoo8z8bJ999pn85je/kT//+c9mfnC2/BsqKiqSDh06uHYzVFVVmbILLTctZ/3cWLnp8NDx1YQJE+rG37x5s+zataveOHl5eaYKbFPbwo1iUf6N7edanVj/rhDbsg8Gg/KTn/xEfvWrX8lxxx1HcSPhjgfJXB7JLhplcvDgQRMvJUvs09oy0YoHixYtkvXr18spp5wibi0PvTbp0qWL6S4j2RxpmWi3IX369DHdfpx//vmmebCby+Qf//iHjB071jTf69q1qwwePFjuvvtuCQQCkgyqonB8feKJJ+Tiiy82zYJjheyBi+gFtR6YQ/n9fnMC1+8amyY1NfWwiz79o7WnqaysNH0a3XfffSZZAmfLv6ElS5bI/Pnz5aqrrnLtptizZ485mWg5RVpuOryp8e33lszTrWJR/uH6WtM+pvTYo320IbZlf88995jj1fXXX09RI+GOB8leHskuGmWi5wPta7BhMtNtZaI3a7T/UY0dtf+Xhx56SM444wxxY3m899575mJa+x9LRkdSJgMHDpQnn3xSXn75ZfnLX/5ibjideOKJsn37dnFrmXzxxRfywgsvmOm0H6lbbrlFHnjgAbnzzjslGexp5fFV+5765JNP5Kc//WkMl5KkVFKYNm1a2M7IQl/r1q2L2e9Pnz7ddK596aWXihvFu/xD6UFD73rMnDlTzjzzTEd+E3Ca3g2/6KKLzJ3gRx55hA0QY3qHTR+eYHeQCgCJZPbs2aYj65deeikpO21uiZycHFm1apV8+OGHctddd8nUqVPl3XffFbcpKSkxtXs1IdWpU6d4L07C0BpB+pAY7QR/3LhxpnP8zp07yx//+EdxK03MaaWBxx57TEaMGCETJ06Um2++WR599NF4L1pC0MSuPmxk9OjRMf0df0znDkf84he/kMsvv7zJcfr16yfdunWT3bt31xteU1Njngin34Wjw7Xanz6VILS2jj79zZ7m7bfflo8//thkmZVeKCo9Cegf9e233y7JLN7lH9qE8vTTTzc1pGbMmCFupvuez+c77CmR4crNpsObGt9+12H6dI7QcfTkjtiWf8OE1JdffmmOPdSSiv2+v3jxYnPsCq0Jq3fd9NinTwHbsmULuz/icjxwS3kku9aUyf3332+SUm+99ZYMGTJE3F4m2iynf//+5t8am6xdu1ZmzZplnqblpvLYtGmTOTd997vfrZd8UFrrV5s1Hn300eL2Y0lKSoqccMIJsnHjRkkGR1ImGtNrOeh0Nq1sobWI9BpMax26dT8pKyszCX9tBhtrNN9LAprh1n6GmnrpH5RmxzW5oXe9bXpRpwdp7RcnHM0Y6x+qtku36YF869atZn7qxRdflNWrV5s7M/p6/PHH6y5ktH1usot3+SttD37aaafJpEmTzJ0xt9Py1rILLTctZ/0cWm6hdHjo+OrNN9+sG79v377m4B06TnFxsekPrLF5ulUsyj80IbVhwwZzAdKxY8cYrkXbFIuy17vNa9asqTvG60ubyWj/Uq+//nqM1whtXayOB24qj2R3pGVy7733yh133CELFy6s119nMojWfqLTaDcbbisPjb31hnnoeeu8884zsbL+W/tTauuisY/oDSYtp9CbrW4rk5NOOskk5eykpfr8889NmbT1hFRr95Pnn3/eHD8caQ0Vsy7UkZDOOuss8ySODz74wDz2csCAAdYll1xS7+lKAwcONN/bpkyZYh111FHW22+/bS1fvtwaO3aseTVGH0nL0/ecK399RHbnzp2tSy+9tN7jO3fv3m25mT7+VJ+M9/TTT5snH1511VXm8af2o29/8pOfWNOmTav3CHK/32/df//95gmHM2fOPOwR5LNnzzbzePnll601a9aYp7j07dvXKi8vj8s6uqn89ako5513ntWrVy/zmN7QfV0f54vYlb2bngCGtrtPJnN56DHuo48+Mq/u3btbv/zlL82/N2zYYCWLlpaJno/1EecvvPBCvfNBSUmJ5dYyufvuu6033njD2rRpkxlf/37072jevHmWG8ujoWR8+l5Ly+T222+3Xn/9dbOPrFixwrr44out9PR069NPP7XcWiZbt241T5b7+c9/bq1fv9565ZVXrC5dulh33nmnlSyePcK/nW9961vWxIkTHVlGklIus3fvXpMEyc7OtnJzc63JkyfXO4Fv3rzZJJQ0sWTTC+5rrrnGat++vZWZmWldcMEF5sTfGJJSzpa/Bus6TcOXXjS63UMPPWQSehq46uNQ//Of/9R9N27cOBOghHruueesY445xox/3HHHWa+++mq974PBoHXLLbdYXbt2NQf3008/3ZzAEPvyt/82wr1C/14Qm32/IZJSSLR9MpnLo7Hjn47n1jLRY1C4MtGYyK1lcvPNN1v9+/c3SQaNGfUGpl6Muvk4kuxJqZaWyY033lg3rsayZ599trVy5Uor2bR0P1myZIk1ZswYE9v369fPuuuuu6yamhrLzWWybt06c0zVRLcTPPq/2NfHAgAAAAAAAL5Gn1IAAAAAAABwHEkpAAAAAAAAOI6kFAAAAAAAABxHUgoAAAAAAACOIykFAAAAAAAAx5GUAgAAAAAAgONISgEAAAAAAMBxJKUAAAAAAADgOJJSAJLOu+++Kx6PRw4cOGA+P/3009KuXTtJZKeeeqrceOON8V4MAAAQJ7fddpsMGzasyXG2bNliYpxVq1Y5tlzJID8/X+bMmeP47+q2+vvf/x7zGDFe6wdEA0kpAI5p7KQa66TRxIkT5fPPP2/VPOwg0H516NBBxo0bJ4sXL25Vwsy2YMECueOOO1q1jAAAuM3ll19ed25OSUmRvn37yv/8z/9IRUWFtDW//OUvZdGiRfXW7Xvf+169cXr37i07d+6UwYMHx3RZDh48KNOnT5ejjz5a0tPTpXPnzibuefnllyVRt3+4lyZrACQ2f7wXAABiLSMjw7yi4a233pLjjjtO9uzZI3fddZece+65JuHVtWvXVs1Xk1wAAKDlzjrrLHnqqaekurpaVqxYIZMmTTIJiXvuuadNFWd2drZ5NcXn80m3bt1ivixTpkyRDz74QB566CEZNGiQ7N27V5YsWWLeY6WqqkpSU1NbNM2DDz4os2fPrvvcvXt3sy/oPmGX15HS/UkTnQBii5pSABKOfWfw/vvvN8FFx44d5dprrzXBga2yslJuuukmc8cwLS1N+vfvL0888UTY+TWsiWVXj//jH/9ops/MzJSLLrpIioqKml02XRYNBvUO5a9//WspLi42QZvtmWeekZEjR0pOTo4Z70c/+pHs3r27rrbVaaedZv7dvn17EzDruoarRbZ//3657LLLzHi6fN/5zndkw4YNR1SeAAAkM40D9Jyr53SNH8aPHy9vvvlm3ffBYFBmzZplalHpTaqhQ4fKCy+8UG8en376qbnRlJuba87hJ598smzatKlu+t/85jfSq1cv81saQyxcuLDe9Jqw0eFaq0jjAG2yFdrMzq4prTWh9Hs9t5944omyfv36sM339N9/+tOfTM0ku9aPziNc871//etfMnr0aLNsGjdNmzZNampq6r7XGOP66683Ncj0JpiWlc6/Kf/4xz9MnHP22Web2kYjRoyQ6667Tv7rv/4r4lgskuX6+c9/buKfTp06yYQJE8zwTz75xMQ9mqDTm34/+clPzM3AcPLy8sz62C+lMZ/9WWt4hdb+0uXX7XvUUUfJY489VvedXa7z5883NcJ0O/7v//6v+e7xxx+Xb3zjG2bYscceK3/4wx/qJdJ0HXT99Ps+ffqYfS2ULvsFF1xgtvmAAQNM2YZqrpwa0rjyu9/9rtmXdZ+2lxNoq0hKAUhI77zzjgkG9V2DMk0s6cumCZu//e1v8vvf/17Wrl1rEkzN3V0MtXHjRnnuuefk//7v/0xg+dFHH8k111wT8fTl5eXy5z//2fw79K6eJs60Gd7q1atNQKpBjp140qDtxRdfNP/WIFSr3+sdvnB0muXLl5vAZenSpWJZlgkMQxNzAACgPk1oaIIo9NysSQI9Zz/66KMm+fTf//3fcumll5pkgNqxY4eccsopJinw9ttvm9pWmrywEwN6rn7ggQfMzbI1a9aY5Ml5551Xd7NIb1BpkuD444+XlStXmjhAkzXh3HzzzWZeeo73+/31kjwNm/LpDTOt8aPxgr40idWQLrvGB6NGjTKxxyOPPGISQ3feeWe98TSWysrKMjfS7r33XpNkC03cNaQJnddee01KSkoaHaepWKwly6Xb6v333zfbR7s3+Pa3vy0nnHCCKSON0QoKCkxZtJaWuyYE7ZjvZz/7Wb2koNKE0A033GDWR7ezJnxuvfVWUzteh919991yyy23mOVWuu4aq2lMqfPS8Rs2Gbz99tvN8uu+o2Xy4x//WPbt29eicmoYI27bts3EyJpc1SSZfQMUaJMsAHDIuHHjrBtuuOGw4U899ZSVl5dX93nSpElWnz59rJqamrphP/zhD62JEyeaf69fv97Sw9ebb74Z9nfeeecd8/3+/fvDzn/mzJmWz+eztm/fXjfsn//8p+X1eq2dO3eGnefmzZvNPDMyMqysrCzL4/GYzyNGjLCqqqoaXecPP/zQjFdSUhJ22cKVzeeff27Gef/99+u+37Nnj/nt5557rtHfAgDAbTRm0HO6npvT0tLM+VPP5y+88IL5vqKiwsrMzLSWLFlSb7orrrjCuuSSS8y/p0+fbvXt27fR83mPHj2su+66q96wUaNGWddcc4359yOPPGJ17NjRKi8vr/t+3rx5Zlk++uijeuf/t956q26cV1991Qyzp9P4ZOjQofXW7fzzzw8bj9jz/fWvf20NHDjQCgaDdePMnTvXys7OtgKBQF2M8a1vfeuw5b/pppsaLdd//etfVq9evayUlBRr5MiR1o033mi99957dd83F4tFulwnnHBCvenuuOMO68wzz6w3bNu2bea39Debo+O99NJLhw3XuPLSSy+t+6zL1aVLF7PtQst1zpw59aY7+uijrb/+9a+HLePYsWPNv6+77jrr29/+dr31bLg8M2bMqPtcWlpqhmnc2ZJysmNEu9yXLVtWN/7atWvNsN/97nfNlg+QiKgpBSAhab9Nof0AaHVm+y6QVlnX77R69ZHSats9e/as+zx27FhTPb/hHbOGtFq33mHTGk9aTV1rb4X2N6B3V/Vuqc5fq4fby7h169aIl03vxOnd0zFjxtRrNjhw4EDzHQAA+Jo2jdfYQGsBaX9SkydPlgsvvLCuZrQ22zrjjDPq+mzSl9acspvn6bTaXC9c/0FaC+qrr76Sk046qd5w/WyfkzV2GDJkiGm+ZdPmWOHoeKGxjWpNLRddBo1htOlZ6LKVlpbK9u3bw/6u/dtN/a7WHPviiy9Mc8Mf/OAHpoaZlpH9UJbmYrFIl0ubBYbS2kJaAyh0W2mTOWVvryMVWga6XFobrGEZaE0qW1lZmfnNK664ot7yaC0me1m01pKWhcZo2kTyjTfeaPJ3tbaaNhG1fzfScmoYI4aWm5ZPoj9lGmgKHZ0DcIyehMP126RVtbVPgFANA0M9WWvSSEWr0/IjoU3wtD8AfWm1fu0jQJsKaJV/DV60qrdd3Vv7MdBklH7WPgcAAED06YW+3ihSTz75pOkzSptAaTJBL+7Vq6++Wu9mlNJzt9NxRWh8Yyci7PjGqd+1f7u539VpNBGlL22OqMkYbfan/45Wmem2C6XbS2/uheuk3k7ixbIMQpfH3nfmzZtX70ahsm+cDh8+XDZv3iz//Oc/zcNwtJme9mkW2mfZkZQ94CbUlALgGL2LpH0tNKTDjjnmmIjno3026Mnc7gviSGiySO982v7zn/+I1+s1yxgpvXOod6vsDi/XrVtnnkqjT4HRAE7vXDW8A2f3cREIBBqdr3amqQmv0A7Udb56J1afgAMAAMLTc7l20D1jxgzT/6OeNzX5pOd9TVyFvvRGk12TZfHixWH7bdQbaj169DB9HoXSz/Y5WWOHjz/+2HT8bfvwww9bvYk0ZmgqXrBjBrvvydBl09ra2jF7NOn6anxSUVHRbCx2pMulSR6tlaX9MjXcXg0TWLGmnazrttcaYw2XRTsYD91HJk6caJJXWqNea9PbfUY1p6XlpLGlbgOtmW/T+FBv8AJtFUkpAI7RDiU///xzU71ZO3vUk+hvf/tb00nmL37xi4jno4GKVs/XzkG1M3G9Q6VPpNFOJiOlVex1HlpNXANRXSa9u9WSxyzrnS6dTpNQ2jRAm+xpAKmPT9YARju+tKu52/SpLDrdK6+8IoWFhXV34UJpLazzzz9frrzySnnvvffMMmqHrHqHV4cDAIDG/fCHPzQ1WebOnWsu7rXTcO3cXDun1mZXejNMz9V2Z9X69DRtpnfxxRebzrW1A3N9mq7dpP9Xv/qVqbmjCQcdpp1ha5Mt7RBb6ZN2NUFz1VVXmeZVr7/+uukU3Y4VjpTGO3a8pE9wC5c00w67tdNrfTKe3hzTp/XNnDlTpk6dahJ0R0qfjKcdl2vyQx/aop2ea7JPm0pqEqa5WOxIl0uftqwJnUsuucQk9nR7aXlqk8zmEnSxoJ2Ua0f52qG5xrCafHzqqadM/KrsOFbXUb9//vnnTSwZaXO6lpaTJkC18/urr77a3LzU7fPTn/40rq0IgNYiKQXAMf369ZN///vf5qSrVZu1KrQGL3oC1xNsS+jTSbSmkp7M9a6RJnC0+Vyk9C7X97//ffPEkzPPPNPcJQ19xG+kNCDTIPHhhx82zfW0jyldH72bqMkqOyi1aWJJAxwNaPUOnAbC4WjAo/0F6OOpta8BvYOmAWG4/i4AAMDXtBaznl/1KXMaG+gNIn1imiYXtGaKxhzanM+u7aL9NupT9/RGkfaRpOdfrfVin3P1BpQmCfQGmtYQ0ifC6Y0nvYmkNEmjT/PVRNWwYcPME/b0iW0qtJ+pltLYRpMQ2s+RxhgNa2vZcYXGB8uWLTPNFqdMmWKaLWpNsdbQrgc0aacxkpaZJk10WOgNwKZisSNdLrtWmiag9Le1vG+88UaT5GlNku1IacLn8ccfN3GZLovuHxrr2fuOJj11P9NtpE/QsxN4kS7rkZSTLouWky6LxrKaDO3SpUvU1hlwmkd7O3f8VwEgjm677TZzV0+DRwAAgGjTviW1do/2pUktFgBoHB2dAwAAAEAr6NP8tEa41nzRZvfaGbh2C0BCCgCaRlIKAAAAAFph165dpsmevutT4rRfq7vuuosyBYBm0HwPAAAAAAAAjqOjcwAAAAAAADiOpBQAAAAAAAAcR1IKAAAAAAAAjiMpBQAAAAAAAMeRlAIAAAAAAIDjSEoBAAAAAADAcSSlAAAAAAAA4DiSUgAAAAAAAHAcSSkAAAAAAACI0/4fiNcEryaimKsAAAAASUVORK5CYII=", "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAASMtJREFUeJzt3QmcE/X9//HPsggr13IJC4gg4IUoILAIXlVBvBCstniCVPm1eBdtBbUgUgUVlVYRvNAqtVIpilq6HiitBxaFoiCKBVEOORU5BXSZ/+P9/XdiNiS7yW6ySWZfz8cjsJlM5vjOd2Y++V6T43meZwAAAAFRLd0bAAAAkEwENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDdJtH37drviiiusoKDAcnJy7Prrr3fT169fb+eff741atTITZ8wYYJl+z5VNU8++aTb/y+++KLS1631Xn311ZbJ5syZ47Zz+vTpFtTtue2229wy46H5NH82at26tZ199tnp3gygQghu4rypxXq99957oXnvvPNON//QoUPt6aeftksvvdRN//Wvf22vvPKKjRgxwk0//fTTLdm07hdeeCEly422T7Euin66VKtWzerXr29HHXWU/d///Z/9+9//rtB2PPTQQ247Ui1V6RgUzzzzTFYF5/iRfmTdeOONdvjhh1utWrWsdu3a1qVLF/v9739v3377bdYn1c6dO11AqcC2sujHTmn3h3Hjxlk23NeqV69uLVq0sMsuu8zWrFmTNelfmurp3oBscfvtt9vBBx+8z/R27dqF/n7jjTfs2GOPtVGjRpWYR9P79evnLiypvCmrdKh///5JXW6sfYqlU6dOdsMNN7i/t23bZp988ok999xz9uijj7og77777it3cNO4cWN38qVSrHRUUHfBBRdYzZo1raoHN4sXL66yJXjZ6v3337czzzzTlcRecsklLqiRDz74wN2A//Wvf9mrr75q2Uw319GjR7u/f/KTn1Tqui+88EKXvpE6d+5s2XBf27Vrl/uhrqDn7bffdud4Xl5e1qR/NAQ3cTrjjDOsa9eupc6zYcMGa9++fdTpKsXIRrH2KRZF/7p4hrvrrrvsoosusvvvv98OOeQQVwqUbXJzc90LqaELo0oTkHwqlTn33HNd/v3Pf/7jSm7C3XHHHe7HR2XSzbRGjRquhDfT7dixw5VyleaYY47Z57pXFj2zWumw//77pyR9dsSx3eH3NTU/0A9IXa9ffPFF+/nPf27ZLPNzVhbw6/dXrFhhf//730NFfX7RnzLxxIkTQ9PDLzr6BdyyZUtXIqBSIGWsvXv3lli+3v/hD39wVTyKpg844ABXtaVfXaJlKiP/6U9/Cq2jrBIOBS2XX365NW3a1C2zY8eO7vtl7VN52pzo5FWVVsOGDd2FNPxB9No3VXMceeSRbju0Pb/85S9t8+bNJaq7Pv74Y/vnP/8Z2o7wXwaVkY6x2tyoREnbrvU2b97crrrqqn2K+LWtHTp0sCVLltjJJ5/sbuIKAu++++6E0vHPf/6zHXbYYW7b9ctbv7Yj6ealC1a9evWsTp06duqpp5aoOlVJnC6YI0eO3KdERvs3adKkmOvXfigvfPnll6H00bGJTGMd4wMPPNBtp9a/bNmyqOkxf/58O/HEE1163Hzzze6z3bt3u1JCHUOlqY7pb3/7Wzc93GuvvWbHH3+8+9Gg/VS6+MtIdHtEpYtKU+VVXeB1o4qneF7bpRJJ5aW6devaOeecY6tXr7Z4lXUehld9jB8/3h555BFr27atS5tu3bq5EpmyPPzww25fVGoaGdiI1n3rrbfuM12/4AsLC912tWnTxp566qkSn3/zzTeuNFrnk46B8pzy3ocfflhiPv9a8uyzz7r1KO/rmG/dujXuZfg3fFV7HHrooW6bmjVrZj/96U9t+fLlLo10DESlB37+DG/39Omnn7pSWV2H9H3d1HUTD+ef57rWXHnlldakSROXd5LZlklNFLRu5TUdm9LSJ968qeuU0k9poRKkunXr2sUXX5zwNp5wwgnufy3Ht2fPHne90Dbk5+e7gEnzvfnmm6F5kpX+SeWhVE888YTuxN7rr7/ubdy4scRr06ZNbp5169Z5Tz/9tNe4cWOvU6dO7m+9Fi9e7P7X93v37h2aLjt27PCOPvpor1GjRt7NN9/sTZ482Rs4cKCXk5PjXXfddSW24bLLLnPLOOOMM7wJEyZ448eP9/r16+c98MAD7nMts2bNmt4JJ5wQWse7774bc5927tzpHXHEEd5+++3n/frXv/b++Mc/uu9qHVp+afu0ffv2mMtt1aqVd9ZZZ8X8/PLLL3frULr4rrjiCq969erekCFDXBrcdNNNXu3atb1u3bp5e/bscfM8//zz3oEHHugdfvjhoe149dVXKzUd/XywYsWK0PJGjRrlpvXq1cst4+qrr/Zyc3NLbLucdNJJXvPmzb2WLVu6bXrooYe8U045xX131qxZXlk0X4cOHdyxuP3227277rrLpfX+++/vLVq0KDSf0lVp16xZM2/MmDHeuHHjvIMPPtjt03vvvRea76qrrnJpPn/+fPf+q6++8ho2bOj2Y+/evTG3Q2muvKDt8NNHx0befPNNt52dO3f2unTp4t1///3ebbfd5tWqVcsrLCwssRylR0FBgXfAAQd411xzjffwww97L7zwgldcXOyddtpp7jvXX3+9m6401bbqOIXvZ40aNbyuXbt6f/jDH9wxv/HGG70TTzwxNE8i2+MfWx03zTd8+HCXtq1bt/Y2b968z/EOd8kll7hpF110kffggw96P/3pT11+1DTNX5p4zkNRnvP3pV27du7433333e446LwIz2vR9OzZ0+3P7t27vXgobx122GFe06ZN3Tml/TrmmGPcORV+7r7//vte27ZtXXrpWClvtmjRwsvPz/fWrFmzz7Fo3769yz/33XefN3bsWHfuxruMH374wTv11FPdci644AK3TVqGziPlHV2XJk2a5D4/99xzQ/nzww8/dN/XdmuZ2galn76v/KJ9mjFjxj55QfMpn+q81nkUi39sRo8evc/9Qa/vv/++RLrq+DVo0MDtr/Kt0qa09Ik3bw4aNMid50pL/T158mTvqaeeirnd/nKV/uGULpqutPRpP3RNGTZsmJuuvKf8oXz7n//8x82TrPRPJoKbMviZINpLmSmem7vm1Q0lnG4+uhF99tlnJaYr8+oGuXLlSvf+jTfecN+/9tpr91lu+I1Iy1KmjocunFrm1KlTQ9N0gezRo4dXp04db+vWrWXuUzRlzauTU+udOXOme//WW2+593/+859LzFdUVLTP9COPPNJdbCJVVjpGBjcbNmxwN1jdjHVTjrw4TJkyJTRN261p4Rcb3Wh0gz/vvPO8svj57YMPPghN+/LLL728vDx3IfH179/fbdPy5ctD0xS41K1bt8SNXxdNXWSVprt27XLHrF69em6ZZdG8Os6R/Au0btbhN1EFH5oeHoT56aELcDhdDKtVq+byRTjNp/nfeeedEvlIF91Y4t0e5fsmTZq44PG7774Lzffyyy+7+UaOHBkzuFm4cKF7f+WVV5ZYtwKdeIKbeM9D/waqAP6bb74JzavzSNNfeumlUtejm2nHjh29eOn4arn/+te/QtOU33W9u+GGG0LTlHfC876/rZpPQUrksWjTpo0L6MLFuwydT1qGbvyxzl/lh1jprsDoqKOOcusL/54Cv0MOOWSf8/z44493AVVZ/GMT6zV37tx90lXXt3Cx0ieRvKlrlqbpuleeH+2rVq3ypk+f7n5wKO313qd0iAyMFVgp+P3FL34RmpaM9E8mqqXipGolFYWHv/7xj3+Uu8RMRY0q2mvQoIFt2rQp9OrVq5cVFxeHqhz+9re/ueK9aA164+2WGmnWrFmua7cawfn2228/u/baa12DQxXJpoKKTf2Gxn4aqJizd+/eJdJAxZ+aN7zYM9PS8fXXX3fFtaoOC68XHzJkiCtaV/VN5L6H18mrPl1F/p9//nlc6+vRo0eoEagcdNBBrpG6iri1n3qpQagaQqsKwaeie7V3UhWDX8ytIm8Vv6uxt6qFtK1qD6VlVtTgwYPdvkUWc0fup6pVNG/ksTziiCNc1Un4sTzllFPc535+8NuvzZw5c5+qx0S3R1WSqhpSFUR4A8qzzjrLbUfkcYw8j0TnTbh4G1sneh4OGDDA5fNY+xKLjruqKRKhdnb+8kVVDqr6C1+XjqGf95X/vv7661AV4YIFC/ZZ5qBBg/ZpXxLvMnT+qkrmmmuuSfj8VdWXqmPVhkTXHj9faV19+vSx//73v/tU8+g8TqSNnXqERt4f9Ipsr6jGu1pnNJHpU568mWh7xl69erljq+pfVRmpyklVReFVcUoH/xzS+ab0/OGHH1y1UrTjnIz0TwYaFMdJN6KyGhQnQgf0o48+CtVTRlKm9us+1ZZD9ZTJojYTatgb2VhNNxb/81TQBVv8C63SYMuWLa5eu7Q0yMR09NNIF+FwuggouIhMQ10sIi/CulFp2+Oh4xVJbQ/UEHfjxo3uvf6O3B7/uOqitGrVKtc+SI477jh3IVTQrgvML37xC0uGyADJvxmHt6EStSsIDzr8Y6mAq6xjqZv8Y4895hpADh8+3LWjUdsLXZwj83RZ2xPrOIpuIAoKY9F3tT61gQkXbVnJOA/jTdtICrb9HxTxihboan3h6/LbsKndmdrmKTjxaUyvSNF6m8a7DJ2/Sld1WU6U2lipAPR3v/ude8XKW8qTpW1raXQcFSiUpbTlRn6WaN5U2iTaPmjixInuOqLr8JQpU9yPwWg9QtUO7N5773XtZr7//vu49qci6Z8MBDdpopNaJRZqLBmNMlzQqHthePd5pYECGzWUjSbWTS4b0zHWr8DwxtWVSQ1h/fEodONIVm+lePczWg8RHUs1LI01XIB+Xfrf1UVYJTn69VpUVGTTpk1zJTwqvQrfhkxL94oo777oRrhw4UJX0hgZUFZkXRo2QTcrBcZjxoxxPxwUqKnkKlqJWrRjnugyysNfjhouxyo1CR/SI9a2JkNpy63oOsNLwcrzo12lvmqkr5LepUuXhkrap06d6hos6/Pf/OY37pqt/DF27NgSDY+Tmf7JQHCTJvq1p5KMsqJ9zaeqBxXtlVbqkEjVSqtWrVyJgTJd+MmgqNz/PNm0r88//7y7Qfm/TLVvqt5RKUJZJ3as/UtXOvpppItAeDWQbiD6BRrPr7hEqFQj0meffeYCEj8I1N/ankg6rjrOfnAgqp5TKYl64Nx0002uBOSPf/xjmdtR3qrQeOgYqZeMSmLKWo/2R/PppWBIN8lbbrnFBTyJpH34cfSrv3yaVtq5oM90DvmlCuHfy6TzsG/fvjZ37lxXtRNeBVZRGv1Zvf8ef/zxEtPVW1BVSMlchvKGBgJVqYGq7qKJlWf881PfS/Z5mUoVyZvl4QcsOh4PPviguyb4x0hpOGPGjBJpHFnFn2npT5ubNFH9oy44uuFG0omtOk0577zz3K8lf3CkWL+iVFca7yij6iq4bt0692vXp/U98MADLlo/6aSTLJm+++47NwieAgvdgPyTQGmgYmj9Youk7Qnfn1j7l6501EmqX8EKCMK/r4u0inhVL55M2sfw+m1VManNyWmnnRYag0d/a1p4d3WNSqtu3vpFpuoJ0U1CQY1+HWvARf0a08UsnrZWSh/tXyroWKruPdqYK8pD6qYvykfRBo+UyC7jZdGvVv0SnTx5convqj2dgr/SjqO6LEtkUBjvCM6VdR7+6le/cm2vdKwVEEerEtAoxYlSnossNVK7qUTaT8S7DJ2/aqehfBrJ/75f8hh5/ur4avgBdbteu3btPt/3q3UzTUXyZnkpnVSaozysrvfhpXjhx0nXEF2TwmVa+lNyEydlKP8XVbiePXuW+OUeL91Q1HBL4x6oyE+NRXXxXrRokYuUdYPSLxdF0QoMdAHVr3eNy6Jfem+99Zb7zH/mkL6vUhD9ilXbEtWFdu/ePWbjN2U0rVdjjWj8Ba3znXfecZk60caH4XRRUjGmqERFY7voYqWLuC6uGsPGp4u33uvXgorNdXNWdK/91HdUF692FP7+aQwWXYRVhKkTRr9m0pWOKi3R4zQULGlZGt9Ev6bUdkDjjyQ6oFdZNC6MinTV2FTFz1qPhAdrSht//Bc1QlQdvI6zLoz+mDq6YKnhotoIaPwXfxkvvfSSa3yrdCtt4C+lj27Gw4YNc/upm7BKBpJBx+evf/2ruxmrBEYlegp+dd5puj8+iEZVVbWULu769aqbs9JD7Q2074lQftOYSNp35UeVbCggVN7TeaExbGJRQKX5tW4FfLoWzJ49O+o4OpV9Hka2lVGpqYIpbXP4CMUKmP/yl7+4BuuJ0jmnY6G0074r76iKOZHrYbzLGDhwoBtnR/lu3rx5rrGzznOdq8rralyv0l814FX+VHW0Smh13uiltiXKG6r2VGNhLV/HWTdojUsUbVydRCgd/eteOJU4lSdtK5o3K0LX1J/97Geu04HORR0jldpoIEidcyqZVsCltPbbUUo60z+qlPTBqiJdwfXS5+XpCi7btm3zRowY4brlqguvxq1Q1ziNvxI+doW64t1zzz1unBfNp+56GqvFH6dEPv30U9fdV2MgaH1ldQtfv369N3jwYLdOLVPd9ML3pax9isbv6qiXxi9Q92J1N9YYNv/+979jfu+RRx5xY5Fo29VtWdvy29/+1nVj9mncHW2HPtfyw7uFV0Y6Rhvnxu/6reVpzAd1jRw6dGiJ8SdE26p0iKRlR+tWHSv/qMuwuk2qq6bGPFEX0kgLFizw+vTp47oSa0yXk08+ucSYRxpPRV3kI4+HuplrPBltf2k0noW6OtevX99tl7/9fnfW5557LmpX2fC8FSs9RMdL42Doc+2nujErb2gckS1btrh5Zs+e7ca90dhBOo76/8ILLywxHEAi2yPTpk1zaap1asyfiy++2Fu9enWJeaKNc6MuuhpeQN20NYxA3759XTfaeLqCx3se+tusvBsp3vWIzicd/0MPPdQNI6D8obS94447Qmlb2jmv4xZ+3qlbr7qGawwUnS/HHXec6/ocOV+sY5HIMkTdpG+55RY3dpPONw2lcP7555cY+kB5XfuktIxMG82nMbD0PX1f4+mcffbZrgt0WeO/lLcrePh1OFa6lpY+8eZNrUf5L15PlLKf6pqv8XL00jVTXbbvvPNOt/3+tUfd0aNdvyqa/smUo3+SHzIBAACkB21uAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACJQqN4ifBm776quv3ABZqRxKHgAAJI9GrtFDYDXAalnP0apywY0Cm/Bn7AAAgOyhx8+U9QT0Khfc+EOaK3H8Z+0AAIDMtnXrVlc4Ec+jSapccONXRSmwIbgBACC7xNOkhAbFAAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFCq3AjFAIDsULzXs3krvrEN23ZZk7p5VnhwQ8utxgOPUTaCGwBAxilavNZGv7TE1m7ZFZrWLD/PRvVtb6d3aJbWbUPmo1oKAJBxgc3QqQtKBDaybssuN12fA6UhuAEAZFRVlEpsvCif+dP0ueYDYiG4AQBkDLWxiSyxCaeQRp9rPiAWghsAQMZQ4+FkzoeqieAGAJAx1CsqmfOhaiK4AQBkDHX3Vq+oWB2+NV2faz4gFoIbAEDG0Dg26u4tkQGO/16fM94NSkNwAwDIKBrHZtIlx1hBfsmqJ73XdMa5qRzFez2bu/xrm7lwjfs/m3qoMYgfACDjKIDp3b6AEYrTpCjLB1HMiJKbiRMnWuvWrS0vL8+6d+9u8+bNiznvk08+aTk5OSVe+h4AIFhU9dSjbSPr16mF+5+qqMpRFIBBFNMe3EybNs2GDRtmo0aNsgULFljHjh2tT58+tmHDhpjfqVevnq1duzb0+vLLLyt1mwEACKLigAyimPbg5r777rMhQ4bY4MGDrX379jZ58mSrVauWTZkyJeZ3VFpTUFAQejVt2rRStxkAgCCaF5BBFNMa3OzZs8fmz59vvXr1+nGDqlVz7+fOnRvze9u3b7dWrVpZy5YtrV+/fvbxxx9X0hYDABBcGwIyiGJag5tNmzZZcXHxPiUver9u3bqo3znssMNcqc7MmTNt6tSptnfvXuvZs6etXr066vy7d++2rVu3lngBAIDgDqKY9mqpRPXo0cMGDhxonTp1spNOOslmzJhhBxxwgD388MNR5x87dqzl5+eHXirtAQAAwR1EMa3BTePGjS03N9fWr19fYrreqy1NPPbbbz/r3LmzLVu2LOrnI0aMsC1btoReq1atSsq2AwAQNLkBGUQxrcFNjRo1rEuXLjZ79uzQNFUz6b1KaOKhaq1FixZZs2bR+93XrFnT9a4KfwEAgOAOopj2QfzUDXzQoEHWtWtXKywstAkTJtiOHTtc7ylRFVSLFi1c9ZLcfvvtduyxx1q7du3s22+/tXvuucd1Bb/iiivSvCcAAATD6Vk+iGLag5sBAwbYxo0bbeTIka4RsdrSFBUVhRoZr1y50vWg8m3evNl1Hde8DRo0cCU/7777rutGDgAAkjuIYjbK8Twvs0fiSTL1llLDYrW/oYoKAIDg3b+zrrcUAABAaQhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAqZ7uDQCARBXv9Wzeim9sw7Zd1qRunhUe3NByq+WQkAAcghsAWaVo8Vob/dISW7tlV2has/w8G9W3vZ3eoVlatw1AZqBaCkBWBTZDpy4oEdjIui273HR9DgAENwCypipKJTZelM/8afpc8wGo2ghuAGQFtbGJLLEJp5BGn2s+AFUbwQ2ArKDGw8mcD0BwEdwAyArqFZXM+QAEF8ENgKyg7t7qFRWrw7em63PNB6BqI7gBkBU0jo26e0tkgOO/1+eMdwOA4AZA1tA4NpMuOcYK8ktWPem9pjPODQBhED8AWUUBTO/2BYxQDCAmghsAWUdVTz3aNkr3ZgDIUFRLAQCAQMmI4GbixInWunVry8vLs+7du9u8efPi+t6zzz5rOTk51r9//5RvIwAAyA5pD26mTZtmw4YNs1GjRtmCBQusY8eO1qdPH9uwYUOp3/viiy/sxhtvtBNOOKHSthUAAGS+tAc39913nw0ZMsQGDx5s7du3t8mTJ1utWrVsypQpMb9TXFxsF198sY0ePdratGlTqdsLAAAyW1qDmz179tj8+fOtV69eP25QtWru/dy5c2N+7/bbb7cmTZrY5ZdfXuY6du/ebVu3bi3xAgAAwZXW4GbTpk2uFKZp06Ylpuv9unXron7n7bfftscff9weffTRuNYxduxYy8/PD71atmyZlG0HAACZKe3VUonYtm2bXXrppS6wady4cVzfGTFihG3ZsiX0WrVqVcq3EwAAVNFxbhSg5Obm2vr160tM1/uCgoJ95l++fLlrSNy3b9/QtL1797r/q1evbkuXLrW2bduW+E7NmjXdCwAAVA1pLbmpUaOGdenSxWbPnl0iWNH7Hj167DP/4YcfbosWLbKFCxeGXuecc46dfPLJ7m+qnAAAQNpHKFY38EGDBlnXrl2tsLDQJkyYYDt27HC9p2TgwIHWokUL13ZG4+B06NChxPfr16/v/o+cDgBIvuK9Ho++QMZLe3AzYMAA27hxo40cOdI1Iu7UqZMVFRWFGhmvXLnS9aACAKRX0eK1NvqlJbZ2y67QtGb5ee5p7Dy0FJkkx/M8z6oQdQVXryk1Lq5Xr166NwcAsiawGTp1gUXeMHL+9z9PZUcm3b8pEgEAlFkVpRKbaL+E/Wn6XPMBmYDgBgBQqnkrvilRFRVJIY0+13xAJiC4AQCUasO2XUmdD0g1ghsAQKma1M1L6nxAqhHcAABKVXhwQ9crym88HEnT9bnmAzIBwQ0AoFS51XJcd2+JDHD89/pc8wGZgOAGAFAmjWOj7t4F+SWrnvSebuDINGkfxA8AkD0BTu/2BYxQjIxHcAMAiJuqnnq0bUSKIaNRLQUAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEDJiOBm4sSJ1rp1a8vLy7Pu3bvbvHnzYs47Y8YM69q1q9WvX99q165tnTp1sqeffrpStxcAAGSutAc306ZNs2HDhtmoUaNswYIF1rFjR+vTp49t2LAh6vwNGza0W265xebOnWsfffSRDR482L1eeeWVSt92AACQeXI8z/PSuQEqqenWrZs9+OCD7v3evXutZcuWds0119jw4cPjWsYxxxxjZ511lo0ZM6bMebdu3Wr5+fm2ZcsWq1evXoW3HwAApF4i9++0ltzs2bPH5s+fb7169fpxg6pVc+9VMlMWxWWzZ8+2pUuX2oknnhh1nt27d7sECX8BAIDgSmtws2nTJisuLramTZuWmK7369ati/k9RW116tSxGjVquBKbBx54wHr37h113rFjx7pIz3+pVAgAAARX2tvclEfdunVt4cKF9v7779sdd9zh2uzMmTMn6rwjRoxwwZD/WrVqVaVvLwAAqDzVLY0aN25subm5tn79+hLT9b6goCDm91R11a5dO/e3ekt98sknroTmJz/5yT7z1qxZ070AAEDVkNaSG1UrdenSxbWb8alBsd736NEj7uXoO2pbAwAAkNaSG1GV0qBBg9zYNYWFhTZhwgTbsWOH694tAwcOtBYtWriSGdH/mrdt27YuoJk1a5Yb52bSpElp3hMAAJAJ0h7cDBgwwDZu3GgjR450jYhVzVRUVBRqZLxy5UpXDeVT4HPllVfa6tWrbf/997fDDz/cpk6d6pYDAACQ9nFuKhvj3AAAkH2yZpwbAACAZCO4AQAAgUJwAwAAAoXgBgAABArBDQAACJSkBje7du2y8ePHJ3ORAAAAqQ1uNCbNyy+/bK+++qp76KV8//339oc//MFat25t48aNS3SRAAAA6RnE7+2337azzz7b9TXPyclxIwU/8cQT1r9/f6tevbrddtttbrRhAACArCi5ufXWW+3MM8+0jz76yD02QU/lPvfcc+3OO++0JUuW2K9+9Ss3ajAAAEBWjFDcqFEje+utt6x9+/b23XffWZ06dWzGjBnWr18/yxaMUAwAQPZJ2QjFmzdvtsaNG7u/VUJTq1Yt69ChQ8W2FgAAIJ0PzlT1kx5wKSr0Wbp0qXuYZbijjz46eVsIAACQqmopPZ1bDYmjfcWfrv/9XlSZiGopAACyTyL374RKblasWFHRbQMAAEiphIKbVq1apW5LAAAAkiChBsV333236yXle+edd2z37t2h99u2bbMrr7wyGdsFAACQ+jY3ubm5tnbtWmvSpIl7rzqvhQsXWps2bdz79evXW/PmzWlzAwAAsqMreGQclEBcBAAAUCl4KjgAAAgUghsAAFC1B/F77LHH3GMX5IcffrAnn3wyNGqxGhQDAABkTYPi1q1bu0H6snk8HAbxAwAg+6RsEL8vvviiotsGAACQOW1u3njjDfdEcEVPkRRJHXnkke6p4QAAAFkR3EyYMMGGDBkStThIRUW//OUv7b777kvm9gEAAKQuuPnwww/t9NNPj/n5aaedZvPnz09sCwAAANIV3GgE4v322y/m59WrV7eNGzcmY7sAAABSH9y0aNHCFi9eHPPzjz76yJo1a1a+LQEAAKjs4ObMM8+03/3ud7Zr1659PtMDNUeNGmVnn312MrYLAAAg9ePcqFrqmGOOcQ/QvPrqq+2www5z0z/99FObOHGie2DmggULrGnTppapGOcGAIDsk7JxbhS0vPvuuzZ06FAbMWJE6MGZGtivT58+LsDJ5MAGAAAEX8KPX2jVqpXNmjXLNm/ebMuWLXMBziGHHGINGjRIzRYCAACkMrjxKZjp1q1beb8OAACQEjwVHAAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQMmI4GbixInWunVry8vLs+7du9u8efNizvvoo4/aCSecYA0aNHCvXr16lTo/AACoWtIe3EybNs2GDRtmo0aNsgULFljHjh2tT58+tmHDhqjzz5kzxy688EJ78803be7cudayZUs77bTTbM2aNZW+7QAA4EfFez2bu/xrm7lwjftf79Mhx/O89Kz5f1RS061bN3vwwQfd+71797qA5ZprrrHhw4eX+f3i4mJXgqPvDxw4sMz5t27davn5+bZlyxarV69eUvYBAICqrmjxWhv90hJbu2VXaFqz/Dwb1be9nd6hWYWXn8j9O60lN3v27LH58+e7qqXQBlWr5t6rVCYeO3futO+//94aNmwY9fPdu3e7BAl/AQCA5AY2Q6cuKBHYyLotu9x0fV6Z0hrcbNq0yZW8NG3atMR0vV+3bl1cy7jpppusefPmJQKkcGPHjnWRnv9SqRAAAEgOVT2pxCZaNZA/TZ9XZhVV2tvcVMS4cePs2Wefteeff941Ro5mxIgRrgjLf61atarStxMAgKCat+KbfUpswimk0eear7JUtzRq3Lix5ebm2vr160tM1/uCgoJSvzt+/HgX3Lz++ut29NFHx5yvZs2a7gUAAJJvw7ZdSZ0v60tuatSoYV26dLHZs2eHpqlBsd736NEj5vfuvvtuGzNmjBUVFVnXrl0raWsBAECkJnXzkjpf1pfciLqBDxo0yAUphYWFNmHCBNuxY4cNHjzYfa4eUC1atHBtZ+Suu+6ykSNH2jPPPOPGxvHb5tSpU8e9AABA5Sk8uKHrFaXGw9Fa1eSYWUF+npuvyrS5GTBggKtiUsDSqVMnW7hwoSuR8RsZr1y50tau/bGV9aRJk1wvq/PPP9+aNWsWemkZAACgcuVWy3Hdvf1AJpz/Xp9rviozzk1lY5wbAACCPc5N2qulAABA9ju9QzPr3b7A9YpS42G1sVFVVGWW2PgIbgAAQFIokOnRtpGlW9rb3AAAACQTwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACJTq6d4AAABQuuK9ns1b8Y1t2LbLmtTNs8KDG1putRySLQaCGwAAMljR4rU2+qUltnbLrtC0Zvl5Nqpvezu9Q7O0blumoloKAIAMDmyGTl1QIrCRdVt2uen6HPsiuAEAIEOrolRi40X5zJ+mzzUfSiK4AQAgA6mNTWSJTTiFNPpc86EkghsAADKQGg8nc76qhOAGAIAMpF5RyZyvKiG4AQAgA6m7t3pFxerwren6XPOhJIIbAAAykMaxUXdviQxw/Pf6nPFu9kVwAwBAhtI4NpMuOcYK8ktWPem9pjPOTXQM4gcAQAZTANO7fQEjFCeA4AYAgAynqqcebRulezOyRtqrpSZOnGitW7e2vLw86969u82bNy/mvB9//LGdd955bv6cnBybMGFCpW4rAADIfGkNbqZNm2bDhg2zUaNG2YIFC6xjx47Wp08f27BhQ9T5d+7caW3atLFx48ZZQUFBpW8vAADIfGkNbu677z4bMmSIDR482Nq3b2+TJ0+2WrVq2ZQpU6LO361bN7vnnnvsggsusJo1a1b69gIAgMyXtuBmz549Nn/+fOvVq9ePG1Otmns/d+7cpK1n9+7dtnXr1hIvAAAQXGkLbjZt2mTFxcXWtGnTEtP1ft26dUlbz9ixYy0/Pz/0atmyZdKWDQAAMk/aGxSn2ogRI2zLli2h16pVq9K9SQAAIIhdwRs3bmy5ubm2fv36EtP1PpmNhdU2h/Y5AABUHWkrualRo4Z16dLFZs+eHZq2d+9e975Hjx7p2iwAAJDl0jqIn7qBDxo0yLp27WqFhYVu3JodO3a43lMycOBAa9GihWs34zdCXrJkSejvNWvW2MKFC61OnTrWrl27dO4KAADIEGkNbgYMGGAbN260kSNHukbEnTp1sqKiolAj45UrV7oeVL6vvvrKOnfuHHo/fvx49zrppJNszpw5adkHAACQWXI8z/PSvRGVSV3B1WtKjYvr1auX7s0BAABJvn8HvrcUAACoWghuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACJS0DuIHAMh+xXs9m7fiG9uwbZc1qZtnhQc3tNxqORm7XAQfwQ0AoNyKFq+10S8tsbVbdoWmNcvPs1F929vpHZpl3HLLgyAr+zBCMQCg3AHI0KkLLHKYe79sZdIlx5QrEEnVcrM9yKrqtjJCMZA++pU3d/nXNnPhGve/3gNBo3ytm3603O1P0+eJ5v9ULbc8/CArPLCRdVt2uen6HJmJaikgi37lUTyOTKG2MJE3/XAKPfS55uvRtlHallvec6asIEtL0Oe92xfQDigDEdwASRKrKN3/lVfRovREAieCIKSagoVkzpeK5Vbkx0aqgjdUDoIbIAlS/SsvkcCJNgKoDCoFSeZ8yV5uRX9spCp4Q+VgnBsgCRL5lZeoRNog0EYAlUXVOyoFiRWqa7o+13yVvdxktNtJVfCGykFwAyRBKn/lxRs4vbf864xpiIngUwmkqnckMhDx3+vzREsqk7HcZPzYSFXwhspBcAMkQSp/5cUbEM39fFPKSo+AaFSto+qdgvyS+VrvK9LGrKLLTcaPjVQFb6gctLkBksD/laf6/GjlIjn/uzCX51de/AFRfBdZ2gggmRRoqC1ZskcSrshyk/Vjww+yIhsl61xmnJvMRnADJIH/K08NFXXp9ZL4Ky/ewEk9Nh58c1mZy6ONAJJN+ToVPYbKu9xk/thIVfCG1KJaCsjwIvp4i8ePbdOINgJACqqU/CCrX6cW7n8Cm8zH4xeAJEvVGDPxdPH2e0tZjNKjyhy2Hkg3hkWouo9fILgBAhY4cUEHEjtnkB0IbpKUOEC24oIOoCrfv2lQDARQqhp4AkA2oEExAAAIFEpuAFTZqq4g7hOChTxaPgQ3AMoUxEbKQdwnBAt5tPyolgJQqiA+jDOI+4RgIY9WDMENgJQ+XTnTBHGfECzk0YojuAGQ0qcrZ5og7hOCJVPyaPFez+Yu/9pmLlzj/s+mgJ82NwBS+nTlTBPEfUKwZEIeLcryNmmU3ABI+dOVM0kQ9wnBku48WhSANmkENwDKfLpyrM7Rmt4szqcrZ4og7hOCJZ15tDggbdIIbgBU2tOVM0EQ9wnBks48Oi9D2vtUFMENgFKpfl1PEy/IL1kErvfZ+pTxIO4TgiVdeXRDBrT3SQYaFAMoky6kvdsXBGo03yDuE4IlHXm0SUDapBHcAKiyD+MM4j4hWCo7jxb+r72PGg9Ha1WT87/So0xvk0a1FAAACFSbNIIbAAAQqDZpVEsBAIBAtUkjuAEAAIFqk0a1FAAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgECht1SS6Amp7y3/2t5ZvtG++naXtWiwv/Vs29iObdMo4a5zWla6ut+let3hy29cu6YbFWrT9t37rCtZ25HOtEy1bNm3eLYz0/alotvjf3/dlu/smx17rGGdmlZQL/X7FW27pbR9ybS0r8g2pWpfMvGanInHLZMQ3CRB0eK1NnzGIvt25/clpk98c7nVr7WfjfvpUXEPeqRl6XHy4U9l1VDYGhEy1QMnpXrd0ZYfzl+XJGM7oq2voF5Nu7DwIGvduHa5Lprrtu6yb7bvtoa1a1hB/v7WpVUDm//l5rgvMPEGd2V994tNO+0v81a67alIGiUq0QtqPHkqnXm+vNuc6Pd9dfNy7fxjDrTTjmyW9JtRtPXq+iPh1ybl3d/362BnHt0sKWlf0Tz93udf29zlX9teb681qFXTvvr2O3th4RrbHLbNCgxvO6f0bZr10Vq7deZiF0yWtS+J5ONoaaQ07N+puRsHJloAmeh1IVbaPPjGf+2Jd76wb7/7vsQ+ndOxmb344dqknTPFAQyUcjzPi/b4iMDaunWr5efn25YtW6xevXoVXp4y/q+mLihzvslxjOqoZQ2dumCf53n4WSyVI0Omet2xlh+5rlifJ7od8awv3gtCaTcrnf97vfiWF29wV57vVkY+SfRGGE+eknTl+VScB/Hmu1T8cIh3vb7e7ZvY60s2VCjtK5qno/0oLM91dOysJfbwv1ZE/U5OxL4kko/jSddoAWQi14VoypM25T1nijLsx0Wy7t8ENxWgaPe4cbNt3dbdZc6rzPL2TafEjIa1rOPveiPmRcJ/WFlpyyivVK+7rOXHK97tSGR9ZV0QEr1pxFpevMFdeb+b6nyS6E0/3jyl31axzp9U5vlUnAflyeeRN95UbHd5xJP2Fc3T8fwojNSg1n72wa29S2zTrI++siuf+U9c19/XlqyLOx8nM10TDRgTDVTLe84UpfEHdaqDGxoUV8D/r6YoO7ARnSCav7RllXYSeXEso7xSve6ylh+veLcjkfX5J7V+uehiFk7vNT2Ri0y05cW7nIp8N5X5pLRtiJV+8eap0s6fVOb5VJwH5c3n0fJeOs6vRPa1onn6theXlGu7VFWlaqzw7VBVVFm0L2oTmUg+Tma6lnadqeg1p7znTHE5zutsQnBTAaqfTNb88S4r0XUmc5nlXXeyt7ms5SW6vlgXhPJe3CKXl2iwVd7vpirNy3PTT+b6U5HnK7KeWPOVZzuTEcClMn1iLbuieTq8rVii1D4nfDu+2RFf1c3czzcllI+Tna7xHOtkBVQb4tj2dP6grgwENxWghlfJmj/eZSW6zmQus7zrTvY2l7W88q4v8oJQ0Yub//3yLKci3012mpfnpp/M9aciz1dkPbHmq8h2ViSvpTJ9Yi07HXn6Rz+WJCS2rPiqNv1lpipdk/EjtyxN4tj2dP6grgwENxWgFuXqfRMP1fn6repjLUvzxDr9cuJYRnmlet1lLT9e8W5HedcXeUGo6MXN/355llPe76Yin5Tnph9vntL5k448n4rzwP9+eVQkryXr/EpkXyszT0fq0aZxwtvRqHaNuB8A6S8zFekavvxEP4tHIudMkzT+oK4MBDcVoAZbt51zZFzzquV5aQ289JnfDTpyrpw4l1FeqV53acuPtq6Kbke86yvrglDei1vk8hJZTkW/m4p8Up6bfrx5yj9/KjvPp+I88L+fyNYmI4BLNL9H24ZE97WieVpdu8tDPZOODQtS4g0ox/Tr4MYcSyQfVzRdy1p+NBUJqBI9ZwrT+IO6ygQ3EydOtNatW1teXp51797d5s2bV+r8zz33nB1++OFu/qOOOspmzZpl6aKW5Oqe6HcHjNa6P55u4P6y1Dpdrd3D6X2qW62net2xlh+5LqXV5CRsRzzrK+uCEH5xi1e05SUa3JXnu6nMJ+W96ceTp9KZ56Op6Pb430+kBCcZAVys7a5dIzfmd7TGX554cLn2taJ5WmPWlIfGDAtPq3gCSu2jxvQpTz6O9zqSrMAjnnTVvUb71KyC50xuGn9QV4a0dwWfNm2aDRw40CZPnuwCmwkTJrjgZenSpdakSZN95n/33XftxBNPtLFjx9rZZ59tzzzzjN111122YMEC69ChQ6WPc+NjhOLMH6G4vAPfZeo4N+UdkLC8yjseRlUeofjVj9fa9AVrbNuuH/aZJxVjiUTb7lcW+4PbfR913RXZ18oa50Z5XaV8sdIq+kB7+/1vsMLmZc5b1rHw0+j1Jevs+YVrSqRlqsa5iTYg4+CeB9vVp7RL6gjFRYxzkxoKaLp162YPPvige793715r2bKlXXPNNTZ8+PB95h8wYIDt2LHDXn755dC0Y4891jp16uQCpHQFN8gOFR3WPVNGKE5XAJAJ25Bt0vUohso6bskeobhx3ZrWpG5N12540474lpPoPlYkPeJ5xEWyRiiurHOtOEvO66wZxG/Pnj1Wq1Ytmz59uvXv3z80fdCgQfbtt9/azJkz9/nOQQcdZMOGDbPrr78+NG3UqFH2wgsv2IcffljmOgluAADIPoncv9P6bKlNmzZZcXGxNW3atMR0vf/000+jfmfdunVR59f0aHbv3u1e4YkDAACCKyMaFKeS2uYo0vNfqvICAADBldbgpnHjxpabm2vr168vMV3vCwoKon5H0xOZf8SIEa4Iy3+tWrUqiXsAAAAyTVqDmxo1aliXLl1s9uzZoWlqUKz3PXr0iPodTQ+fX1577bWY89esWdPVzYW/AABAcKW1zY2ocbAaEHft2tUKCwtdV3D1hho8eLD7XN3EW7Ro4aqX5LrrrrOTTjrJ7r33XjvrrLPs2WeftQ8++MAeeeSRNO8JAADIBGkPbtS1e+PGjTZy5EjXKFhduouKikKNhleuXGnVqv1YwNSzZ083ts2tt95qN998sx1yyCGup1Q8Y9wAAIDgS/sgfpWNruAAAAT7/h343lIAAKBqIbgBAACBkvY2N5XNr4VjMD8AALKHf9+OpzVNlQtutm3b5v5nMD8AALLzPq62N6Wpcg2KNY7OV199ZXXr1rWcnJykR5UKmjRQYFUdT4c0IA3IC5wPXBO4Nqbi/qBwRYFN8+bNS/SijqbKldwoQQ488MCUroPBAkkD8gHnA9cErovcH5J/jyyrxMZHg2IAABAoBDcAACBQCG6SSM+xGjVqlPu/qiINSAPyAucD1wSujem+P1S5BsUAACDYKLkBAACBQnADAAACheAGAAAECsENAAAIFIKbBE2cONFat25teXl51r17d5s3b16p8z/33HN2+OGHu/mPOuoomzVrllWlNPj444/tvPPOc/NrROgJEyZYECSSBo8++qidcMIJ1qBBA/fq1atXmfkmiOkwY8YM69q1q9WvX99q165tnTp1sqefftqq2jXB9+yzz7pzon///laV0uDJJ590+x3+0veCING88O2339pVV11lzZo1cz2IDj300Ky/R0xMIA1+8pOf7JMX9DrrrLMqviHqLYX4PPvss16NGjW8KVOmeB9//LE3ZMgQr379+t769eujzv/OO+94ubm53t133+0tWbLEu/XWW7399tvPW7RoUZVJg3nz5nk33nij95e//MUrKCjw7r//fi/bJZoGF110kTdx4kTvP//5j/fJJ594l112mZefn++tXr3aq0rp8Oabb3ozZsxw58KyZcu8CRMmuPOjqKjIqypp4FuxYoXXokUL74QTTvD69evnZbNE0+CJJ57w6tWr561duzb0WrdunZftEk2H3bt3e127dvXOPPNM7+2333Z5Ys6cOd7ChQu9qpIGX3/9dYl8sHjxYndNUB6pKIKbBBQWFnpXXXVV6H1xcbHXvHlzb+zYsVHn//nPf+6dddZZJaZ1797d++Uvf+lVlTQI16pVq0AENxVJA/nhhx+8unXren/605+8qpwO0rlzZxf0V6U00PHv2bOn99hjj3mDBg3K+uAm0TTQjUvBfdAkmg6TJk3y2rRp4+3Zs8cLisIKXhN0f9C1cfv27RXeFqql4rRnzx6bP3++q1IIf06V3s+dOzfqdzQ9fH7p06dPzPmDmAZBk4w02Llzp33//ffWsGFDq6rpoB9Ws2fPtqVLl9qJJ55oVSkNbr/9dmvSpIldfvnllu3Kmwbbt2+3Vq1auYco9uvXz1VfV7V0ePHFF61Hjx6uWqpp06bWoUMHu/POO624uNiq6rXx8ccftwsuuMBVW1cUwU2cNm3a5DKdMmE4vV+3bl3U72h6IvMHMQ2CJhlpcNNNN7mn2kYGvlUhHbZs2WJ16tSxGjVquHr1Bx54wHr37m1VJQ3efvttdwFXO6wgKE8aHHbYYTZlyhSbOXOmTZ061fbu3Ws9e/a01atXW1VKh88//9ymT5/uvqd2Nr/73e/s3nvvtd///vdWFa+N8+bNs8WLF9sVV1yRlO2pck8FB9Jp3LhxriHpnDlzAtOIMhF169a1hQsXul/uKrkZNmyYtWnTxjUsDLpt27bZpZde6gKbxo0bW1Wl0gq9fApsjjjiCHv44YdtzJgxVlUoqFMJ3iOPPGK5ubnWpUsXW7Nmjd1zzz3uEQVVzeOPP+463RQWFiZleQQ3cdLFSBlw/fr1JabrfUFBQdTvaHoi8wcxDYKmImkwfvx4F9y8/vrrdvTRR1tVTAcVU7dr1879rd5Sn3zyiY0dOzYrg5tE02D58uX2xRdfWN++fUvc4KR69equiq5t27ZW1a4J++23n3Xu3NmWLVtm2ao86aAeUtp3fc+nIE+lHKriUelmVckLO3bscD/6VGWbLFRLxUkZTZG1fm2GX5j0PvxXSDhND59fXnvttZjzBzENgqa8aXD33Xe7X6VFRUWuO3S2S1Ze0Hd2795tVSENNCTEokWLXMmV/zrnnHPs5JNPdn+r/UlVzAeqylC66GafrcqTDscdd5wL6PwAVz777DOXDtkW2FQ0L2jIFF0HLrnkEkuaCjdJrkLUza1mzZrek08+6bqz/t///Z/r5uZ3Y7z00ku94cOHl+gKXr16dW/8+PGuC/CoUaMC0RU8kTRQd0d1gdarWbNmrlu4/v7vf//rVZU0GDdunOseOX369BLdHrdt2+Zls0TT4c477/ReffVVb/ny5W5+nRc6Px599FGvqqRBpCD0lko0DUaPHu298sorLh/Mnz/fu+CCC7y8vDzXdbgqpcPKlStdz6Crr77aW7p0qffyyy97TZo08X7/+997Ve18OP74470BAwYkdVsIbhL0wAMPeAcddJC7Wanb23vvvRf67KSTTnIXq3B//etfvUMPPdTNf+SRR3p///vfvaqUBhq7QTF05EvzVZU0UBf4aGmgYDfbJZIOt9xyi9euXTt3I2vQoIHXo0cPdzGsateEoAU3iabB9ddfH5q3adOmbpyXBQsWeEGQaF5499133fAgCgjULfyOO+5wQwVUpTT49NNP3fVQP3ySKUf/JK8cCAAAIL1ocwMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBUC5PPvmk1a9fv0qnXk5Ojr3wwguVuk49n0rr1SMbKqJ169Y2YcKEjNs/IBkIboA0u+yyy9xNRC89SK9p06bWu3dvmzJlSonnzsTjtttucw+kTLZoN8IBAwa4Z+Gkmh6q6aePXkqfn/3sZ/bll19W2jojX9n4oE+gKiG4ATLA6aefbmvXrnW/yv/xj3+4hyled911dvbZZ9sPP/xgmWj//fe3Jk2aVMq6hgwZ4tLnq6++spkzZ9qqVauS+5C9CDNmzHDr02vevHlump7m7k/T5+WhAeEz9XgCQUJwA2SAmjVrWkFBgbVo0cKOOeYYu/nmm91NXIGOqn983377rV1xxRV2wAEHWL169eyUU06xDz/80H2m+UaPHu3e+yUM/ndL+57vpZdesm7dulleXp41btzYzj33XDddpRQqJfn1r38dWm6saqlJkyZZ27Zt3ROCDzvsMHv66adLfK7vPvbYY27ZtWrVskMOOcRefPHFMtNH8yp99MTkY4891q6++mpbsGBBiXn++c9/WmFhoUtLzTd8+PBQIPHUU09ZnTp17L///W9o/iuvvNI9qXvnzp37rK9hw4ZufXopzaRRo0ahafrct2nTppj7M2fOHLfPOo56YrK27e2333YlcmPHjrWDDz7YBYkdO3a06dOnh763efNmu/jii9269bmW+8QTT5TYxs8//9wFwVqvvj937twSn//tb3+zI4880q1TJW/33ntvqWmstDnxxBPd8W/fvr299tprZR4XIGMl9UlVABJW2sMTO3bs6J1xxhmh97169fL69u3rvf/++95nn33m3XDDDV6jRo28r7/+2tu5c6d7rwe0+k8e17Syvid6InFubq43cuRI9zTfhQsXuqd4i+Y58MADvdtvvz20XHniiSe8/Pz80LbNmDHDPfV+4sSJ7inH9957r1vmG2+8EZpHlxwt65lnnnFPhr/22mu9OnXqhLYjGj1s77rrrgu917zal5NPPjk0bfXq1V6tWrW8K6+80vvkk0+8559/3mvcuHGJh5P+7Gc/87p16+Z9//33bn+1rR988EGZx8d/+KueZh+prP1588033TxHH320ezDgsmXL3Gd68vPhhx/uFRUVuadjKy318MQ5c+a471111VVep06d3PHS+l977TXvxRdfLLE9+r72Q2l9/vnnuwe0at9E+1WtWjV3zPS5lr///vu7/32a//7773d/FxcXex06dPBOPfVUd+z/+c9/ep07d3brUVoC2YbgBsjg4GbAgAHeEUcc4f5+6623vHr16nm7du0qMU/btm29hx9+2P2tm7kConDxfE9P6L744otjbmP4jdAXGdz07NnTGzJkSIl5FFDoqc8+3SxvvfXW0Pvt27e7af/4xz9KDW4UiNSuXdsFMJr/0EMPdTd538033+wddthh3t69e0PTFGQp0NCNW7755hsXiAwdOtQ9jVpPYI5HWcFNafvjBzcvvPBCaB4dB+2Hnggd7vLLL/cuvPBC97eCt8GDB5e6PY899lho2scff+ymKbCTiy66yOvdu3eJ7/3mN7/x2rdvH/WYvvLKK1716tW9NWvWhD7XPhDcIFtRLQVkMN0//WogVSNt377dVY+oisV/rVixwpYvXx5zGfF8Tz1vTj311Apt6yeffGLHHXdciWl6r+nhjj766NDftWvXdtVkGzZsKHXZqqLRNmpfVK3Trl07O+2002zbtm2hdffo0SOUVv66td+rV6927xs0aGCPP/54qOpM1VbJEM/+dO3aNfT3smXLXFWYGo2HHw9VnfnHY+jQofbss8+6xuG//e1v7d133y11vaqGE3+9sY6Fqp6Ki4v3WZbmb9mypTVv3jw0TekJZKvq6d4AALHppqN2GaIbtW5iascRqbQu2fF8T+06Kot6hIVTQFJWr7D8/HwX0Ij+V5CifZo2bZprSxSvf/3rX5abm+saBe/YscPq1q1rlbE/CnrCj4f8/e9/d22swql9jJxxxhmundOsWbNc2xcFnldddZWNHz8+6nr9oC7R3nVAUFFyA2SoN954wxYtWmTnnXeee6+GxuvWrbPq1au7G3z4Sw2ARQ15I3+Zx/M9lQLMnj075rZEW26kI444wt55550S0/RejVOTTQGKfPfdd6F1q0Ht/68p+nHdCl4OPPBA916lH3fddZdrOK2SEjVKTgelh4KYlStX7nM8VHriU2PiQYMG2dSpU103/EceeSTudcQ6Foceemgo7SLnVw80BX2+9957r9z7CKQbJTdABti9e7cLQBRArF+/3oqKilxvGnUFHzhwoJunV69erqqgf//+dvfdd7sblbpGqwRAvXVU9aFeMapuUhWObuq6ucfzvVGjRrnSAVXXXHDBBa6XkUoNbrrpJrduLVelHvpMN2Y/KAr3m9/8xn7+859b586d3ToVRKjLtLpQV5SqcZQ+ovQZM2aM69Wjqim/55MCgGuuucYFLUuXLnX7NGzYMKtWrZqrvrr00kvt2muvdaUiShv1DOvbt6+df/75Vpl0TG688UbX+0wlLccff7xt2bLFBR+q0lJAM3LkSNe7Sr2dlDdefvllF4DE64YbbnD7p3TSeEQK/B588EF76KGHos6v46V8oXXfc889tnXrVrvllluSuNdAJUt3ox+gqlODYp2KeqlR5wEHHOB6N02ZMiXUGNa3detW75prrvGaN2/uGtm2bNnSNQReuXJlqLHqeeed59WvX98tz+8dU9b35G9/+5vroVOjRg3X0+inP/1p6LO5c+e6Hj/q0eNfNiIbFMtDDz3ktWnTxq1DjX6feuqpEp9Ha6CqZYT34onWoNhPH70aNGjgpoX3whL1NFJvKG1/QUGBd9NNN4V6D6lx7lFHHVWiUbV6czVs2ND1tKpIg+LS9sdvULx58+YS86jh84QJE1wjaKWVjnmfPn1cLyUZM2aMa0iuHk7aRjU4//zzz2Nuj5avaVqfb/r06a4BsZZ/0EEHeffcc0+pjcTVq+r444936adjp55cNChGtsrRP5UdUAEAAKQKbW4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAALEj+HzNTLEvoC+Q/AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl8AAAHHCAYAAACBYj2uAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAARQVJREFUeJzt3QmYFNW5//F3GJZhHTZhAFEEFBxRkNUxrhEEFwTjgkSEcBXjhiaoEVwYlySooCFRxBWNer3y1xC3IC4gBgVFQRTEDQUBZVVkEAV0pv7P79xbne6me6YHeqq7p7+f52mYrjrdderU9vapc07leJ7nGQAAAAJRI5jFAAAAgOALAAAgYNR8AQAABIjgCwAAIEAEXwAAAAEi+AIAAAgQwRcAAECACL4AAAACRPAFAACQbcHX999/bxdccIEVFBRYTk6O/e53v3PTN2zYYGeeeaY1a9bMTZ88ebJlinjrVF1onW688UbLRMcdd5x7oWpp/9B+kk1mzZpl3bp1s7y8PLfu3333nZv+2GOPWefOna1WrVrWuHHjvdoPM/nYC9JvfvMba9CgQaqzAQQbfD3yyCPuJBHv9dZbb4XS/vnPf3bpL774YneSOu+889z03//+9/bSSy/ZuHHj3PQBAwYkPZ9a9jPPPFMl3xtrnWJdnCp6JTNQeOKJJ1IaxH799dduvZcsWVKly1m+fLlbzqpVq6p0OYDvm2++sbPPPtvq1q1rU6ZMccd9/fr17eOPP3aBQIcOHeyBBx6w+++/P+0LLdXnifLs2LHD/vKXv1ifPn0sPz/fBboHHXSQXXbZZfbpp59adXDPPfe460eQ2rVrF/caVBXX3mTQ+T08nzVq1LCmTZvaSSedZAsWLEjr8s+pqmc7KuMjR460m2++2Q444IDd5mtjNm/e3P19xBFHWM2aNe2NN96ISKNao759+9rjjz9uVUW/jFS7luyCjrdO4T744AP3Cq8tU7B2+umn269+9avQ9JYtW1q/fv2Skq9TTz3Vli1bttdBiXb04uLiSv8Cf/fdd61Xr1728MMPuwtSVXn66aftrLPOstdee2234HXXrl3u/9q1a1fZ8mH2888/u5cujtlS66WT/iuvvOLOW757773XHdefffaZdezYca/3QwUfOrfoVVWSdZ5Its2bN7trx6JFi1weVc46h3/yySf25JNP2vr160PlqvOLzgM6r2aaLl26uOvj3LlzAw2+mjRpYldeeeVu81q3bm2//OUvLd2sWrXKxRdDhw61k08+2UpLS10AruDpxx9/tHfeeccOPfTQtCz/qjt6/49ORj179iw3zcaNG62wsDDmdL+KPtPEW6dwhx12mHuFn1h0kta0YcOGBZDL7ETQFYyqDhDS8ZiX6HNWvOl7uh9mSzAbiwKq9957zwVVZ5xxRsS8W265xa677rpA81NWVuaCvUzYJvohpPyWt9+1adNmj64927dvd7W8VVE+2+N8d7ju3btH5Pvoo492scfUqVNdIJaWvCry8MMPq0bNe+edd+Kmee2111ya6Jf/2eiXb8uWLd4VV1zh7bvvvl7t2rW9Dh06eLfeeqtXWloa8f16P3nyZK9Lly5enTp1vObNm3v9+/cP5SnWMkaMGFHuem3YsMH7r//6L69FixbuOw877DDvkUceqXCdVq5cWWGZbdq0yaUtLi6OmP7RRx95Z5xxhtekSRO3zB49enjPPvtsRJ60bscee6xXVlYWmv7ZZ5959erV884++2z3XvOj87X//vuXm6cdO3Z4v/vd79z3N2jQwBs4cKC3Zs2amPlcu3atN3LkSFc22i6FhYXeQw89lND29r311ltuGzVq1MirW7eud8wxx3hvvPHGbvnSsrQdWrVq5ZbVrl0776KLLvJ27twZd//R8v1y0Ksy21W0DfU9EydO9O677z6vffv2btk9e/b0Fi5c6CWion1X2++4445z5a08+bRe2o+1zO+//95NU/krP9o/zjrrLK9hw4Ze06ZNvcsvv9z78ccfI5Y7bdo07/jjj/f22Wcft9yDDz7Yu+eee3bLn/aHU045xZs3b57Xq1cvVxYHHHCA9/e//z0i3a5du7wbb7zR69ixo0uj5f7iF7/wXn755VAaP3/hfvrpJ+/mm28OlZ2WN27cOLef7Uk+4qno2K9MXmTmzJneUUcd5Y4nHQcnn3yyt2zZstD8WMeWziX6zujp/nETaz/UdtP8Aw880OW7oKDAO/30070VK1aE0uzJsRd+/E2fPt374x//6LVp08Yt45e//KU7V5S3LhWdJ4LYrjo3KC+jRo3yEqHyr1+/viubQYMGub+1H1x55ZXezz//HJFWx3RRUZHbj/Py8rzu3bt7Tz311G7fqeVfeuml3uOPP+7KuGbNmt4///nPSn2HPPbYY279dY5r3Lixd/TRR3svvfRSqIyiyz98P0nk+hd+rvrLX/7itkuNGjW89957L255+dsm0XLVPnnSSSe540HlW1H5LF682BswYIA7T9WvX9/tdwsWLIj4bv/cPXfuXO/iiy925yuVTzzh6xlO50hNP/HEEyt9HkxG+SeiyoOvV1991QUV4a/Nmze7NOvXr3c7oQ6Ibt26ub/10klN/+vz/fr1C02X7du3uwtjs2bNvGuvvda79957veHDh3s5OTmuQML95je/cd+hHUQn4kmTJrmd5K677nLz9Z06+LXj+8uYP39+3HX64Ycf3MaqVauW9/vf/97729/+5j6rZej7y1sn/4JZ2eBLZZGfn+925Ntuu827++67XUCi9Z0xY0YonQ5yffavf/2re68dQRfDli1bhspbF0blSXnz8+UfGPEMGzbMfe+vf/1rt+xf/epXrvyj86n11s7Ytm1bdxKeOnWqd9ppp7l0Ovj9NJqnaRdeeGEoD59//rmbP3v2bLcz6wR2xx13uM9pWZr29ttvh5b11Vdfea1bt3YXQgWG2gduuOEGt210YOj7FIBoOdpH/OVo+bEueols1/AD/fDDD3dBh7bH7bff7spT666ApDyJ7rtffPGFO6HpousbO3asS/f666/vFtwceuihLijW9vG313nnnRexbJ3odTyoTLX/66SkdPpM9ImnU6dObr9RHjVfFxEtOzzY0DxN04XwgQcecNtr6NCh7iQUnb/oE7emnXnmmd6UKVPc+uv94MGD9ygf8VR07FcmL48++qhbri4c+ry2u4J9XRT8H1U6trRP6/Pax/1ziY4vbUdN1zGh6e+//37M/VABwQknnODSnnPOOW6dJ0yY4C5SzzzzTCjdnhx74cGX9l/9gNM8BdA6jnr37h1KtyfniSC2q9LrO//973+Xmy48TwqCDjnkEPfDSuWiH7H6jugLrsrvkksucfm58847XXko3QsvvBCRTtN0rtDF+6abbnLr6gc0iX6HylzTjzzySBc06Jyt8+s111zj5qus9V2dO3cOlb//oybRc4h/rtJ1Q4GXjktt7y+//DJueWnb6LwQfb3WS+fI8HLVdVNBh/5WHnSMlFc+2rYKuPRj+ZZbbnH5UdCt71FQHR03KN86NnS8hZ9TEg2+tDxNHzJkSKXPg8ko/7QIvmK9VOCJRNx+FB1OG04b8dNPP42YrotTbm6ut3r1avd+zpw57vO6CEcLrx3Sd1VU2+XTSVzfqajepwuuggVdLEtKSipcp8oGXzoZ6+Ia/gtS+deBq1/H4XTx04lUZaOdUd8VftIW5amiX7G+JUuWuO/QCSWcThTR+Tz//PPdgeUHej5dRBQ8+gevah6ia7v8ddL6qHYifPvoczpIFYT7tLPrV1ysWlX/s34w6td2hYu+6CW6Xf0DXQfet99+G0qrWkhNf/7558stz0T3XVHNmp8nnZw0X4FmOD+40YU2nLaXpvsXeb8co6msdWKO9asv/AK3ceNGd8yqxsDXtWvXCvfv6ODL358uuOCCiHRXXXWVm65jtrL5iCWRYz/RvGzbts0FWdG1LQp4tF+HT49X2++Xg47v8vZD/SpXOl244+Vb9vTY84MvXRxVk+rTxV/Tly5dulfniarern4Qqx9YifADQgWk4fzgM1z08aHjX7WmCnzD6ft07vnwww93W14i36EaRn1e6xJdUxK+jRUwRteKVuYc4p+rdAdB5ZuIWDU+/ks/AqLLVcuMFq98FITrR7T/Q1u+/vprVwumyoToY0i1zNG1k7H466lAT8eXjku/VlXTo2seEz0P7m35J6LKh5pQrx81QA1/vfjii3v8fU899ZS7n6uGgWoj5b/U8FKN7f7973+7dP/4xz9CjcKj7Wn395kzZ7pOAGrc51PX8csvv9w16nz99dctmb799lubM2eO60G1bdu20LqqV1X//v1dA96vvvoqlP7uu+92vX/UgeCGG25wPSwHDRq0x8vX+orWL1z0sBk65lTeAwcOdH+Hbxflc+vWrbZ48eJyl6Xej1qfX//61279/M/rfv8JJ5zgtqvaD+il3qlaVqy2hHuybSu7XYcMGeL2P5/2R/niiy+Ssu/KhRde6Mpu9OjRbjuqp5x60MZy6aWXRrzXZ/z18qkHnk/bQ8s99thjXZ71PpzaKvrrJPvss4916tQpYv3UfunDDz902yxRfn7GjBkTMd1v4Puvf/2r0vmIJZFjP9G86Hyl4SK0b4Rvs9zcXNfbTh06kkX5ViNff/vFyne0PTn21BEqvN1PovtvqrdrSUmJ+79hw4aVyt9FF10U8V7Ljl5W+PGxZcsWV25KF+u8peMmVnveRL5D5y6dw8aPH+965lX23FWZc4ioXZzKN1Hap6Ov13qFnxt9ap8cS3T5KF8vv/yyDR482Nq3bx+a3qpVK3e+V6c0f9v6Ro0a5Y6xROlY13rqPK7y+eijj+yOO+5w18JwlTkPJqP8y1PlrWF79+5dYYP7ytDJXj0E4+1QfuPWzz//3PXQULfTZPnyyy/twAMP3O2gOfjgg0Pzk2nFihXuhKpASq9466tGkqJ1/dvf/uZ6+amHpP7eG1ofrasu/OF0ogy3adMmd4FSF/p43ej97RKPfxEfMWJE3DQ6ONR4UweqeqOkarvut99+Ee/9QEwn3GTsu76HHnrIlb0+N3/+/IgTRzjlPZw+o3UJ76n25ptvuhOUul//8MMPu5WrgvZ46+evY/j6qRezAnt18de2UA80BYnhHUji7U/hPf5EJ0wFcxWVc6x8xJLIsZ9oXvz9Ml5Pr0aNGlmyKN86tirTSWFPjr093X9TvV39stYP0UQ7Yqmhd/TxFmtZL7zwgv3xj390PwJ37txZbkAUq/d+ot+hbayyqqgzVrLOIfHyGo+C//CeuvFoH913331jzotepvZRnXOirxv+OVbB6Jo1a+yQQw6xPc23fqzquqeewKqw0LVPwVC0ypwHk1H+5cm4rkjaUBp24Q9/+EPM+boYVBdaV7nqqqvcr9hYok94GhdNdHJZu3ZtIL1F/Xyqt0m84Km8i3L4d0ycONENUhmLupSrNjDV4v0iq2jUlsruu+rm7J/Ely5dakVFRQnlL/qCoRO+ag81yOedd95pbdu2dTUfqrHQeEl+2Vdm/Y455hj3vc8++6z7Vfvggw+679KwChpcuDL5S3Y5V0ZFefHLRmN2KZiIlurenHty7FVVuVb1dtX+6x8L4TVne7KscPPmzbPTTjvN7dPqGacaGdV8azgcjXcWLdaPoMp+x56q7Dkk3g+2vVWnTp3dfqwmc5l1K/kd+gHqB40agkTbfezYsXb88ceHKn8qex6s6vgj44Iv/arXraCKonOlUyCii3V5v4Arc5tq//33d1GvNkD4jqdBFP35yeRX0eogTuTXiMYZ0kVQO8Z///d/u5Px22+/HXGBqOz6al39X+Q+jakTTr8CdCtAvzQqyme85fu1a/p1W953aFlKozGI9mQ5qdyuie67sm7dOnf76cQTT3QnCD8Aj5UX/RoL/6WoGlOti8btkeeff94Fcc8991xErcPe3jLTcaVbWHppvXTh0bhv8YIvf39Sfv1aRf9JFqq9SWY5V3TsJ5oXf79s0aJFQtttb/Ot4/Wnn35yx3wiKnPsVcaenCeqervq1uqECRPcuI+JBl+J0G1b1ZBpn1FQ4VPglOzv0DZWWWkQ6Hg/Mis6TyZ6DkkX2kfr1au323XDP8fqnKtAKJk05IgGNL7++uvddbGy58Egyj8tHi9UGWr/pCpDv4YnnA50jWXi3+vWL6mbbrqp3F9YGj/EfwRIRTSImwbxmz59emialnfXXXe5WhndO04mnfA1QOh9993nLsbRVJ3r0zrooqfbvGobpCBMbQ2i2wlpfRO5ty0aJ0Wib19Gj3ytXxkqb52AYgVF4fn0x2uJLvMePXq4HXvSpEkxB0X0v0MHqtoO6EDSgK3xtm285aRyuya67/ptHnSS1q1H3U5SAH3++efHrB1Qu8pwynf49vN//Yd/VvtAZS4u0dQuL5zKSbWw4bdbYpVzrP1Hv0LllFNOsWRI5NhPNC8KeBXs6zhSUFTevp2MfKv9iNpuxst3tMoce5VRmfNEUNtVNb+6va1zW6ynkqhJgn6kVJbKUBfb8NtUumVfmSefJPodOnfpHKbb9tE1LYlclypzDkkXKhv9iFQteXhTiA0bNrhawaOOOiqpt+9Fd3x++9vfunLyn6ZSmfNgEOVf5TVfalzv1yCEO/LIIyMa3yXq6quvdpGrqhY14J4u2mqUrapoDbynjav71qpuVBsUBQ76RaaDVju7qoc1T4+iEH3+1VdfdScKtRNRDYIaHca7r6xASMvVCMuqWdAydR9ZJ57KNgRNhC6s2jk1Sq8uyCoz7bTaAXRb8f3333fprrjiCndB1LpoJ9P6KhhTGwS1zenatWtofRVkqHGsRprXRVO/KGPRLzM1tFQ1unZSbbPZs2e7mpVot956q/sFobJTPtWmQTUPCgCVJ/92oQIsHRi6PaXy0k6uz6jcdVJVwKB7/6pNUVs2dSjQ9+rgVMAluhDqVpeCIm0T/dpWcKrGkGq8qe9X3lUOt912m8u7fo2q3Y4C2lRt10T3XZ0M1EhZT13w21UooNKtJQ0aeMkll0R878qVK90tD21z7ReqGVBDVn+b+7Vn2s46ISm41a9ClUWsoD4R2r76YaB1UO2SAmGtg39cxaL8qDZWwaROVNp+CxcutL///e/uoqTjMhkSOfYTzYv2O5W5vk8DOZ5zzjnul/zq1avdNvrFL34RM1jaE8OHD7dHH33UHZvKi2p3tH/o+NE2j9d5JtFjrzIqc54IaruKykf7s54AovzoNpLOIdrOGuFe+7N+wFWGgkOd/7Wf6LhRux2dd/VjIvwJJMn4Dr1XrYwGhNX21Xro3KSR2HX9Uc2eX/7a73T+1md0rOr8leg5ZE/pfBvriTLa/tqWe0rroYb7upZpX65Zs6Y75+rH2u23325VQddEnb91fGjfqMx5MJDy91Iw1ET0UAOVGWrC7/6tAfw01pK6r2o8Gg29oLF8wsdaUldVDbmg8TqUTmOPaNyfRYsWhdJ8/PHHrqurBrtLdJBVDWaoZeo7NQxE9LAJ5a3Tngyyqu65Gl5BAy5qLCoNjnjqqad6Tz/9dMRQBxprKZyGSFA+NCyAXy4ab0xDRaj7vD5TUXdyDfqoLvsaXkFdbMsbZFVlo+2l8YaUT+VXQ2Xcf//9EemUX38Avuh9QWPCaCwxLU/dz5U/DRKrMcDCabwalYm2qdKpq7CWHd6FXuNPabq6ACcyyGpF2zXemDISqzxiqWjfVdlqeACVczR1T9c20Dhg4UMYLF++3I2vpG7bGoj3sssu222Q1eeee86NT6NxjzRGlcaq8oc2CB8AON5+G11mGqRT4xhpP9Kxo2PsT3/6U8TxF2+QVXUL1/Ah2ke0r5Q3GGdF+YgnkWM/0byI9h11Sde2URlqjCONF/Tuu+8mbagJvyv8ddddF8qTjiFt2/Au+nt67PlDTUR3v/f36/D9vbLniaC2q19GOl40nICGgtH21TA1o0ePjhiM1h8MNFqs/VID0voD22qfUVnEShfvmlSZ7xAdexryQml1zGrdX3nlldB8DZmgctIxrc+Hl00i17/yzlV7MtRE+PaPV64VlY8GWdUxpG1Wr149N9hp9LiaiQzOHq6i9dQxqvO/v18keh7c2/JPRJU92xFA1VL7Kt1a062lvfm1CwAIVsa1+QIAAMhkBF8AAAAEXwAAANUTbb4AAAACxG1HAACAABF8AQAABCjjHi+0tzTY4tdff+0GzqzMIzQAAEDqeJ7nHqyuAWnjPVsyU2Rd8KXAK9nPkQIAAMFYs2ZN6OkfmSrrgi//UTHaeMl+nhQAAKgaJSUlrvKkKh7lF7SsC778W40KvAi+AADILDnVoMlQZt80BQAAyDAEXwAAAAEi+AIAAAgQwRcAAECACL4AAAACRPAFAAAQIIIvAACAABF8AQAABIjgCwAAIEBZN8I9gOqptMyzhSu/tY3bdliLhnnW+4Cmllsj80fCBlD9EHwByHizlq2zm55fbuu27ghNa5WfZ8UDC21Al1YpzRsAROO2I4CMD7wufnxxROAl67fucNM1HwDSCcEXgIy+1agaLy/GPH+a5isdAKQLgi8AGUttvKJrvMIp5NJ8pQOAdEHwBSBjqXF9MtMBQBAIvgBkLPVqTGY6AAgCwReAjKXhJNSrMd6AEpqu+UoHAOmC4AtAxtI4XhpOQqIDMP+95jPeF4B0QvAFIKNpHK+pw7pby0Z1IqbrvaYzzheAdEPwBaCaiFf3BQDpJS2CrylTpli7du0sLy/P+vTpYwsXLoyb9pFHHrGcnJyIlz4HILsHWV1fEtmjcUMJg6wCSE8pD76mT59uY8aMseLiYlu8eLF17drV+vfvbxs3boz7mUaNGtm6detCry+//DLQPANIDwyyCiATpTz4uvPOO23UqFE2cuRIKywstHvvvdfq1atn06ZNi/sZ1XYVFBSEXi1btgw0zwDSA4OsAshEKQ2+du3aZYsWLbK+ffv+J0M1arj3CxYsiPu577//3vbff39r27atDRo0yD788MOAcgwgnTDIKoBMlNLga/PmzVZaWrpbzZXer1+/PuZnOnXq5GrFnn32WXv88cetrKzMjjzySFu7dm3M9Dt37rSSkpKIF4DqgUFWAWSilN92rKyioiIbPny4devWzY499libMWOG7bPPPnbffffFTD9hwgTLz88PvVRbBqB6YJBVAJkopcFX8+bNLTc31zZs2BAxXe/VlisRtWrVssMPP9xWrFgRc/64ceNs69atodeaNWuSkncAqccgqwAyUUqDr9q1a1uPHj1s9uzZoWm6jaj3quFKhG5bLl261Fq1ahVzfp06dVzvyPAXgOo3yGpBfuSQM3rPIKsA0lHNVGdAw0yMGDHCevbsab1797bJkyfb9u3bXe9H0S3GNm3auNuHcvPNN9sRRxxhHTt2tO+++84mTpzohpq44IILUrwmAFIZgPUrLHC9H9UIX23BdEuSxwoBSEcpD76GDBlimzZtsvHjx7tG9mrLNWvWrFAj/NWrV7sekL4tW7a4oSmUtkmTJq7mbP78+W6YCgDZS4FWUYdmqc4GAFQox/M8z7KIejuq4b3af3ELEgCAzFBSja7fGdfbEQAAIJMRfAEAAASI4AsAACBABF8AAAABIvgCAAAIEMEXAABAgAi+AAAAAkTwBQAAECCCLwAAgAARfAEAAASI4AsAACBABF8AAAABIvgCAAAIEMEXAABAgAi+AAAAAkTwBQAAECCCLwAAgAARfAEAAASI4AsAACBABF8AAAABIvgCAAAIEMEXAABAgAi+AAAAAkTwBQAAECCCLwAAgAARfAEAAASI4AsAACBABF8AAAABIvgCAAAIEMEXAABAgAi+AAAAAkTwBQAAECCCLwAAgAARfAEAAASI4AsAACBABF8AAAABIvgCAAAIEMEXAABAgAi+AAAAAkTwBQAAECCCLwAAgAARfAEAAASI4AsAACBANYNcGABUldIyzxau/NY2btthLRrmWe8DmlpujRwKHEDaIfgCkPFmLVtnNz2/3NZt3RGa1io/z4oHFtqALq1SmjcAiMZtRwAZH3hd/PjiiMBL1m/d4aZrPgCkE4IvABl9q1E1Xl6Mef40zVc6AEgXBF8AMpbaeEXXeIVTyKX5SgcA6YLgC0DGUuP6ZKYDgCAQfAHIWOrVmMx0ABAEgi8AGUvDSahXY7wBJTRd85UOANIFwReAjKVxvDSchEQHYP57zWe8LwDphOALQEbTOF5Th3W3gvzIW4t6r+mM8wUg3TDIKoCMpwCrX2EBI9wDyAgEXwCqBd1aLOrQLNXZAIAKcdsRAAAg24KvKVOmWLt27SwvL8/69OljCxcuTOhzTz75pOXk5NjgwYOrPI8AAADVIviaPn26jRkzxoqLi23x4sXWtWtX69+/v23cuLHcz61atcquuuoqO/roowPLKwAAQMYHX3feeaeNGjXKRo4caYWFhXbvvfdavXr1bNq0aXE/U1paaueee67ddNNN1r59+0DzCwAAkLHB165du2zRokXWt2/f/2SoRg33fsGCBXE/d/PNN1uLFi3s/PPPr3AZO3futJKSkogXAABAVgZfmzdvdrVYLVu2jJiu9+vXr4/5mTfeeMMeeughe+CBBxJaxoQJEyw/Pz/0atu2bVLyDgAAkJG3HStj27Ztdt5557nAq3nz5gl9Zty4cbZ169bQa82aNVWeTwAAgLQc50sBVG5urm3YsCFiut4XFBTslv7zzz93De0HDhwYmlZWVub+r1mzpn3yySfWoUOHiM/UqVPHvQAAACzba75q165tPXr0sNmzZ0cEU3pfVFS0W/rOnTvb0qVLbcmSJaHXaaedZscff7z7m1uKAAAg3aV8hHsNMzFixAjr2bOn9e7d2yZPnmzbt293vR9l+PDh1qZNG9d2S+OAdenSJeLzjRs3dv9HTweQXUrLPB4vBCAjpDz4GjJkiG3atMnGjx/vGtl369bNZs2aFWqEv3r1atcDEgDimbVsnd30/HJbt3VHaFqr/DwrHljIg7UBpJ0cz/M8yyIaakK9HtX4vlGjRqnODoAkBF4XP77Yok9kOf/3/9Rh3QnAgGqgpBpdv6lSApDRtxpV4xXrF6Q/TfOVDgDSBcEXgIy1cOW3Ebcaoynk0nylA4B0QfAFIGNt3LYjqekAIAgEXwAyVouGeUlNBwBBIPgCkLF6H9DU9Wr0G9dH03TNVzoASBcEXwAyVm6NHDechEQHYP57zVc6AEgXBF8AMtqALq3ccBIF+ZG3FvWeYSYApKOUD7IKAMkIwPoVFjDCPYCMQPAFoFrQrcWiDs1SnQ0AqBC3HQEAAAJE8AUAABAggi8AAIAAEXwBAAAEiOALAAAgQARfAAAAASL4AgAACBDBFwAAQIAIvgAAAAJE8AUAABAggi8AAIAAEXwBAAAEiOALAAAgQARfAAAAASL4AgAACBDBFwAAQIAIvgAAAAJE8AUAABAggi8AAIAAEXwBAAAEiOALAAAgQARfAAAAASL4AgAACBDBFwAAQIAIvgAAAAJE8AUAABAggi8AAIAAEXwBAAAEiOALAAAgQARfAAAAASL4AgAACBDBFwAAQIAIvgAAAAJE8AUAABAggi8AAIAAEXwBAAAEiOALAAAgQARfAAAAASL4AgAACBDBFwAAQIAIvgAAAAJE8AUAABAggi8AAIAAEXwBAAAEiOALAAAgQARfAAAAASL4AgAAyLbga8qUKdauXTvLy8uzPn362MKFC+OmnTFjhvXs2dMaN25s9evXt27dutljjz0WaH4BAAAyNviaPn26jRkzxoqLi23x4sXWtWtX69+/v23cuDFm+qZNm9p1111nCxYssA8++MBGjhzpXi+99FLgeQcAAKisHM/zPEsh1XT16tXL7r77bve+rKzM2rZta6NHj7axY8cm9B3du3e3U045xW655ZYK05aUlFh+fr5t3brVGjVqtNf5BwAAVa+kGl2/U1rztWvXLlu0aJH17dv3PxmqUcO9V81WRRQ3zp492z755BM75phjYqbZuXOn22DhLwAAgKwMvjZv3mylpaXWsmXLiOl6v379+rifU9TboEEDq127tqvxuuuuu6xfv34x006YMMFFyv5LtWoAAABZ2+ZrTzRs2NCWLFli77zzjv3pT39ybcbmzp0bM+24ceNcsOa/1qxZE3h+AQAAfDUthZo3b265ubm2YcOGiOl6X1BQEPdzujXZsWNH97d6O3700Ueuhuu4447bLW2dOnXcCwAAwLK95ku3DXv06OHabfnU4F7vi4qKEv4efUZtuwAAANJdSmu+RLcMR4wY4cbu6t27t02ePNm2b9/uho+Q4cOHW5s2bVzNluh/pe3QoYMLuGbOnOnG+Zo6dWqK1wQAACADgq8hQ4bYpk2bbPz48a6RvW4jzpo1K9QIf/Xq1e42o0+B2SWXXGJr1661unXrWufOne3xxx933wMAAJDuUj7OV9Cq0zghAABki5JqdP3OyN6OAAAAmYrgCwAAIEAEXwAAAAEi+AIAAAgQwRcAAECmBl87duywSZMmJfMrAQAAsjv40phcL7zwgr388svuodjy008/2V//+ldr166d3XrrrVWRTwAAgOwbZPWNN96wU0891Y21kZOT40aaf/jhh23w4MFWs2ZNu/HGG91o9QAAAEhCzdf1119vJ598sn3wwQfusUDvvPOOnX766fbnP//Zli9fbhdddJEbdR4AAABJGOG+WbNmNm/ePCssLLQff/zRGjRoYDNmzLBBgwZZpqhOI+QCAJAtSqrR9btSNV9btmyx5s2bu79Vw1WvXj3r0qVLVeUNAACg2qn0g7V1e1EPwBZVmn3yySfuYdfhDjvssOTlEAAAIFtvO9aoUcM1tI/1EX+6/vd7Qaaj6lRtCQBAtiipRtfvStV8rVy5supyAgAAkAUqFXztv//+VZcTAACALFCpBve333676+Xoe/PNN23nzp2h99u2bbNLLrkkuTkEAADI1jZfubm5tm7dOmvRooV7r3uuS5Yssfbt27v3GzZssNatW9PmCwAAJFVJNWrzVamar+g4rRJxGwAAAJL9YG0AAACUj+ALAAAgnQdZffDBB91jheTnn3+2Rx55JDTqvRrcAwAAIEkN7tu1a+cGUc3k8cCqU4M9AACyRUk1un5XquZr1apVVZcTAACALFCpNl9z5syxwsJCF31GUyR6yCGH2Lx585KZPwAAgOwNviZPnmyjRo2KWd2nqsDf/va3dueddyYzfwAAANkbfL3//vs2YMCAuPNPPPFEW7RoUTLyBQAAUC1VKvjSCPa1atWKO79mzZq2adOmZOQLAACgWqpU8NWmTRtbtmxZ3PkffPCBtWrVKhn5AgAAqJYqFXydfPLJdsMNN9iOHTt2m6cHbhcXF9upp56azPwBAABk7zhfuu3YvXt394Dtyy67zDp16uSmf/zxxzZlyhT3QO3Fixdby5YtLV1Vp3FCAADIFiXZOs6Xgqr58+fbxRdfbOPGjQs9WFsDr/bv398FYOkceAEAAGTc44X2339/mzlzpm3ZssVWrFjhArADDzzQmjRpUjU5BAAAyObgy6dgq1evXsnNDQAAQDVXqQb3AAAA2DsEXwAAAAEi+AIAAAgQwRcAAECACL4AAAACRPAFAAAQIIIvAACAABF8AQAABIjgCwAAIEAEXwAAAAEi+AIAAAgQwRcAAECACL4AAAACRPAFAAAQIIIvAACAABF8AQAABIjgCwAAIEAEXwAAAAEi+AIAAAgQwRcAAECACL4AAAACRPAFAACQbcHXlClTrF27dpaXl2d9+vSxhQsXxk37wAMP2NFHH21NmjRxr759+5abHgAAIJ2kPPiaPn26jRkzxoqLi23x4sXWtWtX69+/v23cuDFm+rlz59rQoUPttddeswULFljbtm3txBNPtK+++irwvANIH6Vlni34/Bt7dslX7n+9B4B0lON5XkrPUKrp6tWrl919993ufVlZmQuoRo8ebWPHjq3w86Wlpa4GTJ8fPnx4helLSkosPz/ftm7dao0aNUrKOgBIrVnL1tlNzy+3dVt3hKa1ys+z4oGFNqBLq5TmDUBylFSj63dKa7527dplixYtcrcOQxmqUcO9V61WIn744Qf76aefrGnTpjHn79y5022w8BeA6hV4Xfz44ojAS9Zv3eGmaz4ApJOUBl+bN292NVctW7aMmK7369evT+g7rrnmGmvdunVEABduwoQJLlL2X6pVA1A96NaiarxiVd/70zSfW5AA0knK23ztjVtvvdWefPJJ++c//+ka68cybtw4V0Xpv9asWRN4PgFUjYUrv92txis6ANN8pQOAdFEzlQtv3ry55ebm2oYNGyKm631BQUG5n500aZILvl599VU77LDD4qarU6eOewGofjZu25HUdABQ7Wu+ateubT169LDZs2eHpqnBvd4XFRXF/dztt99ut9xyi82aNct69uwZUG4BpJsWDfOSmg4Aqn3Nl2iYiREjRrggqnfv3jZ58mTbvn27jRw50s1XD8Y2bdq4tlty22232fjx4+2JJ55wY4P5bcMaNGjgXgCyR+8DmrpejWpcH6vdV46ZFeTnuXQAkC5S3uZryJAh7haiAqpu3brZkiVLXI2W3wh/9erVtm7df3orTZ061fWSPPPMM61Vq1ahl74DQHbJrZHjhpPwA61w/nvNVzoASBcpH+craNVpnBAA/4txvoDqr6QaXb9TftsRAPaWBlLtV1jgejWqcb3aeOlWIzVeANIRwReAakGBVlGHZqnOBgCkf5svAACAbELwBQAAECCCLwAAgAARfAEAAASI4AsAACBABF8AAAABIvgCAAAIEMEXAABAgAi+AAAAAkTwBQAAECCCLwAAgAARfAEAAASI4AsAACBABF8AAAABIvgCAAAIEMEXAABAgAi+AAAAAkTwBQAAECCCLwAAgAARfAEAAASI4AsAACBABF8AAAABIvgCAAAIEMEXAABAgAi+AAAAAkTwBQAAECCCLwAAgAARfAEAAASI4AsAACBABF8AAAABIvgCAAAIEMEXAABAgAi+AAAAAkTwBQAAECCCLwAAgAARfAEAAASI4AsAACBABF8AAAABIvgCAAAIEMEXAABAgAi+AAAAAkTwBQAAEKCaQS4MAKpKaZlnC1d+axu37bAWDfOs9wFNLbdGDgUOIO0QfAHIeLOWrbObnl9u67buCE1rlZ9nxQMLbUCXVinNGwBE47YjgIwPvC5+fHFE4CXrt+5w0zUfANIJwReAjL7VqBovL8Y8f5rmKx0ApAuCLwAZS228omu8wink0nylA4B0QfAFIGOpcX0y0wFAEAi+AGQs9WpMZjoACALBF4CMpeEk1Ksx3oASmq75SgcA6YLgC0DG0jheGk5CogMw/73mM94XgHRC8AUgo2kcr6nDultBfuStRb3XdMb5ApBuGGQVQMZTgNWvsIAR7gFkBIIvANWCbi0WdWiW6mwAQPrfdpwyZYq1a9fO8vLyrE+fPrZw4cK4aT/88EM744wzXPqcnBybPHlyoHkFAADI6OBr+vTpNmbMGCsuLrbFixdb165drX///rZx48aY6X/44Qdr37693XrrrVZQUBB4fgEAADI6+Lrzzjtt1KhRNnLkSCssLLR7773X6tWrZ9OmTYuZvlevXjZx4kQ755xzrE6dOoHnFwAAIGODr127dtmiRYusb9++/8lMjRru/YIFC5K2nJ07d1pJSUnECwAAIOuCr82bN1tpaam1bNkyYrrer1+/PmnLmTBhguXn54debdu2Tdp3AwAAZFyD+6o2btw427p1a+i1Zs2aVGcJAABksZQNNdG8eXPLzc21DRs2REzX+2Q2plfbMNqHAQAAy/aar9q1a1uPHj1s9uzZoWllZWXufVFRUaqyBQAAUH0HWdUwEyNGjLCePXta79693bhd27dvd70fZfjw4damTRvXbstvpL98+fLQ31999ZUtWbLEGjRoYB07dkzlqgAAAKR/8DVkyBDbtGmTjR8/3jWy79atm82aNSvUCH/16tWuB6Tv66+/tsMPPzz0ftKkSe517LHH2ty5c1OyDgAAAJWR43meZ1lEQ02o16Ma3zdq1CjV2QEAAFl2/a72vR0BAADSCcEXAABAgAi+AAAAAkTwBQAAECCCLwAAgAARfAEAAASI4AsAACBbBlkFgGTZ9XOZPbZglX357Q+2f9N6dl5RO6tdk9+XANIPwReAjDdh5nJ7YN5KKwsbMvpPMz+yUUcfYONOLkxl1gBgNwRfADI+8Lrv3yt3m65AzJ9OAAYgnVAnDyCjbzXeP2/3wCuc5isdAKQLgi8AGevv81dZRU+n1XylA4B0QfAFIGO9s+qbpKYDgCAQfAHIWPVq1UxqOgAIAsEXgIx1UEGDpKYDgCAQfAHIWB+v35bUdAAQBIIvABnr6+9+TGo6AAgCwReAjNWmcb2kpgOAIBB8AchYZ/bYN6npACAIBF8AMtaRHZtbvdq55aapXzvXpQOAdEHwBSBj5dbIsTvP7lpumjvO7urSAUC6IPgCkNEGdGll9w7rbi0b1omYXtCojpuu+QCQThh5EEDGU4DVr7DAFq781jZu22EtGuZZ7wOaUuMFIC0RfAGoFnRrsahDs1RnAwAqxG1HAACAAFHzBaBa+HFXqf155nJb9c0P1q5ZPbv25EKrW0FPSABIBYIvABlv1KPv2CvLN4bez/vM7LG3Vlu/whb2wPBeKc0bAETjtiOAahV4hdN0zQeAdELwBSCjbzXGC7x8mq90AJAuCL4AZCy18UpmOgAIAsEXgIylxvXJTAcAQSD4ApCx1KsxmekAIAgEXwAy1jUDDk5qOgAIAsEXgIy19KutSU0HAEEg+AKQsfQcx2SmA4AgEHwByFh6gHYy0wFAEAi+AGSs3gc0tVb5eZYTZ76ma77SAUC6IPgCkLFya+RY8cBC93d0AOa/13ylA4B0QfAFIKMN6NLKpg7rbgX5kbcW9V7TNR8A0gkP1gaQ8RRg9SsssIUrv3WN69XGS7caqfECkI4IvgBUCwq0ijo0S3U2AKBC3HYEAAAIEMEXAABAgAi+AAAAAkTwBQAAECCCLwAAgADR2xFAtTD3gw32myfeDb1/5Nc97bjDWqY0TwAQC8EXgIzXbuy/dpvmArEnzFbdekpK8gQA8XDbEUC1C7wqMx8AgkbwBSCjbzUmMx0ABIHgC0DGCm/jlYx0ABAEgi8AAIAAEXwBAAAEiOALAAAgQARfADLWtHN6JDUdAGRN8DVlyhRr166d5eXlWZ8+fWzhwoXlpn/qqaesc+fOLv2hhx5qM2fODCyvANLHL7sVJDUdAGRF8DV9+nQbM2aMFRcX2+LFi61r167Wv39/27hxY8z08+fPt6FDh9r5559v7733ng0ePNi9li1bFnjeAaReRYOoMsgqgHST43mel8oMqKarV69edvfdd7v3ZWVl1rZtWxs9erSNHTt2t/RDhgyx7du32wsvvBCadsQRR1i3bt3s3nvvrXB5JSUllp+fb1u3brVGjRoleW0ApMqcJevtv55cFHGrkRovoPooqUbX75Q+XmjXrl22aNEiGzduXGhajRo1rG/fvrZgwYKYn9F01ZSFU03ZM888U+X5BZC+FGit6sajhACkv5QGX5s3b7bS0lJr2TLy4bd6//HHH8f8zPr162Om1/RYdu7c6V7hkTMAAEDWtvmqahMmTHDVlP5LtzQBAACyMvhq3ry55ebm2oYNkc9d0/uCgti9kzS9Mul1S1P3h/3XmjVrkrgGAAAAGRR81a5d23r06GGzZ88OTVODe70vKiqK+RlND08vr7zyStz0derUcQ3zwl8AAABZ2eZL1Hh+xIgR1rNnT+vdu7dNnjzZ9WYcOXKkmz98+HBr06aNu30oV1xxhR177LF2xx132CmnnGJPPvmkvfvuu3b//feneE0AAAAyIPjS0BGbNm2y8ePHu0bzGjJi1qxZoUb1q1evdj0gfUceeaQ98cQTdv3119u1115rBx54oOvp2KVLlxSuBQAAQIaM8xW06jROCAAA2aKkGl2/q31vRwAAgHRC8AUAAJBNbb6C5t9lZbBVAAAyR8n/DZJeHVpLZV3wtW3bNvc/g60CAJCZ1/H8/HzLZFnX4F7jiH399dfWsGFDy8nJsWynXxIKRDX4bKY3YExnlDPlXJ2wP1PWqeB5ngu8WrduHTEKQibKupovbbB999031dlIOwxASzlXJ+zPlHN1wz79vzK9xsuX2aEjAABAhiH4AgAACBDBV5bTsy+Li4vd/6CcMx37M+Vc3bBPV09Z1+AeAAAglaj5AgAACBDBFwAAQIAIvgAAAAJE8AUAABAggq9q7ttvv7Vzzz3XDdDXuHFjO//88+37778v9zM7duywSy+91Jo1a2YNGjSwM844wzZs2BAz7TfffOMGrdXTAr777jvLVlVRzu+//74NHTrUPYGgbt26dvDBB9tf//pXyzZTpkyxdu3aWV5envXp08cWLlxYbvqnnnrKOnfu7NIfeuihNnPmzIj56mM0fvx4a9WqlSvXvn372meffWbZLpnl/NNPP9k111zjptevX9+NSD58+HD3dJFsl+z9OdxFF13kzsWTJ0+ugpwjqdTbEdXXgAEDvK5du3pvvfWWN2/ePK9jx47e0KFDy/3MRRdd5LVt29abPXu29+6773pHHHGEd+SRR8ZMO2jQIO+kk05Sj1lvy5YtXraqinJ+6KGHvMsvv9ybO3eu9/nnn3uPPfaYV7duXe+uu+7yssWTTz7p1a5d25s2bZr34YcfeqNGjfIaN27sbdiwIWb6N99808vNzfVuv/12b/ny5d7111/v1apVy1u6dGkoza233url5+d7zzzzjPf+++97p512mnfAAQd4P/74o5etkl3O3333nde3b19v+vTp3scff+wtWLDA6927t9ejRw8vm1XF/uybMWOGOwe1bt3a+8tf/hLA2mBvEHxVYzpYFRS98847oWkvvviil5OT43311VcxP6OTpg7up556KjTto48+ct+jE2i4e+65xzv22GNd8JDNwVdVl3O4Sy65xDv++OO9bKEL9qWXXhp6X1pa6i4uEyZMiJn+7LPP9k455ZSIaX369PF++9vfur/Lysq8goICb+LEiRHbok6dOt7//M//eNkq2eUcy8KFC93+/eWXX3rZqqrKee3atV6bNm28ZcuWefvvvz/BVwbgtmM1tmDBAncLrGfPnqFpusWi51u+/fbbMT+zaNEid8tA6Xyq8t5vv/3c9/mWL19uN998sz366KMZ/4DTdC7naFu3brWmTZtaNti1a5crp/AyUpnqfbwy0vTw9NK/f/9Q+pUrV9r69esj0uhZcbr9U165V2dVUc7x9l3dEtOxko2qqpzLysrsvPPOs6uvvtoOOeSQKlwDJFN2XzWrOV1kWrRoETGtZs2a7uKtefE+U7t27d1OkC1btgx9ZufOna4t0sSJE12wkO2qqpyjzZ8/36ZPn24XXnihZYPNmzdbaWmpK5NEy0jTy0vv/1+Z76zuqqKcY7VvVBswnTfULjIbVVU533bbbe58c/nll1dRzlEVCL4y0NixY90vyPJeH3/8cZUtf9y4ca7x97Bhw6w6S3U5h1u2bJkNGjTIPQrqxBNPDGSZQDKohvfss892HR2mTp1KoSaRatLUCeeRRx5x5yNkjpqpzgAq78orr7Tf/OY35aZp3769FRQU2MaNGyOm//zzz65nnubFoumqHlfPxfBaGfXC8z8zZ84cW7p0qT399NPuvf+EqubNm9t1111nN910U7XYrKku5/BbvCeccIKr8br++ustW2h/ys3N3a2nbawy8ml6een9/zVNvR3D03Tr1s2yUVWUc3Tg9eWXX7rzRrbWelVVOc+bN8+de8LvQKh2Tecu9XhctWpVlawLkiDVjc5Q9Q3B1ZPO99JLLyXUEPzpp58OTVNvpfCG4CtWrHC9bfyXeu5o/vz58+P22qnOqqqcRQ1oW7Ro4V199dVetjZQvuyyyyIaKKthcXkNlE899dSIaUVFRbs1uJ80aVJo/tatW2lwn+Ryll27dnmDBw/2DjnkEG/jxo2V3vbVUbLLefPmzRHnYr3UgP+aa65x5xOkL4KvLBgC4fDDD/fefvtt74033vAOPPDAiCEQ1EumU6dObn74EAj77befN2fOHBdQ6GDXK57XXnstq3s7VlU560S6zz77eMOGDfPWrVsXemXThUxd89UT8ZFHHnFB7oUXXui65q9fv97NP++887yxY8dGdM2vWbOmC67Ue7S4uDjmUBP6jmeffdb74IMP3HApDDWR3HJW4KUhPPbdd19vyZIlEfvvzp07vWxVFftzNHo7ZgaCr2rum2++cUFAgwYNvEaNGnkjR470tm3bFpq/cuVKFzgpgPJpvCMNadCkSROvXr163umnn+5OmvEQfFVNOetEq89Ev3RyzSYa10xBqsZHUs2BxlLzaaiTESNGRKT/f//v/3kHHXSQS69al3/9618R81X7dcMNN3gtW7Z0F8ITTjjB++STT7xsl8xy9vf3WK/wYyAbJXt/jkbwlRly9E8ybl8CAACgYvR2BAAACBDBFwAAQIAIvgAAAAJE8AUAABAggi8AAIAAEXwBAAAEiOALAAAgQARfAPaIHuYb/lzKbKSHGT/zzDOBLlPP69NylyxZslff065dO/f8v3RbPyAbEHwBKaaHd+sip1etWrWsZcuW1q9fP5s2bZqVlZVV6rtuvPHGKnlAdKwL9ZAhQ+zTTz+1qnbccceFykcvlc9ZZ53lHtYc1DKjX5oPAHuK4AtIAwMGDLB169a5Wo0XX3zRjj/+eLviiivs1FNPtZ9//tnSUd26da1FixaBLGvUqFGufL7++mt79tlnbc2aNTZs2LAqW96MGTPc8vRauHChm/bqq6+Gpmn+ntADRdJ1ewIIDsEXkAbq1KljBQUF1qZNG+vevbtde+21LshQIKbbe77vvvvOLrjgAttnn32sUaNG9stf/tLef/99N0/pbrrpJvfer6HxP1ve53zPP/+89erVy/Ly8qx58+Z2+umnu+mq5VEt0+9///vQ98a77Th16lTr0KGD1a5d2zp16mSPPfZYxHx99sEHH3TfXa9ePTvwwAPtueeeq7B8lFbl06pVKzviiCPssssus8WLF0ekef311613796uLJVu7NixoUDn0UcftQYNGthnn30WSn/JJZdY586d7YcffthteU2bNnXL00tlJs2aNQtN03zf5s2b467P3Llz3TprO/bo0cPl7Y033nA1mhMmTLADDjjABbFdu3a1p59+OvS5LVu22LnnnuuWrfn63ocffjgij1988YUL0rVcfX7BggUR8//xj3/YIYcc4papmss77rij3DJW2RxzzDFu+xcWFtorr7xS4XYBsIdS/XBJINvpQbqDBg2KOa9r167eSSedFHrft29fb+DAgd4777zjffrpp96VV17pNWvWzD3Y+4cffnDv9fBdPaBbL02r6HPywgsveLm5ud748eO95cuXe0uWLPH+/Oc/u3lKs++++3o333xz6Hvl4Ycf9vLz80N5mzFjhlerVi1vypQp7kHVd9xxh/vOOXPmhNLolKPveuKJJ7zPPvvMu/zyy93DyP18xKKHDV9xxRWh90qrdTn++OND09auXeseTq4HlX/00UfeP//5T6958+bu4eS+s846y+vVq5f3008/ufVVXt99990Kt4//kOj33ntvt3kVrY//0PnDDjvMe/nll70VK1a4eX/84x+9zp07e7NmzfI+//xzV5Z6yPfcuXPd5y699FKvW7dubntp+a+88or33HPPReRHn9d6qKzPPPNM90BlrZtovWrUqOG2mebr++vWrev+j/UA5tLSUq9Lly7uIePa9q+//rp3+OGHu+WoLAEkF8EXkMbB15AhQ7yDDz7Y/T1v3jyvUaNG3o4dOyLSdOjQwbvvvvvc3wo2FLCFS+RzRUVF3rnnnhs3j+EXal908HXkkUd6o0aNikijgOfkk08OvdfF/Prrrw+9//777920F198sdzgS4FS/fr1XYCl9AcddJALQnzXXnut16lTJ6+srCw0TUGgAiEFFvLtt9+6QOniiy/2WrZs6f3pT3/yElFR8FXe+vjB1zPPPBNKo+2g9Zg/f37Ed51//vne0KFD3d8KLkeOHFlufh588MHQtA8//NBNU+Apv/71r71+/fpFfO7qq6/2CgsLY27Tl156yatZs6b31VdfheZrHQi+gKrBbUcgjen67t/m023C77//3t3+0i00/7Vy5Ur7/PPP435HIp9Tz7kTTjhhr/L60Ucf2S9+8YuIaXqv6eEOO+yw0N/169d3t0E3btxY7nfrFpzyqHXRbbuOHTvaiSeeaNu2bQstu6ioKFRW/rK13mvXrnXvmzRpYg899FDo1qhuSyZDIuvTs2fP0N8rVqxwtzrVqSJ8e+jWqL89Lr74YnvyySdd54k//OEPNn/+/HKXq9us4i833rbQrcXS0tLdvkvp27Zta61btw5NU3kCqBo1q+h7ASSBLopqFyQKJHSRVTuiaOUN+ZDI59SuKCjq0RlOAVNFvTrz8/NdwCX6X0GU1mn69OmuLVui/v3vf1tubq5rNL99+3Zr2LChBbE+CsrCt4f861//cm38wql9lpx00kmund3MmTNd2ysFxpdeeqlNmjQp5nL9oLOyvWMBpAY1X0CamjNnji1dutTOOOMM914N8devX281a9Z0AUj4Sw3kRQ3do2s2EvmcalFmz54dNy+xvjfawQcfbG+++WbENL1X4+1kUwAlP/74Y2jZanD+v3cC/7NsBVf77ruve6/ao9tuu811LFBNkxrtp4LKQ0HW6tWrd9seqn3yqbH9iBEj7PHHH3fDfNx///0JLyPetjjooINCZRedXj1IFZT63nrrrT1eRwDlo+YLSAM7d+50AZICnA0bNtisWbNcbzgNNTF8+HCXpm/fvu5W0ODBg+322293F1INvaAaFPW2060t9WrT7UTdolPQoeAjkc8VFxe72hXdjjvnnHNcL0HVulxzzTVu2fpe1RppngIHP2gLd/XVV9vZZ59thx9+uFumghwNyaAhGvaWbtOpfETlc8stt7heebr16PdcVIAyevRoF1R98sknbp3GjBljNWrUcLcnzzvvPLv88stdrZLKRj07Bw4caGeeeaYFSdvkqquucr1HVVN11FFH2datW11wpFuWCrjGjx/vekeqt6L2jRdeeMEFSIm68sor3fqpnDQemwLTu+++2+65556Y6bW9tF9o2RMnTrSSkhK77rrrkrjWACJUUVsyAJVocK9DUS81et5nn31c78Rp06aFGov7SkpKvNGjR3utW7d2jdDbtm3rGsqvXr061Jj7jDPO8Bo3buy+z+/dVtHn5B//+IfrYVe7dm3XU/BXv/pVaN6CBQtcjz31yPNPG9EN7uWee+7x2rdv75ahRvGPPvpoxPxYDbj1HeG98GI1uPfLR68mTZq4aeG9KEU9BdWbUfkvKCjwrrnmmlDvPzVeP/TQQyM6Hag3ZtOmTV1Pyb1pcF/e+vgN7rds2RKRRh0DJk+e7DoJqKy0zfv37+96Gcott9ziOlqoh6LyqA4ZX3zxRdz86Ps1TcvzPf30066Bvb5/v/328yZOnFhuJwr1ijzqqKNc+WnbqScmDe6BqpGjfyLDMQAAAFQV2nwBAAAEiOALAAAgQARfAAAAASL4AgAACBDBFwAAQIAIvgAAAAJE8AUAABAggi8AAIAAEXwBAAAEiOALAAAgQARfAAAAASL4AgAAsOD8fwmFacFWnIU4AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAR1hJREFUeJzt3QmcE/X9//HPshwrAsslLFDk9EIEFARREbVQrLc/bfEEqVrr1SraClVBxAqKB61QDxSx8q9iKa1aLR4IrSgWBalcYkEUVJZDZLkEdJn/4/3VWZOQ7Ca7ySaZvJ6PR1gymUy+8813vvOZ7zHJ8zzPMwAAgICoke4EAAAAJBPBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwU0Ctm/fbpdffrkVFRVZXl6eXX/99W75+vXr7bzzzrMmTZq45ePHj7ds3ydknrZt29qll14a17onnniie2Ra+k8//XQLano+/vhjdwxNmTKlwnX1Perzs9Htt9/u9nPTpk3pTgoQU84HN6qIdKDGerz99ttlmXXXXXe59a+66ip76qmn7JJLLnHLb7jhBnv55Zdt+PDhbvkpp5xiyabP/vvf/56S7Ubbp2iVWUWPZJ5M//znP2dVkJgOy5Ytc9+NTqqZIhPThPiUlpbaE0884Y7jxo0bW506dVwANmTIEHv33XcDkY3pqFeUn7HqzEMPPdQyVV5EWhs0aGB9+/a1F198MSvyv2a1fEoWuOOOO6xdu3b7LO/YsWPZ/19//XU75phjbOTIkWHraPlZZ51lN910U8rSpyBErUNnn312Urcba59C/d///V9YPqi1R8HQOeec417zNW/ePGnp0kGwZMkSWpJCrFixwmrUqBEWSIwaNcpVnpGtAK+88oqlQ3lpQub66quv3LE8c+ZMO+GEE+y3v/2tC3AUpD777LP25JNP2po1a+wHP/iBZbN01SvKtzFjxuyzvLCw0DJZ//79bdCgQaafoPzkk0/soYcesjPOOMP++c9/2oABAzI6/wluvvPjH//YevToUW5mbdiwwTp16hR1ecOGDS0bxdqnUF26dHEPn5qjFdxo2cUXX2yZaO/evbZnzx4rKCiwoNCVdLxq165tQbJjxw7bf//9052MwPr1r3/tApsHHnhgnxOPLny0vDrpZLpr1y7bb7/9LNPFU9coiKlMXRmr3Ccjf3bt2uXqidALpkgHH3xwWLrPPfdcd774/e9/X6ngpjrlfLdUPObMmeOa5VavXu2a5PxmOr9LSwVt4sSJZct9W7ZscRVF69at3YlJrR933323OxhC6bkKyxFHHOEOkAMOOMB1bflNwdqmCrmunvzPqGjshYKWyy67zLWmaJtdu3Z1769on6rSnfDBBx+41iVd8ekzFSw+//zzYWnSvumqPvTH6FeuXOkO4IEDB7rnel1p0pWCn66KWgG0zrXXXmv/7//9Pzv88MNdfquyls8++8x+9rOfubzQcr0+efLkqAe7ulR0QCv9LVq0cFezq1atKltH38ONN95Y9p0ecsghdu+994btj38l/Mtf/tKaNm1q9evXtzPPPNOlQ+nUZ0R2+SkP9J0qSFZFqK6AnTt3xhxzo7L3k5/8xP3/pJNOKssnfa9+HkZ2E1ZUJkLHjWifHn30UevQoYPbz6OPPtreeeedcr+DitLkmzt3rvXs2dOloX379vanP/1pn+3off/617/s6quvtmbNmoW1GOiqsU+fPq7MKG9PO+00W7p0adg2iouLXR7qfUq/vku1rkYr3xWlRz766CO3byrbdevWda2d8TbPqzu5c+fObvv6+7e//c0S8cc//rGsTLds2dKuueYaV7eE0netbavlTHmvNLZq1cruueeeCrf/6aef2iOPPOKu0qNdUefn57tW6chWG6WhojKrbq6TTz7ZfYdKv06MuvqPNf5J3fuqN3TSVpoS2YZfNtR1onKhbhSVW7UWxFOv7N692wVyqqf1OTrGf/Ob37jl8dY1VeHXBfoOL7zwQmvUqJEdf/zxFeZPPGVzznf1/TPPPGO33nqrKxtad+vWrQml8bDDDnN1WmidKM8995w7DlU+lR+qN0aPHu26On3Jyv940XLznZKSkn0GyCnzNUhYX6jGo2hsjQ5wndzkyCOPLBun4jff+XSQ6yDTCe3KK6+0Aw880N566y03LmfdunVh/Y464ahCV+uRBvd+88039sYbb7jxPirI+gwtVwX885//3L1HhScWnVhVkHTC1EGo7ra//OUvriJShfSrX/0q5j4p+KgMnVyOO+44d9AMGzbMnXjUnK1utL/+9a+uC0uVkyolHYgPPvigO/krsFO6VBmpEpdbbrnFfR+qdP0rxnr16sXVxabP1D7rANSBo8HeOtj9Ckn7pwpQea4D26/MdRCq8pg1a5adf/75Lo+2bdtmr776qmtGVX4rgFGQMnv2bPf+bt26ucpGV736nkOvbrVPSovKhj5fJ2od/LH89Kc/dd+Tmq4XLlxojz32mMsvBcPRqOtA+feHP/zBdSHo+xT/b2XKRCidELT/KrvKO50kFeipIq1Vq1al06TPVwCs/Bs8eLALMpWG7t27uxNFKAU2+r5GjBjhgkpRmdX7dNWovNFxpjKlk8B7771XVlnqClNl8rrrrnPLFNjpu1TXSmiFGk96VIaOPfZY91naP9UJCgpVFqZPn+7KdizqHvSvdvXdfvHFF2VBV7wnPHXz9evXz7WWqmtS+6tA88033wz7Lr788kt3UaTvSeVJabv55pvdRZPqllh0PKjOiTberjzxlFmlVfmovKpZs6a98MIL7nvVca8gLZT27YILLnBl7oorrnAXDolsQ3WoLmK0rupZBV0qEwo8FCyUV69oW9q+Al3VsSqzixcvdut9+OGH+4x3jFbXlEf1S7QB2ApSIltmVD8edNBBbihC6EVTtPxJtGyOHj3atdYoWFXQkGgLr/JP5Szy/KO8V14OHTrU/VX+6LhVHTtu3Di3TjLzPy5ejnviiSdUeqI+6tSpE7ZumzZtvNNOO22fbWjda665JmzZ6NGjvf3339/78MMPw5YPGzbMy8/P99asWeOev/766+79v/zlL/fZ7t69e8v+r20NHjw4rn0aP3682+bUqVPLlu3Zs8fr3bu3V69ePW/r1q0V7lN5Nm7c6LY/cuTIsmU//OEPvSOOOMLbtWtXWPqPPfZY76CDDgp7/wUXXODVrVvX5c24cePctv7+97+HraM0KW3x0jZq1KjhLV26NGz5ZZdd5rVo0cLbtGlT2PLzzz/fKyws9Hbu3OmeT5482W3j/vvvj/k9KI1a58477wx7/bzzzvPy8vK8lStXuucLFixw611//fVh61166aX75Jv+r2U/+9nPwtY955xzvCZNmoQtU36EloG//OUv7r2zZ8/eJ819+/Z1j0TLxOrVq916+uzNmzeXrfvcc8+55S+88IJXnvLSpPTrtX//+99lyzZs2OCOsxtvvHGfY/L444/3vvnmm7Ll27Zt8xo2bOhdccUVYdstLi5236W//Msvv3TvV9kqT7zp0feo9d54442wtLRr185r27atV1paGpZ3Sr+vW7durvxt2bKlbNkrr7zi1quofCsttWvX9n70ox+VfYZMmDDBvV9l1qfvWsv+9Kc/lS3bvXu3V1RU5J177rnlfs4NN9zg3vvee+958UikzPrHV6gBAwZ47du3j/pdzJw5c5/149mG8rd+/fper169vK+++ipmPRqrXnnqqadc/RH6HcvDDz/s0vXmm29WWNfE4n830R5XXnnlPvmq+jFSrPyJt2zOnj3brac8i5af0Wh91Z+q71UW3333Xe+UU06JemxF26b2TfV86DkhGfkfL7qlvqNuJV3ZhT50RVNZuipW07maFhWx+w9dgSmK//e//+3WU6uGroyjDegN7eJKxEsvveSmdivK9+kKT5G9BgOrFSGZNm/e7CJ1Xcnpat/fV12l6gr7f//7n2vZ8E2YMME1Y+uK+bbbbnNXjOoyqCq1lIWOH9LxqfzVADj9P/R7ULp0FaErTtF6ugLTlX6s70H5qiZ65WMotXpp+3558ZuodXUZKtq2fb/4xS/CnqvsKP8SbTZOVplQF6HKbmh6RC03VaHvx9+WqGVGV6DRtqurU+W3T8ekWpm0D6Hfpdbp1auXa1Hzr4Z1RaqmeF1lVjU9yju1mvpdBP4Vp64w1c2lboRo1EK7aNEi1yIUOnBUrbwVjXOT1157zY3lUOti6LgI5Yu6XCK7HpSm0PERygOlu6LvzC9jaj1NRDxlNnRMiN86ruNUadLzUGoFijaOI55tqGyo7lGrceTYl3jqUdXXai3Q7KXQsqXuMPHLVqy6piJq2Yk8v+gRrRswMl/Ly59Ey+bgwYMTGqfz+OOPu2NCLXLqRVDLtrqK1EITKnSb/jlA5UEtShqukOz8jwfdUt9RAaloQHEidEJ///33Y3bzqJlc1Hepfkr1lyaL+jTVrBk5UMzvHtDryaSmfZ3cFajoEWt/1WUl2ld1Xaj5VeM/9P9kiJzttnHjRncy1NgRPWKly/8edFJTs3csyjd9V5Engch81V/lfWR6QmecRVK3ZSg/sNDJWSey6i4T5aWnKiK362872nYj80/HlPgVXiQ/n9Rfr64RBZ0qX+oWVJejuo0V4CWaHuWNgqdIoXmn8S6R/DxVvkdSWfMD61j89/vdM6FBi8YGRX5n6uqKPJFrX1QPlcfPN52UEhFPmVXXmS7c5s2bt894HAUmoUFftNmq8W7DHwMS7XuIh8rW8uXLK6yvK0prLOp60oVtPGJtO9ryRMtmuwTTrYtOdb0pyFZXqLrK9B1E1iPqAtZYHl3kRl6QRQaxycj/eBDcpIj6EHWFpig3Gg1aDQp/gLT6cWONoI88sWusil8Rqg82GbPNIq9I/HTpalZXLNGEzgJLp9AWilCRA5WzPT2JbDfW96lxN5FBioQGproiVoud+upV1hR0a2yIKl+NlatMejJdZffFv9eKxjhoHFmyPk8Bxw9/+EO3/fvvv98NEFVgptYGjaWInFgRrUUh0W1UlrajsUn6jGj0uRWlNVlibTsZn7lfgttQwOwHZaeeeqpr3Vawo0Hr/m1AdAGpliwFtLqlisbjqPVMwbvGfMXzHSWa//EguEkRfcFq7q8oWtd6qnzVtVNe600iXVRt2rRxV2sqMKERtt88qNeTSVeRfjdHPFcn6rbR4EMFfppxoMDjP//5T9jJqbJdcqF0FaBWFnUDxvM9KA1ff/11zAGzyjd1FegKN7T1JjJf9Vd5r5looVftauFKpkwsE8n43mLxBzGqiTyecqb11Xqjh64MdeK+7777bOrUqQl9rvJGgzkjVZR3/nK/xSlUtO3Fer/W9Y8x0VW0yla8LQEV0WBjBSrKl0QHFZdHA381aFUzJkNbeRLpYoh3G37Z0OD/8lpIY5VPvf+///2vC6RSWYaTrbJls7I0mFlBpVppNFjZnw2p7sgZM2a4SQU+ldF05j9jblJE40/UjOq3UIRSpKvZCaKZFLrS0YyI8q641KwZOf0zFkXYmgo7bdq0smX6PM1QUn+souxk0slGM3E0NVHjDCKpe8inffBnfqmJU0GOInz9P5T2N57mzPKowlb+ajyNKr3y0qX11Mer8UCxvgflqwKlyHV0sOuA9Gek+K1X/uwvn/I/mfxZFvGUi+oqE4mkKVHKV10dqqwoCI31farZXNP6IytPBaSVmVaqvJs/f747nn2avaWuTo2liDX2QtPPFVBp9kpoWdZYi1jjdEIpeFErhbptQ+sCjYPQ9sqbfZcIXRVrHI9mdkUrowqIFRSqhTURfstOaNqVbk3tTvY2fvSjH7nvV61zkd99ZD0arV5Rfa1xgZMmTYo609CfrZdpKls2K0sXoLpYUBeSpn/H+o4UgEfWf9Wd/7TcfEeDQaMNfNI0u9CrpnhperCuNtTX708t1Rekpl9N0dNgLzXxqXlPV0uqwHSFp6mcqkw0FVyvqQlQ9H61GqjZTuM+1Hcara9VNJhMgYY+d8GCBa6Q6zPVd60p6IkOHIx3QLYGtalpURWl8kzTFHXQqVJUVC6acqwoX/uig0L7q2DnzjvvdP27uveKv786EWvgmu5VoROwuhkSNXbsWHeVp7xSunSwq5VMAZXSoP+LxmPo/ib6PFUWGgyn70vraGCw0qbP13eiKY36/pRWnRB0kKsbxL96VNoVLCmvta/+VHBNaZRkXZnoxKk81PgSVRgaa+LfDyRdZSKRNCVKgY2mBet4Oeqoo9yUfbXOaXq3BtfqVgQKPJXPugJUhanvWxWy7i2j8qj3JEqDVJ9++mkXvGoAtlpYFbDoylSBc3k3QdPJVkGIjg1NU1Z5UwCh6cpq2S2P9k1TmnXho+NEU2V1la6Tho6JZN5AU8GLuoC0f7oCV72lMTTKWw32VN2YaN4p4FBwpuNGV/zaX528VBaiXQRVZRsqG7rIUF2ivPHvE6N6R8Gufz+nWPWKypSmdmswr+oLlSVdyGi/tdy/v0xl6ViI1WJYle+xKmWzslSHaJq3jnHd6kPnSOW1WuCVBtVv6jqO1h1arfnv5bjypoJHTutMZCq4PyVv+PDhXseOHd2UzqZNm7qp0ffee6+bhuvTdFdNrTv00EPdegcccID34x//2E0p9n3wwQfeCSec4O23337u8yqaFr5+/XpvyJAh7jO1TU3TDt2XivYp0angsmrVKm/QoEFu+mmtWrW8Vq1aeaeffro3ffr0sOnE9913X9j7NA1Z6ejatWtZvmzfvt278MIL3dTfeKbNxvoO/LzQa61bt3bpUvo0df3RRx/dZzrjLbfc4qZR+utpmrf2K/Q71dTZli1bunU0zV3fXeh0U9mxY4f7zMaNG7up1meffba3YsUKl86xY8fuM/1TeRqtXGp6cayp4DJp0iQ3vVO3Fwidgh05FTzeMuFPZ442jTradx5NrDTFKmuRafX3/Z133om6fW1PU4E1/bugoMDr0KGDm2avqaqiaf/Kex1PuoWC1tMU4WeffTZsO/GmR1QGVBZUHvWZPXv29P7xj3+ErRNtKrj89a9/9Q477DA3xbxTp07ejBkz3PcY760ONPVb+6Ly1rx5c++qq65y090j03z44Yfv895EPkf10GOPPeb16dPH5Zk+T+9VmQmdJp5ImX3++ee9Ll26uDzT1OS777677LYLkWU7Vj0U7zb8dVXHqp5s0KCB+56efvrpstfLq1dU92jbykd9V40aNfK6d+/ujRo1yispKYmrrkl0KnjoKThWvlaUP/GUzdnfTQXXrRriVd5+3n777WHHtqZqH3PMMS7fVTf+5je/8V5++eV9bguRjPyPV953OwEgxTQtWINZdQV30UUXkd8AkCKMuQFSQP3EkdT9o2bi0EF3AIDkY8wNkAL6uQKNbdEYHY350JguPTT2pTLTGgEA8aNbCkgBzYjRQFDNitEgSE1j1aA5DUYu70aBAICqI7gBAACBwpgbAAAQKAQ3AAAgUHKu8183yPv888/dTcuy6TbbAADkMs/z3M/f6Ea2Fd2gMOeCGwU2zFYBACA7rV271v2oZ3lyLrjxbzOvzNEtuwEAQObbunWra5yI5+dici648buiFNgQ3AAAkF3iGVLCgGIAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACJe3BzcSJE61t27ZWUFBgvXr1svnz55e7/pYtW+yaa66xFi1aWJ06dezggw+2l156qdrSCwAAMlta73Mzbdo0Gzp0qD388MMusBk/frwNGDDAVqxYYc2aNdtn/T179lj//v3da9OnT7dWrVrZJ598Yg0bNkxL+gEAQObJ8/RjDWmigOboo4+2CRMmlP3uk+4+eN1119mwYcP2WV9B0Lhx4+yDDz6wWrVqVfoOh4WFhVZSUsJN/AAAyBKJnL/T1i2lVpgFCxZYv379vk9MjRru+bx586K+5/nnn7fevXu7bqnmzZtb586d7a677rLS0tKYn7N7926XIaEPoDqU7vVs3qov7LlFn7m/eg4ACHC31KZNm1xQoiAllJ6rZSaajz76yF5//XW76KKL3DiblStX2tVXX21ff/21jRw5Mup7xowZY6NGjUrJPgCxzFyyzka9sMzWlewqW9aisMBGntHJTuncgowDgCAPKE6Euq003ubRRx+17t2728CBA+2WW25x3VWxDB8+3DVh+Q/9YCaQ6sDmqqkLwwIbKS7Z5ZbrdQBAAFtumjZtavn5+bZ+/fqw5XpeVFQU9T2aIaWxNnqf77DDDrPi4mLXzVW7du193qMZVXoA1UFdT2qxidYBpWX6uTe93r9TkeXXqPjH3wAAWdRyo0BErS+zZs0Ka5nRc42riea4445zXVFaz/fhhx+6oCdaYANUt/mrN+/TYhMZ4Oh1rQcACGC3lKaBT5o0yZ588klbvny5XXXVVbZjxw4bMmSIe33QoEGuW8mn1zdv3my/+tWvXFDz4osvugHFGmAMZIIN23YldT0AQJbd50ZjZjZu3GgjRoxwXUvdunWzmTNnlg0yXrNmjZtB5dM08ZdfftluuOEG69Kli7vPjQKdm2++OY17AXyvWf2CpK4HAMiy+9ykA/e5QarH3Bx/9+tu8HC0A0ujbIoKC2zuzScz5gYAgnafGyCINEhY070lcriw/1yvM5gYAFKH4AZIMt3H5qGLj3ItNKH0XMu5zw0ABHjMDRBUCmA03VuzojR4WGNserZrTIsNAFQDghsgRdT11LtDE/IXAKoZ3VIAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAEClPBgTh/VoF71gBAdiC4ASowc8k6G/XCMltX8v0vebcoLHA/o8DdhgEg89AtBVQQ2Fw1dWFYYCP6YUwt1+sAgMxCcAOU0xWlFptov+7tL9PrWg8AkDkIboAYNMYmssUmlEIava71AACZg+AGiEE/eJnM9QAA1YPgBohBv+SdzPUAANWD4AaIoWe7xm5WVF6M17Vcr2s9AEDmILgBYsivkeeme0tkgOM/1+taDwCQOQhugHLoPjYPXXyUFRWGdz3puZZznxsAyDzcxA+ogAKY/p2KuEMxAGQJghsgDup66t2hCXkFAFmAbikAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAESs10JwAAgExRutez+as324Ztu6xZ/QLr2a6x5dfIS3eykCCCGwAAzGzmknU26oVltq5kV1l+tCgssJFndLJTOrcgj7II3VIAgJynwOaqqQvDAhspLtnllut1ZA+CGwCA5XpXlFpsvCiv+cv0utZDdsiI4GbixInWtm1bKygosF69etn8+fNjrjtlyhTLy8sLe+h9AABUhsbYRLbYhFJIo9e1HrJD2oObadOm2dChQ23kyJG2cOFC69q1qw0YMMA2bNgQ8z0NGjSwdevWlT0++eSTak0zACA4NHg4mesh/dIe3Nx///12xRVX2JAhQ6xTp0728MMPW926dW3y5Mkx36PWmqKiorJH8+bNqzXNAIDg0KyoZK6HHA9u9uzZYwsWLLB+/fp9n6AaNdzzefPmxXzf9u3brU2bNta6dWs766yzbOnSpTHX3b17t23dujXsAQCAT9O9NSsq1oRvLdfrWg/ZIa3BzaZNm6y0tHSflhc9Ly4ujvqeQw45xLXqPPfcczZ16lTbu3evHXvssfbpp59GXX/MmDFWWFhY9lBABACAT/ex0XRviQxw/Od6nfvdZI+0d0slqnfv3jZo0CDr1q2b9e3b12bMmGEHHHCAPfLII1HXHz58uJWUlJQ91q5dW+1pBgBkNt3H5qGLj7KiwvCuJz3Xcu5zk13SehO/pk2bWn5+vq1fvz5suZ5rLE08atWqZUceeaStXLky6ut16tRxDwAAyqMApn+nIu5QHABpbbmpXbu2de/e3WbNmlW2TN1Meq4WmnioW2vx4sXWogV3jwQAVI26nnp3aGJndWvl/tIVlZ3S/vMLmgY+ePBg69Gjh/Xs2dPGjx9vO3bscLOnRF1QrVq1cmNn5I477rBjjjnGOnbsaFu2bLFx48a5qeCXX355mvcEAABkgrQHNwMHDrSNGzfaiBEj3CBijaWZOXNm2SDjNWvWuBlUvi+//NJNHde6jRo1ci0/b731lptGDgAAkOd5Xk7dT1pTwTVrSoOLdTNAAAAQrPN31s2WAgAAKA/BDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIlJrpTgAAAFVRutez+as324Ztu6xZ/QLr2a6x5dfII1NzGMENACBrzVyyzka9sMzWlewqW9aisMBGntHJTuncIq1pQ/rQLQUAyNrA5qqpC8MCGyku2eWW63XkJoIbAEBWdkWpxcaL8pq/TK9rPeQeghsAQNbRGJvIFptQCmn0utZD7iG4AQBkHQ0eTuZ6CBaCGwBA1tGsqGSuh2AhuAEAZB1N99asqFgTvrVcr2s95B6CGwBA1tF9bDTdWyIDHP+5Xud+N7mJ4AYAkJV0H5uHLj7KigrDu570XMu5z03u4iZ+AICspQCmf6ci7lCMMAQ3AICspq6n3h2apDsZyCB0SwEAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAIlI4KbiRMnWtu2ba2goMB69epl8+fPj+t9zzzzjOXl5dnZZ5+d8jQCAIDskPbgZtq0aTZ06FAbOXKkLVy40Lp27WoDBgywDRs2lPu+jz/+2G666Sbr06dPtaUVAABkvrQHN/fff79dccUVNmTIEOvUqZM9/PDDVrduXZs8eXLM95SWltpFF11ko0aNsvbt21dregEAQGZLa3CzZ88eW7BggfXr1+/7BNWo4Z7Pmzcv5vvuuOMOa9asmV122WUVfsbu3btt69atYQ8AABBcaQ1uNm3a5FphmjdvHrZcz4uLi6O+Z+7cufb444/bpEmT4vqMMWPGWGFhYdmjdevWSUk7AADITGnvlkrEtm3b7JJLLnGBTdOmTeN6z/Dhw62kpKTssXbt2pSnEwAApE/NNH62C1Dy8/Nt/fr1Ycv1vKioaJ/1V61a5QYSn3HGGWXL9u7d6/7WrFnTVqxYYR06dAh7T506ddwDAADkhrS23NSuXdu6d+9us2bNCgtW9Lx37977rH/ooYfa4sWLbdGiRWWPM88800466ST3f7qcAABAWltuRNPABw8ebD169LCePXva+PHjbceOHW72lAwaNMhatWrlxs7oPjidO3cOe3/Dhg3d38jlAAAgN6U9uBk4cKBt3LjRRowY4QYRd+vWzWbOnFk2yHjNmjVuBhUAAEA88jzP8yyHaCq4Zk1pcHGDBg3SnRwAAJDk8zdNIgAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIlKQFN7t27bJ77703WZsDAABIfXCzceNG+8c//mGvvPKKlZaWumVff/21/f73v7e2bdva2LFjK5cKAACAJKkZ74pz5861008/3bZu3Wp5eXnWo0cPe+KJJ+zss8+2mjVr2u23326DBw9OVroAAABS23Jz66232qmnnmrvv/++DR061N555x0755xz7K677rJly5bZL37xC9tvv/0qlwoAAIAkyfM8z4tnxSZNmtgbb7xhnTp1sq+++srq1atnM2bMsLPOOsuyiVqeCgsLraSkxBo0aJDu5AAAgCSfv+Nuufnyyy+tadOm7v9qoalbt6517tw53rcDAABk1pgbUfdTcXGx+78afFasWGE7duwIW6dLly7JTSEAAEAquqVq1KjhBhJHW91frr/+LKpMRbcUAADZJ5Hzd9wtN6tXr05G2gAAAFIq7uCmTZs2qU0JAABAEsQ9oPiee+5xs6R8b775pu3evbvs+bZt2+zqq69ORpoAAABSP+YmPz/f1q1bZ82aNXPP1d+1aNEia9++vXu+fv16a9myJWNuAABAdkwFj4yB4oyJAAAAqhW/Cg4AAAKF4AYAAOTuTfwee+wx97ML8s0339iUKVPK7lqsAcUAAABZM6C4bdu27iZ92X4/HG7iBwBA9knJTfxmz55t7dq1S0b6AAAA0j/mpkOHDi64+dnPfmZTp061zz77LHWpAgAAqKS4W25ef/11mzNnjns8/fTTtmfPHnePm5NPPtlOOukk92jevHll0wEAAFC9Y25C7dq1y956662yYGf+/Pn29ddf26GHHmpLly61TMaYGwAAsk8i5+9KBTc+td7oZxj++c9/2iOPPGLbt2/nDsUAACA7BhT7wczbb7/tBherxeY///mPtW7d2k444QSbMGGC9e3bt6ppBwAAqJK4gxuNrVEwo0HFCmKuvPJK+/Of/2wtWrSoWgoAAADSEdy88cYbLpBRkHPiiSe6AKdJkybJTAsAAED1TQXfsmWLPfroo1a3bl27++673S+AH3HEEXbttdfa9OnTbePGjVVPDQAAQBVVekCxfm5h7ty5ZeNv/vvf/9pBBx1kS5YssUzGbCkAALJPIufvSv9w5v7772+NGzd2j0aNGlnNmjVt+fLlld0cAABA9Y652bt3r7377ruulUatNZoCvmPHDmvVqpW7gd/EiRPdXwAAgKwIbho2bOiCmaKiIhfEPPDAA25gsX6WAQAAIOuCm3Hjxrmg5uCDD05tigAAAKojuNF9bQAAADJdpQcUAwAAZCKCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAiUjAhu9KObbdu2tYKCAuvVq5fNnz8/5rozZsywHj16uN+60i+Td+vWzZ566qlqTS8AAMhcaQ9upk2bZkOHDrWRI0fawoULrWvXrjZgwADbsGFD1PUbN25st9xyi82bN8/ef/99GzJkiHu8/PLL1Z52AACQefI8z/PSmQC11Bx99NE2YcIE93zv3r3WunVru+6662zYsGFxbeOoo46y0047zUaPHl3hulu3brXCwkIrKSmxBg0aVDn9AAAg9RI5f6e15WbPnj22YMEC69ev3/cJqlHDPVfLTEUUl82aNctWrFhhJ5xwQopTCwD7Kt3r2bxVX9hziz5zf/UcQJb8KngqbNq0yUpLS6158+Zhy/X8gw8+iPk+RW2tWrWy3bt3W35+vv3xj3+0/v37R11X6+gRGvkBQDLMXLLORr2wzNaV7Cpb1qKwwEae0clO6dyCTAZydcxNZdSvX98WLVpk77zzjv3ud79zY3bmzJkTdd0xY8a4Ziz/oS4vAEhGYHPV1IVhgY0Ul+xyy/U6gBwMbpo2bepaXtavXx+2XM+Liopivk9dVx07dnQzpW688UY777zzXBATzfDhw11Lj/9Yu3Zt0vcDQG5R15NabKJ1QPnL9DpdVEAOBje1a9e27t27u3EzPg0o1vPevXvHvR29J7TrKVSdOnXcwKPQBwBUxfzVm/dpsYkMcPS61gOQY2NuRF1KgwcPdveu6dmzp40fP9527NjhpnfLoEGD3Pgav2VGf7Vuhw4dXEDz0ksvufvcPPTQQ2neEwC5YsO2XUldD0DAgpuBAwfaxo0bbcSIEVZcXOy6mmbOnFk2yHjNmjWuG8qnwOfqq6+2Tz/91Pbbbz879NBDberUqW47AFAdmtUvSOp6AAJ2n5vqxn1uAFSVxtIcf/frbvBwtAo0z8yKCgts7s0nW34NPQOQM/e5AYBspIBF070lMnTxn+t1AhsgPQhuAKASdB+bhy4+yrXQhNJzLec+N0AOj7kBgGylAKZ/pyI3K0qDhzXGpme7xrTYAGlGcAMAVaCup94dmpCHQAahWwoAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoNRMdwIAINOV7vVs/urNtmHbLmtWv8B6tmts+TXy0p0sADEQ3ABAOWYuWWejXlhm60p2lS1rUVhgI8/oZKd0bkHeARmIbikAKCewuWrqwrDARopLdrnleh1A5iG4AYAYXVFqsfGivOYv0+taD0BmIbgBgCg0xiayxSaUQhq9rvUAZBaCGwCIQoOHk7kegOpDcAMAUWhWVDLXA1B9CG4AIApN99asqFgTvrVcr2s9AJmF4AYAotB9bDTdWyIDHP+5Xud+N0DmIbgBgBh0H5uHLj7KigrDu570XMu5zw2QmbiJHwCUQwFM/05F3KEYyCIENwBQAXU99e7QhHwCsgTdUgAAIFAIbgAAQKAQ3AAAgEAhuAEAAIGSEcHNxIkTrW3btlZQUGC9evWy+fPnx1x30qRJ1qdPH2vUqJF79OvXr9z1AQBAbkl7cDNt2jQbOnSojRw50hYuXGhdu3a1AQMG2IYNG6KuP2fOHLvgggts9uzZNm/ePGvdurX96Ec/ss8++6za0w4AADJPnud5+nHbtFFLzdFHH20TJkxwz/fu3esCluuuu86GDRtW4ftLS0tdC47eP2jQoArX37p1qxUWFlpJSYk1aNAgKfsAAABSK5Hzd1pbbvbs2WMLFixwXUtlCapRwz1Xq0w8du7caV9//bU1bhz99112797tMiT0AQAAgiutwc2mTZtcy0vz5s3Dlut5cXFxXNu4+eabrWXLlmEBUqgxY8a4SM9/qFUIAAAEV9rH3FTF2LFj7ZlnnrG//e1vbjByNMOHD3dNWP5j7dq11Z5OAACQIz+/0LRpU8vPz7f169eHLdfzoqKict977733uuDmtddesy5dusRcr06dOu4BAAByQ1pbbmrXrm3du3e3WbNmlS3TgGI97927d8z33XPPPTZ69GibOXOm9ejRo5pSCwAAskHafzhT08AHDx7sgpSePXva+PHjbceOHTZkyBD3umZAtWrVyo2dkbvvvttGjBhhf/7zn929cfyxOfXq1XMPAACQ29Ie3AwcONA2btzoAhYFKt26dXMtMv4g4zVr1rgZVL6HHnrIzbI677zzwraj++Tcfvvt1Z5+AACQWdJ+n5vqxn1uAADIPllznxsAAIBkI7gBAACBkvYxNwAApErpXs/mr95sG7btsmb1C6xnu8aWXyOPDA84ghsAQCDNXLLORr2wzNaV7Cpb1qKwwEae0clO6dwirWlDatEtBQAIZGBz1dSFYYGNFJfscsv1OoKL4AYAELiuKLXYRJsK7C/T61oPwUS3FAKBfnUgt5R3zGt5ZItNKIU0el3r9e7QpBpTjepCcIOsR786kFsqOuYV8MQj3vWQfeiWQlajXx3ILfEc82rJiUe86yH7ENwga9GvDuSWeI/57m0auZacWBO+tVyvqysLwURwg6yVSL86gNw55hd88qXropLIAMd/rteTfb8bBV/zVn1hzy36zP1lwHL6MOYGWSvV/eoMUgay95g/q1sre+jio/YZm1OUovvcMPYvsxDcIGulsl+diir5CBZR3ce8Apj+nYpSfodifxxQZHeZPw5IQVZ13jSwlLsyE9wge6mSUr+5KpBoffB5312lJdqvnmkVVRAQLCJdx7wCmVRO965oHJDSpNcVZFXHzz5wrH2LMTfIWqookt2vziDl5GNGGzL5mA/S2D+Ote8R3CCrqQVFLSm6Wgul55VpYcmkiioICBaR6cd8VWXKPXU41sIx5gZZL5n96plSUQUFd4pFKlTXWJp4ZMo9dTjWwhHcIBCS1a+eKRVVUBAsIlVSPZYm3WP/EsWxFo5uKSBKRcXNv5KDYBFBlynjgDjWwhHcABlYUQUFwSJyQSaMA+JYC5fneV5O/eb71q1brbCw0EpKSqxBgwbpTg4yFNMpk5uXmkIvoZWNHx4ytR5Bke77ywT9WNuawPmb4AbI0IoqSAgWAY61qiK4SVLmAEgegkWgepQG9MIskfM3s6UAVItMmd0CBF0+xxoDigEAQLAwWwoAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECj+/gJwT1N9dAeIp8033r+N+JnrT9t2U/4ArzeG6juAGOYVfp0auiVbmQ7UoLLCRZ3SyUzq3qPa0IXVmRvnec+m7plsKOXWwXzV14T6VfHHJLrdcrwO5UOZDUf6DZyZ1HcENcqd5VlcxXpTX/GV6XesBQS/zoSj/wUJd9y1abpAT1O9c3tWrKni9rvWAXCjzoSj/wUFd9y2CG+QEDahL5npApqtMWab8Zz/qum8R3CAnaKZAMtcDMl1lyjLlP/tR132L4AY5QVMgNVMg1iRILdfrWg/IhTIfivIfHNR13yK4QU7QvR00BVIiK3v/uV7PlXtAILfLfCjKf7BQ132L4AY5Q/d2eOjio6yoMLy5Xs+1PBfu/YDcEqvMh6L8B88p1HWW53leTs193bp1qxUWFlpJSYk1aNAg3clBGuTyXTuRm7hDcW4qDVhdl8j5mzsUI+fo4O7doUm6kwFUG8p8bsrP4bqObikAABAoBDcAACBQCG4AAECgENwAAIBAYUAxAKDaBW0mT2WRD6lBcJPGApqsQs3BASCbzFyyzv1ieegPe+puyrrpYC7db4p8SB3uc5OmApqsQs3BASCbqM66aupC90vkofzLuly5oSb5kNr73DDmJkkFNDRIET3Xcr0e73uKy3lPIp+d6HaQWdQSN2/VF/bcos/cXz0HgkBlWRd10Uq0v0yvB73Mkw+pR7dUigqoaLle79+pyD1XF1Tx1l02+h9LYx7ceSHvKa+LqqKDI97t+Nui7zsz0BKHIFM9E3kxFll36XWtF+Sbz5EPqUdwk8ICKnp9wusr7Zl31lS4biIHd7IOjmScTMsLjgicqt5M7bfEVbW5nu8iuVKRn6n+jqqjDJT3GVoWj8j1/G0Wl3xlm3fsscb16lhRg8TSX9G+J5o3sX7Somm9Oq4C3rRjd8ztVDYf0qU0Cy+ACW6qQAdaPB547cOEt11RoU7GwZGMk2l5wZEwaDA+yWyJS/R7yoXxDcmWivxM9XdUHWWgos/QiTEeoetF22ai6a8oXYnmTXlpqiiNOtY3bdttieZDtABDQpd1b9PIFnzy5T5BSMxALOT/oevv+WavPfnWx/bOx1/Ylp1f24frt9mWr74pS0vD/WrZkOPa2rUnH7RPgPj2qi9s3kebXK2lC+tj2jdJSyCU9gHFEydOtHHjxllxcbF17drVHnzwQevZs2fUdZcuXWojRoywBQsW2CeffGIPPPCAXX/99Wn74czH3/jIRr+43FLh6SuOKbfFRWMxLpj0dqW3o0J4/N2vxzw48777teC5N58cs2CWNyAuVqHKtUGD8arq95lpAxez8UovnfmZ6u+oOspAPJ+h4Lz7na+6E2Y89U6sbUa+p7z0V5Sun5/Qzh799+q48yaeNMXajsQTFPn58K9fn2TvrN5sT/3nY5v9wQbb/c33n1q4X03Ly8uLmZdS1KCOndG1pf114WeuxSueQKxzqwb22vINFk9k0LBuLRv7f0eUBYjDZizeJz2h6+TMgOJp06bZ0KFDbeTIkbZw4UIX3AwYMMA2bNgQdf2dO3da+/btbezYsVZU9O04lnRS02iy5X1XwPyoPBa9rvXyKrmdRLq1KjsgLtZ2c2XQYCJS1UydjoGLquQUOCtY+9Uzi9xfPQ/CAPdU5Geqv6PqKAPxfsbLS4rLPRlrXbVy+K0N5Y1pDBUr/fGka9IbqytMt7/tRNIUuR2d+KNNAInk1+lndm1hPe96zS56/D82c8n6sMBGSr76pty8lOKtu93+xRPYiNL26rL4AhvR52ufxry0zH4xdWHU9GiZXqvu4z+twc39999vV1xxhQ0ZMsQ6depkDz/8sNWtW9cmT54cdf2jjz7atfKcf/75VqdO8gOLRKnPN5n8Qu0f3OXR637XT14ltlPVk2k8440qGzjloso018ejqkFsooI+gy8V+Znq76g6ykC8n3Hrc0vK3U6jurXCJmAkOk6xMukqL6aL3HZl6z3vu5N8PDGDWmzUmvTIv1dXGLxkAu+7ALEi1X1Bm7bgZs+ePa57qV+/ft8npkYN93zevHlJ+5zdu3e7pqzQR7L4rSfJokKdSPOw1tP6el+i26nqyTQZA90yZbBcJqhqS1ws1TlwMRemt6YiP1P9HVVHGYj3vRW1IHy58+uyQCLR9ERbP1l1jL+dVNdZt512mOuKem7R55ZN9sZxSFf3BW3aBhRv2rTJSktLrXnz5mHL9fyDDz5I2ueMGTPGRo0aZangt57oilS8KONO1N9YEiNi1zqN969tt552mBUV7lepcQkKYHSlk+j4Bv9kqivqWGkrKudkmmgLQqq2ERShZSlyzFIiLXrV1SKUq9NbU5Gfqf6OqqMMJPNY9gOIRLcZbf1kpcvfTqrrrKb167gBwepOCqIN1XhBG/ib+A0fPtwNPvIfa9euTer2y2s9efjio9xAqvK6jn53Tmc756gfuMq+sgMu9T69/6xureLeTlW7tSpqaShPZVshgq4qLXHV3SIUTbZNb62MVORnqr+j6igD8XxG4/1rxbUtP4CIt2W8vPTHk67yqsvIbVel3ot337P5+MikC9q0BTdNmza1/Px8W79+fdhyPU/mYGGNzdGo6tBHsumko9H9msny+/O7ub96ruWpOGElM92VTVs8wVF5r1WmFSIXlFeWKqOqQWymthKlSyryM9XfUXWUgXg+486zOicUZPnbjCdVsdIfT7qu6NPO/T+evClve7H466kVP559z7bjI6+CANFX3Re0aZ0K3qtXLzftW9O/Ze/evXbggQfatddea8OGDSv3vW3btnXTwNM5FTwoU2Orkjbuc5MdquMeJ/7tBSrq6izv9gLZgvvcVC5f/AHnFqPrNdpFVVDucyPx7LuOo+PGzsqKrqm87/76A6DLo56MqtY1iZy/0xrcaCr44MGD7ZFHHnFBzvjx4+3ZZ591Y2409mbQoEHWqlUrN27GH4S8bNky9/9TTz3VLrroIveoV6+edezYMaODmyDjDsXZoToC7MqcvLIVdyiuXL5UJjAMyh2K4913rafp09WtRTn3ualVI89q1axhO/eUxgwQo93nRjPgxqThPjdpv4nfhAkTym7i161bN/vDH/7gWnTkxBNPdC00U6ZMcc8//vhja9eu3T7b6Nu3r82ZMyeuzyO4AVKLuyEjm1uyUy3efY8VLIQGDed1/4E9PX+tbd/9/d2DQzWs++04p9BtNKpb0wb3bmvtDqgX1x2K69auaece9QM7tmNT9/6KAsRU3qE4q4Kb6kZwA6ReLp+8gGTxg4W3Ptpkn23e6QKGVo32c4GGHzSEBhSakt2obm0368pv2ZKgHIsEN0nKHAAAkBmy5ucXAAAAko3gBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKlpuUY/9cmdKdDAACQHfzzdjy/GpVzwc22bdvc39atW6c7KQAAoBLncf0MQ3ly7ocz9+7da59//rnVr1/f8vKS90ulCpbWrl2bs79Xlet5kOv7L+QBeUA5oAyksi5QuKLApmXLllajRvmjanKu5UYZ8oMf/CAl29aXmKsnNl+u50Gu77+QB+QB5YAykKq6oKIWGx8DigEAQKAQ3AAAgEAhuEmCOnXq2MiRI93fXJXreZDr+y/kAXlAOaAMZEpdkHMDigEAQLDRcgMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDdxmjhxorVt29YKCgqsV69eNn/+/HLX/8tf/mKHHnqoW/+II46wl156yXIpD5YuXWrnnnuuW193gh4/frzl0v5PmjTJ+vTpY40aNXKPfv36VVhmgpYHM2bMsB49eljDhg1t//33t27dutlTTz1luVYX+J555hl3LJx99tmWS3kwZcoUt9+hD70vl8rAli1b7JprrrEWLVq4GUQHH3xw1p8TJiaQByeeeOI+ZUCP0047LXUJ1GwplO+ZZ57xateu7U2ePNlbunSpd8UVV3gNGzb01q9fH3X9N99808vPz/fuueceb9myZd6tt97q1apVy1u8eHHO5MH8+fO9m266yXv66ae9oqIi74EHHvCyWaL7f+GFF3oTJ0703nvvPW/58uXepZde6hUWFnqffvqplyt5MHv2bG/GjBnuGFi5cqU3fvx4d1zMnDnTy5U88K1evdpr1aqV16dPH++ss87yslmiefDEE094DRo08NatW1f2KC4u9nJl/3fv3u316NHDO/XUU725c+e6sjBnzhxv0aJFXq7kwRdffBH2/S9ZssTVBSobqUJwE4eePXt611xzTdnz0tJSr2XLlt6YMWOirv/Tn/7UO+2008KW9erVy7vyyiu9XMmDUG3atMn64KYq+y/ffPONV79+fe/JJ5/0cjUP5Mgjj3TBfi7lgb77Y4891nvssce8wYMHZ31wk2ge6ASmwD4oEt3/hx56yGvfvr23Z88eLyh6VrEu0PlA9eH27dtTlka6pSqwZ88eW7BggetWCP19Kj2fN29e1Pdoeej6MmDAgJjrBzEPgiQZ+79z5077+uuvrXHjxpaLeaALqVmzZtmKFSvshBNOsFzKgzvuuMOaNWtml112mWW7yubB9u3brU2bNu7HFM866yzXbZ0r+//8889b7969XbdU8+bNrXPnznbXXXdZaWmp5Wp9+Pjjj9v555/vuqtTheCmAps2bXKFUIUylJ4XFxdHfY+WJ7J+EPMgSJKx/zfffLP7JdvIoDfoeVBSUmL16tWz2rVru/71Bx980Pr372+5kgdz5851FbnGYAVBZfLgkEMOscmTJ9tzzz1nU6dOtb1799qxxx5rn376qeXC/n/00Uc2ffp09z6Ns7ntttvsvvvuszvvvNNysT6cP3++LVmyxC6//PIUpjIHfxUcqG5jx451g0nnzJmT9QMpE1W/fn1btGiRu3JXy83QoUOtffv2boBh0G3bts0uueQSF9g0bdrUcpVaLfTwKbA57LDD7JFHHrHRo0db0CmYU8vdo48+avn5+da9e3f77LPPbNy4ce4nCnLN448/7ibZ9OzZM6WfQ3BTAVVKKpDr168PW67nRUVFUd+j5YmsH8Q8CJKq7P+9997rgpvXXnvNunTpYrmWB2qu7tixo/u/ZkstX77cxowZk5XBTaJ5sGrVKvv444/tjDPOCDvRSc2aNV0XXYcOHSzX6oJatWrZkUceaStXrrRsU5n91wwp7bPe51Nwp1YOdfGoVTNXysCOHTvchZ66alONbqkKqOAp0tZVZ2gFpeehVyOhtDx0fXn11Vdjrh/EPAiSyu7/Pffc465MZ86c6aZEZ7NklQG9Z/fu3ZYLeaBbQSxevNi1XPmPM88800466ST3f40/ycVyoC4N5YtO+rmw/8cdd5wL5PzAVj788EO3/9kW2FS1DOgWKTr+L774Yku5lA1VDhBNe6tTp443ZcoUN6315z//uZv25k9nvOSSS7xhw4aFTQWvWbOmd++997ppwCNHjgzEVPBE8kDTHzUNWo8WLVq4aeH6///+9z8vF/Z/7Nixbqrk9OnTw6ZAbtu2zctWiebBXXfd5b3yyiveqlWr3Po6HnRcTJo0ycuVPIgUhNlSiebBqFGjvJdfftmVgwULFnjnn3++V1BQ4KYQ58L+r1mzxs0Muvbaa70VK1Z4//jHP7xmzZp5d955p5drx8Hxxx/vDRw4sFrSSHATpwcffNA78MAD3QlL0+Defvvtstf69u3rKq1Qzz77rHfwwQe79Q8//HDvxRdf9HIpD3QvB8XOkQ+tlwv7r+nv0fZfgW42SyQPbrnlFq9jx47uRNaoUSOvd+/erlLMtbogaMFNonlw/fXXl63bvHlzd7+XhQsXerlUBt566y13OxAFBJoW/rvf/c7dIiCX8uCDDz5wdaAueKpDnv5JffsQAABA9WDMDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AZAQvLy8uzvf/97xuZa27Ztbfz48elOBoA0IrgBEObSSy+1s88+O2aurFu3zn784x+nLNf0o5oKoGI9svFHNwFUL34VHEBCUv1L8DNmzHC/lixr1661nj17ul9VP/zww92yVP/YYDb+UjOAcLTcAKh0t9THH3/snisg0a9d161b17p27Wrz5s0Le8/cuXOtT58+tt9++7lfw/7lL39pO3bsiLr9xo0buwBKjwMOOMAta9KkSdmy2bNnu0CnTp06rgvqvvvuKze9W7Zsscsvv9xtq0GDBnbyySfbf//737LXb7/9duvWrZs99thj1q5dOysoKHDL9Wvuxx9/vDVs2NB9/umnn26rVq0qe1+8+/7mm2+61ia93qhRIxswYIB9+eWXZb+mPGbMGPe5yhu9f/r06ZRIoIoIbgBU2S233GI33XSTLVq0yA4++GC74IIL7JtvvnGvKSA45ZRT7Nxzz7X333/fpk2b5oKda6+9NuHPWbBggf30pz+1888/3xYvXuwCk9tuu82mTJkS8z0/+clPbMOGDfbPf/7Tvf+oo46yH/7wh7Z58+aydVauXGl//etfXaCifRAFX0OHDrV3333XZs2aZTVq1LBzzjnHBSTx7ruW6bM6derkgh7t9xlnnGGlpaXudQU2f/rTn+zhhx+2pUuX2g033GAXX3yx/etf/0o4bwCEqJaf5wSQNSr65WpVG3/729/Cfv39scceK3t96dKlbtny5cvd88suu8z7+c9/HraNN954w6tRo4b31VdflZsWf/vvvfeee37hhRd6/fv3D1vn17/+tdepU6ewX2R/4IEHyj6nQYMG3q5du8Le06FDB++RRx5x/9cvtdeqVcvbsGFDuWnZuHGjS8vixYvj3vcLLrjAO+6446JuT2mqW7eu+8XoUMovvQ9A5dFyA6DKunTpUvb/Fi1auL9qLRF1AallpV69emUPdc2oBWT16tUJfc7y5cvtuOOOC1um5//73//KWkNC6bO3b9/uupVCP1+fG9rF1KZNm7IuMJ+2qVaY9u3bu+4sdYHJmjVr4t53v+UmGrUW7dy50/r37x+WNrXkhKYNQOIYUAygymrVqlX2f41DEb/7RsHFlVde6cbZRDrwwANTmvv6bAUcc+bM2ec1jaXx7b///vu8ru4jBT2TJk2yli1buv3p3Llz2WDnePZd42jKS5u8+OKL1qpVq7DXNJ4IQOUR3ABIKY1xWbZsmXXs2LHK2zrssMPcAN1Qeq6xLvn5+VE/u7i42GrWrFnW8hKPL774wlasWOECGw2EFo2XSZRadTReZ9SoUfu8pnE4CmLUEtS3b9+Etw0gNoIbAPsoKSkpG1jrU9eOZjol6uabb7ZjjjnGDSDWrCW1kijYefXVV23ChAkJbevGG2+0o48+2kaPHm0DBw50g3S1jT/+8Y9R1+/Xr5/17t3b3bfnnnvucUHQ559/7lpLNDi4R48eUd+nWU3a30cffdS1/CgAGTZsWML7Pnz4cDviiCPs6quvtl/84hduirlme2mQc9OmTd1AZA0iVkuPZmYp3xWsqRts8ODBCX8egG8R3ADYh7pxjjzyyLBll112mZsuXZnWC83+0awitYJoTHKHDh1ccJIotcQ8++yzNmLECBfgKPC444473I0Ho1E30UsvveQ+e8iQIbZx40Y3nfyEE06w5s2bx/wczYx65plnXFeauqIOOeQQ+8Mf/pDwDQQVTL3yyiv229/+1t2vR91UvXr1cmN5RPugsT6aNfXRRx+5rjLto9YHUHl5GlVchfcDAABkFGZLAQCAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAFiQ/H/glJkQUSfI3gAAAABJRU5ErkJggg==", - "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -2505,75 +2482,30 @@ } ], "source": [ - "import matplotlib.pyplot as plt\n", + "fig, axes = plt.subplots(2, 2, figsize=(12, 10))\n", "\n", - "plt.scatter(df[\"config/text_det_thresh\"], df[\"CER\"])\n", - "plt.xlabel(\"Detection Box Threshold\")\n", - "plt.ylabel(\"CER\")\n", - "plt.title(\"Effect of Detection pixel threshold on Character Error Rate\")\n", - "plt.show()\n", + "for ax, col, label in zip(axes.flat, param_cols, labels):\n", + " ax.scatter(df[col], df[\"CER\"], alpha=0.6)\n", + " ax.set_xlabel(label)\n", + " ax.set_ylabel(\"CER\")\n", + " ax.set_title(f\"Effect of {label} on CER\")\n", "\n", - "plt.scatter(df[\"config/text_det_box_thresh\"], df[\"CER\"])\n", - "plt.xlabel(\"Detection Box Threshold\")\n", - "plt.ylabel(\"CER\")\n", - "plt.title(\"Effect of Detection box threshold on Character Error Rate\")\n", - "plt.show()\n", - "\n", - "plt.scatter(df[\"config/text_det_unclip_ratio\"], df[\"CER\"])\n", - "plt.xlabel(\"Detection Box Threshold\")\n", - "plt.ylabel(\"CER\")\n", - "plt.title(\"Effect of Text detection expansion coefficient on Character Error Rate\")\n", - "plt.show()\n", - "\n", - "plt.scatter(df[\"config/text_rec_score_thresh\"], df[\"WER\"])\n", - "plt.xlabel(\"Line Tolerance\")\n", - "plt.ylabel(\"WER\")\n", - "plt.title(\"Effect of Text recognition threshold on Character Error Rate\")\n", - "plt.show()\n", - "\n" + "plt.tight_layout()\n", + "plt.savefig(\"hyperparameter_analysis_cer.png\", dpi=150)\n", + "plt.show()" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 31, "id": "cc1e3d53", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAARwZJREFUeJzt3Ql8FPX9//FPCELkCpcQQBQBFRE55BKqeIF4Q6sWrQpSpdbboq2gFkRa8UClFcQTrVKFqihqNR4oVgQbhdICKlZEQeRUuQU0mf/j/f39Z7sbdpPdZJPdnX09H4+F7MzszHe+Mzvz2e81OZ7neQYAABAQNVKdAAAAgGQiuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbhJE9u3b7dLLrnECgoKLCcnx6699lo3ff369Xb22WdbkyZN3PRJkyZZpu9Ttnn88cfd/n/xxReWrWnUerV+baei2rRpY6effrqli2SnJ5E8uuiii9z2UbbjjjvOvZB9CG6q4YYR6/X++++Hlr3tttvc8pdddpk9+eSTduGFF7rpv/nNb+y1116z0aNHu+knn3xy0tOpbb/wwgtVst5o+xSNLtR+vtSoUcMaNmxoRxxxhP3qV7+yf/7zn5VKx/3331+pm2qq8zGbfPTRR3bLLbekdSCISB07drQuXbrslS3PP/+8+z4fe+yxe82bNm2am/f666+nRXaGX39Kv6rimpvMYDj8utm4cWM75ZRTbMGCBWl/vaxqNVOdgGxw66232kEHHbTX9Pbt24f+fuutt+yoo46ysWPHRiyj6YMGDbLrr7++Sm/KKh0aPHhwUtcba59i6dq1q1133XXu723bttnHH39szzzzjD388MMuyLvnnnsq/GVt2rSp+7VblWLlo4K6c88912rXrm3pKl3SqOBm3Lhx7tc2JROZ4eijj7ZHH33UtmzZYvn5+aHp7733ntWsWdM++OAD++GHH2yfffaJmJebm2t9+vSxdBF+/QnXsmVLS2fnnXeenXrqqVZcXGyffvqpu94df/zxLt/1AzFdr5dVjeCmGiiS7tGjR5nLbNiwwf0CijZdpRiZKNY+xdKqVSu74IILIqbdcccd9otf/MLuvfdeO/jgg10pUKbRRVyvdJYJaayMHTt2WN26dVOdjMAGN/oBMn/+fHetCw9gfv7zn9tTTz1lCxcudD90fPPmzbPOnTtb/fr10+a4Rrv+VCYNJSUltmfPHsvLy6vS/TvyyCMj0n3MMce44zB16lQXqGQrqqVSbO7cua5IceXKlfb3v/89VMToV2npoe1TpkwJTfdt3rzZtWFp3bq1+7WtUiAFAvpChdP7P/3pTy6C15dsv/32c8WsH374oZuvdeoL9Je//CW0jfIidgUtF198sTVv3tytU0XS+nx5+1SRqoZ9993XVWmpuPWPf/yjy4/wfVMbpMMPP9ylQ+m59NJL7bvvvgsto1//y5Yts3feeSeUjvA6+OrIx1jtWXThUdq1Xf06vOKKK1x6wimtnTp1ciUa+jVWp04ddxG+884748o/bffKK6+0v/71r3booYe6tHfv3t3+8Y9/RCxXOo0qdVMx95gxYyKW041Ky+nC6VuzZo398pe/dPmvfdE+qdohUUrDOeec4/7Wvvr5qPMpnG6MvXr1cvvStm1be+KJJ6Lui4755Zdfbs2aNbP9998/NP/VV191NwDdNHRzPe2009w5Em7dunU2fPhw9zntU4sWLVwJarRzuLz0yOeff+72TeexjqFu9PpuxENVnToHtH79r+qeRFT1eabgxg9mfLt27bJFixbZz372M5cn4fM2btzoShj8z8m//vUvd0Nu0KCB1atXz0488cSIavt4jutDDz1k7dq1c9cMHY93333Xkk3faaVvxYoVrrRE58/555+/13fNz+/CwsKk7V+8dG6L0hjusccesxNOOMGtV2nTD8/w73Eyr5dpwUOVeeyxx3Qn9t58801v48aNEa9Nmza5ZdatW+c9+eSTXtOmTb2uXbu6v/VaunSp+1+fHzBgQGi67Nixw+vcubPXpEkT78Ybb/QeeOABb+jQoV5OTo53zTXXRKThoosucus45ZRTvEmTJnkTJ070Bg0a5N13331uvtZZu3Zt75hjjgltY/78+TH3aefOnd5hhx3m7bPPPt5vfvMb789//rP7rLah9Ze1T9u3b4+53gMPPNA77bTTYs6/+OKL3TaUL75LLrnEq1mzpjdixAiXBzfccINXt25dr2fPnt6ePXvcMs8//7y3//77ex06dAil4/XXX6/WfPTPg5UrV4bWN3bsWDetf//+bh1XXnmll5ubG5F2OfbYY72WLVt6rVu3dmm6//77vRNOOMF99pVXXvHKo+U6derkjsWtt97q3XHHHS6v9913X2/JkiWh5aKl8YorrnD5u3DhQvf+66+/9ho3buzSXFJSEjrWyl+lT+ufOnWqd+aZZ7p13XvvvaF1ab2apu3EsmLFCu/qq692y+l4+PmobYjSfeihh3rNmzd38ydPnuwdeeSR7niFnxf+vnTs2NHln/L39ttvd/OeeOIJt/zJJ5/spis/2rRp4zVs2DBi3/v27evl5+d7N998s/fII494t912m3f88cd777zzTmiZeNOj9GuZ+vXrezfddJN3zz33eF26dPFq1KjhzZo1q8w8eu2119xyOob6nD6vdB1++OFu++WprvNMn9U6fP/4xz/cZ3XOXHDBBd5Pf/rT0LwXXnjBzZs5c6Z7r7zS97ZFixbe+PHj3bE66KCD3Pfp/fffj+u46hhpno6brknXXnutO6Zt27aNSFcsysuTTjppr+u0Xrrm+YYNG+bS1a5dO/e3rhk6p0Tb17Vxv/3288aNG+dNmTLF+9e//pWU/YvGP1/uuuuuiOnanpl5Q4YMiZiuY67rmL6XWrf2V8vpvPUl63qZDghuqpB/skZ76cSO5+auZXWTCacviL4sn376acT0UaNGuQvXqlWr3Pu33nrLfV43jNL8m5NoXfqixkM3dq1z+vTpoWm6SPbp08erV6+et3Xr1nL3KZryltUXUtudPXu2e//uu++693/9618jlissLNxrum4E0S5w1ZWPpQOHDRs2eLVq1XIXl+Li4tByushouWnTpoWmKd2a5l9AZffu3V5BQYF31llneeXxz7cPP/wwNO3LL7/08vLyIm440YIbXczat2/v8m/Xrl3u+DRo0MB9Pjzo1EXbD9Z95557rrsJ+zeGeIIbeeaZZ9xyb7/9dtRzRPN04/QpL/Vduu666/bal6OPPtr78ccfQ9O3bdvmbngKhsMp+FBa/enfffdd1JtGRdOjG62W0zkbnhbd4BRY+edAtDzSjwPl7+bNm0PTdLPRcuUFN9V5np1zzjkuYPYDpgkTJrj9EwVKzZo1Cy17/fXXu22tWbPGvR88eLBLp4Jbn4IiBYP9+vUr97hqm1q/8kpp9j300ENu+XiDm1jXau2LT99vTdM1ojRNVyC6bNmyiOmV3b9Y/PNFgZSCMJ3HOscUxJiZ+y6FCw/SfAMHDnQBYLjKXi/TBdVS1UDVSm+88UbES0XjFaVGtip6bNSokW3atCn06t+/v2tU5lc5PPfcc65YMVqD3vAqrkS88sorrmu3GrH51FDw6quvdl2/VZxZFVSU6zc09vNAjRcHDBgQkQeqctGyb7/9dtrm45tvvunq4lW8q6of34gRI1yxdenqCu1PeJ16rVq1XLG7qjrioUabyhffAQcc4KpY1AtP+xmLqiZUVK6G3f369XPpUtsnfV50PVfenHHGGe7v8DwcOHCga2CqqolkUlG6X+wuqh5UdVu0vFB+hrcj0vdOxeo6d8PTqmV69+4dOmdUraE8VnVYeBVnRdOj74yOV3g1jI6pegKqmktVQdGsXbvWFi9ebMOGDYtoqKtzPp62bNV5nmnfvv/+e9e2RlQN1bdvX/f3T37yE1eV/d///jc0Tx0sVEWm8089ptQIX9VXPlUDqq2dqvy2bt1a5nFV1bDW/+tf/9qlObwKKTzfyqNzoPR1Wq/wa50vVts/9QwLPzbJ2L/y6Lqk807XZZ2L+r7efffdrnNDOJ3XPn03de4rvTq+ep+s62W6oEFxNdAForwGxYnQReI///mPO6Gj0Rfdr3PVBUT1/Mny5Zdfuoa94RdLOeyww0Lzq4ICJ/EbICoP9IVU/XFZeZCO+ejnkW6C4XRh1gWwdB6q3r10EKULjNIeDx2v0g455BDbuXOna/+gi2IsujHpQq4AXQGL2tb49FkFC2rroFdFj0Mi/MCqdF5EC0JK91D0b65qdxCNbviitgRqR6CeM2pHpPYxGs9m6NChe+VVPOnR8dSNs7Tw74zau5TmnwfRjp/OnfICx+o8z8Lb3Whf1bj4D3/4g5umfVPeap7aaigAGjJkSOgc0nlYOo1+/qgtx+rVq10blljHNVY+6UdXeEBRHvUQ0o26POoBFqstTOm0JWP/yqMgWe251M5JbeX+/Oc/R/3RovxXIKRu4kpTuNI93SpzvUwXBDcZSF8I/Xr73e9+F3W+blxBs3Tp0oju88oDBTZqvBdNrC9gJuZjrF9x4Y2rq8ru3btDDXoV5OmiqBId8RsR6te+SheiUY+YVOVF+C/V8PSqgXq0gE43LZ9KO1Qipca8KuH6/e9/bxMmTHA3j27dulUoPemuMvuiTgX64aGSCDW0/fbbb0MlN/ohpIBH89TgV6VJ4aVYiSp9XKubgt/SP+6SmbZE16Ggzg/KFITrOI4aNco1DPd/VOu7q0bMHTp0cENqKMhUkKtSRZXGxtMgOFOulz6CmwykC4RKMsr7laHldGHWhaasUodEqlYOPPBAF73rRA//gn/yySeh+cmmfVUPEX0h/V+72jcVu6tkobyLQaz9S1U++nm0fPnyiF+Wuuirh1k8vx4T4ZdYhFNvFQUp5QWB+qWnYu6JEyfaDTfc4C6a+mUo+qxuaPqVmKw0V7S6NB46jqKgOJ70anmV3uilPNQ4KCrunz59ekLb1fHWsS6tvO+MPz3a8Yu2vlSeZ7qhqoRLpQMKYlRSEz7GigKdmTNnhn6c+MGNziGdh7HyR9cYfe/j2U/lU3ipnMbW0X5GG2CwuiRj/xJ10003ua75N998c6i31ksvveR+qLz44osRpY3Rqu8re71MF7S5yUAaO0JFi7rhlqZqgh9//NH9fdZZZ7lfXRoUraxfY+oSW7praCz6VaZusrpQ+bS9++67z9XZRxuNtDJUj68B5hRY6Evrf/GUB7qpjh8/fq/PKD3h+xNr/1KVj7o46FeTgoTwz/sDoalrcjJpH8OrMFQMPnv2bDvppJPKrNvXyNAKalSKoRv8b3/7W5s8eXKoXZU+q7xRuxu/ZK10kXyi/DE94j0fE6FqNd10Ndiibnyx0qvSKRXxl76wK5DTDSJR+s4UFRVFjBqrYQNUlaeut7Haz6hdhgIqDS8Q3iZC7UBitdNJ5XmmgEV5qC7HKqkJ//Gj4EY3eJ13epSM/yNF55DOQ00P72avx85o2AGt068ujEWlEwoiHnjgARe4+dRerCrOo0QkY/8SpXHRLr30UnddU5stPx0Sfh7oHNCxKq2y18t0QclNNVDjYf9XWjh94ROpE/bpJqMIXEWQajSnxqK6WC5ZssSeffZZ9yVS/bGKJRUY6OKmXzUal0UlLhr/QfM0JoPo8yoFUXGl2paozjdaGwG/fvfBBx9021XduS7O2qZ+sWnMmcoMyqXxUvxfxfqFoAu4GrEpmNLNVV9Yn4IovVdVgb7AuoCojl37qc9oTBq/QZ32T+M5qA2Afjnql7t+4aUqH3Uh1uM0FCxpXWeeeaa78Gs8kp49e1ZoILGyqM2Dbuxq9K0idX9gr2jBmk83d1U1qchb4wv5y+sXoMZ/UR7pInj77be7X3/aTzWE1I1agaiCKeWF/k6Ebua6EKvNiy6+Sq8/Nkdl6Sai80DHUgOfaURmHYtVq1a5xrUqBVTwplItFeHrYq79UXWVSg51Q9JnEqXSrqefftqNc6JjoNI/BSwqVVBgGKuKQ3R+KwjRTVDtnZSf+iGhNhp+O7RYqvs880tjdAPUIzTCqVTHf+SMqvvCSwf0vVTAps9rfBflt64xCiTjGWdH33utQ9cDnStqz6O81Y07ketr+PUnnH60VWb09sruX0Vcc8017nqs7+eMGTPc9VGBrvJe+aRzR6U7+l6p4Xq4yl4v00aqu2tla1fw0l0+E+kK7nclHT16tOuqq26GGsdEYzxo/JXw8SvUpVBdWjVugZbTGAwaq8Ufu0Q++eQT1yVRXTm1vfK6ha9fv94bPny426bWecQRR0Tt4ptoV3A/XzRugrocq0uiuuf+85//jPk5dffs3r27S7u6Viotv/vd71xXS5+6SCodml+6a2h15GO0btZ+l1ytT2MGaRyUyy67zHVDDqe0Kh9K07rjGefEP3/Udf/ggw923ZS7deu2V1fr0mnUGEbq3lk679WlXGPfKK3h54O2oTFStC/qPnziiSe6Y+OLtyu4PPzww657qrYf3i081vmkPAo/pv6+fPDBB1HXr/WpC6y6f6tLvMYs0fgffnd5dWvX/ujYqOurluvdu7f3t7/9LWI98aZH1A347LPPdl3Rtc1evXp5L7/8csQysfLoueeec+On6NhpDBSNjRPv8a+u88wfOkDnhvbBHxslnMZI0TyNLVTaokWL3DHRcBJ16tRxYwqVHm+rvOOqLuf++DE9evRwXfSjHYtEu4KH77/yQ+dENLGu1cnav3jHufFddNFF7jv02WefufcvvviiOwY6/zQEgY6DhgMofW1KxvUyHeTon1QHWACqhn4ha0RalUgAQLagzQ0AAAgUghsAABAoBDcAACBQ6C0FBBhN6gBkI0puAABAoBDcAACAQMm6aikNvvb111+7weaqcqh3AACQ3Gr2bdu2uUFSyxr8MiuDGwU2yX6WBwAAqB56hEysJ7NnbXDjPx5AmZPsZ3oAAICqsXXrVlc4Ec9jfrIuuPGrohTYENwAAJBZ4mlSQoNiAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAEChZN0JxVSku8axo5be2Ydsua1Y/z3od1Nhya/BgTgAAqhvBTRIULl1r4176yNZu2RWa1iI/z8ae0dFO7tQiGZsAAABxoloqCYHNZdMXRQQ2sm7LLjdd8wEAQPUhuKlkVZRKbLwo8/xpmq/lAABA9SC4qQS1sSldYhNOIY3mazkAAFA9CG4qQY2Hk7kcAACoPIKbSlCvqGQuBwAAKo/gphLU3Vu9omJ1+NZ0zddyAACgehDcVILGsVF3bykd4PjvNZ/xbgAAqD4EN5WkcWymXnCkFeRHVj3pvabHM86NelMtWPGNzV68xv1P7yoAACqOQfySQAHMgI4FFRqhmAEAAQAIYMnNlClTrE2bNpaXl2e9e/e2oqKimMs+/vjjlpOTE/HS51JNgUyfdk1sUNdW7v94AxsGAAQAIGDBzcyZM23kyJE2duxYW7RokXXp0sUGDhxoGzZsiPmZBg0a2Nq1a0OvL7/80jINAwACABDQ4Oaee+6xESNG2PDhw61jx472wAMPWJ06dWzatGkxP6PSmoKCgtCrefPmlmkYABAAgAAGN3v27LGFCxda//79/5egGjXc+wULFsT83Pbt2+3AAw+01q1b26BBg2zZsmWWaRgAEACAAAY3mzZtsuLi4r1KXvR+3bp1UT9z6KGHulKd2bNn2/Tp062kpMT69u1rX331VdTld+/ebVu3bo14pQMGAAQAIKDVUonq06ePDR061Lp27WrHHnuszZo1y/bbbz978MEHoy4/YcIEy8/PD71U2pMOGAAQAIAABjdNmza13NxcW79+fcR0vVdbmnjss88+1q1bN/vss8+izh89erRt2bIl9Fq9erWlAwYABAAggMFNrVq1rHv37jZnzpzQNFUz6b1KaOKhaq0lS5ZYixbRB8urXbu2610V/grSAIAAACDNBvFTN/Bhw4ZZjx49rFevXjZp0iTbsWOH6z0lqoJq1aqVq16SW2+91Y466ihr3769bd682e666y7XFfySSy6xbBsAEAAApGFwM2TIENu4caONGTPGNSJWW5rCwsJQI+NVq1a5HlS+7777znUd17KNGjVyJT/z58933cgzlT8AIAAAqLwcz/M8yyLqLaWGxWp/k05VVAAAIDn374zrLQUAAFAWghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFBqpjoBSI7iEs+KVn5rG7btsmb186zXQY0tt0YO2QsAyDoENwFQuHStjXvpI1u7ZVdoWov8PBt7Rkc7uVOLlKYNAIDqRrVUAAKby6YvighsZN2WXW665gMAkE0IbjK8KkolNl6Uef40zddyAABkC4KbDKY2NqVLbMIppNF8LQcAQLYguMlgajyczOUAAAgCgpsMpl5RyVwOAIAgILjJYOrurV5RsTp8a7rmazkAALIFwU0G0zg26u4tpQMc/73mM94NACCbENxkOI1jM/WCI60gP7LqSe81nXFuAADZhkH8AkABzICOBYxQDAAAwU1wqOqpT7smqU4GAAApR7UUAAAIlLQIbqZMmWJt2rSxvLw86927txUVFcX1uRkzZlhOTo4NHjy4ytMIAAAyQ8qDm5kzZ9rIkSNt7NixtmjRIuvSpYsNHDjQNmzYUObnvvjiC7v++uvtmGOOqba0AgCA9Jfy4Oaee+6xESNG2PDhw61jx472wAMPWJ06dWzatGkxP1NcXGznn3++jRs3ztq2bVut6QUAAOktpcHNnj17bOHChda/f///JahGDfd+wYIFMT936623WrNmzeziiy8udxu7d++2rVu3RrwAAEBwpTS42bRpkyuFad68ecR0vV+3bl3Uz8ybN88effRRe/jhh+PaxoQJEyw/Pz/0at26dVLSDgAA0lPKq6USsW3bNrvwwgtdYNO0adO4PjN69GjbsmVL6LV69eoqTycAAMjSQfwUoOTm5tr69esjput9QUHBXsuvWLHCNSQ+44wzQtNKSkrc/zVr1rTly5dbu3btIj5Tu3Zt9wIAANkhpSU3tWrVsu7du9ucOXMighW979Onz17Ld+jQwZYsWWKLFy8Ovc4880w7/vjj3d9UOQEAgJQ/fkHdwIcNG2Y9evSwXr162aRJk2zHjh2u95QMHTrUWrVq5drOaBycTp06RXy+YcOG7v/S0zNZcYnHoxQAAMjU4GbIkCG2ceNGGzNmjGtE3LVrVyssLAw1Ml61apXrQZUtCpeutXEvfWRrt+wKTWuRn+ee7s1DMAEAKF+O53meZRF1BVevKTUubtCggaVbYHPZ9EVW+oDk/P//eco3ACBbbU3g/p09RSIZUBWlEptokaY/TfO1HAAAiI3gJk0Urfw2oiqqNIU0mq/lAABAbAQ3aWLDtl1JXQ4AgGxFcJMmmtXPS+pyAABkK4KbNNHroMauV5TfeLg0Tdd8LQcAAGIjuEkTuTVyXHdvKR3g+O81X8sBAIDYCG7SiMaxUXfvgvzIqie9pxs4AAAZMogf9g5wBnQsYIRiAAAqiOAmDanqqU+7JqlOBgAAGYlqKQAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABEpaBDdTpkyxNm3aWF5envXu3duKiopiLjtr1izr0aOHNWzY0OrWrWtdu3a1J598slrTCwAA0lfKg5uZM2fayJEjbezYsbZo0SLr0qWLDRw40DZs2BB1+caNG9tNN91kCxYssP/85z82fPhw93rttdeqPe0AACD95Hie56UyASqp6dmzp02ePNm9LykpsdatW9tVV11lo0aNimsdRx55pJ122mk2fvz4cpfdunWr5efn25YtW6xBgwaVTj8AAKh6idy/U1pys2fPHlu4cKH179//fwmqUcO9V8lMeRSXzZkzx5YvX279+vWLuszu3btdhoS/AABAcKU0uNm0aZMVFxdb8+bNI6br/bp162J+TlFbvXr1rFatWq7E5r777rMBAwZEXXbChAku0vNfKhUCAADBlfI2NxVRv359W7x4sX3wwQf2xz/+0bXZmTt3btRlR48e7YIh/7V69epqTy8AAKg+NS2FmjZtarm5ubZ+/fqI6XpfUFAQ83Oqumrfvr37W72lPv74Y1dCc9xxx+21bO3atd0LAABkh5SW3KhaqXv37q7djE8NivW+T58+ca9Hn1HbGgAAgJSW3IiqlIYNG+bGrunVq5dNmjTJduzY4bp3y9ChQ61Vq1auZEb0v5Zt166dC2heeeUVN87N1KlTU7wnAAAgHaQ8uBkyZIht3LjRxowZ4xoRq5qpsLAw1Mh41apVrhrKp8Dn8ssvt6+++sr23Xdf69Chg02fPt2tBwAAIOXj3FQ3xrkBACDzZMw4NwAAAMlGcAMAAAKF4AYAAARK0oKbXbt22cSJE5O1OgAAgKoPbtSr6eWXX7bXX3/dPTZBfvjhB/vTn/5kbdq0sdtvv71iqQAAAKjuruDz5s2z008/3bVWzsnJcWPNPPbYYzZ48GCrWbOm3XLLLW68GgAAgIwoubn55pvt1FNPtf/85z9u4D091+mnP/2p3XbbbfbRRx/Zr3/9azfuDAAAQEaMc9OkSRN79913rWPHjvb999+7p3LPmjXLBg0aZJmEcW4AAMg8VTLOzXfffecedCkqoalTp4516tSp8qkFAABI1eMXVP2kRySICnyWL1/uHocQrnPnzslMHwAAQNVUS+n5TmpIHG1xf7r+93tRpSuqpQAAyDyJ3L/jLrlZuXJlMtIGAABQpeIObg488MCqTQkAAEASxN2g+M4773S9pHzvvfee7d69O/R+27ZtdvnllycjTQAAAFXf5iY3N9fWrl1rzZo1c+9V37V48WJr27ate79+/Xpr2bIlbW4AAEBmdAUvHQPFGRMBAABUK54KDgAAAoXgBgAAZO8gfo888oh77IL8+OOP9vjjj4dGLVaDYgAAgIxpUNymTRs3SF+mj4fDIH4AAGSeKhnE7+2337aDDjooGekDAABIfZubdu3aueDml7/8pU2fPt3WrFlTdakCAACooLhLbt566y2bO3euez399NO2Z88eN8bNCSecYMcff7x7NW/evKLpAAAAqN42N+F27dpl8+fPDwU7RUVF9sMPP1iHDh1s2bJlls5ocwMAQOZJ5P5doeDGp9IbPYbh1VdftQcffNC2b9/OCMUAACAzGhT7wcz777/vGherxOaf//yntW7d2vr162eTJ0+2Y489trJpBwAAqJS4gxu1rVEwo0bFCmIuvfRSe+qpp6xFixaVSwEAAEAqgpt3333XBTIKco477jgX4DRp0iSZaQEAAKi+ruCbN2+2hx56yOrUqWN33HGHewL4EUccYVdeeaU9++yztnHjxsqnBgAAoJIq3KBYj1uYN29eqP3Nv//9bzv44INt6dKlls7oLQUAQOZJ5P5d4Qdn1q1b1xo3buxejRo1spo1a9rHH39c0dUBAABUb5ubkpIS+/DDD10pjUpr1AV8x44d1qpVKzeA35QpU9z/AAAAGRHcNGzY0AUzBQUFLoi59957XcNiPZYBAAAg44Kbu+66ywU1hxxySNWmCAAAoDqCG41rAwAAkO4q3KAYAAAgHRHcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACJS2CmylTplibNm0sLy/PevfubUVFRTGXffjhh+2YY46xRo0auVf//v3LXB4AAGSXlAc3M2fOtJEjR9rYsWNt0aJF1qVLFxs4cKBt2LAh6vJz58618847z95++21bsGCBtW7d2k466SRbs2ZNtacdAIBsUFzi2YIV39jsxWvc/3qfznI8z0tpClVS07NnT5s8ebJ7X1JS4gKWq666ykaNGlXu54uLi10Jjj4/dOjQcpffunWr5efn25YtW6xBgwZJ2QcAAIKqcOlaG/fSR7Z2y67QtBb5eTb2jI52cqcW1ZaORO7fKS252bNnjy1cuNBVLYUSVKOGe69SmXjs3LnTfvjhB2vcuHHU+bt373YZEv4CAADxBTaXTV8UEdjIui273HTNT0cpDW42bdrkSl6aN28eMV3v161bF9c6brjhBmvZsmVEgBRuwoQJLtLzXyoVAgAAZVPVk0psolXv+NM0Px2rqFLe5qYybr/9dpsxY4Y9//zzrjFyNKNHj3ZFWP5r9erV1Z5OAAAyTdHKb/cqsQmnkEbztVy6qZnKjTdt2tRyc3Nt/fr1EdP1vqCgoMzPTpw40QU3b775pnXu3DnmcrVr13YvAAAQvw3bdiV1uawpualVq5Z1797d5syZE5qmBsV636dPn5ifu/POO238+PFWWFhoPXr0qKbUAgCQPZrVz0vqcllTciPqBj5s2DAXpPTq1csmTZpkO3bssOHDh7v56gHVqlUr13ZG7rjjDhszZow99dRTbmwcv21OvXr13AsAAFRer4Mau15RajwcrVVNjpkV5Oe55dJNytvcDBkyxFUxKWDp2rWrLV682JXI+I2MV61aZWvX/q819tSpU10vq7PPPttatGgRemkdAAAgOXJr5Lju3n4gE85/r/laLt2kfJyb6sY4NwAABHucm5RXSwEAgPR1cqcWNqBjgesVpcbDamOjqqh0LLHxEdwAAIAyKZDp066JZYqUt7kBAABIJoIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoNVOdACAViks8K1r5rW3Ytsua1c+zXgc1ttwaORwMAAgAghtkncKla23cSx/Z2i27QtNa5OfZ2DM62smdWqQ0bQCAyqNaClkX2Fw2fVFEYCPrtuxy0zUfAJDZCG6QVVVRKrHxoszzp2m+lgMAZC6CG2QNtbEpXWITTiGN5ms5AEDmIrhB1lDj4WQuBwBITwQ3yBrqFZXM5QAA6YngBllD3b3VKypWh29N13wtBwDIXAQ3yBoax0bdvaV0gOO/13zGuwGAzEZwg6yicWymXnCkFeRHVj3pvaYzzg0AZD4G8UPWUQAzoGMBIxQDQEAR3CArqeqpT7smqU4GACCI1VJTpkyxNm3aWF5envXu3duKiopiLrts2TI766yz3PI5OTk2adKkak0rAABIfykNbmbOnGkjR460sWPH2qJFi6xLly42cOBA27BhQ9Tld+7caW3btrXbb7/dCgoKqj29AAAg/aU0uLnnnntsxIgRNnz4cOvYsaM98MADVqdOHZs2bVrU5Xv27Gl33XWXnXvuuVa7du1qTy8AAEh/KQtu9uzZYwsXLrT+/fv/LzE1arj3CxYsSNp2du/ebVu3bo14AQCA4EpZcLNp0yYrLi625s2bR0zX+3Xr1iVtOxMmTLD8/PzQq3Xr1klbNwAASD8pb1Bc1UaPHm1btmwJvVavXp3qJAEAgCB2BW/atKnl5uba+vXrI6brfTIbC6ttDu1zAADIHikrualVq5Z1797d5syZE5pWUlLi3vfp0ydVyQIAABkupYP4qRv4sGHDrEePHtarVy83bs2OHTtc7ykZOnSotWrVyrWb8Rshf/TRR6G/16xZY4sXL7Z69epZ+/btU7krAAAgTaQ0uBkyZIht3LjRxowZ4xoRd+3a1QoLC0ONjFetWuV6UPm+/vpr69atW+j9xIkT3evYY4+1uXPnpmQfAABAesnxPM9LdSKqk7qCq9eUGhc3aNAg1ckBAABJvn8HvrcUAADILgQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABEpKB/EDAMSnuMSzopXf2oZtu6xZ/TzrdVBjy62RQ/ZVAHkZfAQ3AJDmN8bCpWtt3Esf2dotu0LTWuTn2dgzOtrJnVpU6baDhrzMDoxQDABpfGPUNi+bvshKDyXvh1NTLziSAIe8zApbGaEYAKomyAgPbGTdll1uuuaXLuFZsOIbm714jftf7xOlzyiYivZJf5rmV2Td2Ya8zC5USwFAJW+MKkXR/AEdC1wVVbJKeFT9VTqYKr1tzddyfdo14ThmYV7Sfig6ghsASOKNccv3e6JWI/klPIlUI6ldTzKXy2apzsuqCEJoPxQbwQ0AJOmGt27rLruz8JO4S3jK88WmHXFtVzdLJCePqiIvqyIIidUWqyJBdBAxzg0AJOmG9+323XGX8MTzS//polXlLqebpEoBUDblkfIqVkiZU0V5mWhbrXjQfqh8BDcAkKQbY+O6tZJWEqQAaN3W3eUud27PAxjvJg4qKVNJiZQ+jv57zU9mt/6qCkISqSbNVgQ3AJCkG2NB/r5JKwmKtyqsTdM6cS0Hc9U0qq4pyI/Mf72vimqcqgpCUt1+KBPQ5gYAErgxlm47URDWdkK/wFWCoyqHaL/Fc/7/8vFUfaSyjUiQ6TipzVN1DMRYVUEI50b5CG4AIEk3Rr+ER20pNMWrRNWHXxWWjEAJkZT/1dHdu6qCEM6N8lEtBQAVuDEO6trK/V86UElW1Ucq2oggMxoxc26Uj8cvAEAaj2vCWCaZze8tZTFK8irT1ifbzo2tCTx+geAGANIco9BmtqoMQrLp3NhKcJOczAEAIBmyKQhJh/s3DYoBAAhII2b8HxoUAwCAQKHkBgCAFFQ7VWdVVXGWVYsR3AAAUM0Nhquzp1NhlvWqEqqlAACoxgdjVsXDNJOZviAguAEAoJoejFmdT/QursZtpRuCGwCoAN0QFqz4xmYvXuP+D+INAsl/MGZ1PtG7KIufHk6bGwBIUDa2YUByHoxZnU/03pDFTw+n5AYAEpCtbRiQnAdjVucTvZtl8ZPlCW4AIE7Z3IYByXkwZlU9TDOaXtW4rXRDcAMAccrmNgxIztO5q/OJ3rlZ/GR5ghsAiFM2t2FAdGpjpSd7F+RHVu3ofawnflfkMxV1cjVuK53QoBgA4pTNbRgQmwKEAR0LEhoBuCKfqaiTq3Fb6YLgBgASbMOgxsPRWtXk/P9fxEFsw4DkPxizOh+mmZtlD+6kWgoA4pTNbRiATEJwAwAJyNY2DEAmoVoKABKUjW0YgExCcAMAFZBtbRiATEK1FAAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEChtxQcPcU4Fd1aK7LdVKU1Gfy0r9vyvX27Y481rlfbChpE7kNl9y+ez5depvuBjWzhl98lNU/Dt9G0bm03yt2m7btTfszS6fwJnQ9bd9m323db47q1rCB/34w5p6vjfA7f1vsrvrEFn29yQyaqp1rPNo3jPm+r87in0zmWrftDcAMrXLrWxr30UcTTjjXEvEZarcoBySqy3VSlNRmipb30Pkhl9i+e/Im2jK5TJWHPE6hsnpa1r/GuP54bZzLSVdCgtp3X6wBr07RulQWT8aYlGfm/58cSe3LBF/bltzvtwMZ17MI+baxWzRpRA4X5KzbZ15u/dwFV47r7WNP6edasfm378YcSe/7fa2znnmIXQAzr+791+Pur9D+z8Cu3TKz0S+l9VAA37szDrWm92nEH4Cs3breH3v3cdu4pCc2f/PZnlpNj5pVz3mo9k9/6zB57b6Vt/v6HmMc9WQF+Jl+jkrE/6RII5Xhe+KkRfFu3brX8/HzbsmWLNWjQwLKdTtzLpi/a6zk5/qlYVSOuVmS7qUprMsRKezzi3b948kfiSUdl8jSefS1v/VVx44/3GCQ7mKxMHiWa/xNe+cgefndlRKCq+8qIYw6y0ad2DG171Kwltnnn/2705VEQ8atjDrJuBzQqM2itqHgC8LjS+f//9/MtkX1NRoCfydeoZOxPVQd2idy/CW6ymCLso+94K+YFxH8I4LwbTkhq5F2R7aYqrclQXtrjUd7+xZM/zRvUdn+pCiQZ26zsvsZaf1Xc+BNNV7KCyVi/bONNS4sE8l+BzYP/WBlz/qX9/i84+fX0RZZuKhKAl3de/f60w+zyp/6VlDTFc55l8jUqGftTHYFdIsENDYqzmIoOy7rA6iTVfC2X6u2mKq3JUF7a41He/sWTP+u27o47sIlnmxVJR3nr1wVVv/ziubFpOS1fFekqb/1lpbO8zyeSlnjzX1VRKrEpi+aPeWGppSM/l255cZnd8mJ8x7+sdSnfbp5duX2N5zwIl8nXqMruT2W+D1WF4CaLqU40mctV5XZTldZkSGaaYq2rKvc7kXVXJB3hn4n3xp/ojSLRdCUjmIz1+UTTEs/yamNT3n1D8zds32PpqiIBeFm+3fFDUtIU73mWydeoyu5POgZ2BDdZTI29krlcVW43VWlNhmSmKda6qnK/E1l3RdIR/pmquPFXNF1lrb8yN7JE0xLP8mo8jKoTz/HO5GtUZfcnHQM7gpssplbsqtOPVfur6Zqv5VK93VSlNRn8tFdGefsXT/6od4h6G8Vb21+RPC0vHeWtvypu/ImmK571V+ZGlkha4s1/9YrC/1G+NqlbK6nZEc/xzuRrVGX3Jx0DO4KbLKZGYH53zdInsP9e85Pd+K0i201VWpPBT3siQUWi+xdP/txy5uF2y5nRl7Ek5WlZ6Yhn/fEGgoneKOJNV7zrr8yNLDwt5aUh3vxXd+/yFtP8ZvWSe9NPpooE4NHWIeMHdapQMFuZ8yyTr1GV3Z90DOzSIriZMmWKtWnTxvLy8qx3795WVFRU5vLPPPOMdejQwS1/xBFH2CuvvFJtaQ0atV5XK3a1eg+n91XZbbEi201VWpPBT3usG7emP3DBke5V0f2LJ39iLVP6eluZPI21jXjWn0ggmOiNIp50JTOYLOvz8ZwPieS/xqBRd++yaP6tgztZdfDPZ/XQikdFAvCyzqtTO7dIKJgtK02JnGeZfI2qzP6kY2CX8q7gM2fOtKFDh9oDDzzgAptJkya54GX58uXWrFmzvZafP3++9evXzyZMmGCnn366PfXUU3bHHXfYokWLrFOn8r+4jHMTHSMUVw9GKI5vhOKqGuAu/Bio/v+LTTvt6aJVEY1Yq2Ocm6oaoTjV49wcf2hT+1W/9hHpf+U/X7ueS+ENfMsbU6a8cW7q1a5plxx9kF1+fPsyB96Ltp6G++5jRx/c1D784ruI457MgSzTZSC7ZIl3fxjnJowCmp49e9rkyZPd+5KSEmvdurVdddVVNmrUqL0yb8iQIbZjxw57+eWXQ9OOOuoo69q1qwuQykNwA2SGqhihuKztVOXjLqpTdY1Q/PV3O23xV5vdb/M2TaJvpzKP+4h4fEe92q7LzaYdiT++I9bxqY5HkGSj4ir8PmTMIH579uyxOnXq2LPPPmuDBw8OTR82bJht3rzZZs+evddnDjjgABs5cqRde+21oWljx461F154wf7973+Xu02CGwAAMk8i9++UPltq06ZNVlxcbM2bN4+YrveffPJJ1M+sW7cu6vKaHs3u3bvdKzxzAABAcKVFg+KqpLY5ivT8l6q8AABAcKU0uGnatKnl5uba+vXrI6brfUFBQdTPaHoiy48ePdoVYfmv1atXJ3EPAABAuklpcFOrVi3r3r27zZkzJzRNDYr1vk+fPlE/o+nhy8sbb7wRc/natWu7urnwFwAACK6UtrkRNQ5WA+IePXpYr169XFdw9YYaPny4m69u4q1atXLVS3LNNdfYsccea3fffbeddtppNmPGDPvwww/toYceSvGeAACAdJDy4EZduzdu3GhjxoxxjYLVpbuwsDDUaHjVqlVWo8b/Cpj69u3rxra5+eab7cYbb7SDDz7Y9ZSKZ4wbAAAQfCkfxK+60RUcAIBg378D31sKAABkF4IbAAAQKClvc1Pd/Fo4BvMDACBz+PfteFrTZF1ws23bNvc/g/kBAJCZ93G1vSlL1jUo1jg6X3/9tdWvX99y9KjbcqJEBUEa+I/xccgPzg2+J/HgukFecF5UzfdE4YoCm5YtW0b0oo4m60pulCH7779/Qp9h8D/yg3OD70miuG6QF5wXyf+elFdi46NBMQAACBSCGwAAECgEN2XQc6nGjh3r/gf5wbnB9yQeXDfIC86L1H9Psq5BMQAACDZKbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAIl64ObKVOmWJs2bSwvL8969+5tRUVFZWbYM888Yx06dHDLH3HEEfbKK69YtubHsmXL7KyzznLLa7TnSZMmWbbmxcMPP2zHHHOMNWrUyL369+9f7rkU1LyYNWuW9ejRwxo2bGh169a1rl272pNPPmnZfN3wzZgxw31XBg8ebNmYF48//rjb//CXPpet58XmzZvtiiuusBYtWrheQ4ccckig7ilTEsiP4447bq9zQ6/TTjutYhv3stiMGTO8WrVqedOmTfOWLVvmjRgxwmvYsKG3fv36qMu/9957Xm5urnfnnXd6H330kXfzzTd7++yzj7dkyRIvG/OjqKjIu/76672nn37aKygo8O69914vKBLNi1/84hfelClTvH/961/exx9/7F100UVefn6+99VXX3nZlhdvv/22N2vWLPcd+eyzz7xJkya5701hYaEXBInmh2/lypVeq1atvGOOOcYbNGiQl4158dhjj3kNGjTw1q5dG3qtW7fOy8a82L17t9ejRw/v1FNP9ebNm+fOj7lz53qLFy/2sjE/vvnmm4jzYunSpe66oXOmIrI6uOnVq5d3xRVXhN4XFxd7LVu29CZMmBB1+Z///OfeaaedFjGtd+/e3qWXXuplY36EO/DAAwMV3FQmL+THH3/06tev7/3lL3/xsj0vpFu3bu7HQBBUJD90PvTt29d75JFHvGHDhgUmuEk0L3SjUtAfRInmxdSpU722bdt6e/bs8YKoVyWvG7qf6Bq6ffv2Cm0/a6ul9uzZYwsXLnTVB+HPndL7BQsWRP2MpocvLwMHDoy5fNDzI6iSkRc7d+60H374wRo3bmzZnBf6ATVnzhxbvny59evXzzJdRfPj1ltvtWbNmtnFF19sQVHRvNi+fbsdeOCB7qGJgwYNctXb2ZgXL774ovXp08dVSzVv3tw6depkt912mxUXF1um25OEa+ijjz5q5557rqvaroisDW42bdrkTiKdVOH0ft26dVE/o+mJLB/0/AiqZOTFDTfc4J5cWzoYzpa82LJli9WrV89q1arl6szvu+8+GzBggGW6iuTHvHnz3IVa7bKCpCJ5ceihh9q0adNs9uzZNn36dCspKbG+ffvaV199ZdmWF59//rk9++yz7nNqZ/P73//e7r77bvvDH/5g2X4NLSoqsqVLl9oll1xS4TRk3VPBgap2++23u4ajc+fODVRjyUTUr1/fFi9e7H6lq+Rm5MiR1rZtW9doMJts27bNLrzwQhfYNG3a1LKdSir08imwOeyww+zBBx+08ePHWzZRYKfSvIceeshyc3Ote/futmbNGrvrrrvcYwmy2aOPPuo67PTq1avC68ja4EYXGp1Q69evj5iu9wUFBVE/o+mJLB/0/AiqyuTFxIkTXXDz5ptvWufOnS1b80JF0O3bt3d/q7fUxx9/bBMmTMj44CbR/FixYoV98cUXdsYZZ0Tc1KRmzZquuq5du3aWrdeMffbZx7p162afffaZZbKK5IV6SGn/9TmfAj2VbKhaR6WemappJc6NHTt2uB+HqsqtjKytltKJo0hZvyrDLzp6H/7LIpymhy8vb7zxRszlg54fQVXRvLjzzjvdr8/CwkLXFToIknVe6DO7d++2bMsPDRuxZMkSV4rlv84880w7/vjj3d9qd5LN54aqLpQ/utFnsorkxU9+8hMX1PnBrnz66acuLzI5sKnsuaHhVnStuOCCC6xSvCymrmq1a9f2Hn/8cddt9Ve/+pXrquZ3Tbzwwgu9UaNGRXQFr1mzpjdx4kTX3Xfs2LGB6wqeSH6oK6O6PuvVokUL1y1cf//3v//1si0vbr/9dtft8dlnn43ozrht2zYv2/Litttu815//XVvxYoVbnl9X/S9efjhh70gSDQ/SgtSb6lE82LcuHHea6+95s6NhQsXeueee66Xl5fnugpnW16sWrXK9Qa68sorveXLl3svv/yy16xZM+8Pf/iDl83fk6OPPtobMmRIpbef1cGN3Hfffd4BBxzgbkzquvb++++H5h177LHuQhTub3/7m3fIIYe45Q8//HDv73//u5et+aFxGRQfl35puWzLC3WFj5YXCoCzLS9uuukmr3379u6m1ahRI69Pnz7uQpfN142gBjeJ5sW1114bWrZ58+ZujJdFixZ52XpezJ8/3w0noiBA3cL/+Mc/umEDsjU/PvnkE3fd1I+jysrRP5Ur+wEAAEgfWdvmBgAABBPBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAOgQh5//HFr2LBhVudeTk6OvfDCC9W6TT2rStvV4xsqo02bNjZp0qS02z8gGQhugBS76KKL3E1ELz1Ir3nz5jZgwACbNm1axHNn4nHLLbe4B1UmW7Qb4ZAhQ9yzcKqaHrbp549eyp9zzjnHvvzyy2rbZulXpj8AFAg6ghsgDZx88sm2du1a96v81VdfdQ9WvOaaa+z000+3H3/80dLRvvvua82aNauWbY0YMcLlz9dff22zZ8+21atXV/7BemWYNWuW255eRUVFbpqe9O5P0/yK0IDw6Xo8gSAhuAHSQO3ata2goMBatWplRx55pN14443uJq5AR9U/vs2bN9sll1xi++23nzVo0MBOOOEE+/e//+3mablx48a5934Jg//Zsj7ne+mll6xnz56Wl5dnTZs2tZ/+9KduukopVErym9/8JrTeWNVSU6dOtXbt2rmnAh966KH25JNPRszXZx955BG37jp16tjBBx9sL774Yrn5o2WVP3pi8lFHHWVXXnmlLVq0KGKZd955x3r16uXyUsuNGjUqFEg88cQTVq9ePfvvf/8bWv7yyy93T+3euXPnXttr3Lix255eyjNp0qRJaJrm+zZt2hRzf+bOnev2WcdRT0lW2ubNm+dK5CZMmGAHHXSQCxK7dOlizz77bOhz3333nZ1//vlu25qv9T722GMRafz8889dEKzt6vMLFiyImP/cc8/Z4Ycf7rapkre77767zDxW3vTr188d/44dO9obb7xR7nEB0laln04FoFLKepBily5dvFNOOSX0vn///t4ZZ5zhffDBB96nn37qXXfddV6TJk28b775xtu5c6d7rwe6+k8l17TyPid6InFubq43ZswY9wTfxYsXu6d7i5bZf//9vVtvvTW0Xnnssce8/Pz8UNpmzZrl7bPPPt6UKVPcU47vvvtut8633nortIwuOVrXU0895Z4ef/XVV3v16tULpSMaPWDvmmuuCb3XstqX448/PjTtq6++8urUqeNdfvnl3scff+w9//zzXtOmTSMeXHrOOed4PXv29H744Qe3v0rrhx9+WO7x8R8Qqyfel1be/rz99ttumc6dO7uHAX722Wdunp783KFDB6+wsNA9IVt5qYcnzp07133uiiuu8Lp27eqOl7b/xhtveC+++GJEevR57Yfy+uyzz3YPb9W+ifarRo0a7phpvta/7777uv99Wv7ee+91fxcXF3udOnXyTjzxRHfs33nnHa9bt25uO8pLINMQ3ABpHNwMGTLEO+yww9zf7777rtegQQNv165dEcu0a9fOe/DBB93fupkrIAoXz+f05O7zzz8/ZhrDb4S+0sFN3759vREjRkQso4BCT3726WZ58803h95v377dTXv11VfLDG4UiNStW9cFMFr+kEMOcTd534033ugdeuihXklJSWiagiwFGrpxy7fffusCkcsuu8w9kVpPYI5HecFNWfvjBzcvvPBCaBkdB+2Hnggd7uKLL/bOO+8897eCt+HDh5eZnkceeSQ0bdmyZW6aAjv5xS9+4Q0YMCDic7/97W+9jh07Rj2mr732mlezZk1vzZo1ofnaB4IbZCqqpYA0pvunXw2kaqTt27e76hFVsfivlStX2ooVK2KuI57PqefNiSeeWKm0fvzxx/aTn/wkYprea3q4zp07h/6uW7euqybbsGFDmetWFY3SqH1RtU779u3tpJNOsm3btoW23adPn1Be+dvWfn/11VfufaNGjezRRx8NVZ2p2ioZ4tmfHj16hP7+7LPPXFWYGo2HHw9VnfnH47LLLrMZM2a4xuG/+93vbP78+WVuV9Vw4m831rFQ1VNxcfFe69LyrVu3tpYtW4amKT+BTFUz1QkAEJtuOmqXIbpR6yamdhylldUlO57PqV1HdVGPsHAKSMrrFZafn+8CGtH/ClK0TzNnznRtieL1j3/8w3Jzc12j4B07dlj9+vWtOvZHQU/48ZC///3vro1VOLWPkVNOOcW1c3rllVdc2xcFnldccYVNnDgx6nb9oC7R3nVAUFFyA6Spt956y5YsWWJnnXWWe6+GxuvWrbOaNWu6G3z4Sw2ARQ15S/8yj+dzKgWYM2dOzLREW29phx12mL333nsR0/RejVOTTQGKfP/996Ftq0Ht/9UU/W/bCl72339/916lH3fccYdrOK2SEjVKTgXlh4KYVatW7XU8VHriU2PiYcOG2fTp0103/IceeijubcQ6Foccckgo70ovrx5oCvp877//foX3EUg1Sm6ANLB7924XgCiAWL9+vRUWFrreNOoKPnToULdM//79XVXB4MGD7c4773Q3KnWNVgmAeuuo6kO9YlTdpCoc3dR1c4/nc2PHjnWlA6quOffcc10vI5Ua3HDDDW7bWq9KPTRPN2Y/KAr329/+1n7+859bt27d3DYVRKjLtLpQV5aqcZQ/ovwZP36869Wjqim/55MCgKuuusoFLcuXL3f7NHLkSKtRo4arvrrwwgvt6quvdqUiyhv1DDvjjDPs7LPPtuqkY3L99de73mcqaTn66KNty5YtLvhQlZYCmjFjxrjeVertpHPj5ZdfdgFIvK677jq3f8onjUekwG/y5Ml2//33R11ex0vnhbZ911132datW+2mm25K4l4D1SzVjX6AbKcGxfoq6qVGnfvtt5/r3TRt2rRQY1jf1q1bvauuuspr2bKla2TbunVr1xB41apVocaqZ511ltewYUO3Pr93THmfk+eee8710KlVq5brafSzn/0sNG/BggWux4969PiXjdINiuX+++/32rZt67ahRr9PPPFExPxoDVS1jvBePNEaFPv5o1ejRo3ctPBeWKKeRuoNpfQXFBR4N9xwQ6j3kBrnHnHEERGNqtWbq3Hjxq6nVWUaFJe1P36D4u+++y5iGTV8njRpkmsErbzSMR84cKDrpSTjx493DcnVw0lpVIPzzz//PGZ6tH5N0/Z8zz77rGtArPUfcMAB3l133VVmI3H1qjr66KNd/unYqScXDYqRqXL0T3UHVAAAAFWFNjcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAFiT/DyZGDZjJrQOwAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAPeCAYAAADd/6nHAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAA9KBJREFUeJzs3Ql8FPX5x/EnB0kgIeG+AooIHoiIoCBqtdaD1qNasbXWCqXW+rfe1FZtrdT7QCu1Yr2qttpWW6XVqkUrar2oKHiAF6Igh5wCCQTIOf/X9xdn3d1skk2ymd3sft6v1xJ2dnZ35jezM888v2OyPM/zDAAAAAAAAAhQdpBfBgAAAAAAAAhJKQAAAAAAAASOpBQAAAAAAAACR1IKAAAAAAAAgSMpBQAAAAAAgMCRlAIAAAAAAEDgSEoBAAAAAAAgcCSlAAAAAAAAEDiSUgAAAAAAAAgcSSkkxdatW+1HP/qR9evXz7KysuyCCy5w09euXWsnnXSS9ezZ002fMWNGh1+nTHP//fe79V+2bJmlIi2Xlk/L2V4GDx5sP/jBDxL6eccee6ylikQvT0u2icpV3w8AqEdMlb5SPaZKRYoTioqKLJ2XJ944k/0HHQVJKSSMf+Br7PG///0vNO+1117r5j/rrLPsgQcesNNOO81Nv/DCC+3pp5+2Sy+91E3/+te/nvAtpO/+5z//2S6fG2udGjuZ+OWSnZ1t3bp1s7333tt+/OMf22uvvdam5bj99tvbNeHS3uXYFuHlqkefPn3sK1/5iv3jH/+wVKJAoqnfiv9IZGILiTd8+HDbZ599GkzX/qbtd+ihhzZ47d5773WvPfPMMy0+bka/Vlxc7L7jySefZPMCaYaYipgq1WKqgoICGzZsmP3sZz+zjRs3psxvwX9QYZXafvKTn7hrnuh9R881PT8/33bs2BHx2ieffOK27S9+8YuISszGHtdff33ovV/96lcjXuvcubONHDnSNXioq6sLaK0Rr9y45wTidOWVV9ouu+zSYPrQoUND/3/uuefsgAMOsGnTpkXMo+nHH3+8XXTRRe2aTFFrrBNOOCGhn9vYOjVm1KhR9tOf/tT9f8uWLfb+++/b3//+d7v77rtdcu43v/lNq5NSvXr1aveERmPlqGTcd7/7XXdySYbwcv3ss8/szjvvtBNPPNF+//vf2//93//ZzjvvbNu3b7dOnTpZspx55pl2xBFHhJ4vXbrULr/8cpeUVBLNt+uuuyZpCRGPgw8+2P7whz9YWVmZlZSUhKa/8sorlpuba6+//rpVV1dH7Gt6LScnx8aPH9/i46YceeSRNmnSJPM8zz799FO3Xx933HH273//2yZMmMCGA9IMMRUxVarEVEoYzJ8/313U//e//7V58+YFsgyHHHKIq+wNp54JY8eOdXGTL5VaRyF2zKSYRXGQ4hbfq6++6pJSipfeeOMNN59P8/rvDXfKKafY0Ucf3eA79t1334jnAwcOtOuuu879f8OGDfaXv/zFXWOtX7/errnmGjZTCiEphYT7xje+Yfvtt1+T86xbt861Mog1Xa2GOqLG1qkxpaWl9v3vfz9i2g033GDf+9737JZbbnG1UWp11dHogluPZIkuV13A68JeZaqklF/bl0xKSIQnJXQSVlJK06L3ibaqqKiwwsLChH4mLBQkKYmsgErHvfAg6jvf+Y4LfhTAK1nte/nll11NXdeuXVt83JTddtstYh+ZOHGiO+789re/JSkFpCFiqvgQU7WP6HJVMkjJn5tuusk++ugjF6u2tyFDhrhHOMVzmpbomKmmpsa1osnLy0vo5+LLxJLioPCklGImxUWqMNZr4QkoPVfC6sADD4wowtGjR8e17VVhGD6f9ps99tjDfve737mEfzKvVxCJ7nsI1AsvvOCSAmoZoi4nfpNKv2muav9nzpwZmu7bvHmzG6Np0KBBrrZISQYlcKKbX+q5Ls7UFU6Jh969e7sugLroF32mLtL/+Mc/xt1FSsmm008/3fr27es+U9119P7m1qk1/f/VtFS1QT169HAZfJVH+LqpdmqvvfZyy6HlUYubTZs2heZR0+V3333X1WD5y6Hmq0GWY2P919WCS8uu7x0wYICdffbZbnnCaVlHjBhh7733nh122GHWpUsXFxDdeOON1loa42vPPfd02yfW+EXavlo/fXd4eS9ZssQlc04++eTQtMrKStcSTuWm9VA5/vznP3fTg6CTs2oGtU0UjP3pT3+KeN0ve21/NZNW90XVEvnUmkYtsbReSoocc8wxbn8Jt2bNGpsyZYp7n9axf//+rvVirP25ueXxm15/+9vfdvu0tqcSNPF2N1P3UO0P+nz9bWk3zPbe5/zAya/J82uSFyxY4FrnqUzCX1PN3OLFixvU+LWF9m21jPz4448T9pkAOgZiqqYRUyU+pvLjKlGL4OgeA36MoQpmxQ7qBeC77777XIyibuzRLe81/amnnrJEWrVqlWvNrySa4jz1wqitrQ297seDSrApvlbrdMULKi/54IMPXI8AxS+KQ1Rx9Pjjj0d8h1r3XHHFFS45p3k0Jq7O8f/5z39avDyi2Fot0/w4fffdd3fLFx6fNkbx3Ne+9jW33yuGu/rqq1vUTa257Se//vWvXZkpRlbcr/mU+FHcuG3btiY/f6eddnLrFR4XiZ4fdNBBLvEU6zXFcYlqsKBttP/++7seKor/kTpoKYWEU1cWNZEMpwOYDtS6gFLSRU0ndcD0mwSruaU/DpPfPcWng5zGTdHBXEkYHdTUMkHjTq1evTpiMHQlj3RhrppF1eaoxuOll15y47LoZKLviG7y21QXKWXtddGqg+8555zjuteoi50OxLq4Pf/88xtdJ51wWkMnq29961uuW5BOjDoYi9Zd66YD/3nnneeSLLfddpu9+eab7qCtLkIqi3PPPdd9xi9/+Uv3PiWvkl2OOonppK0ua2r99eGHH7omvOre5C+7T0k2JcB0Ua/WJo888ohdfPHFLkEW3holXgoYVqxY4fa/WJS40bIocaKaE5WtTuLaxkrcKLEhmvbNb37TJWK0ztruCxcudC2wlGho7/G1tA8qONK2mTx5sgvqtIxjxowJ7SM+JaS0/6n1lQIc0TbT+9TFS4lI7Q9abwVP2of8sRjU8kaBjfYjTdNJW8HV8uXLI8ZriGd5dOMCBRn6LpWrtoESmSpHbVft543RmEt+KyA1vf78889DybJ4BLHPKemkZJf2CZ8+v6qqyq23H2D5xwT93iRWUqqp42ZT9D4tP109gfRETEVMlcyYSjGUf25SpYviBQ0voS514V3On332Wfd5Oi9q+RQ/K6ZSskEVNYofdA6fNWuWTZ061cX6SlAojtK6KJaI1R2rtZTsUbwzbtw4l9TR8t18883uXBndC0HJMq2bYjslgpSEUhykZVcS75JLLnGJmr/97W8uqfToo4+G4hetq2IUPyYuLy93FbhaZ61jS5ZHiSfFR88//7wrD3Wd1Di7GsNLsbvizcaoQlGJR8Xr/vLeddddLkEVj3i2XzjtS9r+Wne9fs8997h4WvFlUxT/aB9QZa7KWvGS9luVgWJFVfSqHBT/aN/VdZBaN0XTvNExkyh5FZ0sjeYnIztqz5y05QEJct999ymNH/ORn58fMe/OO+/sHXPMMQ0+Q/OeffbZEdOuuuoqr7Cw0Fu8eHHE9EsuucTLycnxli9f7p4/99xz7v3nnXdeg8+tq6sL/V+fNXny5LjWacaMGe4zH3zwwdC0qqoqb/z48V5RUZFXXl7e7DrF0ty8t9xyi/vexx57zD1/6aWX3PM///nPEfPNnj27wfS99trLO/TQQxt8ZlDl6O8HS5cudc/XrVvn5eXleUcddZRXW1sbmu+2225z8917772haVpuTfvTn/4UmlZZWen169fPmzhxohdPuep71q9f7x5vv/22993vftd95rnnnuvm0XLpuZYz3CmnnOJ16dLFlc/06dPdPP/85z9Drz/wwANedna22xbh7rjjDjfvK6+8ErEc8e5j8vrrr8dcpvDP0+svvvhiaJrKVb+rn/70pw3K/uCDD/ZqampC07ds2eJ169bNO+OMMyI+d82aNV5JSUlo+qZNm9z7tf5NiXd5LrjgAjdfeJlpWXbZZRdv8ODBof0h1jYZNWqU179/f2/z5s2hac8884ybT9/flCD3uW9/+9te586d3XFBrrvuOrd+cvvtt3t9+vQJzXvRRRe571q1alWrjpuadvrpp7t9W+v4xhtveF//+tfj2mYAOhZiKmKqVIipYp2bDjroIG/Dhg0R8+qcrfPd559/HpqmGExx06RJk0LTVq9e7fXo0cM78sgj3bLsu+++3k477eSVlZW16PfRVCyv6VrOK6+8MmK6vmvMmDGh537sUVxc7Mo13OGHH+7tvffe3o4dOyJi4AMPPNAbNmxYaNo+++zTbOwf7/Io5tR8V199dcR8J510kpeVleUtWbKk0TjTj7dee+210DStk2K88P2nMfFuv2nTprnP++EPfxjx/m9961tez549vebMnDkzIi6cO3eue/7pp5967733nvv/u+++61574oknGlzj+NussYc+L3z/32OPPULXBB988IH3s5/9zM0X7/UagkP3PSScut+pZUX4Q92GWkstk9SctHv37i4r7j9UQ6SahxdffNHNp5oLZb5jDTQe3hWwJdSUWM2UNaCeTzVQavWhWzCrm1R78AdrVPNSvwzUPFa1LuFloFYpmle1Kqlajqp9UU2Iug2qX7jvjDPOcHcPi+7KpfUJ7/+tfv2qfVI3sHiohY1aCemhrpZab7XAa672Rq3OVMZq/fOrX/3KvUdNl336HLWOUl/08PJTU2mJZxu0hVoMhQ+CrvVTs+5Y5aKyDe8nr9+gWvZpPw5fds2jWjt/2VWjpvJWl5DwbqGtXR79frTtwlsGafuqNlI1VX4T+WhquffWW2+5FljhA4hr/49n3LYg9zmtm2oUNXaUqJbaH/tANYxqaaZxN/zXVLOo1lWtPW6qBaXKWjWSarU4Z84cV7OommcA6YeYqu2IqVofUylG8M9JTzzxhBtaQq2I1KJH577wc7ZaS6uVkU/jBOm8Hd4tTzG1v08rhtD71NJa5+ZEi25ho++Ltd5qlR3eu0F3g1NXNrUGUhzux0xqsa3WTjqnq+WSqLWNysM/z7dleVROist0jRFOra1VL9XUtZTeq+ERtG19WqdTTz212eVqyfZral1UPmopFu+4Un5cpNZo6r2h+Frf73fha2yQc1EcGR0z6REdI6oLpn9NoM+fPn2623eDuEs5Wobue0g4HRDjGbA3XjrQv/POO412h/P7BGtMFV3shR9Q20p3t1I/8fALW1Fywn+9PSjhJf5gyCoDNeHXhWgs8fSLTlY5+mWkhEU4BUZqJhxdhuqeFZ38UiJNyx5vAKV+9PoMjZ+gbRVPE12t76233uq68anLo/4fXX7qW99c+bUXnbCjqVxiJY+i7+LmB0t+Ai2aHwyqKbWSdwqAVAYKcI499ljXndYfQ6Ily6Ntq+0RLfz3o/Euovn7RKwBVLUfqal4quxz4eNKaV3VRU/7n2jdVLZ6Td0UlLgKH6OsNcdNJUrVldhv8q6xONSMPfoYBSA9EFO1HTFV62MqjVkYfrdgjUWpc6sq8NRlS139Gzvn+ud7dUELv+mK7ib44IMPugoiJRcOP/xwSzR/PNTWxEwankBJIFVQ6tFYzKdkigbL1nlZNyHROV9dJVWpqYROS5dH5aj4O/pGKPFcczQWb8XaJrHe25LtFysG1LqI1qepBKPKSDF5eOJJFXiiOEw3/NE0VSL6sVOseFPxYfh+2Rh1O9QNaTQEh65vlFTV+J7JvuERGiIphZSnA4ky9WoNEItOBOlm0aJFEbeDVxkoIfXnP/855vzxjF/VUcqxsTthxDPIY6wAqiV04vVPqitXroxIZqn8NAaDxlKIRSfOVCmX6DEE/IEuNa5UdHJJwvvfq3WR7oqiMbJUHgrINGaAag3Db7Xb1u2UStqyLmqNpwBStX4aD0M1rH5LKSWKFCTqNY0boURSWwc5VwLN37/1fdrflaTSWBIaMwQA0iEWSCRiqsSeq/0kklrYKynVUmpR4984Ry2mtU8mumKlJXdVayxm0kDkahkVix+fa2wtJTsee+wx11JfiTqN/XTHHXe4caZaszzpHDdpOyvxpAo8zavE0y9+8YvQ64qf1HLOr3jTGF5toURa+DWBEmC6c5++M7ryGclFUgopTxdzquVqLtGg+XQRrYvCplr5tKQL2s477+xqk6JPmGoO6r+eaFpX3WVMSQ6/dkTrpi5JOpg2N2hhY+uXrHL0y0gDcYbf0lcnHA3W3toEUqLNnj3bBRMK1JX8U9ex1157LZSwUbm8/fbbLhhrbXfQZPEHwVZiM57y1vxqLaWHWllpsE0NyKmazZbQttd2j9bc78efHqs5fKzPS+Y+p8BMLcoUWCn5pBpCJS/DA6yHH344FMAm8s57opsWKAC+7LLL3MCrHW3fBBAsYipiqrbSYNrhLdDCz7mxzveqPAlvZaM74apbnCq8dLMd3Wgnlbqg+3GDhuuIJ15QrKxB3PVQmShRpcHCw5NS8VA5KtZX2YS3lornmkOvJSJmimf7tZXiIHVF1J0M1eLMbynlx0y6UZO6DKp7aKJjJrVg03ANd955p0s6xmqFheSgvT9Snvp0z507N9SKJZzGyfFPjuoTrqy77uLRVOZeB9bo28I3Ri0RdEcLXVT69H26I4XGKNDd7BJJB2A1+1VCSAdl/wJTZaBxn6666qoG79HyhK9PY+uXrHLUCV3dplQjEf5+jY2jLolqCp5sWg//zinqDqXklLqI6f/h5acxBNQMONZ28+9yl4pU06dkidZHd9KJpqbMom5gugNN9AWMgiPdKaWl9PuZN2+e2+98KifdEUZNqhsbH6p///4uEaY79Wkf8Wm8gMbGoUrmPqegSWWoO/ioZVR4AlsBlgI91aL6dyBNJCVNlTxU11J9BwA0hZiKmKqt/vWvf4VaCkefs8PjQrVQU+uh8Lvq6e5/iqmvv/56d5c4deVTpYruYpwqVIGnO28rcaHxlhqLmfxWX+F0baBKqNbGTIr1NcZpOFU86Xqgqbsl6r26Q7ZirvDlbKyHRbiWbL9E8BNNGi5Cw2zou32KwxXX3HjjjRHzJpIqnxULN9bzAclBSykknLLfflY/nC7OwlstxEu3QlU2XWPb+Lec14WtbiOrk5sGTFYWX91XlNDRhahqC9SvWy2cXnrpJfeauriI3q+aCB2M1Hdbfclj9cMW9XXXSUnfq/FgdCGt71SrCNXsRPf7bgklOPyWJ6pZ0cW2BtNWEkwXmWoB4VPyS89Vq6TBCI866ihXg6P11Ht++9vfuv79/vrp1sAa10YnRp1cNZZQsspRXQtVE6Yklz5LAwzqIv3222+3/fffP2KA6WQ5//zzXWCh9VHLFy2nklQqQ40VoMBLZaLbAWtwRw0MrpodBQ/a1zVdyb5EjqWWSEpIaZ/QOqjZsoJAbZfly5e7MR20LgqCFBSqJZguWpQwUmCgVntr165172kpBZx//etfXSClgTtVm6igR62VNKB+U831ta8reaSA5Ic//KFL1CoZvNdee4VqZxsT9D7nB01Kvql2NJxaUSmYVLCobpGNtWRqy3FTv+fLL7/cBXhtbeoOILUQU8WHmKp9zm/h5arWxmoxrrhY8WJ41z0NIK1zvbpmnX766a6yTuds3azEPy+qVcxZZ50VEUsq9lBMpfOYWhunyviIGoxd53a1fNb4RjoPKxbSeV7DO6gcRLGSEliKiRXjqFuiYmp//VpCMYLKRpXSiskVeyoppAonDa3gt3pvLNGiIRoU8yimVcWxKgD9Hh/NiWf7JYoST6o4VFmq7MKHkFCSSuut1zSERqxxR0UVx7Fa76uMtA5N0TZTok0V0BqiQhWGSAEB3ukPGXz74ujbvetWprFux6n5zj777AbTdRv5Sy+91Bs6dKi7FW6vXr3cbVlvuumm0K3Ypaamxt0aXbcA1Xy9e/f2vvGNb3jz588PzaNbgh5yyCHuNu76vsZuKetbu3atN2XKFPed+kzdIjZ8XZpbp+Zus6vbvOp2tHvttZd3xhlnRNzONdpdd93lbh+rZe/atatblp///OfeZ599FppnzZo1bjn0uj5ft0QNshyjb18cfrtifV6nTp28vn37emeddZa3adOmiHm0rCqHaPpslVk85drcNvBvJ+tvw8cee8w9v/nmmyPmKy8vd5+n2/36ZaO/N9xwg1vG/Px8r3v37m57XHHFFRG3M46+VW9zXn/99Qa/kXjWS+UVvn39stfnxfL88897EyZMcLcILigo8HbddVfvBz/4gffGG2+413WLZ/3+tJ10u2XNN27cOO9vf/tbq5ZHPv74Y3c7427durnvHDt2rLvNb1PbxPfoo496e+65pyvr4cOHe7NmzYp7Xwhqn5OKigovNzfXrcMzzzzT4PWRI0e617TvtOW42djxUX7961+717WNAXR8xFTEVKkQU4Wfj7Kzs70+ffp4p5xyirdkyZIG8z/77LPeQQcd5OJCxbXHHXec995774VeP/HEE11sumzZsoj3+XFYrHNkYxSjNBZnabpejzZt2jT3PdGxh+LdWBS/TJo0yevXr58r59LSUu/YY4/1HnnkkdA8V199tYtrFONovbVNrrnmmoiYOt7l8eP0Cy+80BswYID7zmHDhrnlq6uri5gvVpz5zjvvuG2uWEvLetVVV3l/+MMfYu4/sTS3/cKXef369RHTG9tPGzN+/Hg3/y9+8YsGr5133nnuNV13RPO3WWOP8DJpbP+XF154wc2v9UFqyNI/yU6MAQAAAAAAILOkRhtJAAAAAAAAZBSSUgAAAAAAAAgcSSkAAAAAAAAEjqQUAAAAAAAAAkdSCgAAAAAAAIEjKQUAAAAAAIDA5VqGqaurs88++8y6du1qWVlZyV4cAACQ4jzPsy1bttiAAQMsOztz6/OIoQAAQKLjp4xLSikhNWjQoGQvBgAA6GBWrFhhAwcOtExFDAUAABIdP2VcUkotpPyCKS4uTvbiAACAFFdeXu4qtPwYIlMRQwEAgETHTxmXlPK77CkhRVIKAAC0NIbIVMRQAAAg0fFT5g6MAAAAAAAAgKQhKQUAAAAAAIDAkZQCAAAAAABA4EhKAQAAAAAAIHAkpQAAAAAAABA4klIAAAAAAAAIHEkpAAAAAAAAZF5SaubMmTZ48GArKCiwcePG2bx585qcf/PmzXb22Wdb//79LT8/33bbbTd76qmnAlteAACAVEAMBQAAOrrcZH75ww8/bFOnTrU77rjDJaRmzJhhEyZMsA8//ND69OnTYP6qqio78sgj3WuPPPKIlZaW2qeffmrdunVLyvIDAAAkAzEUAABIB1me53nJ+nIlovbff3+77bbb3PO6ujobNGiQnXvuuXbJJZc0mF/Jq+nTp9sHH3xgnTp1atV3lpeXW0lJiZWVlVlxcXGb1wEAAKS3VIwdiKEAAEA6xE9J676nVk/z58+3I4444suFyc52z+fOnRvzPY8//riNHz/edd/r27evjRgxwq699lqrra0NcMkBAACShxgKAACki6R139uwYYNLJim5FE7P1RIqlk8++cSee+45O/XUU904UkuWLLGf/OQnVl1dbdOmTYv5nsrKSvcIz9a1l7o6z5Z9XmFbdtRY14JcG9yz0LKzs9rt+wAAQOZJxxgKAJDauNZFWo4p1VLq3qfxpO666y7LycmxMWPG2KpVq1yXvsYCquuuu86uuOKKdl+2RavK7NEFK23Juq1WWV1n+Z2ybWifIps4eqCNKC1p9+8HAADoiDEUACC1ca2L9pS07nu9evVyQdHatWsjput5v379Yr5Hd9zT3fb0Pt+ee+5pa9ascU3ZY7n00ktdH0b/sWLFinb5kd465yNbuLLMunXOs8G9Ct1fPdd0vQ4AAJAI6RRDAQBSG9e6SNukVF5enqulmzNnTkQtnp5r3KhYDjroINfcXPP5Fi9e7AItfV4s+fn5blCt8EeimzGqhdTGiirXMqqoINdysrPcXz3X9FkLVrn5AAAA2ipdYigAQGrjWhdpnZSSqVOn2t13321//OMf7f3337ezzjrLKioqbMqUKe71SZMmuVo6n17fuHGjnX/++S6QevLJJ91A5xr4PFk0hpS67PUv6WxZWZHjR+m5pn+0boubDwAAIBHSIYYCAKQ2rnWR9mNKnXzyybZ+/Xq7/PLLXfPxUaNG2ezZs0MDdy5fvtzdkc83aNAge/rpp+3CCy+0kSNHWmlpqQuuLr744qStgwY11xhSnUu+bA4frnNejq0tr3PzAQAAJEI6xFAAgNTGtS6CkOV5Xkb1K9OdY0pKStzYCIlohv7J+q027fF33RhS6rIXbeuOGtu8vcqu+OZeNqR3UZu/DwAAdOzYoaOiHAAgs3CtiyDihqR230sHg3sWurGjVpdtt+j8np5r+rA+Xd18AAAAAAB0BFzrIggkpdpagNlZNnH0QOtRmOfGllLLqNo6z/3Vc00/cXSpmw8AAAAAgI6Aa10EgaRUAowoLbHzDh9mew8scV31lm2ocH9HDuzmput1AAAAAAA6Eq51kdYDnafbj3V4/2J3hwINCNe1INc1d6SFFAAAAACgo+JaF+2JpFQCKQHFYOYAAAAAgHTCtS7aC933AAAAAAAAEDiSUgAAAAAAAAgcSSkAAAAAAAAEjqQUAAAAAAAAAkdSCgAAAAAAAIEjKQUAAAAAAIDAkZQCAAAAAABA4EhKAQAAAAAAIHC5wX8lmlJX59myzytsy44a61qQa4N7Flp2dhaFBgAAAAAA0ip/QFIqhSxaVWaPLlhpS9ZttcrqOsvvlG1D+xTZxNEDbURpSbIXDwAAAAAApIBFaZI/ICmVQjvUrXM+so0VVda/pLN1Lsmx7VW1tnBlma3atN3OO3xYh9qxAAAAAABA4i1Ko/wBY0qlSJM7ZTi1QymzWVSQaznZWe6vnmv6rAWr3HwAAAAAACAz1aVZ/oCkVApQH1A1uVOGMysrsv+nnmv6R+u2uPkAAAAAAEBmWpZm+QOSUilAg5KpD2jnvJyYr2u6Xtd8AAAAAAAgM21Js/wBSakUoFHyNSiZ+oDGoul6XfMBAAAAAIDM1DXN8gckpVKAbtuovp+ry7ab50X2+9RzTR/Wp6ubDwAAAAAAZKbBaZY/ICmVArKzs9xtG3sU5rm+oVt31Fhtnef+6rmmnzi61M0HAAAAAAAyU3aa5Q9ISqUI3a5Rt23ce2CJbd5eZcs2VLi/Iwd261C3cwQAAAAAAO1nRBrlDzpGJ8MMoR1neP9iN0q+BiVTH1A1uesoGU4AAAAAAND+RqRJ/oCkVIrRDjSkd1GyFwMAAAAAAKSw7DTIH9B9DwAAAAAAAIEjKQUAAAAAAIDAkZQCAAAAAABA4EhKAQAAAAAAIHAkpQAAAAAAABA4klIAAAAAAAAIHEkpAAAAAAAABI6kFAAAAAAAAAJHUgoAAAAAAACBIykFAAAAAACAwJGUAgAAAAAAQOBISgEAAAAAACBwJKUAAAAAAAAQOJJSAAAAAAAACBxJKQAAAAAAAASOpBQAAAAAAAACR1IKAAAAAAAAgSMpBQAAAAAAgMCRlAIAAAAAAEDgSEoBAAAAAAAgcCSlAAAAAAAAEDiSUgAAAAAAAAgcSSkAAAAAAAAEjqQUAAAAAAAAAkdSCgAAAAAAAIEjKQUAAAAAAIDAkZQCAAAAAABA4EhKAQAAAAAAIHAkpQAAAAAAABA4klIAAAAAAAAIHEkpAAAAAAAABI6kFAAAAAAAAAJHUgoAAAAAAACBIykFAAAAAACAwJGUAgAAAAAAQOBISgEAAAAAACBwJKUAAAAAAAAQuNzgvxLtra7Os2WfV9iWHTXWtSDXBvcstOzsLAoeAAAAANcYAFIGSak0s2hVmT26YKUtWbfVKqvrLL9Ttg3tU2QTRw+0EaUlyV48AAAAAB0M1xgA2gtJqTQ7Wdw65yPbWFFl/Us6W+eSHNteVWsLV5bZqk3b7bzDh5GYAgAAAMA1BoCUkBJjSs2cOdMGDx5sBQUFNm7cOJs3b16j895///2WlZUV8dD7Mp267KmFlBJSahlVVJBrOdlZ7q+ea/qsBavcfAAAoOMjfgLQ3rjGAJD2SamHH37Ypk6datOmTbMFCxbYPvvsYxMmTLB169Y1+p7i4mJbvXp16PHpp59aptMYUuqypxZSStSF03NN/2jdFjcfAADo2IifAASBawwAaZ+U+s1vfmNnnHGGTZkyxYYPH2533HGHdenSxe69995G36MkS79+/UKPvn37WqbToOYaQ6pzXk7M1zVdr2s+AADQsRE/AQgC1xgA0jopVVVVZfPnz7cjjjjiywXKznbP586d2+j7tm7dajvvvLMNGjTIjj/+eHv33XcbnbeystLKy8sjHulId9nToOYaQyoWTdfrmg8AAHRcQcRPmRRDAWgc1xgA0joptWHDBqutrW3Q0knP16xZE/M9u+++u2tF9dhjj9mDDz5odXV1duCBB9rKlStjzn/ddddZSUlJ6KFALB0N7lnoxo5aXbbdPC9y3Cg91/Rhfbq6+QAAQMcVRPyUSTEUgMZxjQEg7bvvtdT48eNt0qRJNmrUKDv00ENt1qxZ1rt3b7vzzjtjzn/ppZdaWVlZ6LFixQpLR9nZWTZx9EDrUZjnxpbauqPGaus891fPNf3E0aVuPgAAkFlaGj9lUgwFoHFcYwBob0nty9WrVy/LycmxtWvXRkzXc40VFY9OnTrZvvvua0uWLIn5en5+vntkghGlJXbe4cPcXfiUiFpbXue67I0c2M0lpPQ6AADo2IKInzIthgLQOK4xAKRtUiovL8/GjBljc+bMsRNOOMFNU3NyPT/nnHPi+gw1X1+4cKEdffTR7by0HeekMbx/sbtThgYmVD9wNbulhRQAAOmB+AlA0LjGANBekj7q9dSpU23y5Mm233772dixY23GjBlWUVHh7sYnampeWlrqxjWQK6+80g444AAbOnSobd682aZPn26ffvqp/ehHP0rymqQOJaCG9C5K9mIAAIB2QvwEIGhcYwBIy6TUySefbOvXr7fLL7/cDc6psQ5mz54dGrxz+fLl7o4yvk2bNtkZZ5zh5u3evbtrafXqq6/a8OHDk7gWAAAAwSF+AgAA6SDLi75VW5rT7Yx1BxkN2FlcXJzsxQEAACmO2IFyAAAA7RM/dbi77wEAAAAAAKDjIykFAAAAAACAwJGUAgAAAAAAQOBISgEAAAAAACBwJKUAAAAAAAAQOJJSAAAAAAAACBxJKQAAAAAAAASOpBQAAAAAAAACR1IKAAAAAAAAgSMpBQAAAAAAgMCRlAIAAAAAAEDgSEoBAAAAAAAgcCSlAAAAAAAAEDiSUgAAAAAAAAgcSSkAAAAAAAAEjqQUAAAAAAAAAkdSCgAAAAAAAIEjKQUAAAAAAIDAkZQCAAAAAABA4EhKAQAAAAAAIHAkpQAAAAAAABA4klIAAAAAAAAIXG7wX4l41dV5tuzzCtuyo8a6FuTa4J6Flp2dRQECAAAAQIbjehHpgKRUilq0qsweXbDSlqzbapXVdZbfKduG9imyiaMH2ojSkmQvHgAAAAAgSbheRLogKZWiB5hb53xkGyuqrH9JZ+tckmPbq2pt4coyW7Vpu513+DASUwAAAACQgbheRDphTKkUbIKpFlJKSKllVFFBruVkZ7m/eq7psxascvMBAAAAADIH14tINySlUozGkFKXPbWQysqKHD9KzzX9o3Vb3HwAAAAAgMzB9SLSDUmpFKNBzTWGVOe8nJiva7pe13wAAAAAgMzB9SLSDUmpFKO77GlQc40hFYum63XNBwAAAADIHFwvIt2QlEoxg3sWurGjVpdtN8+LHDdKzzV9WJ+ubj4AAAAAQObgehHphqRUisnOzrKJowdaj8I8N7bU1h01Vlvnub96ruknji518wEAAAAAMgfXi0g3JKVS0IjSEjvv8GG298AS27y9ypZtqHB/Rw7s5qbrdQAAAABA5uF6EemEgYlS+EAzvH+xu7uCBrNT32E11aSFFAAAAABkNq4XkS5ISqUwJaCG9C5K9mIAAAAAAFIM14tIB3TfAwAAAAAAQOBISgEAAAAAACBwJKUAAAAAAAAQOJJSAAAAAAAACBxJKQAAAAAAAASOpBQAAAAAAAACR1IKAAAAAAAAgSMpBQAAAAAAgMCRlAIAAAAAAEDgSEoBAAAAAAAgcCSlAAAAAAAAEDiSUgAAAAAAAAgcSSkAAAAAAAAEjqQUAAAAAAAAAkdSCgAAAAAAAIEjKQUAAAAAAIDAkZQCAAAAAABA4EhKAQAAAAAAIHAkpQAAAAAAABA4klIAAAAAAAAIHEkpAAAAAAAABI6kFAAAAAAAAAJHUgoAAAAAAACBIykFAAAAAACAwJGUAgAAAAAAQOBISgEAAAAAACBwJKUAAAAAAAAQOJJSAAAAAAAACBxJKQAAAAAAAASOpBQAAAAAAAACR1IKAAAAAAAAmZmUmjlzpg0ePNgKCgps3LhxNm/evLje99BDD1lWVpadcMIJ7b6MAAAAqYT4CQAAdHRJT0o9/PDDNnXqVJs2bZotWLDA9tlnH5swYYKtW7euyfctW7bMLrroIvvKV74S2LICAACkAuInAACQDpKelPrNb35jZ5xxhk2ZMsWGDx9ud9xxh3Xp0sXuvffeRt9TW1trp556ql1xxRU2ZMiQQJcXAAAg2YifAABAOkhqUqqqqsrmz59vRxxxxJcLlJ3tns+dO7fR91155ZXWp08fO/3005v9jsrKSisvL494AAAAdFRBxE9CDAUAANI6KbVhwwbX6qlv374R0/V8zZo1Md/z8ssv2x/+8Ae7++674/qO6667zkpKSkKPQYMGJWTZAQAA0jV+EmIoAACQ9t33WmLLli122mmnuYCqV69ecb3n0ksvtbKystBjxYoV7b6cAAAAHTl+EmIoAADQ3nItiRQY5eTk2Nq1ayOm63m/fv0azP/xxx+7Ac6PO+640LS6ujr3Nzc31z788EPbddddI96Tn5/vHgAAAOkgiPhJiKEAAEBat5TKy8uzMWPG2Jw5cyKCJD0fP358g/n32GMPW7hwob311luhxze/+U077LDD3P/pmgcAANId8RMAAEgXSW0pJVOnTrXJkyfbfvvtZ2PHjrUZM2ZYRUWFuxufTJo0yUpLS924BgUFBTZixIiI93fr1s39jZ4OAACQroifAABAOkh6Uurkk0+29evX2+WXX+4G5xw1apTNnj07NHjn8uXL3R1lAAAAQPwEAADSR5bneZ5lkPLycncXPg16XlxcnOzFAQAAKY7YgXIAAADtEz/RBAkAAAAAAACBIykFAAAAAACAwJGUAgAAAAAAQOBISgEAAAAAACBwJKUAAAAAAAAQOJJSAAAAAAAACBxJKQAAAAAAAASOpBQAAAAAAAACR1IKAAAAAAAAgSMpBQAAAAAAgMCRlAIAAAAAAEDgSEoBAAAAAAAgcCSlAAAAAAAAEDiSUgAAAAAAAAgcSSkAAAAAAAAEjqQUAAAAAAAAAkdSCgAAAAAAAIEjKQUAAAAAAIDAkZQCAAAAAABAx01K7dixw2666aZEfRwAAEBGIIYCAACZqkVJqfXr19sTTzxhzzzzjNXW1rpp1dXV9tvf/tYGDx5s119/fXstJwAAQIdFDAUAANBQrsXp5ZdftmOPPdbKy8stKyvL9ttvP7vvvvvshBNOsNzcXPv1r39tkydPjvfjAAAAMgIxFAAAQBtbSl122WV29NFH2zvvvGNTp061119/3b71rW/Ztddea++995793//9n3Xu3DnejwMAAMgIxFAAAACxZXme51kcevbsaS+99JINHz7ctm/fbkVFRTZr1iw7/vjjrSNRS6+SkhIrKyuz4uLiZC8OAABI89iBGAoAAGSa8jjjp7hbSm3atMl69erl/q8WUV26dLERI0YkZmkBAADSFDEUAABAG8eUEnXTW7Nmjfu/Glh9+OGHVlFRETHPyJEjW/KRAAAAaY8YCgAAoA3d97Kzs90A57Fm96frr39XvlRF9z0AABBk7EAMBQAAMk15nPFT3C2lli5dmqhlAwAAyBjEUAAAAG1MSu28887xzgoAAABiKAAAgCbFPdD5jTfe6O6653vllVessrIy9HzLli32k5/8JN6PAwAAyAjEUAAAAG0cUyonJ8dWr15tffr0cc/VJ/Ctt96yIUOGuOdr1661AQMGMKYUAABIK20dU4oYCgAAZJryOOOnuFtKReeu4sxlAQAAZDRiKAAAgDYmpQAAAAAAAIBEISkFAAAAAACA1L37ntxzzz1WVFTk/l9TU2P333+/9erVKzTQOQAAAIihAAAAEjrQ+eDBgy0rK6vZ+ZYuXWrpPFgpAADILG2NHYihAABApimPM36Ku6XU888/b7vsskuilg8AACAjEEMBAAC0cUypXXfd1SWlfvjDH9qDDz5oq1ativetAAAAGYsYCgAAoI0tpZ577jl74YUX3OOvf/2rVVVV2ZAhQ+xrX/uaHXbYYe7Rt2/feD8OAAAgIxBDAQAAtHFMqXA7duywV199NZSkmjdvnlVXV9see+xh7777rqUyxpQCAADJih2IoQAAQCYojzN+alVSyqfWUq+88or9+9//tjvvvNO2bt1qtbW1lspISgEAgGTHDsRQAAAgnSV8oHM/gPrf//7nBuxUC6nXXnvNBg0aZIcccojddtttduihhyZi2QEAANIKMRQAAEAbklIaO0pJKA12ruTTmWeeaX/5y1+sf//+8X4EAABAxiGGAgAAaGNS6qWXXnIJKAVWX/3qV11iqmfPnvG+HQAAICMRQwEAAMSWbXHavHmz3XXXXdalSxe74YYbbMCAAbb33nvbOeecY4888oitX78+3o8CAADIGMRQAAAACR7ofMuWLfbyyy+Hxpd6++23bdiwYbZo0SJLZQx0DgAAkhk7EEMBAIB0Vx5n/BR3S6lohYWF1qNHD/fo3r275ebm2vvvv9/ajwMAAMgIxFAAAAAtHFOqrq7O3njjDdcqSq2jXnnlFauoqLDS0lI77LDDbObMme4vAAAAiKEAAAASlpTq1q2bS0L169fPJZ9uueUWN+D5rrvuGu9HAAAAZBxiKAAAgDYmpaZPn+6SUbvttlu8bwEAAMh4xFAAAABtTEqdeeaZ8c4KAAAAYigAAIAmtXqgcwAAAAAAAKC1SEoBAAAAAAAgcCSlAAAAAAAAEDiSUgAAAAAAAAgcSSkAAAAAAAAEjqQUAAAAAAAAAkdSCgAAAAAAAIEjKQUAAAAAAIDAkZQCAAAAAABA4EhKAQAAAAAAIHAkpQAAAAAAABA4klIAAAAAAAAIHEkpAAAAAAAAZGZSaubMmTZ48GArKCiwcePG2bx58xqdd9asWbbffvtZt27drLCw0EaNGmUPPPBAoMsLAACQbMRPAACgo0t6Uurhhx+2qVOn2rRp02zBggW2zz772IQJE2zdunUx5+/Ro4f98pe/tLlz59o777xjU6ZMcY+nn3468GUHAABIBuInAACQDrI8z/OSuQBqGbX//vvbbbfd5p7X1dXZoEGD7Nxzz7VLLrkkrs8YPXq0HXPMMXbVVVc1O295ebmVlJRYWVmZFRcXt3n5AQBAekvF2CHo+ClVywEAAKSmeOOGpLaUqqqqsvnz59sRRxzx5QJlZ7vnagnVHOXT5syZYx9++KEdcsgh7by0AAAgCHV1nn2yfqu9vWKz+6vn+BLxEwAASJdYKzdp32xmGzZssNraWuvbt2/EdD3/4IMPGn2fMm2lpaVWWVlpOTk5dvvtt9uRRx4Zc17No0d4tg4AAKSmRavK7NEFK23Juq1WWV1n+Z2ybWifIps4eqCNKC1J9uKlhCDiJyGGAgAg/SxKsVgrqUmp1uratau99dZbtnXrVtdSSmNSDRkyxL761a82mPe6666zK664IinLCQAAWhYk3TrnI9tYUWX9Szpb55Ic215VawtXltmqTdvtvMOHkZgKKH4SYigAANLLohSMtZLafa9Xr16upm7t2rUR0/W8X79+jb5PXfyGDh3q7rz305/+1E466SQXOMVy6aWXuppB/7FixYqErwcAAGgbNRtXrZ2CJNXWFRXkWk52lvur55o+a8EquvIFFD8JMRQAAOmjLkVjraQmpfLy8mzMmDGuts6ngTr1fPz48XF/jt4T3kUvXH5+vhtUK/wBAABSy7LPK1wzctXaZWVlRbym55r+0botbr5MF0T8JMRQAACkj2UpGmslvfuemo5PnjzZ9ttvPxs7dqzNmDHDKioqbMqUKe71SZMmufEP/Jo8/dW8u+66qwuknnrqKXvggQfs97//fZLXBAAAtNaWHTVuXAM1I4+lc16OrS2vc/OB+AkAAKRHrJX0pNTJJ59s69evt8svv9zWrFnjmpTPnj07NHjn8uXLXXNznxJWP/nJT2zlypXWuXNn22OPPezBBx90nwMAADqmrgW5bqBNjWugZuTRNF2vaz4QPwEAgPSItbI8z8uo+yzr7nslJSVufCm68gEAkBo0fsFVT77nBtrUuAbhzcoVqqi5+ciB3eyyY/a07OzIJuftjdiBcgAAoKOrCzjWijd+SuqYUgAAAKLgR7ci7lGY54KirTtqrLbOc3/1XNNPHF0aeEIKAAAgHWSnaKxFUgoAAKQE3YJYtyLee2CJbd5eZcs2VLi/qrVLxi2KAQAA0smIFIy1GJgBAACkDAVDw/sXuzu/aKBNjWswuGchLaQAAADSMNYiKQUAAFKKgqIhvYuSvRgAAABpKTuFYi267wEAAAAAACBwJKUAAAAAAAAQOJJSAAAAAAAACBxJKQAAAAAAAASOpBQAAAAAAAACR1IKAAAAAAAAgSMpBQAAAAAAgMCRlAIAAAAAAEDgSEoBAAAAAAAgcCSlAAAAAAAAEDiSUgAAAAAAAAgcSSkAAAAAAAAEjqQUAAAAAAAAAkdSCgAAAAAAAIEjKQUAAAAAAIDAkZQCAAAAAABA4EhKAQAAAAAAIHAkpQAAAAAAABA4klIAAAAAAAAIHEkpAAAAAAAABI6kFAAAAAAAAAJHUgoAAAAAAACBIykFAAAAAACAwJGUAgAAAAAAQOBISgEAAAAAACBwJKUAAAAAAAAQOJJSAAAAAAAACBxJKQAAAAAAAASOpBQAAAAAAAACR1IKAAAAAAAAgSMpBQAAAAAAgMCRlAIAAAAAAEDgSEoBAAAAAAAgcCSlAAAAAAAAEDiSUgAAAAAAAAgcSSkAAAAAAAAEjqQUAAAAAAAAAkdSCgAAAAAAAIEjKQUAAAAAAIDAkZQCAAAAAABA4EhKAQAAAAAAIHAkpQAAAAAAABA4klIAAAAAAAAIXG7wXwmkvro6z5Z9XmFbdtRY14JcG9yz0LKzs5K9WAAAAACAFMP1Y+uRlAKiLFpVZo8uWGlL1m21yuo6y++UbUP7FNnE0QNtRGkJ5QUAAAAA4PoxAUhKAVEJqVvnfGQbK6qsf0ln61ySY9uram3hyjJbtWm7nXf4MBJTAAAAAACuHxOAMaWAsCaXaiGlhJRaRhUV5FpOdpb7q+eaPmvBKjcfAAAAACBzcf2YGCSlgC9oDCl12VMLqaysyPGj9FzTP1q3xc0HAAAAAMhcXD8mBkkp4Asa1FxjSHXOy4lZJpqu1zUfAAAAACBzcf2YGCSlgC/oLnsa1FxjSMWi6Xpd8wEAAAAAMhfXj4lBUgr4wuCehW7sqNVl283zIseN0nNNH9anq5sPAAAAAJC5uH5MDJJSgP9jyM6yiaMHWo/CPDe21NYdNVZb57m/eq7pJ44udfMBAAAAADIX14+JQVIKCDOitMTOO3yY7T2wxDZvr7JlGyrc35EDu7npeh0AAAAAAK4f247BcYAYB5bh/Yvd3RQ0eJ36CqtpJi2kAAAAAABcPyYOSSkgBiWghvQuomwAAAAAAE3i+rH16L4HAAAAAACAwJGUAgAAAAAAQOBISgEAAAAAACBwJKUAAAAAAAAQOJJSAAAAAAAACBxJKQAAAAAAAGRmUmrmzJk2ePBgKygosHHjxtm8efManffuu++2r3zlK9a9e3f3OOKII5qcHwAAIB0RPwEAgI4u6Umphx9+2KZOnWrTpk2zBQsW2D777GMTJkywdevWxZz/hRdesFNOOcWef/55mzt3rg0aNMiOOuooW7VqVeDLDgAAkAzETwAAIB1keZ7nJXMB1DJq//33t9tuu809r6urc4mmc8891y655JJm319bW+taTOn9kyZNanb+8vJyKykpsbKyMisuLk7IOgAAgPSVirFD0PFTqpYDAABITfHGDUltKVVVVWXz5893XfBCC5Sd7Z6rFVQ8tm3bZtXV1dajR4+Yr1dWVrrCCH8AAAB0VEHET0IMBQAA2ltSk1IbNmxwNXV9+/aNmK7na9asieszLr74YhswYEBEYBbuuuuuc9k5/6FaRAAAgI4qiPhJiKEAAEDajynVFtdff7099NBD9o9//MMNkh7LpZde6pqL+Y8VK1YEvpwAAAAdKX4SYigAANDeci2JevXqZTk5ObZ27dqI6Xrer1+/Jt970003uaDq2WeftZEjRzY6X35+vnsAAACkgyDiJyGGAgAAad1SKi8vz8aMGWNz5swJTdNAnXo+fvz4Rt9344032lVXXWWzZ8+2/fbbL6ClBQAASD7iJwAAkC6S2lJKpk6dapMnT3bJpbFjx9qMGTOsoqLCpkyZ4l7XHWFKS0vduAZyww032OWXX25/+ctfbPDgwaGxE4qKitwDAAAg3RE/AQCAdJD0pNTJJ59s69evd4kmJZhGjRrlWkD5g3cuX77c3VHG9/vf/97ddeakk06K+Jxp06bZr3/968CXHwAAIGjETwAAIB1keZ7nWQYpLy93d+HToOfFxcXJXhwAAJDiiB0oBwAA0D7xU4e++x4AAAAAAAA6JpJSAAAAAAAACBxJKQAAAAAAAASOpBQAAAAAAAAy7+57AACki7o6z5Z9XmFbdtRY14JcG9yz0LKzs5K9WAAAAG1GnIP2QFIKAIAEWLSqzB5dsNKWrNtqldV1lt8p24b2KbKJowfaiNISyhgAAHRYxDloLySlAABIQKB265yPbGNFlfUv6WydS3Jse1WtLVxZZqs2bbfzDh9GYgoAAHRIxDloT4wpBQBAG5uyq4WUElJqGVVUkGs52Vnur55r+qwFq9x8AAAAHQlxDtobLaUAIMP64yf7+9ONylJd9tRCKisrshz1XNM/WrfFzTekd1HSlhMAAKS39ojxUjnOIaZNDySlACCD+uMn+/vTkQI/laW67MXSOS/H1pbXufkAAAA6UoyXqnEOMW36ICkFABnSHz/Z35+uVBOpwE9lqS570TRdr2s+AACAjhTjpWKcQ0ybXhhTCgAyoD9+sr8/nalpvMpwddl287zI8tNzTR/Wp6ubDwAAoCPFeKkW5xDTph+SUgAQgJb0xw8/6X6yfqu9vWKz+9uWhFFrvh/x0VgNahrfozDPlfHWHTVWW+e5v3qu6SeOLmXcLgBIgESeG4F00N4xXqrFOcS06Ye+BAAQgJb2x090P/lUHQ8gXWibqGm8v81UltpmIwd2c4Ea3SIBoO0YQwZIToyXSnEOMW36ISkFAAFoSX/89ugn774/N9vWb9lheTnZ1ik327rm56oKrcH3o3W0TYb3L+bOhgDQgceQ4W5e6GiCGvMpVeKcVBzjCm3DlgKAAPj98RU8D80vimhe7ffHV23TTt272DX/fj80LoA/nxsXIL/I1U5pXAAFBS0JArZW1tjnFZW2YtN2y8/JttycbCvunGtDehVZty6dQt/PuEdto20S9O2Qg7qQ4kINQLJEjyGTqHNjW1ticVxER4oxExHjJSLOaevvJsj1RTBISgFAAPz++KrN9fv9qzm1anN08vT74y/ftC3ucQHiDQoUZN/23BL3/y55uVZbV2c693++tdLKt1Vbj6I8G9i9C+MedWDt3aWFLjMAkqklY8i09oK5pS2xOC6io8WYQbdoiiURv5uOtL6IDwOdA0BA/P74ew8ssc3bq2zZhgr3V7U5frAb6ief1/i4AHo93nEBwmuX9T2jBnVzJ2uNC5udlWXbqmsty7Ls3K8NZdyjDsq/kNKFU7fOeTa4V6H7q+eartdT+fMBoDmJPje29W5eHBfREWPMZEvk76YjrC/iR0spAAhQc/3xE91PPrp2WQmp7l26u++urq2z6lrPqmtrrVDjS6HDae8uLUF1mQGAZI4h05KWWDpnc1xEKkqVMZ+CiidSeX3RMrSUAoCA+f3x9xnUzf0NP3n6/eTV/Fj94sP5/eSH9ekadz/5WLXLCgSKO3eynkX51rtrvlXVeNx1r4Nq79sic9tlAKkg0efGtrTE4riIjhpjJlN7/W5SdX3RMiSlACCF+P3k1aJJJ++tO2qsts5zf/W8pf3kw2uXY+EOJR1be3dpae/PB4BknBvbcq7kuAi0HL8bNIWkFACkmET2k2/v2mUkV3snHUlqAkgV7TmGTEvOlRwXgZbjd4OmMIgIAKSgRPWT5w4l6a29b4vMbZcBpJL2GkOmJedKjotAy/G7QVNISgFAivL7ySeqdtm/Be/a8vpb8CpZoSCbO5R0XO2ddCSpCSBdz42tPVdyXARajt8NmpLlRbdRTXPl5eVWUlJiZWVlVlxcnOzFAYBA73zCHUrSk26j7F9IaYwnXUipq0miko7t/fmpjtiBckDmiPdcmenHRaA1+N1klvI4cy8kpQAASAPtnXTM5KQmSSnKAYglk4+LQGvxu8kc5XEmpei+BwBAGmivLi1BfT4AdDQcFwF+N2g77r4HAAAAAACAwJGUAgAAAAAAQOBISgEAAAAAACBwJKUAAAAAAAAQOJJSAAAAAAAACBxJKQAAAAAAAASOpBQAAAAAAAACR1IKAAAAAAAAgSMpBQAAAAAAgMCRlAIAAAAAAEDgSEoBAAAAAAAgcCSlAAAAAAAAELjc4L8SACB1dZ4t+7zCtuyosa4FuTa4Z6FlZ2dROEjo/hL0fsZ+DQAcRzlPIBOkSsxTlyLL0VokpQAgCRatKrNHF6y0Jeu2WmV1neV3yrahfYps4uiBNqK0hG2ChOwvQe9n7NcAwHGU8wQyQarEPItSZDnagqQUAARMJ49b53xkGyuqrH9JZ+tckmPbq2pt4coyW7Vpu513+LAOcxJB6u4vQe9n7NcAwHGU8wQyQarEPItSZDnaijGlACDg5rWqzdDJQ7UYRQW5lpOd5f7quabPWrDKzQe0dn8Jej9jvwYAjqOcJ5AJUiXmqUuR5UgEklIAECD191bzWtVmZGVF9vXWc03/aN0WNx/Q2v0l6P2M/RoAOI5ynkAmSJWYZ1mKLEcikJQCgABpAEL19+6clxPzdU3X65oPaO3+EvR+xn4NABxHOU8gE6RKzLMlRZYjEUhKAUCAdEcMDUCo/t6xaLpe13xAa/eXoPcz9msA4DjKeQKZIFVinq4pshyJQFIKAAKkW7Sqn/fqsu3meZF9vPVc04f16ermA1q7vwS9n7FfAwDHUc4TyASpEvMMTpHlSASSUgAQ5EE3O8vdorVHYZ7rB751R43V1nnur55r+omjS918QGv3l6D3M/ZrAOA4ynkCmSBVYp7sFFmORMjyotNqaa68vNxKSkqsrKzMiouLk704ADKUbuGqO2bopKH+3mpeq9oMnTw6wq1b0TH2l6D3s3Tdr4kdKAcgKOl6HM2U9UPmSJV9eVGKLEdb4ieSUgCQJLpFq+6IoQEI1d9bzWs7Qm0GOtb+EvR+lo77NUkpygEIUjoeRzNp/ZA5UmVfrkuR5Wht/JT6o14BQJrSyWJI76JkLwbSfH8Jej9jvwYAjqOcJ5AJUiXmyU6R5WgtxpQCAAAAAABA4EhKAQAAAAAAIHAkpQAAAAAAABA4klIAAAAAAAAIHEkpAAAAAAAABI6kFAAAAAAAAAKXG/xXAs2rq/Ns2ecVtmVHjXUtyLXBPQvdrS7b630AAAAAOj7/eqBse7WVb6+24s6drKRzJ64LgBRFUgopZ9GqMnt0wUpbsm6rVVbXWX6nbBvap8gmjh5oI0pLEv6+jnoyJQEHAEgX7XFOS/Z5MtnfD2Qi/3rgreWb7bPN262yts7yc7NtQElnG7VTtw55XQCkO5JSSLkTya1zPrKNFVXWv6SzdS7Jse1VtbZwZZmt2rTdzjt8WMwTSWvf11FPppIuCTgAQGZrj0qlZFdUJfv7gUzkXw+s3LTNPq+otlrPsy6dcqyyptZWK6auqe1w1wVAJiAphZSp3dN3KoBTYkmBW1ZW/fcVFeTa0PwiF9jNWrDKhvcvjliW1r6vo55M319dbuaZ1dR5bU7AUYsLAEim8EqlfsUFVpvv2dYdNfb60o22cuM2O/+I3Vp88Zjsiqpkfz+Qifzrgc+3VlpNrWe1dXVWXNDJXRd0zstxvQ80Xb/LjnJdgNTHtVRikJRCytTuKQmm71QA5yeWfHqu6R+t2+LmG9K7qM3v64gn0+raOvtk/VatmR22e2/Lzs5udQKuJds51gFX6JYAAGjreU8XiT0L82zxui1Wtq3aqmrrTKewz8q2213//dhmfHffuC8ek11RFfT3c0EERF4PFHfOs1Wbd1iXvNyw64Is97x8R42Vdu8Y1wVIfbSITRySUkiZ2j0lPJQc0XfGosTM2vI6N18i3tcRT6abtlVbbZ1nOdlmWytrrbhzdqsScC3ZzrEOuN27dHLLtGlbVUITl9HB9U7du9jyTdtSajyOVLwASKcBPbUun2zYaovXKvnq2W59u9qQXkUN1iOR26GtSddU3CeAjsA/7+n8tuizcquorLaaOnOVMnWe/nr2zHtr7Q8vf2JnHLJriz4zWRVVQX5/9Pk5LzfL+hQX2MFDe9moQd0aHIva+7iZjse9jraeHW15E8m/HsjvnO2OHblR663n2xVDZ2VZRXVt4NcFzW2bVN52bV229ly3ZJVbPNdSqnxI1W2aakhKIWVqF/VjVXJDP2h9ZzRN1+uaLxHv64gnU3XZ8zzPcizLtZpqTQKuJdv5vdXlDQ64a8p22IuLN7j3jBxYYoN7FSYkcRkdXGv91F0xPzfHOuVkx534Cj85FebXJyorKmsTcjKIlaDbtXehjR/Sy/qVFLT6O9pyQo0Yg6xMXTzrLD8n2wZ0C25Az3iWP555tC53vfixvfHpJtd9x98v99u5h/34kCGRidL5K23hqjLbVl3rurjuXVpiE8c0v67R+8dHa7fakwtXf9E9ts5yc7KsR2GeFebn2uZt1c0mXePdJySRgUkqB69tlc7rhkjaxjuqam3z9mqXkKqq9dz21/kuN9usTheR1bX2h5eX2gFDetreA7s1W4TJrqgK6vujL4h2dKq1JWu32Dsry+y5D9bZLj0LI84BiazRT8VzYSI/z3/f2ys228sfbbB1Wyrrz60pPi5YS7dxqh5rW7tc/vWAwuOcL2LmTjlfvk/PNV1DY7T3dUH0OlRU1tisN1c1um0S+ftsy3aNFUPrmPLykg22rnyHVdV4LV62tvbMaGrZW1Nuidjv9RmPzF/hxv7tX1JgdZ7nWveGX0vd/eInLp5csj5xPY/qUvQ3mwhJv0qfOXOmTZ8+3dasWWP77LOP/e53v7OxY8fGnPfdd9+1yy+/3ObPn2+ffvqp3XLLLXbBBRcEvszpKtm1i/ph6ceq5IZ+0OHLoETM6rLtNnJgfc1fIt6XauI5mSpQ93NRStS0JgEX73ZWa5Xo5JXKc035dnfhrv+vLa+00m6d25y4jBVc6yRYsaPaivJz3fbL75QT14D3/slp49Yq27S9yk3v3iXPnRjacjKIVSOiBN1TC9fYv95e7QLx1nxHWwKR8DHItL41dXUuQaOuL5+V7bDKTz5vU6IwnlZL8Sx/vPNc/cR79sGaLe7ErpZesrWyxl5cvN7Wbdlhlx0z3E27+sn37JP1FS4I0PhqlmW2fGOFLVi+yX5w4GDbJ0YLgejl0HZUgFV/Yehp59fHWHZWlrv4UM/YEQNKbGifro0mXReu3GzXz/7Alb22f/+eXWxNeWWDfSLRLQvTubl4sgLMjqqjx1DaXjqlbayodC2k6r447/nnJv3bKTvLJanvf3WZTT9pn2a3bbIrqoL4/ujKJbWifu+zcleR061LJ3cBrKS6f9w6ZmR/e/Kd1QlpBZ+K58JY5fOf99bYE++sttVlO9xxvaV3clZFz9INFS6Boa6lu/XpGlcckmjxHt9a2tMhVc8jbVku/3rgnRWbrbgg1zZuq3LDYIgqOst3VFv3znmuRfk+g7q323VBrErWzysqXTy7a68iq3Hj5lXb68s22spN2+3YBP8+2xJTuveu3ep+04qhtf9V13nuWKzfwdC+Xa0gN/7fQVt7ZjS17K3p3ZOo/V7HF7Xiraqpc9dCum4r7pxru/Qqcsc/tf5VIq9/twLbpWdRQnoeLUrR32xaJKUefvhhmzp1qt1xxx02btw4mzFjhk2YMME+/PBD69OnT4P5t23bZkOGDLFvf/vbduGFFyZlmdNZsmsXdZLVD0s/Vj9pou/Uj1iJJf3ITxxd2uBk3Nr3pZrGTqb1wbln26pq3MWtumgpVC/6ogajpQm4eLezEhHRySu9t3x7jTvYipZlS6UCpU6tTlxGB9fy4dpy132jT3G+6///6cZtNnqnbu71xhJf4Scn19Vxe5WrgXc5C69+vJLWngxitS7T/z9ev9UlRvTQialbQacWfUdbusuGL5MCnhrPs25d8ty+UeB5LvhSIlNjlLU2UdhcqyXN89s5H7n9rnvnTtajsJO7KPrfx5+7GuZTx+1kXfJz7YG5n9ra8h1u/+1VlG+dsrMj1nGPvl3t3pc+sQ/XbrGa2jq3D2rZlWDT73fztipbur7CHplfP+baB6u3uC6shfmdXKJ2W1WtbdpWaRsrqu2qJ99z6zqsb9cGSa8v948c21RRZWUqo1rtIUpGqZYry6qV6MryrLbW3G+gd9d861GY3yDpuuizMrvk0XdsxabtrmWaLgo/zt1qO6rrIvaJLM8S2rIwnQdQTmaA2RGlQwylc5Vqmd//rNw8q694Ca8s0fFAiYDc7Gz7eH1FXOeWZFdUBfH94ZVLsnTDVnfs9WOGwvz6FmZ9i/PdBdOd//3YOnfKccfFtrSCb89z4W+fXewSSKpE6lmU57pYKR5avGaLawUbqztiU+euV5Z87ioYCjplu0Sd7mAc752cdZ7ReUcVcF075brKEbUc13uaikMSLd7jW0t7OqTqeaStyxV+PaD9Pyc72yW81QKzuqbO/f60f26vqbWvj+gXyDoUFGfbG8s2usorrYta7mu/VI8I7TqqHPt43VYXH7X19xnruzdsrXIxmX5HF39jD3fsaa6SU/HM5xX1CSktpygWU7z/zsrNNqRnYejY0tSyhe+Xmr+qRjG5Z13zcxv8jmL1zGhq2ze6z+fnuO9SxeV9ryy1G04c6ZbNb/n4yIKV7rfUlv1eZXXvK8vc9ZC2mxoJKGbVslRUltmIAcXuOK/tPKC4IFQ50ZYK/EUp+ptNm6TUb37zGzvjjDNsypQp7rkCqyeffNLuvfdeu+SSSxrMv//++7uHxHodbZPs2kXRD0o/LP8krOSIvlMHUSWWGvvBtfZ9qSTWyVSJhbycbBds6kJeBz4XkHvmAvTWJODi3c76kujklZIf4V0L1TdfJ/q2JC6jW26pBstPfGVlZbu/4cmvWImv8JOTuhC8uWJzfWDcJU8NYNz7dfLcd1CJLVlf0eKTQfQyKrAJvwjQyUjr7GVZ3AFrW7vL+suk7amatvpE4RetC7K+GNBze42VduvS4kRhPK2WfnH0nnbPS0vdSV7fqv1WJ2Ctly5MlOtZtGqh24+0i2ie5dlZbh/uXZRve/Tr6oIeNW9Wq6R/v7vGJXTc91TVmvbA3Nz68cuUfFJSVrWK67fscNvUT8BpG+h3onZOWVme+4zopJfKMFTWvQttwYrN9b+xrCyrs/plzcrOcs+r6+rciTEvt/53t3jtFjtgl7yIpOt/3ltrf5q7zJW7gquCTjnut6EuHlp/JbLc79fd6acuYS0Lk93Fuj21Zt0yIUhL9xhK2/K4kQPspcXrraKqzrJzs1xFgnLD+u2o9lnHMv1+tI/Ec25JdkVVEN8fXrkUXlnk/278sXOUdNc5Qt1H9h3Uvc2t4NvrXKgk0tsry9z5xm91oGOwdgR17dR5e7c+RTa0b9MJZz+5pc/SsvUuynPHd7Ua21FVZ3sNKHbnnebu5Ny3pCA0tqfOWVoWxRFqOaUKsiBuoNOS41tLejoosZeK55FEnd/CrwdeXbLBlm6rCiWAtF/p+LJlR7Xd8d9PbOGq8oihAdpjHRQHbK+uc62kNm6rj2X7dC0IDcmh5Oemim3Wo7Bbm36fsVpPqoJXxwZV8q7avN0ueXSh3TBx7wbdoP33KiG1uUK9DFT5bZaXk2U7PA0bYrZ5e5UV5GS7BJ8bu7Sgkzuuvbl8U6PLpulqcahW4oqX6sfErW9RpFb3TfXMaG7bx9rnVdmoz9I66xpgdfk6+/GDb1hRfieXnNRwDRryoV9xvqsgLcrObfH+5ZdVRVWNFebluO/WQy18VSaKR1WhWb6jyiXE8zpFNgBoTQV+XRrHfimRlKqqqnJNyC+99NLQNN1J7IgjjrC5c+cma7EyWrJrF306ObRmYLjWvi+VhJ9M3RhBm7e7A6jGVVJt8r47dXfBrLQ2ARfvdlZXrejklYIzv2uh6P+dFDi2IXEZ3XIrOvHlB9d+8itW4iv85KQB4KMDdD+xpWRHa4LJ6GWMvghQEfjLmFUQ3wmnrd1l/WUqKMiNOQaZGzfhi0HxKyrjTxT6/eQ/2VDhkilfttYz65GbHWq1NOPZxfbWivrAX/unElJu27kMj7kEj4KXL5fny3HRVBuupNDA7p1d82b1UvUTUqHl0L5QU2cbtlRaz6J8l4jVNlQtoy7q6tNcugCqru/yk5ttOXWe67qoxFL4BVHBuOwv94+q+v0jPzfbtbDSxZP2YCXSPLXS8Oq/W+usItW8fkLU3/f+9c5nLjjQZyghVV8+9d3/RPtgz8Ic26IWbDs8Nz5VIloWJruLdXtq6bplSpCWCTHUkcP72pjBPezlj9a7LshZdfVBvlpIKem7o6bWuubX37wh3nNLsiuq2vv7wyuXos+Z4WPn6LhY+0VyKkaP/xZXJrXHuVDdYNSqSeeSogK/9WuNrSnb7l53lSKe585HTSWc/WNCfXc9HQs6ud9E9hefoePvss+3ueRWc3dyVpItskzrk6P+MVz/b8+eAy09vrWkp0OqnkcSuVzaN9QC++JH33EtoNVKcMWmbW6bqgy1XZW0ee2Tz10scn6CKjBirUP977N+jFQFCaE96otEhlr2qMJPrcmHqbdA1LrH+/sM/26tm5Ka+k7tq7nZOdaputaVgYYcuPQbe0asr3uvEjZVtbZdv10lpL5I4LnoJls3nTDb7qnlYY77rdbvd9UuafzWis0xt4mmL/28wsV4fst2v0XRtsoy27N/sdtvY/XMaG7bR+/zSkhpnXd8sc5KCOl75i3d5L7X9cTIMndO8ctHZdC9MK9F+5dfzrv0KHSJL31HfcVt/XnLHSd21CfBdZdHfV+0llbgL0vR32zaJKU2bNhgtbW11rdv34jpev7BBx8k7HsqKyvdw1deXp6wz043ya5djF6W1vywWvu+VBKeXGvqbmqtTcDFu51VixGdvNL3qIZDB2GdlHoVFYQOuK1NXEa33ApPfOmEHR5cN5b4Cj85KWkSHaCHJ7ZKuuS1OJiMXsboi4DoZYznhNPW7rL+MqnbXqwxyPwaKQUSLUkUap9S7aGSNJF3gJSsUKulN5dvdomovl3zXVdTv4m3Ztf//MRlyBd30tKFpk7k2q8/rqmNaGlX/w1ffEZ9bsvdgUu1bNr/1WowXHWtmuLrYiU7FOj53xV+olZrJ7+sy75YVgUsblZPXffq/7oM1RfLXxc23V9GbX+Viy56+n0R+Pnl7pJaXn3iVuu3o7rWBcOalqiWhcnuYt2eWrpumRKkZUIMpXPSBUcMc9tL3aZ0TsnLrU/26lij7rGd87Jd15aWnFuSXVHVnt8fXrmkbu6R54D67v49C/NdWWp8KSV0YtwbpcWVSYk+Fyr5onGfdC5RqyYlkbT8ShS4T/xijD8d+/VoqvWVf0xQ9z+1toqsqPkyqaRzpo41Td3JuS7GeTU8jthu7dtzoKXHt5b0dEjV80iil0t3bl63tdJ27V1ki9dtcef1+tbz9eWpyqHK6vq4N1EVGLHWQTGBvruyxnPj4+n3ov3eQrNkuX1NiSm/0qo1v89QRWVxtmshFd6dV5RMckmUrQ1bCuq9+m3ou9QqUH+ViPKzaHVhxw4/LlN8498QRknlE0ZFXh9qHVXpqL/FX3Rxqy+PrFCSWPu4Kidj9cxobttH7PP5Oa6FlBJSfoJIXQWVjNc8rpvkFy3ZCwty3ef5LR/dmJ9KXMa5f325jetbeym5ps+qT/7Vtx5V/Kf1VGOC6CRjS7apL1V/s4nWSL1J+rjuuuuspKQk9Bg0aFCyFyml+bV7ew8scU01l22ocH+VaEj3rhCpxE+uqWXUobv3cX/1PPyA78+jQZ2jX0vEdvaTV+7OEeu2unGFdCLqV9zZHegV4KrfthrD6DXN05rEpR9cKzDQwdxPfCmo9rw699fVkOfXd+HQfMP6RF6chJ+coltzRQfKrWnNFb2Mkd/hRSyjxPMd4cscS3Of4S9T/cVOjluG+nRKfYJQz1WO5durGpRXU/R5/jJFt77yp6k1lE669V1L61xiSOWh4qhvYVRfwxZO07Wv+IkbxTi6WNJ0tW7y82l+1x3//zqfK/mkfW6fQSVunfQ+vzuP/tYnseoH41TXvRI3sHj9iVoncgUoof1DLaq+GLfGv3By3+ea9te38NIX19TWunFsFKBpPn/fG1BS4E6cvYrywvbT+vGo/OCvvvzrA0Ldol37SfTFWjzbONH7TCpr6bqFgrS8xoO0WBeeSM0YSueei47a3XWp2FZdVz/uSvUXLaS6dLKB3bu0qlKsLefJRGiv7w8/P68t22GdO6nlp7qs1LoLJA1EvEuvwi+6KtW445bOBTo2hWvsnBrUuVBJFSX5VUngN6z1Kxs66c672bq4rL8i1rEzOiETzj8mKCkTHQNI/Y1i6geYbu5OzpFxSP3n+MdwJfhaUmat0dLjW/R2aWobp+p5JNHL5ZehBqqPbj3v7w/aRTQeZqz9KVHroGkax7I2FK9khY4Dboyr2jorzMt1+3lVdW2rf5/+d2sMqVjr626WlJPtbkQQvb56r5ZJvz39puu75tZXzKnKL3yPUsK2vsuauThHLdnXlm9vUH56rvGyNJ6ra5UesV/Wt17bUFHpkurhPTPi3fbh+7y6zH053m19YkhJPtcyqiC3vjJVcWOowjSy5WNj39FUOWt+tbLS9ZKOw9p+Ln6urrVunTu51r8N17vlx1xJ1d9s2iSlevXqZTk5ObZ27dqI6Xrer1/iBp9T0/aysrLQY8WKFQn77HSlH9ivjhluV3xzL/vlMXu6v5cdE9nUE5mxnWMlrzRI4aG79bZDduvtDvBtTVxGJ790MbJzz0I3Js861XZmZdlOPbq4LlGNJb7CT06qMYkMJr8MlIvycloVTEYvo75ZB38Ft2qZ5V8A6Cwd7wmnJUFkc8ukIELlpGXZXlXjTtBKqCjoUsDQkos5rZcfCDdo7fTFNE1VEkYXizrp1vnVaApWvlj+aG6aF5ZEqtOA4Oa6wClAUPInIjEVlaDSwLc/PGgX239wD/c+raO7+94XrcIUTGlmjefk323HP1Hv1rfoy/0j78v9o1tBrlveL3ochpJ6IV8ENOrS5+97uotVQV6O626ou6yo66KWRe9VzZgCTHVB8r9XrRz1XbrdffjFWmsCk7buM6mspeuWKUFaJsVQx48qtZnfG21H7dnXdurZxfoWF7ha9AOG9KJSLAb//DxyUDfXAkSJe3WlUSJP3WJ0XvCPW2ceuqs7F/gVTPXJmZZXJiX6XKiLOJ1LNBC5X7ESXtmgh7vpRX5u6NjZWMLZPyaoYiE6oST6HK2ixsuJtUzhxyAJP75X12qA6mp3Ia1WWO3dc6Clx7dYlYiNbeNUPY8kern8MvTLIrqSzU8yqptnoiowYq2DEjiKaVX2GtJAIY8qwPy7Aar1+JBeha4l02flO1r9+/S/W91e1V0wcn2/jIM1pmf0+uq9u/YqdEMfKI5SPOZivS9aDIY+5YsW75qmWFPLru9UEjlWy0NN1936vvwd1d8IRn+VvFHcevDQXqGeGS3Z9uH7vAY1V1JIi+qXqxJwii/9WFiUHPSPC36S2h8AP979K3obKzE1Zqfutt/g7m7cWiX9JuzVz7X+jef3GI/BKfqbTbSkRWt5eXk2ZswYmzNnjp1wwglumi5s9Pycc85J2Pfk5+e7BzKvGxwSs50b64IgieqWED3+hk6YqtmtLMxzJxXVZqhZbmPjcYR3SdQA8GrNpVoSBck6fOsubmrVpcFSWxtMRi+jWgnVj6GhMix0yQedcOLt6pqI7rINxiAr+2IMspzsiDHIWpIo1Hbcu7TYVmzcVt/aKqz5twIbBeb1gw93sp26d7HFVVusolI3rKtPVrlubF/MXT/SUv0YTeGnUdd83erHbFKySQlHfYeCMjU5D+/Rp69WGU8ev7MbnPPHh+zqkpUa80oJIH2BghEFet0657mLsfALIu0zCnhCZe32jwKr2FFjFVW17jvV6kvneTWvV3n37NLJLaOWScHZ5h3VoX1Pv4X/Ld1Y3621T5ErWw30q1o6v7ufLgaVkFJX0X7VdW55xW9ZuL0y/v0k0ftMqmrpuqXKGIjJkq4xlH7j07+9T4ceGzJI4edn3XTi5Y82uG4qsc6Z6saUiDGuEnku9BMHujOexmDRctd/Xv15wh/sfuceXULdYBpLOIcfE3bpWegquHRxqhYRSgJo/Bt9tr4r3js5Dx9QbEvWbnGDo+t1Jc+CGJesNce3eMcxS9XzSKKXyy/D15dudNs/coiDL7u4KjGSqAqMxtZBd6PUoNhq5a2uyVt36GZGWa4VkZZT+5eSMy6Jsb51v0//u3WXPQ1qrjGkFN9ovbWufsJYg65Hr6/e+4ODBtvrn9bfJdDvmlv5RWXfl+Ng1f9VXK7W4oN7Fbnf1I5O9a0LY/229b3hcZKf1FI3RbUoUivS1m57f5+/7+WlblBzfb5iNpVr764F7rP8ylUlqZQcVALLv4mUPk5xZEsSRY0tq0YV1UD2Or7obqGJHFcwO0V/s4mW5cWq0g7wdsaTJ0+2O++808aOHetuZ/y3v/3NjYegcREmTZpkpaWlrvm4P7Dne++95/5/9NFH26mnnuoeRUVFNnTo0Li+U+MhqAm6avyKi4vbdf0AtIxqSMMvRpT00LgA8V6chN8+WSfWTdur3HSNMaGDtmoS2hpMhi+jaqT+98lGF0T4t2tu6XfEuuVzSz/DX6amxiBriei77/kDdSvRpzPG7v27urGkPtu8w3oUdnIDSSrY8sdVkuyosZm+TDDVD7yrLhCqUVLT+U82bHOfrS4cWaGWT+rSV99EXDXWj59zsLsbn798GoxdY19t2lrlxrTSXWL26F/sxnoKP1GHt96L2D90h5lt9fuHAjddROl0qMSWlkvB7AFDerr/R+97DW67/EWTee0PCojUykPjLPjbs0eXPFcW+r7WbuNE7zOpqiXr1uDuVFFBWiK7nKdi7EAMhebOodHngOZeD/pcqM+46sn3XPJFF5IaFFnnMJ3LdA7QhWTfrgU2fteeobv96digCzu17I5e9vBjgpJROhbouKuWrbqQ1oX/Gc3cbS36GKQu2H2LO9tBQ3vaqEH1iaAgLv5ae3yLdxun6nkkkcsVfjdGJTgVFynP4idp/LsxNrY/JXIdFAfod6LKMMWkrptpVpatKd8R2p6JGIPunZWb7ZJH37EVm7a7Ckr9hrTeSkgpqdrU7+ext1bZzc986OIX0W/QdXlzfWs9d9dA9VxQq0s/CdXY54X/tt0g41+0nqr/XWe5bsf7DOoe8b7Wbvuamjr7+ax37P3Pym0XJca/aC2/YPmmiDFwdedMJY6Wrt/qyr1zXq678YHGK2zp/hXvsibymLsoRX+ziYqfkpqUkttuu82mT59ua9assVGjRtmtt95q48aNc6999atftcGDB9v999/vni9btsx22WWXBp9x6KGH2gsvvNBhA0sAiRN+AijMr++GphrT9qpxT8QJJ5EnrUTRyU+36X7j000uYSMKovbfuYcL6sUPmNWlQQNr+uPAKJGkW/CqZtp1jcuqH9xSt0SuHx8ky4YP6GrfG7ezPfnOaje+gW6/rXJQsKK/eo+6deg9lx073HXtScQFUWP7R0v3laaCg/ZuWZiq+0yitGTdggrSUjV2IIZCqmjtMSki+VJc4AYi1zFdrVp10a4LXlUOxJtwDj8m7FD3cjPXeuHYkf3dnR7jWaZUOb629/EtVdazPZfLj2U0GLfGwFQlkpJCak2u4QcSXYHR1Dq8t7o8kPPVwpWb3V32VDmr34667KmFVDy/HyW17n91mX2yfmv9QOG52a5iUolitYYc0K1L3AnS1iRWE3Ic+eK71pTtcOsjIweWhCotP9u8zVVGqkVTWxLNyfj91KXobzYtklJBS9XAEgBSjU5+uqOJbterWjINRqmucLFqtfyWaeqfX989r37QcI1toHEU9I768Ru+TGwpGPE/49UlG2z5xm1ubCglpFSLqRq5Hx86pEFCqrFlJTjITEFse2IHygHtp7GWJeoMrructvQCviNeuGXCuiSzDP/z3hp3p0cNrK8Kr2S1Mglqe7YloZnIhFqQrXsaP44krqU6Wo6kVBsLBgDQvFgtj/R/vxuhAhp161uyriJmYiv8MxQ0LFm71SWlNMjxQbv2CnXZA5KJ2IFyQPuKdSEsJGTQnvtYOif4Er2+rf28IMud40jqISnVxoIBAAAgdiCGAgAA7Zd7oQoaAAAAAAAAgSMpBQAAAAAAgMCRlAIAAAAAAEDgSEoBAAAAAAAgcCSlAAAAAAAAEDiSUgAAAAAAAAgcSSkAAAAAAAAEjqQUAAAAAAAAAkdSCgAAAAAAAIEjKQUAAAAAAIDA5VqG8TzP/S0vL0/2ogAAgA7Ajxn8GCJTEUMBAIBEx08Zl5TasmWL+zto0KBkLwoAAOhgMURJSYllKmIoAACQ6Pgpy8uwar+6ujr77LPPrGvXrpaVlRVXdk8JrBUrVlhxcXEgy9hRUDaUD/sOvy2OO6mF43L7lI1CJQVUAwYMsOzszB35oKUxVEux/1Im7Cf8fjimtC+Os5RLkPtKvPFTxrWUUmEMHDiwxe/ThiApRdm0BvsOZdNa7DuUDftO6vyuMrmFVFtjqJbi2EeZsJ/w++GYwnE2GTj/JL5M4omfMre6DwAAAAAAAElDUgoAAAAAAACBIynVjPz8fJs2bZr7C8qmJdh3KJvWYt+hbNh3Eo/fVepjG1Em7Cf8fjimcJzl/JN55+SMG+gcAAAAAAAAyUdLKQAAAAAAAASOpBQAAAAAAAACR1IKAAAAAAAAgSMpBQAAAAAAgMCRlDKzmTNn2uDBg62goMDGjRtn8+bNa7LQ/v73v9see+zh5t97773tqaeesnTVkrJ59913beLEiW7+rKwsmzFjhqW7lpTP3XffbV/5ylese/fu7nHEEUc0u69lStnMmjXL9ttvP+vWrZsVFhbaqFGj7IEHHrB01tLjju+hhx5yv68TTjjB0lVLyub+++935RH+0PvSWUv3nc2bN9vZZ59t/fv3d3dQ2W233dL2vNWSsvnqV7/aYN/R45hjjgl0mTMJ8VbbyyVTYi3iq7aVSSbFVcRTbSuTTImjiJ1SPG7yMtxDDz3k5eXleffee6/37rvvemeccYbXrVs3b+3atTHnf+WVV7ycnBzvxhtv9N577z3vsssu8zp16uQtXLjQy/SymTdvnnfRRRd5f/3rX71+/fp5t9xyi5fOWlo+3/ve97yZM2d6b775pvf+++97P/jBD7ySkhJv5cqVXqaXzfPPP+/NmjXL/aaWLFnizZgxw/3OZs+e7aWjlpaPb+nSpV5paan3la98xTv++OO9dNTSsrnvvvu84uJib/Xq1aHHmjVrvHTV0vKprKz09ttvP+/oo4/2Xn75ZbcPvfDCC95bb73lZXrZfP755xH7zaJFi9xxR/sUkr99MiXeItZqe5lkQnxFXJWYcsmEeIo4qu1lkimx00MpFDdlfFJq7Nix3tlnnx0qkNraWm/AgAHeddddF7PAvvOd73jHHHNMxLRx48Z5Z555ppfpZRNu5513TvukVFvKR2pqaryuXbt6f/zjH71009aykX333dddhKSj1pSP9pcDDzzQu+eee7zJkyenXRDV2rLRiVAXH5mipeXz+9//3hsyZIhXVVXlpbu2Hnd0ztIxeevWre24lJmLeCsx5ZIJsRbxVeLLJF3jKuKptpdJJsRRxE6pHzdldPe9qqoqmz9/vutG5cvOznbP586dG/M9mh4+v0yYMKHR+TOpbDJJIspn27ZtVl1dbT169LB00tayUbJ8zpw59uGHH9ohhxxi6aa15XPllVdanz597PTTT7d01dqy2bp1q+288842aNAgO/744133lnTUmvJ5/PHHbfz48a77Xt++fW3EiBF27bXXWm1traWTRByT//CHP9h3v/td19UFyd8+mRBvEWu1T5mkW3xFXJXYcknneIo4KjFlkgmxU1WKxU0ZnZTasGGD27m0s4XT8zVr1sR8j6a3ZP5MKptMkojyufjii23AgAENgu5MLZuysjIrKiqyvLw81zf5d7/7nR155JGWblpTPi+//LI78GtcsnTWmrLZfffd7d5777XHHnvMHnzwQaurq7MDDzzQVq5caemmNeXzySef2COPPOLep3GkfvWrX9nNN99sV199taWTth6TNYbCokWL7Ec/+lE7LmXmIt5KXLmkO+KrxJVJusdVxFOJKZN0j6OInTpG3JSbkE8B0CLXX3+9G7D6hRdeSMvBBFuja9eu9tZbb7lWL2opNXXqVBsyZIgbVC+TbdmyxU477TSXkOrVq1eyFyflqCZLD58CqT333NPuvPNOu+qqqyzTKbhUjfBdd91lOTk5NmbMGFu1apVNnz7dpk2bluzFSxlK+urGJWPHjk32ogBoA+KrLxFXRSKeio04qiFip+DjpoxOSukCT0H62rVrI6breb9+/WK+R9NbMn8mlU0maUv53HTTTS5oevbZZ23kyJGWblpbNmoyOnToUPd/3SXm/ffft+uuuy7tklItLZ+PP/7Yli1bZscdd1zEyVJyc3NdN8ddd93V0kEijjudOnWyfffd15YsWWLppjXlozvuqUz0Pp+SdqoFU9Nt1aCng7bsOxUVFa6SQF06kDrbJxPiLWKtxJZJusZXxFWJKZdMiKeIoxJTJpkQO/VKsbgpo7vvaYdSrbFaZYQfnPQ8vOY9nKaHzy//+c9/Gp0/k8omk7S2fG688UbXemP27NnuVr3pKFH7jt5TWVlpmV4+e+yxhy1cuNC1IvMf3/zmN+2www5z/9c4SukiEfuOmiKrvBRQpJvWlM9BBx3kEnR+4C2LFy925ZMOQVUi9p2///3v7ljz/e9/P4AlzUzEW4krl3RHfJW4Mkn3uIp4qu1lkglxFLFTB4mbvAynWyHm5+d7999/v7vl8I9//GN3K0T/luKnnXaad8kll0Tcojg3N9e76aab3G1np02blpa3KG5N2ej2mbodrx79+/f3LrroIvf/jz76yEtHLS2f66+/3t1285FHHom4neaWLVu8TC+ba6+91nvmmWe8jz/+2M2v35d+Z3fffbeXjlpaPtHS+e57LS2bK664wnv66afdvjN//nzvu9/9rldQUOBubZuOWlo+y5cvd3dGOeecc7wPP/zQe+KJJ7w+ffp4V199tZduWvu7Ovjgg72TTz45CUucWYi3ElMumRBrEV+1vUwyJa4inmp7mWRCHEXslPpxU8YnpeR3v/udt9NOO7mEgW6N+L///S9UQIceeqi7AAz3t7/9zdttt93c/HvttZf35JNPeumqJWWzdOlST3nO6IfmS1ctKR/dujlW+Sixmell88tf/tIbOnSoOwl2797dGz9+vDtQprOWHncyJSnV0rK54IILQvP27dvXO/roo70FCxZ46ayl+86rr77qjRs3zgUeQ4YM8a655hqvpqbGS0ctLZsPPvjAHYd18YbU2z6ZEm8Ra7WtTDIlviKuanu5ZEo8RRzVtjLJpNjpdykSN2Xpn8S1uwIAAAAAAACal9FjSgEAAAAAACA5SEoBAAAAAAAgcCSlAAAAAAAAEDiSUgAAAAAAAAgcSSkAAAAAAAAEjqQUAAAAAAAAAkdSCgAAAAAAAIEjKQUgEPfff79169Yt6aX91a9+1S644IKEfd6vf/1rGzVqVEotU7wGDx5sM2bMaNNn/OAHP7ATTjghJdcPAIB0kyrxVDJlZWXZP//5z0C/c9myZe5733rrrXaPvZKxfkAykZQCOhglAXSy0qNTp07Wt29fO/LII+3ee++1urq6wBMq8Z5wTz75ZFu8eLG1NyVA/PIpKCiw4cOH2+233x56fdasWXbVVVdZEFS+/rI09gAAAMEjnoo/ntJD8ea3v/1t+/TTTwP7zuiHXgeQfkhKAR3Q17/+dVu9erWrtfn3v/9thx12mJ1//vl27LHHWk1NjaWizp07W58+fQL5rjPOOMOVz3vvvWff+c537Oyzz7a//vWv7rUePXpY165dA1mOiy66yC2H/xg4cKBdeeWVEdNaq7q6OqHLCgBApiGeii+e+uyzz+yxxx6zFStW2Pe///122x6qOPTjo3nz5rlpzz77bGiaXm8Nz/NSNj4GQFIK6JDy8/OtX79+VlpaaqNHj7Zf/OIXLlhQgkrNun2bN2+2H/3oR9a7d28rLi62r33ta/b222+71zTfFVdc4Z77NVD+e5t6n+9f//qX7b///q41Uq9evexb3/qWm65aLNWiXXjhhRGtgWI1N//9739vu+66q+Xl5dnuu+9uDzzwQMTreu8999zjPrtLly42bNgwe/zxx5stH82r8hkyZIhrrRT+vvCuZB988IGb9y9/+UvovX/7299cAk0JrXjLojFFRUVuOfxHTk6OS4iFT/OpldvPf/5zlzTTdC13dFmovL75zW9aYWGhXXPNNW66trv2AW0Hra+2qR94KQjT5+y0005unxkwYICdd955EZ+7bds2++EPf+iWS/PdddddEa8vXLjQrbPKpGfPnvbjH//Ytm7d2ug6V1RU2KRJk9y69+/f326++ea4ygoAgKART8UXT+l8fsABB9g555xjCxYsiJjnv//9r40dO9aVpea75JJLQnHIn/70JxcPfPTRR6H5f/KTn9gee+zh4o9ofgykh+IuUezhT9Prvg0bNjQaH77wwgsublJcPGbMGLdsL7/8sou1rrvuOttll11cXLPPPvvYI488Enrfpk2b7NRTT3Xfrdf1uffdd1/EMn7yySeuMljfq/fPnTs34vVHH33U9tprL/ed6jnQXByksjnkkENCrfv/85//NLNVgPRDSykgTShxoJNjeC2SmlmvW7fOnZTnz5/vkheHH364bdy40XWn++lPf+pOnH4NlKY19z558sknXSBw9NFH25tvvmlz5sxxAYno+6NbBMXyj3/8w7Xu0jIsWrTIzjzzTJsyZYo9//zzEfMpyaLWTu+88477PgUL/nLES4FFVVVVg+kKim666SYXIC1fvtxWrlxp//d//2c33HCDCwziKYtE+eMf/+iSTa+99prdeOONrvyiAxMlmFTuShQpkfTSSy+5BJDKUUm0O++80yX//ISVAqNbbrnFTVfQo/EJ9t5774jPVLC03377ue2ocjjrrLPsww8/DCWYJkyYYN27d7fXX3/d/v73v7saSwWljfnZz37mAlQly5555hkXGEYHsAAApCriqdgU96jibty4caFpq1atcrGZKilVYafKsz/84Q929dVXu9cVo/ixmxJVih9V2fjnP//ZJXXaIp74UAmy66+/3t5//30bOXKkS0gpUXbHHXfYu+++6ypQ1fJLcYv86le/cvGUYj69R+ujitdwv/zlL11LeI0ttdtuu9kpp5wSSsIpTtQyffe733WxmuI2fWZ4hXE4JclOPPFEVzmr+E/LdfHFF7epXIAOyQPQoUyePNk7/vjjY7528skne3vuuaf7/0svveQVFxd7O3bsiJhn11139e688073/2nTpnn77LNPxOvxvG/8+PHeqaee2ugy7rzzzt4tt9wSMe2+++7zSkpKQs8PPPBA74wzzoiY59vf/rZ39NFHh57rEHXZZZeFnm/dutVN+/e//93odx966KHe+eef7/5fU1PjPfDAA+49t912W4PXfcccc4z3la98xTv88MO9o446yqurq2tTGbakXPxlOvjggyOm7b///t7FF18cURYXXHBBxDxa3muvvTZimta3f//+7v8333yzt9tuu3lVVVWNLs/3v//90HOtd58+fbzf//737vldd93lde/e3ZW778knn/Sys7O9NWvWNNgft2zZ4uXl5Xl/+9vfQvN//vnnXufOnRuUOQAAyUQ81Xw81alTJ6+wsNDr0qWLi0MUUyxdujQ0zy9+8Qtv9913D8VNMnPmTK+oqMirra11zzdu3OgNHDjQO+uss7y+fft611xzTVzbR9+j73zzzTcbvNZcfPj888+75//85z9D8yiW03q8+uqrEZ91+umne6eccor7/3HHHedNmTKlyeW55557QtPeffddN+399993z7/3ve95Rx55ZMT7fvazn3nDhw+PGQs+/fTTXm5urrdq1arQ61oHfeY//vGPuMoJSAe0lALSiM7Tfnc51Vipm5WaPavptP9YunSpffzxx41+RjzvU+2QWgu1hWqgDjrooIhpeq7p4VSz5VNLInWhU8ulpmhgcy2zWkhpPATVhKkFUGM0SLxq2tSiR7VZbS3D1ghfT1ET+Oj1VIumcFo+tagKXzZ//Ac1i1crr+3bt7tufZqu1mnRYyqEf6/WW83j/e/VtlDrO5V7+DZSzZ7fmiqcykQt0sJrUdXUXl0zAQDoKIin6qn1kWI+xRvq/jZ06FA76qijbMuWLaE4Yfz48RE3blGcoNhJrc9Fra3VesofskGtlxIhnvgwPG5asmSJi410c6DwuEktp/yYTrHiQw895G4CpCEVXn311Sa/V7GahMdNsWJbtVavra1t8Fmaf9CgQW54BZ/KE8g0ucleAACJo5Ob+smLAgKdLNV9KlpTtxKO531K9gRFdxgMp8CnubsMKohS82otp9YlO7vp/LuCLXVV03xK6PhBRmvLsL3WMzw55C+fmq+r6Xc0jU2gQEfJI3W5U1dAdc+bPn26a6buf19ryhcAgHRGPFWvpKTEJaJEf5VcUlz08MMPu/E24/Xiiy+6cTUVYyneSsQNZ1oaN/njYaoLocZkDafxn+Qb3/iGGxf1qaeecnGTKmB1sxwN9RDre/1kHHET0Da0lALSxHPPPef6r0+cONE919hHa9assdzcXBdIhD/8/vHqwx5dcxPP+1RLpHGkGhPrc6Ptueee9sorr0RM03N/LKe28IMoBR3NJaQ0/oBuC60klv4qoaXWRfGWRTJp+ZR0il42Pfz1VmLuuOOOs1tvvdUl1zQgp/aTeGgb+Qm78G2kz47V+kk1oArWNC5C+KChixcvTsj6AgDQ3oinGqfEkvhxkuIExRX1Peq+jBOUdNL4oqLWRhqrUzfIUcukpsalbE+KL5V80hii0TGTKvF8GuR88uTJ9uCDD9qMGTMa3ACmNbGtxp7yyy56ft3RMHz81f/973+tXkego6KlFNABVVZWumSJEj9r16612bNnu8Ebjz32WDeopBxxxBGuCfAJJ5zgBs7WCVG39PUHKVeTZt0VRF3R1DRbwYOCiHjeN23aNFd7pCSEBnNUlzDVKvmDM+pzVSum1xQAxErgaEBsDQa57777uu9UsKJB0tWqJ0ga2FzByGWXXebKVcujASxnzpwZV1kk0+WXX+62ue6ad9JJJ7lkkZJIGjheg4yqK6L2EXWn04CiCrCUpNp5553j+nwl6LStFZxpsM7169fbueeea6eddpr17du3wfwKNk8//XS3bdXlsU+fPi7Z11xiEACAZCCeapq6uyneFMWbV111lWuJrS58ohbYStwoNlCySRVlihumTp3qzv3q5qeYQXf+VSskxZoaFF2VZYpbgqQYV/GdhnRQy6aDDz7YysrKXNJIXf8U6yiu0t36dBMg7RtPPPGESxzFSzfv0fqpnHTzICXsbrvtNjesRCyKMxVb6rvVkr28vNzFTUDGSfagVgBaPjCnfrp6aHDE3r17e0cccYR37733hgaV9JWXl3vnnnuuN2DAADdY5aBBg9wA5cuXLw8N+jhx4kSvW7du7vM0GHk875NHH33UGzVqlBvYulevXt6JJ54Yem3u3LneyJEjvfz8fPe5sQY6l9tvv90bMmSI+w4NnvmnP/0p4vVYAz3qM/zljCXWQOaNvf7HP/7RDeC5ePHi0OuvvfaaW56nnnoqrrJI1EDn0cuswcO1rX2NDXo5e/ZsN2i8BhPXoOxjx451A5SL5h83bpybrvU84IADvGeffbbJ5dG6aJ1877zzjnfYYYd5BQUFXo8ePdzg9BrQvLGBYvWaBk/XYKIa0PTGG29sdpsAABA04qnm4yk/3tRDNz7RtOeeey5ivhdeeMHdnEXxYL9+/dxNWqqrq91rGjR87733jrhhjG7Conhi5cqVbRrovKn40B/ofNOmTRHzaED2GTNmuMHZFdMphp4wYYL33//+171+1VVXuRsGKabSMiq++eSTTxpdHn2+pun7fI888ogb2Fyfv9NOO3nTp0+PWIbo2OvDDz90N7tR+SkWVlzHQOfINFn6J9mJMQAAAAAAAGQW+lQAAAAAAAAgcCSlAAAAAAAAEDiSUgAAAAAAAAgcSSkAAAAAAAAEjqQUAAAAAAAAAkdSCgAAAAAAAIEjKQUAAAAAAIDAkZQCAAAAAABA4EhKAQAAAAAAIHAkpQAAAAAAABA4klIAAAAAAAAIHEkpAAAAAAAABI6kFAAAAAAAAAJHUgoAAAAAAACBIykFAAAAAACAwJGUAgAAAAAAQOBISgEAAAAAACBwJKWAdrJ161b70Y9+ZP369bOsrCy74IIL3PS1a9faSSedZD179nTTZ8yY0eHXKRVp+X7961+Hnt9///1u2rJly6wj0nJr+bUeAID0QKyQeRSb6Hwej44eu3REKu9zzjnH0nV5XnjhBfeZ+tucr371q+4BtDeSUkAL+MFBY4///e9/oXmvvfZaN/9ZZ51lDzzwgJ122mlu+oUXXmhPP/20XXrppW7617/+9YRvA333P//5z3b53Fjr1NKT6COPPBL3CTGVRW//4uJiO/TQQ+3JJ59s9Wf+5S9/6VCJyqbMmzfPlcstt9zS4LXjjz/evXbfffc1eO2QQw6x0tLS0HMFRI395vbYY49Gf5+5ubnuc37wgx/YqlWr2nFNAeBLxArxxwqDBw+OOG4XFhba2LFj7U9/+lNG7VLtFbe1RVVVlf32t7+1fffd18U33bp1s7322st+/OMf2wcffGAdRVMxRPgjvCITqaW2ttbtg4odoynG1PabPHlyg9cuv/xy99rixYsjEsKNPdasWRNREew/srOzrUePHvaNb3zD5s6dG8AaZ57cZC8A0BFdeeWVtssuuzSYPnTo0ND/n3vuOTvggANs2rRpEfNoug6qF110UbsGN2qNdcIJJyT0cxtbp45AQfF3v/tdy8/PT+jnHnnkkTZp0iTzPM8+/fRT+/3vf2/HHXec/fvf/7YJEya0Kim1aNGiBq3Qdt55Z9u+fbt16tTJOorRo0dbly5d7OWXX3bJ2HCvvvqqSxq98sorNmXKlIgg+PXXX3dlGG7gwIF23XXXNfiOkpKSRn+fO3bscIliXRxpGVSuBQUFCV1HAGgMsUJ8scKoUaPspz/9qfv/6tWr7Z577nEXmJWVlXbGGWek3Q522WWX2SWXXBJX3NZesUs8Jk6c6GKZU045xW2H6upql4x64okn7MADD4yoFEplv/zlL10rf59ijFtvvdV+8Ytf2J577hmaPnLkyCQtIZqTk5Pjrj8UO0ZTHOnHk7Fe69Onj+22224R0xWrFxUVNZhfiddw2vePPvpolxRTYuv222+3ww47zO1De++9NxsugUhKAa2gTPl+++3X5Dzr1q2z4cOHx5wefdDrKBpbp45yQtMj0XSi+/73vx8RxKmMVLvYmqRUY1RT09ESKgoSxo0b1yBQ+PDDD23Dhg32ve99zyWLws2fP98lkw4++OAGyafwco7396lAtFevXnbDDTfY448/bt/5znfavF4A0NJjUWOIFcy1aA0/vqt165AhQ1wLiHRMSuncqEcyY5fm6KJbyadrrrnGJW/C3XbbbbZ58+bAlkUxQV5enmut0trKw3CKpZSU0vREd02rqKhwrf2QeIoL//Of/9j7778fkUxUjKnYTpW6aumkIUakpqbGXnvtNTvqqKMafJYSwIoN46lcDT82feUrX3HHdSW1lKBC4tB9D0gwv6/20qVLXTcuv+mn35xfLWpmzpwZmu7TCV6tYwYNGuRqxNTqShfSdXV1EZ+v50p4KEOvE2vv3r1dF8A33njDva7P1Enxj3/8Y+g7FOA1FxSffvrp1rdvX/eZ++yzj3t/c+uUyDEOFBiMGDHC3nvvPVcLoRY2ClRvvPHGmAGKmuAqIaTl7d+/v5144on28ccft2hcBnUbOPbYY+2ZZ55xNbX6LCWUZs2a1er10IlSJ7roZXnsscfsmGOOsQEDBrjtu+uuu9pVV13lal/Cy0DlqxZXfhlrGZsaU0qt13SSVBCkZKda4emEHY/mtnv4995000121113ueXW8u+///4uaI0niNA4akuWLIkIINQMW10A/ARV+Gv++xJF5SNN7R8AECRihcYprlErnOhjtuIfdW9XFzKds3TuOvPMM23Tpk0NPkMtfNSdvmvXru58o3OWLlrD/f3vf7cxY8ZY586d3XlbF5+xunprPsUG+k7FKf/4xz9cXOWfn1t6roweU6qpuK2xMaV0Qaxy0Hcorjj77LMbJIpaEldF88v+oIMOavCakmQaFzWcyk3xhB/jqLWyum+q9bPvk08+sW9/+9uuG5SWRS1fooc78H8XDz30kGtRpuXVvOXl5e51JRkU86qiStO1jWO1kEkEdadU+Wl9VNazZ8+OuR1Vvqpk6969e0Ts8uCDD4b2L62zWrytWLEi4jM++ugjV5mpRIr2L7UK13xlZWUtXh558803XdJE+7xaAh1++OERQ4s0xd9vtbzqQvvSSy/FXVZKACmm9fd7/TaUzFRrx3B+3K0KSX2H1lkJ6Hi66/plG769tU8pEaXhQvRZ4a+99dZb7ndFPNkx0FIKaAWdLMIvpEUnJp2klZTQGArqrqSTi98kXX3y/bEV/C5fvm3btrkTq07qCrB22mkn10RV406pKXv4GEM66StI0UlHrUB0ItCJQycd1cjqOzRdB3td9ItOEo1RlzAFLkoa6KCuQEIBmAIiBTjnn39+o+ukwDGRFFgq2FCCSbUeGnvq4osvdgk4ra8oiaMT2pw5c9yJW8u3ZcsWV3ui7llNrWssCghOPvlk+7//+z/XXUBjHClo0sk+unYt3n1D6xG9HNpmChCmTp3q/iqZpL7uCrSmT58eamKu969cuTI0DlOs5sW+Z5991pWLTugKjrQtf/e737kgcsGCBREBc2u2ezgF8ypn7Z/a1xXUajspIGiqS6EfDCgA8bu3KmhQMKpWVHqv9vVvfvObodd0EaEEWTht9+jfnCh4aq5W0g/mFTACQFCIFVoXKyiu0Xkw+pit84/Operyfd5557mKMrXa0YW4zh3+uUjz/PCHP3QX7oqjVGGjeXReV/LAn0efo6SRuoar8kQVfvoczeu3aFfSRDGC4hDNp/O74rDwcQ/beq5sadym8/0VV1xhRxxxhEv8qHJHLTeU/Aovh3jjqlg0ZID8+c9/djFFUy27PvvsM7fsih20/EooKp7Vdym+VSsnla+6/Om5tp3iZSXhdO7XfN/61rciPlMJDr1PQ10osaH/K27SMivRo2Ek1HJKMdvXvvY1FwdrGRJFMYsqKH/yk5+4mEQtq5Q8Wr58eYOEnGLGYcOGuS6YqngWtTD71a9+5cpc23b9+vUuPtOYmf7+pYSdWtRr/c4991yXmFK5qYWayjJ8eIJ4lufdd991lXBKSP385z93+8Gdd97pYr3//ve/LuZqzB/+8Ae3z2obqYJc+6u2jZJpqixvjtZR21MtkHSNoOShfi+qJFUSN5ziTs2n35Hi7nvvvdfFntqu+s02RnGj9kOVhd8dU/u7YkD9jnUNpOcqF/81iZWU2rhxY4Np+uzmerIQT7YjD0Dc7rvvPp1tYj7y8/Mj5t155529Y445psFnaN6zzz47YtpVV13lFRYWeosXL46Yfskll3g5OTne8uXL3fPnnnvOvf+8885r8Ll1dXWh/+uzJk+eHNc6zZgxw33mgw8+GJpWVVXljR8/3isqKvLKy8ubXadYYq2n7+9//7t7/fnnnw9NO/TQQ920P/3pT6FplZWVXr9+/byJEyeGpt17771uvt/85jdNloHmmTZtWoNtt3Tp0oj10bRHH300NK2srMzr37+/t++++8a1jqeffrq3fv16b926dd4bb7zhff3rX3fTp0+fHjHvtm3bGrz/zDPP9Lp06eLt2LEjNE3lq+WKpuXW52o9fKNGjfL69Onjff7556Fpb7/9tpedne1NmjQpIdvd/96ePXt6GzduDM372GOPuen/+te/mvwefY72YZWTb/fdd/euuOIK9/+xY8d6P/vZz0Kv9e7d2zvyyCMjPsPfN2I9VIbR2/jZZ59122TFihXeI4884j5Tv089B4D2RqwQf6yg891RRx3ljtl6LFy40DvttNMaxBAvvfSSm/bnP/854v2zZ8+OmL5582ava9eu3rhx47zt27fHjBF0rtO5c8SIERHzPPHEE+6zLr/88tC0vffe2xs4cKC3ZcuW0LQXXnjBzRd+rm7JuVKxSfQlWGNxW3TsolgjLy/PlVltbW1ovttuu83NpxippXFVLCor//19+/b1TjnlFG/mzJnep59+2mBexRuKO15//fWYnyMXXHCB+yxtR5/KdJdddvEGDx4cWhfFhZpvyJAhEXGTPmfYsGHehAkTImI9zaPPiI4bmhIrBg2n11TGS5YsiYitNP13v/tdg+2osgm3bNkyF/dcc801EdO1b+fm5oamv/nmm+79Wp6mxLs8J5xwgpvv448/Dk377LPP3O/hkEMOCU3zy9hff//3oJhS+4fvrrvucvNpP2jKW2+95eb70Y9+FDH9oosuctN17RIdd7/44ouhadqnFaP99Kc/9Zqz//77e7vuumvouWLAww47zP3/5z//uXvdd9JJJ7kYu7q6usE2i/VQbBr9e1asquPSmjVr3L6rz49nm6Hl6L4HtIK636llTvhDTcVbSy1UVLuhWkG1BvEfqgVTC5EXX3zRzffoo4+6mrdYA43He3vhaE899ZSrndFgfj7VrqgmS7eqVu1KUNQqKLzvtmrGVPOlGhufykDN7FWrlIgyUFPz8Bo61TCpFZtqsvy7cDRFtUuqBdZAiqqlUQsu1VCpRVR0ix6falG1fbXNVWvYmrvYqAWdmiardkk1WeEDdaqFl7ZrIre7aorDa639LnHh2yYW1ehpmfyxo7TeqtVVbZyoBtavzdIgkqpNjFWrpVZf0b85PaIHhBf9brRNVLun2jjVomk8KbXyA4CgECvER13odczWQy141HJIrZj8VsR+nKSWIzq/hcdJal2h2OH555938+m8oHOsBhKPHofRjxE03IG6r6vVSfg86mKvVj5+lzK1AFq4cKGLCcJbLatle2ODHLf2XBkvtZBWCxud+8LHWNLYW4pforvDxRNXxaKy0p2ir776arc+f/3rX10XQbWg0jr6XQXVpVLdynRzkljjp/llrphD3xt+fteyqWWVWp+oC1w4taAJj5sU76hlu1q6ff7556Htr+5Z6qKmODl6uIu2UBwR3lpNcYzKN1a5qaV9OLVo0rKolVT4vqqYSy2q/H3VbwmlclYs2Jbl0bWCfkcaKF+t530a3sIfv9PvAhnN/z1oPbR/+BRfxrqZTDQ/3oyOe/1eFdH7pLrC+r8L0e9+9913j+s3ov1HXUv9+FzxY3g8qdjdL0u9ptZhsVr56VoiOp6MdTdoXW9p+bTttMxq+XXzzTe72BKJRfc9oBV0Ym1u8NKW0In2nXfeabSJu04WogOxkijhSYi20vhFOklGDyDpDyKo19tLdBJJSYPoaQqGVDY+lYFOXvEOEtocdSmL/k7/Lh0KlPwBExujMZzU/c2/a5yab+uEGF2ealat8RHU/Dw6MIg1dkBz/O2isoimbacgp6kBN1u63dWlNJwfdMcayyNWEKFm6wrK1FXPv4uKKJjQ2Bhqvt5UU2uth4KyeC8EtQ1VrmoWrmA1GXcuApDZiBXiowtHJT90Ya1u+Pq/zi3hF8iKk3RMVwVQc3GSaOyd1pw/lZTyK1H8+cLvrOzTNHWTj9aWc2U8Glt2lZWSEdHn7njiqsbovKlhBfRQRZgqq9TF8W9/+5urxNKYSapIUkzTVHn7yx2r+1h4zBH+GdF3uNb295NVjdH+kahu+tHbUfTZsbZjrGVVAyfFWLH43Sv1PiVyfvOb37hukkp6qMuckojRyaDmlkfbQbFnYzGhkmQazypW9zh/n4leXi1neIKrMXq/Ysno34niZ3WHay6ejF6Xpig+1PAWiheVjFRs7Y+RpnhSXX/nzZvnkqfaZ8PvuhhO3SjjGehcSVN1z9RYtorf1W0yfCxYJA5JKSAF6GSh2j+1sIkl+lamHYGCGY1bFItfixFdi9nYHWb8PvqpSAGfnyzRbWN1klOSSoOKagwHUY2ialZVq6VbhKu2S+uugFZjOySydq+9tGXb+EkpBRFKSqmG2a91VhChhJQSeroQULLRT1gl4kJQtYb6ftUUqoVWU2N0AUAqS8dYQXTe9M+jGmNHiSGNHakEiN/6QuuuhJQu3mNJ9BiXrZVqcUyilkctbjSOp8brUWJDianoG68kUngrKfHjJLWe041pYknk+b0l5RZrWZUIVA+KWJ8TvpxqdaMWSboZjlo6qbW6xmLSOLHhrbtTbb+KJd7eCm2NJ0Xxoga6l/Hjx4eOI0qs6TV/QPm2DnKuz/OPTTomadnVClMxfiIbJ4CkFJASlKRQl6nmWoJoPrWA0QB9TbWWakk3NtUmqMZMJ9HwVjN+lzJ/sMuW0vuUBIjFn96az1YZaADF6urqJgfYjpcGXNSJMLzM1I1MmhoovDEaKFK1OGoVpW6B+lzdTUbNzdWkW7UzPg3S2tpt55ddrDLWttPJuakBwNtruzcXRMydOzfibj5q+afvUsJKD90QwA80EkEBhAI8BRAaEFfBBAB0ROkYK8SibnSqyFHLY51TdS7TOqnrms4f0UmAcH4XJ7W4itXCKfr8qUGyw2ma/7r/N/zusb5Y09qiNef+8FYsaq2tmCLeFsWtpbhLXcfUGkitn5UoVIWbyru55W4sXvFfb4q/XfVd7b2ObaVlVVypllDxJIpVUaeH4kZV3Gkfv+OOO1yLwXgpKavYqbEy1m+2sQHL/bLXNg3/PSjO1j4VfeOZWO/XcUHv91u+iQa3V6VsIo8N2t/8xJOOC+oKGD44uSo6FUvqRgmK//yEVaKo1eDdd9/ttlWsux+i9RhTCkgB6neui3UFkdF0QFdzVFENlU50uutKUzUMOlBH3xq4MWrdo77ZDz/8cGiavk8tW1Sbo8CwNfS5qumZP39+g/VRTadquprrGheLykCBkBIMiagx0pgR4XcGUTN03Zq2tcunlj7qR69+56r5Cq8VCl8+BZDqthZN2y6e7nyqtdQy6m4n4dtagaFq21T+ydjusSjxpOBM421p7AK//79PzzUmhYKpRN6616c7z6j1lO5iqSbYANARpWOs0Bi1IlZlji4A/XVXtxndlS2alsNfj6OOOsqNZajKiOjjvb/uauGgi1td+Iffsl4tW3TuVlLMP3epS5liAiUDferGprGmEinebaGEjLrqqRtR+LbU+JaKHfxlbyslGHRnt2haRu2D6m6lRIiSHWqR/K9//cud36P5y6j9R92q9F6fhhi46667XAWgkgtN0dhhSvbcdNNNEdvCp+5rqUKt5BX36fcXHZfqufZrP970f7M+JadUpuH7ZTz0fdr3FXf6d4jzE0O6I6RiKyX0YtHvQdtSvwfFpj61hItnn/TjzfA7hYu6JUqi9kmf1kVjjCnWjRVPah/T3RiVPNWxIJGUAFOiXMdgLQMSh+57QCsocIk1OLUOhvH0v472s5/9zA3ErKah/m1RdbJW0KNb5eoEo5Yvau1x2mmnuWBEAYNu86vaCR189Zq6jYnerxpFnRD8hEBjt4JVf2ndMlbfqwSSggN9p2oadIJp7QFdLVI0MKlaBukArub4SgDpJKd+3rEGFIyHBhxVgKgm/Qpw1AdfZaX11aClGuOpJVSLpdvSqvtY37593RhEOom3dvlEZXn55ZfbDTfc4II17RcK4DQWgppmq0ZUA7nGSqJp2yno1/rpFrcK9jWAaCxqxq7bI6smSOug7pK6QNBYBLpldFPaa7s3FURonSW8pZSofDSIqj9fLAq2NX5FLOGDuDb1G9O4ANr/ogclBYD2QKzQejq3KSGkOEYDbCvppVhCySZdDOoCXK12FAsp1lBXPw0+rAtvtVbWWDI6h6rrts6/b7/9ths6QBU5ep/OzxpMXZ+rG37ovK/P0LnwwgsvDC2HWmsprtB5S/Nr3BtVimnZYiVHWiveuE3Jg0svvdQlPBQDagwiVeiokkvrG8/5MB4qL5WdtoPiLLW4W7VqlSs/xXKKE/wKN5WREgQqS8UWai2jOE/bRS1adCGvmFDneX2e4iB9nj5LLXE06HT0+JbR9Po999zj3q/ug9oWpaWlbpk0cLi2uxJjqUDJM7Vy0nZS/K44UDGV1lWVoCqjiy66yI1RpLhdsYliUSWoFCepXJVYbil9pwbsVhyleFiVpIrzlODyx12KRb8HvVe/L7WU0kD2WlbFwfFc06glleJbJRj94SoUn2v7at11fZJIWj8tm+J2HRui40nFi3rEuiGST/FurO6e6h6ta4GmnH/++W7/v/766+2hhx5qw5ogQivu2AdkrKZu86yHXm/ulsjRtzkOvzXupZde6g0dOtTd0rVXr17egQce6N10003udq2+mpoab/r06d4ee+zh5tPt7r/xjW948+fPD83zwQcfuNu/du7c2X1frNsMh1u7dq03ZcoU9536TN0COXxdmlunxqxcudLdIra0tNTdBrdHjx7escce6/3vf/9rMK9uObvXXns1mK5lD7/tsn8L4F/+8pfuNsCdOnVytzfWrV/Db4Or9datXxu7rXL4+jz99NPeyJEj3S1pVa7x3uq1sW0pv/71ryNuufvKK694BxxwgNsmAwYMcLeu1fdG35Z469at3ve+9z2vW7duEbec9m9PG71dnn32We+ggw5yn1tcXOwdd9xx3nvvvRfX8sez3f3v1T4Xa/3Dy7gpd955p5tf+0K0BQsWhH5DWqZo/m2pG3tEb+NYt6XW7aZ1G2E99BsCgPZCrBB/rNBUXHH//fc3OO/pNvVjxoxx5zzd6l7nLZ1PP/vss4j3Pv744y6G8s+NY8eO9f76179GzPPwww97++67rzv3Kz459dRTXdwS7aGHHnKxgeYbMWKE++yJEye6aa05V/q3pQ/XWNwWK3aR2267zX2/YqC+fft6Z511lrdp06ZWx1XRdC6+/vrr3Wf079/fxXDdu3f3vva1r3mPPPJIg/k//fRTb9KkSS4mVTkNGTLExUeVlZWheRSjKVZTfFNQUOC2yRNPPBHxOYqHtL6NxWFvvvmmd+KJJ3o9e/Z036P1+M53vuPNmTPHi5c+Ozr2iie203eFx9P+dly/fn3Mz3n00Ue9gw8+2CssLHQPbS997ocffuhe/+STT7wf/vCHLi5ReWgfPOyww1xc15rl8eOpCRMmeEVFRV6XLl3c57366qsxyzh6/W+//XYXV6tc99tvP+/FF19021+P5lRXV3tXXHFFKC4fNGiQu6bZsWNHXL/3eL9HVH5+/Ld48eKI1+rq6kLxs37f0fxt1tjDL5Omfs/ygx/8wMvJyfGWLFkS1zKjeVn6JzJNBQCZQTWiqu184oknkr0oAACgg1D3ebVaUssUAEDbMKYUAAAAAETRYM/R4/7o5iXq3qbxCgEAbceYUgAAAAAQRWMWaXBxjdWksZ40nqgGhNaNUBifEAASg6QUAAAAAETRIOkahFyDbOsOb7pLnu4mpkGOe/bsSXkBQAIwphQAAAAAAAACx5hSAAAAAAAACBxJKQAAAAAAAASOpBQAAAAAAAACl3EDndfV1dlnn31mXbt2taysrGQvDgAASHGe59mWLVvc3beyszO3Po8YCgAAJDp+yriklBJSgwYNSvZiAACADmbFihU2cOBAy1TEUAAAINHxU8YlpdRCyi+Y4uLiZC8OAABIceXl5a5Cy48hMhUxFAAASHT8lHFJKb/LnhJSJKUAAEBLY4hMRQwFAAASHT9l7sAIAAAAAAAASBqSUgAAAAAAAAgcSSkAAAAAAAAEjqQUAAAAAAAAAkdSCgAAAAAAAIEjKQUAAAAAAIDAkZQCAAAAAABA5iWlZs6caYMHD7aCggIbN26czZs3r8n5N2/ebGeffbb179/f8vPzbbfddrOnnnoqsOUFAABIBcRQAACgo8tN5pc//PDDNnXqVLvjjjtcQmrGjBk2YcIE+/DDD61Pnz4N5q+qqrIjjzzSvfbII49YaWmpffrpp9atW7ekLD8AAEAyEEMBAIB0kOV5npesL1ciav/997fbbrvNPa+rq7NBgwbZueeea5dcckmD+ZW8mj59un3wwQfWqVOnVn1neXm5lZSUWFlZmRUXF7d5HQAAQHpLxdiBGAoAAKRD/JS07ntq9TR//nw74ogjvlyY7Gz3fO7cuTHf8/jjj9v48eNd972+ffvaiBEj7Nprr7Xa2tpGv6eystIVRvgDAACgoyKGAgAA6SJpSakNGza4ZJKSS+H0fM2aNTHf88knn7hue3qfxpH61a9+ZTfffLNdffXVjX7Pdddd57Jz/kMtsQAgXF2dZ5+s32pvr9js/uo5AKQqYiiAczcApIukjinVUurep/Gk7rrrLsvJybExY8bYqlWrXJe+adOmxXzPpZde6sat8qmlFIkpAL5Fq8rs0QUrbcm6rVZZXWf5nbJtaJ8imzh6oI0oLaGgAKQFYiikE87dAJA+kpaU6tWrl0ssrV27NmK6nvfr1y/me3THPY0lpff59txzT9eySk3Z8/LyGrxHd+jTAwBiBbW3zvnINlZUWf+Szta5JMe2V9XawpVltmrTdjvv8GEkpgCkHGIoZDLO3QCQXpLWfU8JJLV0mjNnTkQtnp5r3KhYDjroIFuyZImbz7d48WKXrIqVkAKAxqiLnlpIKSGlllFFBbmWk53l/uq5ps9asIqufABSDjEUMhXnbgBIP0lLSom61d199932xz/+0d5//30766yzrKKiwqZMmeJenzRpkut+59PrGzdutPPPP98lo5588kk30LkGPgeAllj2eYXrsqcWUllZWRGv6bmmf7Rui5sPAFINMRQyEeduAEg/SR1T6uSTT7b169fb5Zdf7rrgjRo1ymbPnh0a/Hz58uXujnw+jQX19NNP24UXXmgjR4600tJSl6C6+OKLk7gWADqiLTtq3BhS6rIXS+e8HFtbXufmA4BUQwyFTMS5GwDST5bneRl1mykNdK678JWVlVlxcXGyFwdAkugue9Mef9e6dc5zXfaibd1RY5u3V9kV39zLhvQuSsoyAkgNxA6UA1ID524ASL/4Kand9wAgWQb3LHRjR60u227RuXk91/Rhfbq6+QAAQPJx7gaA9ENSCkBGys7OsomjB1qPwjw3tpRaRtXWee6vnmv6iaNL3XwAACD5OHcDQPohKQUgY40oLbHzDh9mew8scV31lm2ocH9HDuzmput1AACQOjh3A0B6SepA5wCQCsHt8P7F7o4+GkC1a0Gu6x5ACykAAFIT524ASB8kpQBkPCWgGMwcAICOg3M3AKQHuu8BAAAAAAAgcCSlAAAAAAAAEDiSUgAAAAAAAAgcSSkAAAAAAAAEjqQUAAAAAAAAAkdSCgAAAAAAAIEjKQUAAAAAAIDAkZQCAAAAAABA4HKD/0oASC11dZ4t+7zCtuyosa4FuTa4Z6FlZ2cle7EAAEh7nIMBILORlAKQ0RatKrNHF6y0Jeu2WmV1neV3yrahfYps4uiBNqK0JNmLBwBA2uIcDAAgKQUgo4PhW+d8ZBsrqqx/SWfrXJJj26tqbeHKMlu1abudd/gwElMAAHAOBgC0E8aUApCx3QXUQkoJKbWMKirItZzsLPdXzzV91oJVbj4AAMA5GACQeCSlAGQkjSGlLntqIZWVFTl+lJ5r+kfrtrj5AAAA52AAQOKRlAKQkTSoucaQ6pyXE/N1Tdfrmg8AAHAOBgAkHkkpABlJd9nToOYaQyoWTdfrmg8AAHAOBgAkHkkpABlpcM9CN3bU6rLt5nmR40bpuaYP69PVzQcAADgHAwASj6QUgIyUnZ1lE0cPtB6FeW5sqa07aqy2znN/9VzTTxxd6uYDAACcgwEAiUdSCkDGGlFaYucdPsz2Hlhim7dX2bINFe7vyIHd3HS9DgAAOAcDANoHg6UAyGhKPA3vX+zusqdBzTWGlLrs0UIKAADOwQCA9kVSCkDGUwJqSO+ijC8HAACCxjkYADIb3fcAAAAAAAAQOJJSAAAAAAAACBxJKQAAAAAAAASOpBQAAAAAAAACR1IKAAAAAAAAgSMpBQAAAAAAgMCRlAIAAAAAAEDgSEoBAAAAAAAgcCSlAAAAAAAAEDiSUgAAAAAAAAgcSSkAAAAAAAAEjqQUAAAAAAAAAkdSCgAAAAAAAIEjKQUAAAAAAIDAkZQCAAAAAABA4EhKAQAAAAAAIHAkpQAAAAAAABA4klIAAAAAAAAIHEkpAAAAAAAABI6kFAAAAAAAAAJHUgoAAAAAAACBIykFAAAAAACAwJGUAgAAAAAAQOBISgEAAAAAACBwJKUAAAAAAAAQOJJSAAAAAAAACBxJKQAAAAAAAASOpBQAAAAAAAACR1IKAAAAAAAAgSMpBQAAAAAAgMCRlAIAAAAAAEDgSEoBAAAAAAAgcCSlAAAAAAAAEDiSUgAAAAAAAAgcSSkAAAAAAAAEjqQUAAAAAAAAApcb/FcCQGqpq/Ns2ecVtmVHjXUtyLXBPQstOzsr2YsFAAAAgHg9rZGUApDRFq0qs0cXrLQl67ZaZXWd5XfKtqF9imzi6IE2orQk2YsHAAAAZDTi9fRGUgpARp/gbp3zkW2sqLL+JZ2tc0mOba+qtYUry2zVpu123uHDSEwBAAAASUK8nv5SYkypmTNn2uDBg62goMDGjRtn8+bNa3Te+++/37KysiIeeh8AtLTLnlpIKSGlllFFBbmWk53l/uq5ps9asMrNBwCpiPgJAJDOiNczQ9KTUg8//LBNnTrVpk2bZgsWLLB99tnHJkyYYOvWrWv0PcXFxbZ69erQ49NPPw10mQF0fBpDSl321EJKye1weq7pH63b4uYDgFRD/AQASHfE65kh6Ump3/zmN3bGGWfYlClTbPjw4XbHHXdYly5d7N577230Pbpg7NevX+jRt2/fQJcZQMenQc01hlTnvJyYr2u6Xtd8AJBqiJ8AAOmOeD0zJDUpVVVVZfPnz7cjjjjiywXKznbP586d2+j7tm7dajvvvLMNGjTIjj/+eHv33XcDWmIA6UJ32dOg5hpDKhZN1+uaDwBSCfETACATEK9nhqQmpTZs2GC1tbUNWjrp+Zo1a2K+Z/fdd3etqB577DF78MEHra6uzg488EBbuXJlzPkrKyutvLw84gEAg3sWurGjVpdtN8+LHDdKzzV9WJ+ubj4ASCVBxE9CDAUASCbi9cyQ9O57LTV+/HibNGmSjRo1yg499FCbNWuW9e7d2+68886Y81933XVWUlISeqh1FQBkZ2fZxNEDrUdhnhtbauuOGqut89xfPdf0E0eXuvkAoKNrafwkxFAAgGQiXs8MSU1K9erVy3Jycmzt2rUR0/VcY0XFo1OnTrbvvvvakiVLYr5+6aWXWllZWeixYsWKhCw7gI5vRGmJnXf4MNt7YIlt3l5lyzZUuL8jB3Zz0/U6AKSaIOInIYYCACQb8Xr6S+pgKXl5eTZmzBibM2eOnXDCCW6ampPr+TnnnBPXZ6j5+sKFC+3oo4+O+Xp+fr57AEBjJ7rh/Yvd3T00mKL6rqupMC2kAKSqIOInIYYCAKQC4vX0lvQRfKdOnWqTJ0+2/fbbz8aOHWszZsywiooKdzc+UVPz0tJS14RcrrzySjvggANs6NCh/9/encBHUZ+PH3/2yH1yhSNBQgC1FAEB4YetopVqq/VobYu2KqWef6vWUn8/pVLQeuDVigf1Plr7a6Uq1v60ohbFyqEoiIIKAoJA5AqQkySb3Z3/6/nGiZsQwoZkZzc7n/frFZadnZ2d/e7uzDPPfL/PSHl5udx5553y+eefy0UXXRTndwKgq9IEVEmv7HivBgBEjfgJAOAmxOvJK+5JqUmTJsmuXbtkxowZpjin1jqYP39+U/HOzZs3myvy2fbu3SsXX3yxmbdbt27mTOGSJUtk6NChcXwXAAAAziF+AgAAycBjtbzsVJLTq+9pwXOtL5Wbmxvv1QEAAAmO2IF2AAAAsYmfutzV9wAAAAAAAND1kZQCAAAAAACA40hKAQAAAAAAwHEkpQAAAAAAAOA4klIAAAAAAABwHEkpAAAAAAAAOI6kFAAAAAAAABxHUgoAAAAAAACOIykFAAAAAAAAx5GUAgAAAAAAgONISgEAAAAAAMBxJKUAAAAAAADgOJJSAAAAAAAAcBxJKQAAAAAAADiOpBQAAAAAAAAcR1IKAAAAAAAAjiMpBQAAAAAAAMeRlAIAAAAAAIDjSEoBAAAAAADAcSSlAAAAAAAA4DiSUgAAAAAAAHAcSSkAAAAAAAA4zu/8SwJAYgmHLdm0u0aq6oKSk+6X4h5Z4vV64r1aAAAAQJdDbI32ICkFwNVWl1bIcyu2yvqd1VLfEJa0FK8MLsiWs0cVybDCvHivHgAAANBlEFujvUhKAXD1TvPeBetkT01A+uZlSEaeT2oDIVm1tUJK99bKVScNITEFAAAAEFsjRqgpBcC13Yq1h5QmpLRnVHa6X3xej7nV+zp93opSMx8AAAAAYmt0PpJSAFxJa0jpkD3tIeXxNK8fpfd1+rqdVWY+AAAAAMTW6HwkpQC4khY11xpSGam+Vh/X6fq4zgcAAACA2Bqdj6QUAFfSq+xpUXOtIdUana6P63wAAAAAiK3R+UhKAXCl4h5ZpnbUtopasazmdaP0vk4fUpBj5gMAAABAbI3OR1IKgCt5vR45e1SRdM9KNbWlquuCEgpb5lbv6/QfjCo08wEAAAAgtkbnIykFwLWGFebJVScNkaOK8qS8NiCbymrM7fCifDNdHwcAAABAbI3YoFgKAFfTxNPQvrnmKnta1FxrSOmQPXpIAQAAAMTWiC2SUgBcTxNQJb2yXd8OAAAAQEcRW6M9GL4HAAAAAAAAx5GUAgAAAAAAgONISgEAAAAAAMBxJKUAAAAAAADgOJJSAAAAAAAAcBxJKQAAAAAAADiOpBQAAAAAAAAcR1IKAAAAAAAAjiMpBQAAAAAAAMeRlAIAAAAAAIDjSEoBAAAAAADAcSSlAAAAAAAA4DiSUgAAAAAAAHAcSSkAAAAAAAA4jqQUAAAAAAAAHEdSCgAAAAAAAI4jKQUAAAAAAADHkZQCAAAAAACA40hKAQAAAAAAwHEkpQAAAAAAAOA4klIAAAAAAABwHEkpAAAAAAAAOI6kFAAAAAAAABxHUgoAAAAAAACOIykFAAAAAAAAx5GUAgAAAAAAgONISgEAAAAAAMBxJKUAAAAAAADgOJJSAAAAAAAAcBxJKQAAAAAAADiOpBQAAAAAAADcmZSaM2eOFBcXS3p6uowbN06WLVsW1fOefvpp8Xg8ctZZZ8V8HQEAABIJ8RMAAOjq4p6Umjt3rkydOlVmzpwpK1askBEjRsgpp5wiO3fubPN5mzZtkmuuuUaOO+44x9YVAAAgERA/AQCAZBD3pNQf/vAHufjii2XKlCkydOhQefDBByUzM1Mef/zxAz4nFArJT3/6U7nxxhulpKTE0fUFAACIN+InAACQDOKalAoEArJ8+XKZOHHiVyvk9Zr7S5cuPeDzfve730lBQYFceOGFDq0pAABAYiB+AgAAycIfzxcvKyszvZ569+7dbLreX7NmTavPWbRokTz22GOycuXKqF6jvr7e/NkqKys7uNYAAADJHT8pYigAAJD0w/fao6qqSs4//3x55JFHpGfPnlE9Z9asWZKXl9f0179//5ivJwAAQFeOnxQxFAAASOqeUhoY+Xw+2bFjR7Pper9Pnz77zb9hwwZT4Pz0009vmhYOh82t3++XtWvXyqBBg5o9Z9q0aaaQemRPKRJTAACgq3IiflLEUAAAIKmTUqmpqTJ69GhZsGCBnHXWWU1Bkt6/4oor9pv/yCOPlFWrVjWbNn36dHMG8J577mk12ZSWlmb+AAAAkoET8ZMihgIAAEmdlFLai2ny5MkyZswYGTt2rMyePVtqamrM1fjUBRdcIIWFhaYLeXp6ugwbNqzZ8/Pz881ty+kAAADJivgJAAAkg7gnpSZNmiS7du2SGTNmyPbt22XkyJEyf/78puKdmzdvNlfkAwAAAPETAABIHh7LsixxEa0ppQXPKyoqJDc3N96rAwAAEhyxA+0AAABiEz/RBQkAAAAAAACOIykFAAAAAAAAx5GUAgAAAAAAgONISgEAAAAAAMBxJKUAAAAAAADgOJJSAAAAAAAAcBxJKQAAAAAAADiOpBQAAAAAAAAcR1IKAAAAAAAAjiMpBQAAAAAAAMeRlAIAAAAAAIDjSEoBAAAAAADAcSSlAAAAAAAA4DiSUgAAAAAAAHAcSSkAAAAAAAA4jqQUAAAAAAAAHEdSCgAAAAAAAI4jKQUAAAAAAADHkZQCAAAAAACA40hKAQAAAAAAoOsmperq6uSuu+7qrMUBAAC4AjEUAABwq3YlpXbt2iUvvviivPrqqxIKhcy0hoYGueeee6S4uFhuu+22WK0nAABAl0UMBQAAsD+/RGnRokXyve99TyorK8Xj8ciYMWPkiSeekLPOOkv8fr/ccMMNMnny5GgXBwAA4ArEUAAAAB3sKTV9+nQ59dRT5cMPP5SpU6fKu+++K9///vfl1ltvlY8//lguu+wyycjIiHZxAAAArkAMBQAA0DqPZVmWRKFHjx7y1ltvydChQ6W2tlays7Nl3rx5cuaZZ0pXoj298vLypKKiQnJzc+O9OgAAIMljB2IoAADgNpVRxk9R95Tau3ev9OzZ0/xfe0RlZmbKsGHDOmdtAQAAkhQxFAAAQAdrSikdprd9+3bzf+1gtXbtWqmpqWk2z/Dhw9uzSAAAgKRHDAUAANCB4Xter9cUOG9tdnu63tpX5UtUDN8DAABOxg7EUAAAwG0qo4yfou4ptXHjxs5aNwAAANcghgIAAOhgUmrAgAHRzgoAAABiKAAAgDZFXej8jjvuMFfdsy1evFjq6+ub7ldVVcnll18e7eIAAABcgRgKAACggzWlfD6fbNu2TQoKCsx9HRO4cuVKKSkpMfd37Ngh/fr1o6YUAABIKh2tKUUMBQAA3KYyyvgp6p5SLXNXUeayAAAAXI0YCgAAoINJKQAAAAAAAKCzkJQCAAAAAABA4l59Tz366KOSnZ1t/h8MBuXJJ5+Unj17NhU6BwAAADEUAABApxY6Ly4uFo/Hc9D5Nm7cKMlcrBQAALhLR2MHYigAAOA2lVHGT1H3lHrjjTdk4MCBnbV+AAAArkAMBQAA0MGaUoMGDTJJqZ///Ofyl7/8RUpLS6N9KgAAgGsRQwEAAHSwp9Trr78uCxcuNH9/+9vfJBAISElJiXzrW9+SE0880fz17t072sUBAAC4AjEUAABAB2tKRaqrq5MlS5Y0JamWLVsmDQ0NcuSRR8pHH30kiYyaUgAAIF6xAzEUAABwg8oo46dDSkrZtLfU4sWL5eWXX5aHHnpIqqurJRQKSSIjKQUAAOIdOxBDAQCAZNbphc7tAOrtt982BTu1h9Q777wj/fv3l+OPP17uv/9+mTBhQmesOwAAQFIhhgIAAOhAUkprR2kSSouda/Lp0ksvlb/+9a/St2/faBcBAADgOsRQAAAAHUxKvfXWWyYBpYHVCSecYBJTPXr0iPbpAAAArkQMBQAA0DqvRKm8vFwefvhhyczMlNtvv1369esnRx11lFxxxRXy7LPPyq5du6JdFAAAgGsQQwEAAHRyofOqqipZtGhRU32pDz74QIYMGSKrV6+WREahcwAAEM/YgRgKAAAku8oo46eoe0q1lJWVJd27dzd/3bp1E7/fL5988smhLg4AAMAViKEAAADaWVMqHA7Le++9Z3pFae+oxYsXS01NjRQWFsqJJ54oc+bMMbcAAAAghgIAAOi0pFR+fr5JQvXp08ckn+6++25T8HzQoEHRLgIAAMB1iKEAAAA6mJS68847TTLq8MMPj/YpAAAArkcMBQAA0MGk1KWXXhrtrAAAACCGAgAAaNMhFzoHAAAAAAAADhVJKQAAAAAAADiOpBQAAAAAAAAcR1IKAAAAAAAAjiMpBQAAAAAAAMeRlAIAAAAAAIDjSEoBAAAAAADAcSSlAAAAAAAA4DiSUgAAAAAAAHAcSSkAAAAAAAA4jqQUAAAAAAAAHEdSCgAAAAAAAI4jKQUAAAAAAAB3JqXmzJkjxcXFkp6eLuPGjZNly5YdcN558+bJmDFjJD8/X7KysmTkyJHy1FNPObq+AAAA8Ub8BAAAurq4J6Xmzp0rU6dOlZkzZ8qKFStkxIgRcsopp8jOnTtbnb979+5y/fXXy9KlS+XDDz+UKVOmmL9XXnnF8XUHAACIB+InAACQDDyWZVnxXAHtGXXMMcfI/fffb+6Hw2Hp37+/XHnllXLddddFtYxRo0bJaaedJjfddNNB562srJS8vDypqKiQ3NzcDq8/AABIbokYOzgdPyVqOwAAgMQUbdwQ155SgUBAli9fLhMnTvxqhbxec197Qh2M5tMWLFgga9euleOPP77Veerr601jRP4BQKRw2JLPdlXLB1vKza3eB4BE5UT8pIihACQy4jcgOfjj+eJlZWUSCoWkd+/ezabr/TVr1hzweZppKywsNMGSz+eTP/7xj/Ltb3+71XlnzZolN954Y6evO4DksLq0Qp5bsVXW76yW+oawpKV4ZXBBtpw9qkiGFebFe/UAIC7xkyKGApCoiN+A5BH3mlKHIicnR1auXCnvvvuu3HLLLaYm1cKFC1udd9q0aSYIs/+2bNni+PoCSNyA5t4F62TV1grJz0iV4p5Z5lbv63R9HACSRXviJ0UMBSAREb8BySWuPaV69uxpztTt2LGj2XS936dPnwM+T7uoDx482Pxfr773ySefmLN5J5xwwn7zpqWlmT8AaNnlW3tI7akJmJ5RHo/HTM9O98vgtGzTc2reilIZ2jdXvN7GxwAgETgRPyliKACJhvgNSD5x7SmVmpoqo0ePNnUNbFqoU++PHz8+6uXoc7QrOgBEa9PuGpN46puX0ZSQsul9nb5uZ5WZDwASCfETALcifgOST1x7SintOj558mQZM2aMjB07VmbPni01NTUyZcoU8/gFF1xg6h/omTyltzrvoEGDTCLqX//6lzz11FPywAMPxPmdAOhKquqCpoZURp6v1cczUn2yozJs5gOAREP8BMCNiN+A5BP3pNSkSZNk165dMmPGDNm+fbvpTj5//vym4p2bN2823c1tmrC6/PLLZevWrZKRkSFHHnmk/OUvfzHLAYBo5aT7TVHz2kDIDNlrSafr4zofACQa4icAbkT8BiQfj6XXBXaRyspKycvLM0XPc3Nz4706AOJYk+Cmlz42Rc0ja0op3Szq0L7hRfky/bSvUVMKcDliB9oBQGIgfgOSL37qklffA4CO0uLlZ48qku5ZqSYBVV0XlFDYMrd6X6f/YFQhCSkAAIAEQfwGJB+SUgBca1hhnlx10hA5qihPymsDsqmsxtxqDymdro8DAAAgcRC/AcmFYikAxO2BzdC+ueZqLlo8U2sVFPfIoocUAABAgiJ+A5IHSSkArqddwUt6Zbu+HQAAALoK4jcgOTB8DwAAAAAAAI4jKQUAAAAAAADHkZQCAAAAAACA40hKAQAAAAAAwHEkpQAAAAAAAOA4klIAAAAAAABwHEkpAAAAAAAAOI6kFAAAAAAAABxHUgoAAAAAAACOIykFAAAAAAAAx5GUAgAAAAAAgONISgEAAAAAAMBxJKUAAAAAAADgOJJSAAAAAAAAcBxJKQAAAAAAADiOpBQAAAAAAAAcR1IKAAAAAAAAjiMpBQAAAAAAAMeRlAIAAAAAAIDjSEoBAAAAAADAcSSlAAAAAAAA4DiSUgAAAAAAAHAcSSkAAAAAAAA4jqQUAAAAAAAAHEdSCgAAAAAAAI4jKQUAAAAAAADHkZQCAAAAAACA40hKAQAAAAAAwHEkpQAAAAAAAOA4klIAAAAAAABwHEkpAAAAAAAAOI6kFAAAAAAAABxHUgoAAAAAAACOIykFAAAAAAAAx5GUAgAAAAAAgONISgEAAAAAAMBxJKUAAAAAAADgOJJSAAAAAAAAcBxJKQAAAAAAADiOpBQAAAAAAAAcR1IKAAAAAAAAjiMpBQAAAAAAAMeRlAIAAAAAAIDj/M6/JAAklnDYkk27a6SqLig56X4p7pElXq8n3qsFAADgasRoQPIjKQXA1VaXVshzK7bK+p3VUt8QlrQUrwwuyJazRxXJsMK8eK8eAACAKxGjAe5AUgqAq4Odexeskz01AemblyEZeT6pDYRk1dYKKd1bK1edNITEFAAAADEagBihphQA13YH1x5SmpDSnlHZ6X7xeT3mVu/r9HkrSs18AAAAIEYD0PlISgFwJa0hpUP2tIeUx9O8fpTe1+nrdlaZ+QAAAECMBqDzkZQC4Epa1FxrSGWk+lp9XKfr4zofAAAAnEGMBrgLSSkArqRX2dOi5lpDqjU6XR/X+QAAAOAMYjTAXUhKAXCl4h5ZpnbUtopasazmdaP0vk4fUpBj5gMAAAAxGoDOR1IKgCt5vR45e1SRdM9KNbWlquuCEgpb5lbv6/QfjCo08wEAAIAYDUDnIykFwLWGFebJVScNkaOK8qS8NiCbymrM7fCifDNdHwcAAAAxGoDYoFgKAFfTxNPQvrnmKntaWFPrGOiQPXpIAQAAxA8xGuAOJKUAuJ4moEp6Zbu+HQAAABIJMRqQ/Bi+BwAAAAAAAMeRlAIAAAAAAIDjSEoBAAAAAADAcSSlAAAAAAAA4DiSUgAAAAAAAHBnUmrOnDlSXFws6enpMm7cOFm2bNkB533kkUfkuOOOk27dupm/iRMntjk/AABAMiJ+AgAAXV3ck1Jz586VqVOnysyZM2XFihUyYsQIOeWUU2Tnzp2tzr9w4UI599xz5Y033pClS5dK//795eSTT5bS0lLH1x0AACAeiJ8AAEAy8FiWZcVzBbRn1DHHHCP333+/uR8Oh02i6corr5TrrrvuoM8PhUKmx5Q+/4ILLjjo/JWVlZKXlycVFRWSm5vbKe8BAAAkr0SMHZyOnxK1HQAAQGKKNm6Ia0+pQCAgy5cvN0PwmlbI6zX3tRdUNPbt2ycNDQ3SvXv3GK4pAABAYiB+AgAAycIfzxcvKyszZ+p69+7dbLreX7NmTVTLuPbaa6Vfv37NEluR6uvrzV9ktg4AAKCrciJ+UsRQAAAg6WtKdcRtt90mTz/9tDz//POmSHprZs2aZbqM2X/atR0AAMCtoomfFDEUAABI6qRUz549xefzyY4dO5pN1/t9+vRp87l33XWXCapeffVVGT58+AHnmzZtmhnDaP9t2bKl09YfAAAgGeMnRQwFAACSOimVmpoqo0ePlgULFjRN00Kden/8+PEHfN4dd9whN910k8yfP1/GjBnT5mukpaWZolqRfwAAAF2VE/GTIoYCAABJXVNKTZ06VSZPnmyCo7Fjx8rs2bOlpqZGpkyZYh7XK8IUFhaaLuTq9ttvlxkzZshf//pXKS4ulu3bt5vp2dnZ5g8AACDZET8BAIBkEPek1KRJk2TXrl0m0aQJppEjR5ozeHbxzs2bN5sr8tkeeOABc9WZH/7wh82WM3PmTLnhhhscX38AAACnET8BAIBk4LEsyxIX0avvacFzrS/FUD4AAEDsQAwFAADik3vp0lffAwAAAAAAQNdEUgoAAAAAAACOIykFAAAAAAAAx5GUAgAAAAAAgPuuvgcA8RYOW7Jpd41U1QUlJ90vxT2yxOv1xHu1AAAAgKRD7I1IJKUAuNrq0gp5bsVWWb+zWuobwpKW4pXBBdly9qgiGVaYF+/VAwAAAJIGsTdaIikFwNU7xXsXrJM9NQHpm5chGXk+qQ2EZNXWCindWytXnTSExBQAAABA7I0YoaYUANd2G9YeUpqQ0p5R2el+8Xk95lbv6/R5K0rNfAAAAACIvdH56CkFwJW0hpQO2dMeUmKJbKuolbqGkKSn+KRPbrqZvm5nlZmvpFd2vFcXAADHUfcFQGdtLyJjb4+nee1WvU/s7V4kpQC4ku4wtYbUrlCdvLW9SvYFQmZnqjvPzFSfHNk7R7STlM4HAIDbUPcFQGduL+zYW8tltCYj1Sc7KsPE3i5EUgqAK+kZnIq6gGzcVWOST6l+r/h8XglZllTXBWXF5r0ysFeWmQ8AADeh5iKAzt5eaEytySp9TMtltKTT9XFib/ehphQAVyrKy5BdlfUSDFuSnuIVv9cj2pNYb/W+Tt9VVW/mAwDALai5CCAW2wsdzqfTtGSGZTWv2ar3dfqQghwzH9yFpBQAV1q6cbcEwpak+rwSDFkmCRUMhb+8bZweCFlmPgAA3KI9dV8AuFt7thdaIkOH83XPSjXP0ZEJoXDjCAW9r9N/MKqwWR2qzqJJsc92VcsHW8rNLRcySiyMSwHgStoLSgucm2F8tQ0SaAiLnrSxe0vlZaRIrdac0vkAAHAJ6r4AiNX2Qofx6XA+u/6UPqZD9oYX5ZuElF1/qjNRHy/xkZQC4Eq9ctJEz8NU1gXNrdaUspNSVtgy07W3lM4HAIBbOFH3hav6Ae7dXmjiaWjf3Dav1NdZqI/XNZCUAuBK4wf2kBSfR6oDYfFaIlbI0o5TJkGlf2GPJVlpPjMfAABuYdd90SLFg9Oymw3Jseu+aK+GQ637Qq8FZ5D4QyJvLzQBVdIr29F6V/a6mXpXadmmp5bWu9IEWSwSYtGsnxOJua6ApBQAV9paUSs5GX7Zs69BQhHTm8oufjm0T+eL9U4TAIBEYdd90atm2bVidAiO9njQA8yO1H2h14IzSPwhGbYXTta7cjrW5zfaHIXOAbiS1pHaW9PQ5jzlNQ1mPgAA3MSu+3JUUZ6U1wZkU1mNudUeD/bl3duLq/o5w078ac+V/IxUKe6ZZW71vk7Xx4FE3150ar2r1APXu9LH7XpXTuE3uj96SgFwpb376qW6vrGelJ680TMm2s3Yvg1bIlX1QTMfAABu09l1XxK510KySPThSkheTtaJSqT6eO3Fb7R1JKUAuNLGsn2msLnyatD2ZWJKecQjYcsyj+t8AAC4UWfWfeGqfrFH4g/x5ESdqESqj3co+I22juF7AFypPhgyV9rTPzsBpXWk9Fbv24/pfAAAoPN6LbQmHr0Wkk2iDlcC4lnvSutaaS/B6rqghMKWudX78ah3xW+0dSSlALiSdjH2+7xm6J7P6zEFzk1yShrv63R9XOcDAACd02tBeydoL4VIdq+FIQU5jvZaSDYk/oDErnfFb7R1nIoA4ErfHNRLCvPTZfPuWhGPJWn+r84qBkMhsSyPFOVnmPkAAEDyXqUrWSTicCUg3hKp3hW/0dbRUwqAK/n9Xrl64uGSm+E3CahgKCyhUNjc6n2d/suJQ8x8AAAg+XotJJtEHK4EJFK9qxH9881tvH4D/EZbR08pAK515shCc/vQmxtk695aCYYt8Xs9UtQtQy6dMKjpcQAAkHy9FpI58adX4dNE1I7KsKnVpYk/TUiR+AP4jSYaklIAXE0TT6cN6yuLN5TJrqp66ZWTJt8Y1JMeUgAAuOQqXcmGxB+Q2PiNNkdSCoDr6RC9CUcUuL4dAABAciDxByQ2fqNfoVgKAAAAAAAAHEdSCgAAAAAAAI4jKQUAAAAAAADHkZQCAAAAAACA40hKAQAAAAAAwHEkpQAAAAAAAOA4klIAAAAAAABwHEkpAAAAAAAAOI6kFAAAAAAAABxHUgoAAAAAAACOIykFAAAAAAAAx5GUAgAAAAAAgOP8zr8kACSWcNiSTbtrpKouKDnpfinukSVeryfeqwUAAAAgSXEM0oikFABXW11aIc+8u0WWfLZbagJByUr1y7ElPeRHx/SXYYV58V49AAC6DA6wgOh+H1lpPjOtpj7ECVEXH4M8t2KrrN9ZLfUNYUlL8crggmw5e1SR645BSEoBcPXO4Oq578umsn0SDFtN0zeW1cjiz8pk9qSjXbdTAADgUHCABUT3+9hTHZC9tQEzvVtmqnTPSnVtMsLN34d7F6yTPTUB6ZuXIRl5PqkNhGTV1gop3VsrV500xFXfBWpKAXDt2aoZL6yWDTtrTELK5xXxez3mVu/r9Jn/XG3mAwAABz/A0gOq/IxUKe6ZZW71vk7XxwG3ivx9eMRjElJ1gZBJQpTXBEQLRvBbcQ89ttAEpSakNBmZne4Xn9djbvW+Tp+3otRVxyAkpQC40rrtVfLh1grRzb0mo7wej3g8Ym71vk7/YEuFmQ8AALSOAywgut/HoF5Zsr2yVgLBsOR/2UOqPhSWHZX1MrhXliuTEW6kQzi1x5z2kPLowUcEva/T1+2sMvO5BUkpAK70fx9+YXpEaT3zFvuDL5NTjT2mdD4AANA6DrCA6H4f1fUhqawNSmaq/8tkhMf8v6K2QaoDIVcmI9xIa4ppDamM1Ma6Yi3pdH1c53MLklIAXKmirsHcHugae54W8wEAgP1xgAVE9/toCIUlFLZMj3yb/l+nNQTDrkxGuJFe6VuLmuvwzdbUBkLmcZ3PLUhKAXCloX1zTeIpLCKW1bybtN7X6Z4v5wMAAK3jAAuI7veR4vOa2kGRF9dprGvqkRS/15XJCDcq7pFlakdtq6ht9RhkW0WtDCnIMfO5BUkpAK509tFFZqev+wKNDXQnYP813m8MJHQ+AADQOg6wgOh+H9lpPsnN8Mu+QPDLZIRl/p+XkSLZqT5XJiPcyOv1mCstak0xHdpZXRc0veX0Vu/r9B+MKjTzuQVJKQCulJrqk0snlIjf25iUavmn0/VxnQ8AALSOAywgut/Hhl010ic3Q1L9XinfFzCFzdN8Xumdmybrd9W4MhnhVsMK8+Sqk4bIUUV5Ul4bkE1lNeZ2eFG+ma6Puwl9AwG41i9OHGJuH/3PZ1JZFzTJKI0DumX65aLjSpoeBwAABz/A0quM6Zn+HZVhMwxJD7D0INttB1hAW7+PbhmpslcC5jG9Cp/2meK34s7vhZYJ2bS7xtQR0xEa2kvOjUlJj9VyIGOSq6yslLy8PKmoqJDcXGrFABAJBELy/MpSKS2vlcL8DPn+yEJ6SAEgdiCGQjvppew5wAIO/vvISmvsiV9TH3J1MgLJLdrcCz2lALieDtGbNPYw17cDAAAdoQfVJb2yaUSA3wcQNWpKAQAAAAAAwHEkpQAAAAAAAOA4klIAAAAAAABwHEkpAAAAAAAAOI6kFAAAAAAAABzH1fcAuB6XsAYAAIBbEQsjnkhKAXC11aUV8uzyLbKqtFJqAyHJSPXJUYW58sPR/WVYYV68Vw8AAACIaSz83Iqtsn5ntdQ3hCUtxSuDC7Ll7FFFro+FSdY5g6QUAFfvhG9+8WP5bFe17GsIS9gKi9fjlS27a2TNtiqZ/r2hrt8ZA0AiB/6decDAwQcAN8bC9y5YJ3tqAtI3L0My8nzmJO2qrRVSurdWrjppiGtjYZJ1ziEpBcCV9ODj4f9skJVbyqU+GBbrq0ekpl6ksq5cHvnPZ3L3pJGHfIADAIhd4N+ZBwwcfLgLCUig8Xeg21BNSOm20+NpjHez0/0yOC3bbFvnrSiVoX1zXRcLk6xzFkkpAK70WVm1vLF2l9QFw/s9pgkqnf762p1mvsEFOXFZRwBwS+C/u7pecjNSJS3DK6GwyIdbyts8S9+ZBwwcfLgLCUigkfYy1cSTbkPthJRN7+v0dTurzHwlvbJd02wk65xHUgqAK31cWmmGe7RFH9f5SEoBQOwC/61790kwZElpeZ2Ewpb4vB7JTfdLbUOo6Sy9sofpZaX5TC3Azji735kHH/S+SXwkIIGv6PZUe5lqUr81Wmd1R2X4oPFysiFZ5zySUgBc6Z2Nu6Oe74yjC2O+PgDgNhr4r9xcLrtrGiQUDktmql/8Xo8Ew5bs2RcQn9cr72/eK699vF3e3rinaZhe2LLki4paGdwrp8Nn9zvr4KMze98cLLlF8iuxez/w+TgjFu3s1Gfn5HekrdfS+7qt0l6m+jtoSafr4zrfgZZbUdsglbUNkpuRInkZKe1+L9G0RXvbK3J+PYmhaupD5rmHdcuUzXv3tbmsrpysCzv43epMJKUAuFJlXaBT5wMAtI8ezHxRXishy5Lc9JSmJEGKT3tKpUhlXYN8vrtGHlu8yQTa9jC9beX7pLI2KOt3VZmDg+5ZqYd8wNAZBx+dPZSwreQWQ88Su/cDn48zYtHOTn12Tn5HDvZamrDQ+zpcundeuumxmuL7Kgm1raJWhhflm/laW66eVNBteH0oLGl+r/TLy5CRh+VH/V6iaYv2tlfk/HuqA7K3tjGO75aZKqk+r9QHQ5Lm95n32dqydF9Tvi8ggVBIdlXVS+/ctP22FwdK1rWWEFKHMu2wFsmz1pJpSveDi9fvltqGoGSm+GVjWbV8VrZP6gIh0QIlffPS5fTh/eTbQ3vvl5wKBsOyeEOZeZ+9ctLkG4N6it/vFVcmpebMmSN33nmnbN++XUaMGCH33XefjB07ttV5P/roI5kxY4YsX75cPv/8c7n77rvl6quvdnydAXR9Wam+Tp0PAJzW1WMoPbuuBzOZKb5WkwQpXo/srmuQvTUBGT2gW9M8eZmpZtusQfemsmrplvnVYwc7u99SR3oKdHbvm4Mlt04b3lde+nAbV8k6RLHu/RDPoYFdtXdEorSzU5+dk9+RaF9rZP98WfDJDlm3s1r8Xq+k+D1mm6y/h6JumfKDUYXNvkv2cnXYtenlallmfk32bNMEVTAU1XuJZv1Ue9orcpna81YTUrqf0FqxDcE6CVsi9Q0hyUpPkeFFeZLu9+33eiahtaNatlXUyWe7aqRPbroM7JXddPLDsqymZJ0mivQK3nv3BeTNtbtk+ed7ZGdVvfh9XvP6/fLSRXcJe/c1mPXQttLKtYGgJcFwWFJ8PsnL8Jtl6yPbyutkX0NIX8S8lp08awiF90umaZJt6559smZHlXnsy0Wbz29gjywJWfq6AVm7vUqWbtgtL63aJpccX9LUXi+sLJWH3twgX1TUmWSk3+cx63vphEFy5shCdyWl5s6dK1OnTpUHH3xQxo0bJ7Nnz5ZTTjlF1q5dKwUFBfvNv2/fPikpKZEf/ehH8qtf/Sou6wwgOXga6jt1PgBwUjLEUDrcQ8+ua0CtB0AikQfRlqkpJZZnvzPVOWl+yctMMWd3tbeVHojrsloeMLQ8u98au6eAHphoEinydaJZVmf1vokmuaUHEBkpPhnS+6thi1wlK3odTUAmamFkN/XOikU7Ozms06nvSLSvpds4TXRnp/nF6/GY30BD0JKyQEC6WakmER75HbKXqxem0ESGDru2e7nqNly3xzpdX7et9xLN+j23fKtYYkXdXpHLHNQrS97fUi6BYFjyMxuTSTrkW5fQNzddKuuDsnl3jRx9WDezbF2WXnFbE0J6EkS32yMK8+XDrY09wSrqgk1JLN0naBJpRP88ueXlT2TJ+jKzfa8PfnUdb5+3MaG0amu5pPp9cnhBtuyqrpdtlbUSDDXOo+ui+z/d3tQEgmbYuvZ00uySrocmmXS/NqQg2ySOauoazOek+6O6YEhe+3iH1DWETNJLl6PvVRet67F2Z7VkpTYmu3LTG5Ni73ymvalC8suThsiGXdVy84sfm8/b7IczdD8cls2795npyunEVHz6Z33pD3/4g1x88cUyZcoUGTp0qAmsMjMz5fHHH291/mOOOcacETznnHMkLS3N8fUFkDzmfrC7U+cDACclQwyl9Ud0uEeK12sOZvRssB4k6a3e92lvKZ9HctIbE05NPB4p6Zltzs5X14dMjystkF5dFzQHFxqItzy7fyA6jx6863P0ubqM9iyrqffNAXrV6nR9/GC9bw6W3NIDFz0w0SsUHiz5hbYTkHpQqd+zSHYCckhBTlTJzPZ+frH6fOyeIZpUzc9IleKeWeZW7+t0fTyZxKKdnfrsnPyORPNan+6olCcXbzJJHE10jC/pIccM7C7HFHeT44f0lIKcNPlgS4VJ9rRcrm6HKuuCpjfQV8v3mPs6XbdXbb2XaNZvVWmFrCqtjLq9IpfZuF/4av004aO9iPRnr7kjnV5RGzTbZX1ce0O9+/kesw3QbYQmvnrkpMnIw7pJ3/x02RcImiGOe/fVm7aye60uXLtTNpY1T0gpvYLsvkDIvG5dQ1A+2lZhepHZCanIK32XVQekNhA2ybxgKGyG3Ok+Tt+y7ts++qLSJP8KctMkaFmyaU9NU480XYbumjShqE+wR97p+6wPBs19j8fbtA/V9/fs8q3y4ML1JiGly8xI9YvX6zW3el+nP/zmZ2ZonyuSUoFAwHQhnzhx4lcr4/Wa+0uXLu2016mvr5fKyspmfwAQ7abW2U0yALgnhtKDf60/0j07VbplppgzvXqQoLfdM1MlPyvV9IjytzggUd2yUmVQQbbkZvjNWeVNZTVSXtt4cNXeITA6rz7nqKI8s4z2LCuy901rou19c7Dklibo9KBFz8B3JPnlZh1NQLals5KT7dGyt4keSOuVK01PkoLspt4qkUmFri4W7ezUZ+fkdySa19KkzIaymq+SPib5nSLds9NM0qm1JJm9XN0O6W9HL0wRSe+bK6h6PG2+l2jWT7fruv2Mtr0il6knNiLXL/I3oP/X34k+rvMpHVan24FuGV/VNrT3M2MGdJcxAzQ5lSEXH1civ/nukbJyS7npLaa9qnS7bPNE/JnXshoTVJq0ipit2TxfjroTTSw1hMNm/5fq9Uh6is/MpL2oUn2apGocEqi/6x1V9eZJPo/eeMzFPxrH73malhsKidQ2NL4/bQddF31/723aI1vL9QSHvtfmOxS9r9NLK2pNrSlXDN8rKyuTUCgkvXv3bjZd769Zs6bTXmfWrFly4403dtryAAAA4ilZYig7SaD1PDTQLurmNwczeoCgBxiaqNKztzp8YnB65Bn5xp4teib6lKF95Kf/dVjTlZUOtZaOJp50GEh76/J0dPhftEPLtE205seXx1CdOvTMTewEpD3cTWtIabvpZ6QJqUMd7hbLoYEH4sbL1seinZ367Jz8jkTzWppY0gRNW0mfljXW7OXqdkgTO9oTSHuz2oJ2wsey2nwv0ayf9oTVNEu07RW5TK27FLl+kdtxr50482pP3MakjCakVHbLXrnK45FeOelmH6NDAbXYuP7udHu8LxAWn88j4S8zTvozNPmhiKe3TAl7IubzRDxuWZaErcakkv1zNicjLB0m2TiXfXVaTYQ1pqC+7Bal//N4mhJc9uuGvlwv+3PR91dqemxZZshfa1L9XtPbTYfHu2b4nhOmTZsmFRUVTX9btmyJ9yoBAAAkPCdiqMheSho4azCst5ok+OXEw01h1rZ6tpw9ukgGF+TIiP755sC7I7VY9Lm6jPYsq7N63xxsaJkeGGoR2sraQKcPPXMb/c799rShcuMZX5frT/uauZ1+2tc6VH8plkMDE6l3VrzFop2d+uyc/I5E81qDeuWYIdTt6eVpL1e3Q7npfjOs7avl64mCoJmu37m23ks063dUYZ4cVZgbdXtFLjM7zdfYi/bL9TM9phrzNuL36NC6oCkwru9NH9eC4Jr4aq1Xbsu2sH93Vlh7Qln7JVMOsIgW6//lvJHTpJGuatPjX85g97LSfaO+F02INT3X4zG9rEyvKUv7TX21bE2Y2Z+Lftb6/rS3lT5fa0i1Rntq6eN6NT4nxe10Ss+ePcXn88mOHTuaTdf7ffr06bTX0boJiVI7AUDiOLJnmqwpq49qPgBIJMkWQx2sl1IserZ09vp3dB0je43ZvV80qaAHQ3Zh3fPHDzB1TA70+KEOPXMjOwHZmcs72OfX2Z9PPHpnxVss2tmpz87J70g0rzX52AHy/Pul7erlGblcLZrt82qvmgZJ9TVesELrA2pC42DvJZr10xMO6ovydVG1V+QyN5ir5mltqaCU7wuYhI9eIEM7HOnV8bTH0GE9skzvJ11W37x0sz04UK/cyLbQ/ZT+rgLB0Je1nBoTQVYryabIVJpZZEQvKrPaETOEtdaVv7GHlya9NHnW2KOr8daywia5ZK7Upyc+6oMmWeX3WOa9p4hXQlbILEfp8zSBpfUZtUB7cY9M2VZZJ2OKu5saVVv21Ep6irfZED59Da1jNaBHlnxjUE9xUty2UqmpqTJ69GhZsGCBnHXWWWZaOBw296+44op4rRYAl/jrJd+QUbe+HtV8AJBIkjGGaitJcKhD65zUGesYTXJrUK/shE7QuVmshgbGeuhoVxOLdnbqs3PyOxLNa2lSpb1JssjlrtzceHU6rf+kV5vT5I5e0S6a9xJtW7SnvVous1tGquyVgHmsW2ZqU/JM17ViX4PUpYSalqX04gAHawv7d6eFzzNTvWZ7rx2StNa5nWNqkW9q1iOqaZqnMRFl83qk8SqIXo8EggGpawib5/XMSjPL2llZbx4f0D3LvAetC6VX39NlaIH0yDpVeqvL0cShvm/9XHbXBMz7+OHoIjn6sHxzlT1dptaQ0iF72kNKE1L6vi+ZUCL+Awzvi5W4ps71UsaTJ0+WMWPGyNixY83ljGtqasyVZNQFF1wghYWFpqaBXdjz448/bvp/aWmprFy5UrKzs2Xw4MHxfCsAupjuuRlyWPcM2byn9oDz6OM6HwAkGrfFUJ3dsyVR1/Fgya2ukKBzMyc/n3j0zkrmdnbqs3PyOxLN9uRQkmSRy9WeOJrM0OSGDhFrz3uJpi3a214t589KaxzeatcdPKxbpqkLdai9cpvVQtwXMMXETVIoYtidXe8pM9VneiNpzydN3Cm7ZpRdH9D75TC7jBRf41UCw3a9p7BJoulVABuTaWEzXdtb1+vkob1ly559smZHlUlSmcLnPq+UdM+QE4/oZXqEbauoM4lHXZ/I92G/l4fe3GCu6qrD5rWHm/aQ0oTUmSMbk3RO8lgtB2k67P777zeXKN6+fbuMHDlS7r33Xhk3bpx57IQTTpDi4mJ58sknzf1NmzbJwIED91vGhAkTZOHChVG9nl45Ji8vz9RGyM3N7eR3A6CrOf6O11tNTGlC6j//8624rBOAxJKosQMxFIDVpRVNB9J68KsHrFprh95ziJYWPCfR3b62sH93S9aXyeY9+0xPI80pacJJk0h989PlhMMLzO9Qe5P97zubZVVphRl2p6+hyaKsdL+MPqybnD6ir7mi36rSyqYrDh7VL1fGD+opffLSD5hMU+t3Vcni9bultiFoknHfHNTL9HKK5n0Eg2FzlT0taq41pHTIXmf3kIo2fop7UsppiRpYAoifPZW1ctGfl8u2qjrpm5Muj14wmh5SAJoQO9AOQCIjqQDE73enhdLX76gWvSaeliAfUpAt+VmpzRJBOu9nZdWyZnuV7KqqM1f0O7JPjpT0bLyoRrL+hklKdbBhAAAAiB2IoQAAQOxyL85WsAIAAAAAAABISgEAAAAAACAe6CkFAAAAAAAAx5GUAgAAAAAAgONISgEAAAAAAMBxJKUAAAAAAADgOJJSAAAAAAAAcBxJKQAAAAAAADiOpBQAAAAAAAAcR1IKAAAAAAAAjiMpBQAAAAAAAMf5xWUsyzK3lZWV8V4VAADQBdgxgx1DuBUxFAAA6Oz4yXVJqaqqKnPbv3//eK8KAADoYjFEXl6euBUxFAAA6Oz4yWO57LRfOByWL774QnJycsTj8cR7dRIym6kJuy1btkhubm68V8d1aH/a3q347tP+iUxDJQ2o+vXrJ16veysfxCqG4vdPe/Ad4XfDtqTzsW2lTeL9PYk2fnJdTyltjKKionivRsLTLyRJKdrfjfju0/5uxvf/wNzcQ8qpGIrvH+3Bd4TfDdsStq1OYH/jXJtEEz+593QfAAAAAAAA4oakFAAAAAAAABxHUgrNpKWlycyZM80tnEf7xw9tH1+0P+0P9+L3T3vwHeF3w7aEbSv7G/fug11X6BwAAAAAAADxR08pAAAAAAAAOI6kFAAAAAAAABxHUgoAAAAAAACOIynlMnv27JGf/vSnkpubK/n5+XLhhRdKdXV1m8+pq6uTX/ziF9KjRw/Jzs6Ws88+W3bs2NHqvLt375aioiLxeDxSXl4eo3fRdcWi/T/44AM599xzpX///pKRkSFf+9rX5J577nHg3SS+OXPmSHFxsaSnp8u4ceNk2bJlbc7/zDPPyJFHHmnmP+qoo+Rf//pXs8e1BN+MGTOkb9++pq0nTpwo69ati/G76Lo6s/0bGhrk2muvNdOzsrKkX79+csEFF8gXX3zhwDvpejr7ux/psssuM9v42bNnx2DNkaxi+Z1M9vb46KOPzL5f50/m31572uSRRx6R4447Trp162b+dH98sO9UsrfJvHnzZMyYMSa+1P3kyJEj5amnnhI3b0dsTz/9tPntnHXWWZJs2tMmTz75pGmHyD99XrJp7/dEj1n1WEvjey32ffjhh7t6n3PCCSfs9z3Rv9NOOy12K6iFzuEe3/nOd6wRI0ZYb7/9tvXWW29ZgwcPts4999w2n3PZZZdZ/fv3txYsWGC999571n/9139Zxx57bKvznnnmmdZ3v/tdLZ5v7d27N0bvouuKRfs/9thj1lVXXWUtXLjQ2rBhg/XUU09ZGRkZ1n333We52dNPP22lpqZajz/+uPXRRx9ZF198sZWfn2/t2LGj1fkXL15s+Xw+64477rA+/vhja/r06VZKSoq1atWqpnluu+02Ky8vz/rHP/5hffDBB9YZZ5xhDRw40KqtrXXwnbmz/cvLy62JEydac+fOtdasWWMtXbrUGjt2rDV69GiH35k7v/u2efPmmW1Yv379rLvvvtuBd4NkEMvvpBvaY9myZdY111xj/e1vf7P69OmTlL+99rbJT37yE2vOnDnW+++/b33yySfWz372M7N/3rp1q+XWNnnjjTfMNlp/M+vXr7dmz55tfkfz58+33Ngeto0bN1qFhYXWcccdZ45Tkkl72+SJJ56wcnNzrW3btjX9bd++3XJzm9TX11tjxoyxTj31VGvRokXm+6LHVCtXrrTc2ia7d+9u9h1ZvXq12Zbo9ydWSEq5iO6kNFn07rvvNk17+eWXLY/HY5WWlrb6HD0Q1EDwmWeeaZqmO39djh4URvrjH/9oTZgwwSRPSEo53/6RLr/8cuvEE0+03EwTFr/4xS+a7odCIXMgPWvWrFbn//GPf2yddtppzaaNGzfOuvTSS83/w+GwORi48847m30+aWlp5kABsW3/Ax2o6W/h888/p/kdaHs92NPAXoOTAQMGJOWBMbru9iCZ2yNSsv72OtImKhgMWjk5Odaf/vQnK1l0tE3U0UcfbZK6bm0P/V7oidxHH33Umjx5ctIlpdrbJppU0ORtMmtvmzzwwANWSUmJFQgErGQ1toPbEt3n6Pa1uro6ZuvI8D0XWbp0qenSq117bdrd2ev1yjvvvNPqc5YvX26Gzeh8Nu1Of9hhh5nl2T7++GP53e9+J3/+85/N8uBs+7dUUVEh3bt3d+3HEAgETNtFtpu2s94/ULvp9Mj51SmnnNI0/8aNG2X79u3N5snLyzNdYNv6LNwoFu1/oO+5difW3xVi2/bhcFjOP/98+e///m/5+te/TnMj4bYHydweya4z2mTfvn0mXkqW2KejbaIdDxYsWCBr166V448/XtzaHnpsUlBQYMplJJtDbRMtGzJgwABT9uPMM880w4Pd3Cb//Oc/Zfz48Wb4Xu/evWXYsGFy6623SigUkmQQ6ITt62OPPSbnnHOOGRYcK2QPXEQPqHXDHMnv95sduD52oOekpqbud9CnP1r7OfX19aam0Z133mmSJXC2/VtasmSJzJ07Vy655BLXfhRlZWVmZ6LtFG276fS25rdv27NMt4pF+7dWa01rTOm2R2u0IbZtf/vtt5vt1VVXXUVTI+G2B8neHsmuM9pE9wdaa7BlMtNtbaIna7T+qMaOWv/lvvvuk29/+9vixvZYtGiROZjW+mPJ6FDa5IgjjpDHH39cXnjhBfnLX/5iTjgde+yxsnXrVnFrm3z22Wfy7LPPmudpHanf/va38vvf/15uvvlmSQZlHdy+au2p1atXy0UXXRTDtSQplRSuu+66VouRRf6tWbMmZq8/bdo0U1z7vPPOEzeKd/tH0o2GnvWYOXOmnHzyyY68JuA0PRv+4x//2JwJfuCBB/gAYkzPsOnFE+wCqQCQSG677TZTyPr5559PyqLN7ZGTkyMrV66Ud999V2655RaZOnWqLFy4UNymqqrK9O7VhFTPnj3jvToJQ3sE6UVitAj+hAkTTHH8Xr16yUMPPSRupYk57TTw8MMPy+jRo2XSpEly/fXXy4MPPhjvVUsImtjVi42MHTs2pq/jj+nS4Yhf//rX8rOf/azNeUpKSqRPnz6yc+fOZtODwaC5Ipw+1hqdrt3+9KoEkb119Opv9nNef/11WbVqlckyKz1QVLoT0B/1jTfeKMks3u0fOYTypJNOMj2kpk+fLm6m3z2fz7ffVSJbazebTm9rfvtWp+nVOSLn0Z07Ytv+LRNSn3/+udn20Esq9t/9t956y2y7InvC6lk33fbpVcA2bdrE1x9x2R64pT2SXUfa5K677jJJqX//+98yfPhwcXub6LCcwYMHm/9rbPLJJ5/IrFmzzNW03NQeGzZsMPum008/vVnyQWmvXx3WOGjQIHH7tiQlJUWOPvpoWb9+vSSDQ2kTjem1HfR5Nu1sob2I9BhMex269XtSU1NjEv46DDbWGL6XBDTDrXWG2vrTH5RmxzW5oWe9bXpQpxtprYvTGs0Y6w9Vx6XbdEO+efNmszz13HPPyQcffGDOzOjfo48+2nQgo+Nzk12821/pePATTzxRJk+ebM6MuZ22t7ZdZLtpO+v9yHaLpNMj51evvfZa0/wDBw40G+/IeSorK009sAMt061i0f6RCal169aZA5AePXrE8F10TbFoez3b/OGHHzZt4/VPh8lofalXXnklxu8IXV2stgduao9kd6htcscdd8hNN90k8+fPb1avMxl01vdEn6NlNtzWHhp76wnzyP3WGWecYWJl/b/WU+rqOuM7oieYtJ0iT7a6rU2+8Y1vmKScnbRUn376qWmTrp6Q6uj35JlnnjHbD0dGQ8WshDoS0ne+8x1zJY533nnHXPZyyJAh1rnnntvs6kpHHHGEedx22WWXWYcddpj1+uuvW++99541fvx483cgeklarr7nXPvrJbJ79eplnXfeec0u37lz507LzfTyp3plvCeffNJc+fCSSy4xlz+1L317/vnnW9ddd12zS5D7/X7rrrvuMlc4nDlz5n6XIL/tttvMMl544QXrww8/NFdxGThwoFVbWxuX9+im9teropxxxhlWUVGRuUxv5HddL+eL2LW9m64Ahq77nUzm9tBt3Pvvv2/++vbta11zzTXm/+vWrbOSRXvbRPfHeonzZ599ttn+oKqqynJrm9x6663Wq6++am3YsMHMr78f/R098sgjlhvbo6VkvPpee9vkxhtvtF555RXzHVm+fLl1zjnnWOnp6dZHH31kubVNNm/ebK4sd8UVV1hr1661XnzxRaugoMC6+eabrWTx9CH+dr75zW9akyZNcmQdSUq5zO7du00SJDs728rNzbWmTJnSbAe+ceNGk1DSxJJND7gvv/xyq1u3blZmZqb1/e9/3+z4D4SklLPtr8G6Pqflnx40ut19991nEnoauOrlUN9+++2mxyZMmGAClEh///vfrcMPP9zM//Wvf9166aWXmj0eDoet3/72t1bv3r3Nxv2kk04yOzDEvv3t30Zrf5G/F8Tmu98SSSkk2ncymdvjQNs/nc+tbaLboNbaRGMit7bJ9ddfbw0ePNgkGTRm1BOYejDq5u1Isiel2tsmV199ddO8Gsueeuqp1ooVK6xk097vyZIlS6xx48aZ2L6kpMS65ZZbrGAwaLm5TdasWWO2qZrodoJH/4l9fywAAAAAAADgK9SUAgAAAAAAgONISgEAAAAAAMBxJKUAAAAAAADgOJJSAAAAAAAAcBxJKQAAAAAAADiOpBQAAAAAAAAcR1IKAAAAAAAAjiMpBQAAAAAAAMeRlAKQdBYuXCgej0fKy8vN/SeffFLy8/MlkZ1wwgly9dVXx3s1AABAnNxwww0ycuTINufZtGmTiXFWrlzp2Holg+LiYpk9e7bjr6uf1T/+8Y+Yx4jxen9AZyApBcAxB9qpxjppNGnSJPn00087tAw7CLT/unfvLhMmTJC33nqrQwkz27x58+Smm27q0DoCAOA2P/vZz5r2zSkpKTJw4ED5n//5H6mrq5Ou5pprrpEFCxY0e29nnXVWs3n69+8v27Ztk2HDhsV0Xfbt2yfTpk2TQYMGSXp6uvTq1cvEPS+88IIk6uff2p8mawAkNn+8VwAAYi0jI8P8dYZ///vf8vWvf13Kysrklltuke9973sm4dW7d+8OLVeTXAAAoP2+853vyBNPPCENDQ2yfPlymTx5sklI3H777V2qObOzs81fW3w+n/Tp0yfm63LZZZfJO++8I/fdd58MHTpUdu/eLUuWLDG3sRIIBCQ1NbVdz7nnnnvktttua7rft29f813Q74TdXodKv0+a6AQQW/SUApBw7DODd911lwkuevToIb/4xS9McGCrr6+Xa6+91pwxTEtLk8GDB8tjjz3W6vJa9sSyu8c/9NBD5vmZmZny4x//WCoqKg66brouGgzqGcrf/OY3UllZaYI221NPPSVjxoyRnJwcM99PfvIT2blzZ1NvqxNPPNH8v1u3biZg1vfaWi+yvXv3ygUXXGDm0/X77ne/K+vWrTuk9gQAIJlpHKD7XN2na/wwceJEee2115oeD4fDMmvWLNOLSk9SjRgxQp599tlmy/joo4/Miabc3FyzDz/uuONkw4YNTc//3e9+J0VFRea1NIaYP39+s+drwkana68ijQN0yFbkMDu7p7T2hNLHdd9+7LHHytq1a1sdvqf//9Of/mR6Jtm9fnQZrQ3fe/PNN2Xs2LFm3TRuuu666yQYDDY9rjHGVVddZXqQ6UkwbStdflv++c9/mjjn1FNPNb2NRo8eLVdeeaX8/Oc/jzoWi2a9rrjiChP/9OzZU0455RQzffXq1Sbu0QSdnvQ7//zzzcnA1uTl5Zn3Y/8pjfns+9rDK7L3l66/fr6HHXaYPPzww02P2e06d+5c0yNMP8f//d//NY89+uij8rWvfc1MO/LII+WPf/xjs0Savgd9f/r4gAEDzHctkq7797//ffOZDxkyxLRtpIO1U0saV55++unmu6zfaXs9ga6KpBSAhPTGG2+YYFBvNSjTxJL+2TRh87e//U3uvfde+eSTT0yC6WBnFyOtX79e/v73v8v//d//mcDy/fffl8svvzzq59fW1sqf//xn8//Is3qaONNheB988IEJSDXIsRNPGrQ999xz5v8ahGr3ez3D1xp9znvvvWcCl6VLl4plWSYwjEzMAQCA5jShoQmiyH2zJgl0n/3ggw+a5NOvfvUrOe+880wyQJWWlsrxxx9vkgKvv/666W2lyQs7MaD76t///vfmZNmHH35okidnnHFG08kiPUGlSYKjjjpKVqxYYeIATda05vrrrzfL0n283+9vluRpOZRPT5hpjx+NF/RPk1gt6bprfHDMMceY2OOBBx4wiaGbb7652XwaS2VlZZkTaXfccYdJskUm7lrShM6//vUvqaqqOuA8bcVi7Vkv/awWL15sPh8tb/Ctb31Ljj76aNNGGqPt2LHDtEVHabtrQtCO+f7f//t/zZKCShNCv/zlL8370c9ZEz4zZswwveN12q233iq//e1vzXorfe8aq2lMqcvS+VsOGbzxxhvN+ut3R9vkpz/9qezZs6dd7dQyRtyyZYuJkTW5qkky+wQo0CVZAOCQCRMmWL/85S/3m/7EE09YeXl5TfcnT55sDRgwwAoGg03TfvSjH1mTJk0y/1+7dq2lm6/XXnut1dd54403zON79+5tdfkzZ860fD6ftXXr1qZpL7/8suX1eq1t27a1usyNGzeaZWZkZFhZWVmWx+Mx90ePHm0FAoEDvud3333XzFdVVdXqurXWNp9++qmZZ/HixU2Pl5WVmdf++9//fsDXAgDAbTRm0H267pvT0tLM/lP3588++6x5vK6uzsrMzLSWLFnS7HkXXnihde6555r/T5s2zRo4cOAB9+f9+vWzbrnllmbTjjnmGOvyyy83/3/ggQesHj16WLW1tU2PP/LII2Zd3n///Wb7/3//+99N87z00ktmmv08jU9GjBjR7L2deeaZrcYj9nJ/85vfWEcccYQVDoeb5pkzZ46VnZ1thUKhphjjm9/85n7rf+211x6wXd98802rqKjISklJscaMGWNdffXV1qJFi5oeP1gsFu16HX300c2ed9NNN1knn3xys2lbtmwxr6WveTA63/PPP7/fdI0rzzvvvKb7ul4FBQXms4ts19mzZzd73qBBg6y//vWv+63j+PHjzf+vvPJK61vf+laz99lyfaZPn950v7q62kzTuLM97WTHiHa7L1u2rGn+Tz75xEy7++67D9o+QCKipxSAhKR1myLrAGh3ZvsskHZZ18e0e/Wh0m7bhYWFTffHjx9vuue3PGPWknbr1jNs2uNJu6lr763IegN6dlXPlurytXu4vY6bN2+Oet30TJyePR03blyzYYNHHHGEeQwAAHxFh8ZrbKC9gLSe1JQpU+Tss89u6hmtw7a+/e1vN9Vs0j/tOWUPz9Pn6nC91uoHaS+oL774Qr7xjW80m6737X2yxg7Dhw83w7dsOhyrNTpfZGyjOtLLRddBYxgdeha5btXV1bJ169ZWX9d+7bZeV3uOffbZZ2a44Q9/+EPTw0zbyL4oy8FisWjXS4cFRtLeQtoDKPKz0iFzyv68DlVkG+h6aW+wlm2gPalsNTU15jUvvPDCZuujvZjsddFeS9oWGqPpEMlXX321zdfV3mo6RNR+3WjbqWWMGNlu2j6JfpVpoC0UOgfgGN0Jt1a3Sbtqa02ASC0DQ91Za9JIdVbR8kOhQ/C0HoD+abd+rRGgQwW0y78GL9rV2+7urXUMNBml97XmAAAA6Hx6oK8nitTjjz9uakbpEChNJujBvXrppZeanYxSuu92Oq6IjG/sRIQd3zj1uvZrH+x19TmaiNI/HY6oyRgd9qf/76w2088ukn5eenKvtSL1dhIvlm0QuT72d+eRRx5pdqJQ2SdOR40aJRs3bpSXX37ZXAxHh+lpTbPImmWH0vaAm9BTCoBj9CyS1lpoSacdfvjhUS9HazboztyuBXEoNFmkZz5tb7/9tni9XrOO0dIzh3q2yi54uWbNGnNVGr0KjAZweuaq5Rk4u8ZFKBQ64HK1mKYmvCILqOty9UysXgEHAAC0TvflWqB7+vTppv6j7jc1+aT7fU1cRf7piSa7J8tbb73Vat1GPaHWr18/U/Mokt6398kaO6xatcoU/ra9++67Hf6INGZoK16wYwa79mTkumlvbS3M3pn0/Wp8UldXd9BY7FDXS5M82itL6zK1/LxaJrBiTYus62evPcZarosWGI/8jkyaNMkkr7RHvfamt2tGHUx720ljS/0MtGe+TeNDPcELdFUkpQA4RgtKfvrpp6Z7sxZ71J3oH/7wB1Mk89e//nXUy9FARbvna3FQLSauZ6j0ijRaZDJa2sVel6HdxDUQ1XXSs1vtucyynunS52kSSocG6JA9DSD18skawGjhS7ubu02vyqLPe/HFF2XXrl1NZ+EiaS+sM888Uy6++GJZtGiRWUctyKpneHU6AAA4sB/96EemJ8ucOXPMwb0WDdfi5lqcWodd6ckw3Vfbxar16mk6TO+cc84xxbW1gLleTdce0v/f//3fpueOJhx0mhbD1iFbWhBb6ZV2NUFzySWXmOFVr7zyiimKbscKh0rjHTte0iu4tZY004LdWvRar4ynJ8f0an0zZ86UqVOnmgTdodIr42nhck1+6EVbtOi5Jvt0qKQmYQ4Wix3qeunVljWhc+6555rEnn5e2p46JPNgCbpY0CLlWihfC5prDKvJxyeeeMLEr8qOY/U96uPPPPOMiSWjHU7X3nbSBKgWv7/00kvNyUv9fC666KK4jiIAOoqkFADHlJSUyH/+8x+z09WuzdoVWoMX3YHrDrY99Ook2lNJd+Z61kgTODp8Llp6lusHP/iBueLJySefbM6SRl7iN1oakGmQeP/995vhelpjSt+Pnk3UZJUdlNo0saQBjga0egZOA+HWaMCj9QL08tRaa0DPoGlA2Fq9CwAA8BXtxaz7V73KnMYGeoJIr5imyQXtmaIxhw7ns3u7aN1GveqenijSGkm6/9VeL/Y+V09AaZJAT6BpDyG9IpyeeNKTSEqTNHo1X01UjRw50lxhT6/YpiLrTLWXxjaahNA6RxpjtOytZccVGh8sW7bMDFu87LLLzLBF7SnWEVp6QJN2GiNpm2nSRKdFngBsKxY71PWye6VpAkpfW9v76quvNkmejiTZDpUmfB599FETl+m66PdDYz37u6NJT/2e6WekV9CzE3jRruuhtJOui7aTrovGspoMLSgo6LT3DDjNo9XOHX9VAIijG264wZzV0+ARAACgs2ltSe3do7U06cUCAAdGoXMAAAAA6AC9mp/2CNeeLzrsXouBa1kAElIA0DaSUgAAAADQAdu3bzdD9vRWrxKnda1uueUW2hQADoLhewAAAAAAAHAchc4BAAAAAADgOJJSAAAAAAAAcBxJKQAAAAAAADiOpBQAAAAAAAAcR1IKAAAAAAAAjiMpBQAAAAAAAMeRlAIAAAAAAIDjSEoBAAAAAADAcSSlAAAAAAAAIE77/+8yyasMY5v9AAAAAElFTkSuQmCC", "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAASEhJREFUeJzt3Ql4VNX5+PE3BCGyhU0IILKqiMgiEAwqqAVxQ6hacQWpUuuCWtQK6g9ErCCg0gqKG9pKFSpFUYtxQWhFsFEQZRMVUdawCWEzQZP7f97z7x1nhplkZjLrme/neQYyd+7ce+6Zu7z3bDfDcRxHAAAALFEl0QkAAACIJoIbAABgFYIbAABgFYIbAABgFYIbAABgFYIbAABgFYIbAABgFYIbAABgFYIbAABgFYKbJHbgwAG54YYbJCcnRzIyMuSOO+4w07dv3y6XXXaZNGjQwEyfMmWKpPo2pZsXX3zRbP93330X93Xrem+99VZJZosWLTLpnDNnjtiangceeMAsMxQ6n86P4PRY0nzSYwsguEnQRS3Y6+OPP/bM+/DDD5v5b7rpJnnppZfk2muvNdP/8Ic/yDvvvCOjRo0y088777yop1PX/frrr8dkuYG2KZCWLVt68qVKlSpSt25dOeWUU+R3v/ud/Pe//61UOp588sm4nARjlY+2ePnll1MqOE93BQUF5nh8/PHHj/hswIAB5rMXXnjhiM969eolzZo1k2QKVIO9Zs2aJcnIDYbd11FHHWXOkbfddpvs3bs3omVu3brVLHfFihVim6qJTkC6evDBB6VVq1ZHTG/btq3n7w8++EBOO+00GTNmjM88Ol1PJHfddVdML8paOjRw4MCoLjfYNgXTuXNnufPOO83f+/fvl7Vr18qrr74qzz77rAnyHnvssYiDm4YNG8p1110nsRQsHzWou+KKK6R69eqS7sHNqlWr0rYEL9WceuqpUqNGDVm8eLE5/rwtWbJEqlatKh999JEMHTrUM/3w4cPyySefSP/+/SWZaFDQvXv3I6bn5eVJMnvqqaekVq1acvDgQVmwYIE88cQTsnz5cvObRBLcjB071gRJeq61CcFNgpx//vnSrVu3cufZsWOHtG/fPuB0LcVIRcG2KRi927vmmmt8pj3yyCNy1VVXmbvH448/3pQCpZrMzEzzQmwcOnTIXIQRXRq89OjRwwQw3tatWye7du0yx6X/RXbZsmVSXFwsZ5xxRlL9rmeeeaa58QhHWVmZCdaysrKO+EyDjZo1a8Z8+zTNemOmbrzxRnOTNHv2bFOqlpubW6n124RqqSTkFptu2LBB/vWvf3mKId0qLX2Q+7Rp0zzTXVo0qXfAzZs3NyUCWgqkgYAekN70/Z///GdTxaMH6THHHGOqtj799FPzuS5TD9S//vWvnnVUVMKhQcv1118vjRs3Nsvs1KmT+X5F2xRJm5Ojjz7aVGnVr19f/vSnP5n88N42reY4+eSTTTo0PXoC2LNnj2cevUtZvXq1/Pvf//ak46yzzoprPgZrc6MlSpp2XW/Tpk3llltuOaLIWdPaoUMHWbNmjZx99tnmZKhB4MSJE8PKx7///e9y4oknmrR37dpV/vOf/xwxz2effWYC8Tp16pi7xV/96lc+VadaEqdVhqNHjz6iREa3T+8yg9Ht0H3h+++/9+SP/jb+eay/8bHHHmvSqev/5ptvAuaHXkS1+kPz49577zWflZSUmFJC/Q01T/U3/eMf/2ime3vvvffMxVdvGnQ7NV/cZYSbHqWli5qnuq/qhUgD9C1btkhFNF1aIqL7Uu3ateXiiy+WzZs3S6gqOg6926ZMnjxZnnnmGWnTpo3JGy3F0BKWimg+abs/7+3WYEf3Ea0ydgMd78/c70Wynwf6XXVePZays7PNbzZkyJCIq2ZCaZ+mx4qb3vz8fM/xq+eQm2++WRo1amT2iWhtX7hBmlq/fr1n2g8//GBK9vXcpPuz/jZ6HH/++ec+52S35EpL2ryvMy6t/tdzmuazpq93795HBLZJy0FcvfDCC3oldt5//31n586dPq9du3aZeQoLC52XXnrJadiwodO5c2fzt75WrVpl/tfv9+3b1zNdHTx40OnYsaPToEED595773WmT5/uDB482MnIyHBuv/12nzRcd911Zhnnn3++M2XKFGfy5MnOgAEDnCeeeMJ8rsusXr26c+aZZ3rWsWTJkqDbdOjQIeekk05yjjrqKOcPf/iD85e//MV8V9ehyy9vmw4cOBB0uS1atHAuvPDCoJ9ff/31Zh2aL64bbrjBqVq1qjNs2DCTB/fcc49Ts2ZNp3v37s7hw4fNPK+99ppz7LHHOu3atfOk4913341rPrr7wYYNGzzLGzNmjJnWp08fs4xbb73VyczM9Em76t27t9O0aVOnefPmJk1PPvmkc84555jvzp8/36mIztehQwfzWzz44IPOI488YvL66KOPdlauXOmZT/NV865JkybOuHHjnAkTJjitWrUy2/Txxx975rvllltMni9btsy837p1q1O/fn2zHWVlZUHToXmu+4Kmw80f/W3UwoULTTq7dOnidO3a1Xn88cedBx54wKlRo4aTm5vrsxzNj5ycHOeYY45xhg8f7jz99NPO66+/7pSWljrnnnuu+c4dd9xhpmuealr1d/LezmrVqjndunVz/vznP5vf/K677nJ69erlmSec9Li/rf5uOt/IkSNN3rZs2dLZs2fPEb+3t2uuucZMu+qqq5ypU6c6l1xyidkfdZrOX55QjkOl+5y7LW3btjW//8SJE83voMeF974WyDvvvGO+r9vp+u1vf2vy+scffzTrnzdvnuezgQMHOrVr13Z+/vnnsPfzQL+r7lP621SpUsW5+eabzTJ0/3fzyTtdgbi/5YwZM444B+vLe5/V+TRPNQ1jx451pk2b5nz22Wee37h9+/YmnZoGPT6isX3BuMvVNHrTfVWnv/32255pn3zyidOmTRuz7+ly9Thv1qyZk52d7WzZssVzTtbp+t3f/e53nmNw/fr15vMFCxaY4yIvL8959NFHzb6seazT/vvf/zrJjuAmztyDItBLLxqhXNx1Xr2geNOLj16IvvrqK5/punPrgbVx40bz/oMPPjDfv+22245YrvdBrcsaMmRISNukJ05d5syZMz3T9CDWg6JWrVrOvn37KtymQCqaVw82Xa97Iv3www/N+7///e8+8+Xn5x8x/eSTTzYnF3/xykf/4GbHjh3mpKEXCL0ou/QC556IXZpunfa3v/3NM62kpMScKC+99FKnIu7+9umnn3qmff/9905WVpbz61//2ueipGlyT3Zu4KIXKu8LvwaEepHUPC0uLja/WZ06dcwyK6Lz6u8c7AKkFxbdNpcGHzrdOwhz80ODEm96otYLoO4X3nQ+nf+jjz7y2Y/8LxqRpEf3+0aNGpngUS/0rrfeesvMN3r06KDBzYoVK8x7vWB700AnlOAm1OPQDW40gP/hhx888+pxpNPffPPNctejy9FjQW8uXCeeeKK5+CsN9u6++27PZ3rx1puxSPdz/99VAwCdrgGZSwMnN5ALNbgJ9tq2bZtnXn2v+9Dq1asDHr9nnHGGJ2iL1vYF4+4v69atM/vqd999Z5angbPmsR6HruLiYp/1u7+7XmM0oPEOggLlmZ7Djj/+eKdfv34+5zMNoPUGx/09kxnVUgmi1UpaFO79evvttyNenhaDa/FkvXr1TJGw++rTp4+UlpZ6qhz++c9/mqLHQA16Q+2W6m/+/Pmma/eVV17pmaYt+bXBnnb91qLbWNDiVrehsZsHWnzat29fnzzQ6gGdd+HChUmbj++//76py9fqMK3mcQ0bNswUKWv1jf+2e7dFqlatmqlv//bbb0Nanzaa1HxxHXfccaaRuvbC0+3U17vvvmsaQrdu3dozX5MmTTztKvbt22emaXG1FmVrY28tXte0ansoXWZlaXG5bpt/Ebz/dmrxv3cjVve3POmkk6Rdu3Y+v+U555xjPnf3B7f92rx5846oegw3PVolqVVDWlXh3S7jwgsvNOnw/x39jyOlx423UBtbh3scDho0yOznwbYlGK0u69ixo6dtjeapVkX17NnTvD/99NM9VRdfffWV7Ny501MlFe5+Huh31e3Utj/ebe20/drw4cMlHFqV6n8O1pdWd3vTqphg7QQ13d5t56KxfRXRKlOtttQq3N/+9remylWvHd5tdapXr+5Zvx7Lu3fv9lS3auPjimjvqa+//toc6/pd99jRanatitXzYEXHSqLRoDhB9EJUUYPicOiO+MUXX5idPhA94br1sloH7H8AV4a2mdCGvd4Hs9ILi/t5LOgJ2z3ZunlQVFRk6r/Ly4NkzEc3j/Tk400vpBpc+Oeh1u/7B1F6odK0h0J/L38nnHCCadCoFyOlf/unx/1d9cS2adMm067AvaDpxUaD9n79+pmTbjT4B0juxdi7DZXSNkfeQYf7W2rAVdFvqRf55557zoy/NHLkSHPyvuSSS0zDTf99uqL0BPsdlQY35fVo0e/q+rQNjLdAy4rGcRhq3gaiwYr20tELnvaS0gu89oJUGuRomxNtP+Tf3ibc/TzQ76rzaJDt3tyEm08ubY+iNy0VCdSrNdhn0di+iuiNlQZKepz+5S9/Me0YtW1XoPaATz75pPlcAxyXjo9WET12lLZlCkbPtd7BcbIhuLGE7sxaYqGNJQPRC5dttAuxd/d5zQMNbLTxXyDBLnKpmI/Belp5N66OJ72QaQNFN/CLVq+WULfT/+Tu/pZ6AQs2XIA2Lna/q3eiWpKjd9baYFR7n2gJj5Zeeach2fK9MiqzLW5wo8GLBjduw1U3uNH9QRsnazCnpSxu4BOuQL9rvJWXhsqmL5Lva+mo21tKu9dr3l999dWmYbIb2D788MPyf//3f+YmY9y4ceYmTD/TEqVQSlzceSZNmhS0i7h/cJlsCG4soXd7WpJR0Z2IzqdVD9qavrxSh3CqVlq0aGFKDPSA8L5r/PLLLz2fR5tu62uvvWYuUO6dqW6bFgtrKUJFJ41g25eofHTzSIv3vauBtIhb77xCucMMh3tn5k2rEDQgcYNA/VvT409/V/2d3eBAafWclpJoD5x77rnHlIDoXWVFIq0KDYX+Rto7REtiKlqPbo/Opy8NhvTicN9995mAJ5y89/4d3eovl04r71jQz/QY0uDQ+84/0G+Q6OPQLYnR4GXp0qXmmHNpiaauSwMffXXp0sUT6EZjP9dl6Pguepx6X2BDzadYivdxrNuvx55Wbf3jH/8w3cLVnDlzTE/K559/3md+7bHlBkYVnQeVlhBFO83xQpsbS1x++eXmJKMXXH+6Q//888/m70svvdTcmenATeXdsel4DaF2rbzggguksLDQ3O26dH16Z6cHn9ZZR9OPP/5oBsHTwEIvQO4Bqnmgxa96p+JP0+O9PcG2L1H5qCcQLZ7WgMD7+3py0uJfbbMRTbqN3nXvWsWkbU7OPfdczxg8+rdO8+6url2AtZu3Xtz0xOd2F9WgRu8KdcDFu+++W6ZOnRpSWyvNH92+WNDfUrtf64CPgfYhbT+gdD/y596t+ncZr4hWNWvp4fTp032+q20iNPgr73fUrrrKPygMdQTneB6HGsBolYwGGdrOyG1v49L3OjK3XuS9u4BHYz/X7dTt8h5mQI973c5Ei/dxrLTURqupdbgKV2Zm5hElcNoGzX84AndcHv9zlLbH0wBHj2u3+t+bW3WdzCi5SRA92bl3VP4nBe+IP1R6QXnjjTfkoosuMuM/6M6pJ++VK1eaKF4vUBqxazSvgYEefHr3rmMY6J3ehx9+aD5znzmk39dSEL2LdU9kOnhXIDq2xdNPP23Wq0Wj2tBN16l3bXpidtvEREIPxpkzZ5q/9SDTsV30INWTuF5IdQwbl5689f348eNNgzi9OGuDSt1O/Y7WQbuDdun26cnxoYceMtVaekHSO+1E5aOWlujjNDRY0mXp+CZ6YdA6cx2Lwn8gw8rS8TW0bYw2NtXGh7oe5R2sad64479oA1mtXtDfWS/a7pg6Ojib1strWw8d/8VdxptvvmnuJjXfyhvYTPNHL8YjRoww26kX4WiNZKu/j97N/v73vzclMFq6oBdBPe50ugawGozoaOFaLaUXHr3z1rY4mh96wQh34Dnd3/Qio9uu+6M27tWAUPc9PS78R/X1D6h0fl23Xgj1XKDBQ6BxdOJ9HAaieaPjTSnvkhulaX/llVc880VzP9f9Q9enpYN6PGpj37lz54YdJOuxqvuvP20sra9IxPs4dve522+/3Zy7tEpV13vRRReZ/Vr3Q/0t9DjU6nr/a4sGMNqgXoNx3T/0WNXzk56ntB2aBtzark6Xo+2D9Hysx5Le2OgxntQS3V0r3ZTXFdy/S144XcHV/v37nVGjRpluudodUcet6Nmzpxl/xXt8Be26OGnSJDPOi86n3Qh1rBZ3nBL15Zdfmu6+2s1Q11dRt/Dt27c7Q4cONevUZZ5yyikBu2SG2xXczRcdZ0a7F2t3Yx3DprxxFp555hkzFommXbsta1r++Mc/mm7MLh3jQdOhn+vyvbuFxyMfA41z43YZ1eXpWCGNGzd2brrpJp+xUZSmVfPBny47ULfqYPuPdhnW7p7aPVTHPNEusv6WL19uuoNqV2Id0+Xss8/2GfNIx1PRbsH+v4d2M9fxZDT95dFxjrSrc926dU263PS73XVfffVVn/ndbsze+1aw/FD6e+k4Lvq5bme9evXMvqHdlouKijzjeei4Nzp2kP6O+v+VV17pMxxAOOlRs2fPNnmq69Qxf66++mpn8+bNPvMEGudGu4/r8ALaTVuHEejfv7+zadOmkLqCh3ocumnWfddfqOtROn6Kzq/jpwTab9xjV9PkrzL7udq9e7dz7bXXmnOCjt2if+v4M9HoCu69/cHOte7xq12pA6ns9oUzzo3SfVnzwT2PFRcXO3feeacZo0rPPaeffrqzdOlS87n/EBg6BICO16PHq3/+aZ7qWEu6P+q+rMfn5Zdfbo6ZZJeh/yQ6wAIAAIgW2twAAACrENwAAACrENwAAACrENwAAACrENwAAACrENwAAACrpN0gfjrQ2tatW82ARbEc+h0AAESPjlyzf/9+MyCq/wNiJd2DGw1svJ+JAwAAUoc+LkZHEC9P2gU37hDkmjnus3EAAEBy27dvnymcCOVRImkX3LhVURrYENwAAJBaQmlSQoNiAABgFYIbAABgFYIbAABgFYIbAABgFYIbAABgFYIbAABgFYIbAABgFYIbAABgFYIbAABglbQboRgAkBpKyxwp2PCD7NhfLI1qZ0luq/qSWYUHHqNiBDcAgKSTv2qbjH1zjWwrKvZMa5KdJWP6t5fzOjRJaNqQ/KiWAgAkXWBz08zlPoGNKiwqNtP1c6A8BDcAgKSqitISGyfAZ+40/VznA4IhuAEAJA1tY+NfYuNNQxr9XOcDgiG4AQAkDW08HM35kJ4IbgAASUN7RUVzPqQnghsAQNLQ7t7aKypYh2+drp/rfEAwBDcAgKSh49hod2/lH+C47/VzxrtBeQhuAABJRcexeeqaUyUn27fqSd/rdMa5iY/SMkeWrt8t81ZsMf+nUg81BvEDACQdDWD6ts9hhOIEyU/xQRSTouRm2rRp0rJlS8nKypIePXpIQUFB0HlffPFFycjI8Hnp9wAAdtGqp7w2DWRA52bmf6qi4iPfgkEUEx7czJ49W0aMGCFjxoyR5cuXS6dOnaRfv36yY8eOoN+pU6eObNu2zfP6/vvv45pmAABsVGrJIIoJD24ee+wxGTZsmAwdOlTat28v06dPlxo1asiMGTOCfkdLa3Jycjyvxo0bxzXNAADYqMCSQRQTGtwcPnxYli1bJn369PklQVWqmPdLly4N+r0DBw5IixYtpHnz5jJgwABZvXp1nFIMAIC9dlgyiGJCg5tdu3ZJaWnpESUv+r6wsDDgd0488URTqjNv3jyZOXOmlJWVSc+ePWXz5s0B5y8pKZF9+/b5vAAAgL2DKCa8WipceXl5MnjwYOncubP07t1b5s6dK8ccc4w8/fTTAecfP368ZGdne15a2gMAAOwdRDGhwU3Dhg0lMzNTtm/f7jNd32tbmlAcddRR0qVLF/nmm28Cfj5q1CgpKiryvDZt2hSVtAMAYJtMSwZRTGhwU61aNenatassWLDAM02rmfS9ltCEQqu1Vq5cKU2aBO53X716ddO7yvsFAADsHUQx4YP4aTfwIUOGSLdu3SQ3N1emTJkiBw8eNL2nlFZBNWvWzFQvqQcffFBOO+00adu2rezdu1cmTZpkuoLfcMMNCd4SAADscF6KD6KY8OBm0KBBsnPnThk9erRpRKxtafLz8z2NjDdu3Gh6ULn27Nljuo7rvPXq1TMlP0uWLDHdyAEAQHQHUUxFGY7jJPdIPFGmvaW0YbG2v6GKCgAA+67fKddbCgAAoDwENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCoENwAAwCpVE50AAAhXaZkjBRt+kB37i6VR7SzJbVVfMqtkkJEADIIbACklf9U2GfvmGtlWVOyZ1iQ7S8b0by/ndWiS0LQBSA5USwFIqcDmppnLfQIbVVhUbKbr5wBAcAMgZaqitMTGCfCZO00/1/kApDeCGwApQdvY+JfYeNOQRj/X+QCkN4IbAClBGw9Hcz4A9iK4AZAStFdUNOcDYC+CGwApQbt7a6+oYB2+dbp+rvMBSG8ENwBSgo5jo929lX+A477XzxnvBgDBDYCUoePYPHXNqZKT7Vv1pO91OuPcAFAM4gcgpWgA07d9DiMUAwiK4AZAytGqp7w2DRKdDABJimopAABglaQIbqZNmyYtW7aUrKws6dGjhxQUFIT0vVmzZklGRoYMHDgw5mkEAACpIeHBzezZs2XEiBEyZswYWb58uXTq1En69esnO3bsKPd73333ndx1111y5plnxi2tAAAg+SU8uHnsscdk2LBhMnToUGnfvr1Mnz5datSoITNmzAj6ndLSUrn66qtl7Nix0rp167imFwAAJLeEBjeHDx+WZcuWSZ8+fX5JUJUq5v3SpUuDfu/BBx+URo0ayfXXX1/hOkpKSmTfvn0+LwAAYK+EBje7du0ypTCNGzf2ma7vCwsLA35n8eLF8vzzz8uzzz4b0jrGjx8v2dnZnlfz5s2jknYAAJCcEl4tFY79+/fLtddeawKbhg0bhvSdUaNGSVFRkee1adOmmKcTAACk6Tg3GqBkZmbK9u3bfabr+5ycnCPmX79+vWlI3L9/f8+0srIy83/VqlVl3bp10qZNG5/vVK9e3bwAAEB6SGjJTbVq1aRr166yYMECn2BF3+fl5R0xf7t27WTlypWyYsUKz+viiy+Ws88+2/xNlRMAAEj4CMXaDXzIkCHSrVs3yc3NlSlTpsjBgwdN7yk1ePBgadasmWk7o+PgdOjQwef7devWNf/7TwcARF9pmcOjL5D0Eh7cDBo0SHbu3CmjR482jYg7d+4s+fn5nkbGGzduND2oAACJlb9qm4x9c41sKyr2TGuSnWWexs5DS5FMMhzHcSSNaFdw7TWljYvr1KmT6OQAQMoENjfNXC7+F4yM//3PU9mRTNdvikQAABVWRWmJTaA7YXeafq7zAcmA4AYAUK6CDT/4VEX505BGP9f5gGRAcAMAKNeO/cVRnQ+INYIbAEC5GtXOiup8QKwR3AAAypXbqr7pFeU2Hvan0/VznQ9IBgQ3AIByZVbJMN29lX+A477Xz3U+IBkQ3AAAKqTj2Gh375xs36onfU83cCSbhA/iBwBInQCnb/scRihG0iO4AQCETKue8to0IMeQ1KiWAgAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAViG4AQAAVkmK4GbatGnSsmVLycrKkh49ekhBQUHQeefOnSvdunWTunXrSs2aNaVz587y0ksvxTW9AAAgeSU8uJk9e7aMGDFCxowZI8uXL5dOnTpJv379ZMeOHQHnr1+/vtx3332ydOlS+eKLL2To0KHm9c4778Q97QAAIPlkOI7jJDIBWlLTvXt3mTp1qnlfVlYmzZs3l+HDh8vIkSNDWsapp54qF154oYwbN67Cefft2yfZ2dlSVFQkderUqXT6AQBA7IVz/U5oyc3hw4dl2bJl0qdPn18SVKWKea8lMxXRuGzBggWybt066dWrV8B5SkpKTIZ4vwAAgL0SGtzs2rVLSktLpXHjxj7T9X1hYWHQ72nUVqtWLalWrZopsXniiSekb9++AecdP368ifTcl5YKAQAAeyW8zU0kateuLStWrJBPPvlE/vSnP5k2O4sWLQo476hRo0ww5L42bdoU9/QCAID4qSoJ1LBhQ8nMzJTt27f7TNf3OTk5Qb+nVVdt27Y1f2tvqbVr15oSmrPOOuuIeatXr25eAAAgPSS05Earlbp27Wrazbi0QbG+z8vLC3k5+h1tWwMAAJDQkhulVUpDhgwxY9fk5ubKlClT5ODBg6Z7txo8eLA0a9bMlMwo/V/nbdOmjQlo5s+fb8a5eeqppxK8JQAAIBkkPLgZNGiQ7Ny5U0aPHm0aEWs1U35+vqeR8caNG001lEsDn5tvvlk2b94sRx99tLRr105mzpxplgMAAJDwcW7ijXFuAABIPSkzzg0AAEC0EdwAAACrENwAAACrRC24KS4ulsmTJ0drcQAAALEPbrRX01tvvSXvvvuueWyC+umnn+TPf/6ztGzZUiZMmBBZKgAAAOLdFXzx4sVy0UUXmdbKGRkZZqyZF154QQYOHChVq1aVBx54wIxXAwAAkBIlN/fff79ccMEF8sUXX5iB9/S5Tr/+9a/l4YcfljVr1sjvf/97M+4MAABASoxz06BBA/nwww+lffv28uOPP5qncs+dO1cGDBggqYRxbgAASD0xGedmz5495kGXSktoatSoIR06dKh8agEAABL1+AWtftJHJCgt8Fm3bp15HIK3jh07RjN9AAAAsamW0uc7aUPiQLO70/V/txdVsqJaCgCA1BPO9TvkkpsNGzZEI20AAAAxFXJw06JFi9imBAAAIApCblA8ceJE00vK9dFHH0lJSYnn/f79++Xmm2+ORpoAAABi3+YmMzNTtm3bJo0aNTLvtb5rxYoV0rp1a/N++/bt0rRpU9rcAACA1OgK7h8DhRgTAQAAxBVPBQcAAFYhuAEAAOk7iN9zzz1nHrugfv75Z3nxxRc9oxZrg2IAAICUaVDcsmVLM0hfqo+HwyB+AACknpgM4rdw4UJp1apVNNIHAACQ+DY3bdq0McHNb3/7W5k5c6Zs2bIldqkCAACIUMglNx988IEsWrTIvF555RU5fPiwGePmnHPOkbPPPtu8GjduHGk6AAAA4tvmxltxcbEsWbLEE+wUFBTITz/9JO3atZPVq1dLMqPNDQAAqSec63dEwY1LS2/0MQxvv/22PP3003LgwAFGKAYAAKnRoNgNZj7++GPTuFhLbP773/9K8+bNpVevXjJ16lTp3bt3ZdMOAABQKSEHN9q2RoMZbVSsQcyNN94oL7/8sjRp0qRyKQAAAEhEcPPhhx+aQEaDnLPOOssEOA0aNIhmWgAAAOLXFXzv3r3yzDPPSI0aNeSRRx4xTwA/5ZRT5NZbb5U5c+bIzp07K58aAACASoq4QbE+bmHx4sWe9jeff/65HH/88bJq1SpJZvSWAgAg9YRz/Y74wZk1a9aU+vXrm1e9evWkatWqsnbt2kgXBwAAEN82N2VlZfLpp5+aUhotrdEu4AcPHpRmzZqZAfymTZtm/gcAAEiJ4KZu3bommMnJyTFBzOOPP24aFutjGQAAAFIuuJk0aZIJak444YTYpggAACAewY2OawMAAJDsIm5QDAAAkIwIbgAAgFUIbgAAgFUIbgAAgFUIbgAAgFUIbgAAgFUIbgAAgFUIbgAAgFUIbgAAgFUIbgAAgFUIbgAAgFUIbgAAgFUIbgAAgFUIbgAAgFUIbgAAgFUIbgAAgFUIbgAAgFUIbgAAgFUIbgAAgFUIbgAAgFWSIriZNm2atGzZUrKysqRHjx5SUFAQdN5nn31WzjzzTKlXr5559enTp9z5AQBAekl4cDN79mwZMWKEjBkzRpYvXy6dOnWSfv36yY4dOwLOv2jRIrnyyitl4cKFsnTpUmnevLmce+65smXLlrinHQAA/KK0zJGl63fLvBVbzP/6PhEyHMdJzJr/R0tqunfvLlOnTjXvy8rKTMAyfPhwGTlyZIXfLy0tNSU4+v3BgwdXOP++ffskOztbioqKpE6dOlHZBgAA0l3+qm0y9s01sq2o2DOtSXaWjOnfXs7r0KTSyw/n+p3QkpvDhw/LsmXLTNWSJ0FVqpj3WioTikOHDslPP/0k9evXD/h5SUmJyRDvFwAAiG5gc9PM5T6BjSosKjbT9fN4Smhws2vXLlPy0rhxY5/p+r6wsDCkZdxzzz3StGlTnwDJ2/jx402k5760VAgAAESHVj1piU2gaiB3mn4ezyqqhLe5qYwJEybIrFmz5LXXXjONkQMZNWqUKcJyX5s2bYp7OgEAsFXBhh+OKLHxpiGNfq7zxUtVSaCGDRtKZmambN++3We6vs/JySn3u5MnTzbBzfvvvy8dO3YMOl/16tXNCwAARN+O/cVRnS/lS26qVasmXbt2lQULFnimaYNifZ+Xlxf0exMnTpRx48ZJfn6+dOvWLU6pBQAA/hrVzorqfClfcqO0G/iQIUNMkJKbmytTpkyRgwcPytChQ83n2gOqWbNmpu2MeuSRR2T06NHy8ssvm7Fx3LY5tWrVMi8AABA/ua3qm15R2ng4UKuaDBHJyc4y86VNm5tBgwaZKiYNWDp37iwrVqwwJTJuI+ONGzfKtm2/tLJ+6qmnTC+ryy67TJo0aeJ56TIAAEB8ZVbJMN293UDGm/teP9f50macm3hjnBsAAOwe5ybh1VIAACD1ndehifRtn2N6RWnjYW1jo1VR8SyxcRHcAACAqNBAJq9NA0m0hLe5AQAAiCaCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYBWCGwAAYJWqiU4AAAAoX2mZIwUbfpAd+4ulUe0syW1VXzKrZJBtQRDcAACQxPJXbZOxb66RbUXFnmlNsrNkTP/2cl6HJglNW7KiWgoAgCQObG6audwnsFGFRcVmun6OIxHcAACQpFVRWmLjBPjMnaaf63zwRXADAEAS0jY2/iU23jSk0c91PvgiuAEAIAlp4+FozpdOCG4AAEhC2isqmvOlE4IbAACSkHb31l5RwTp863T9XOeDL4IbAACSkI5jo929lX+A477Xzxnv5kgENwAAJCkdx+apa06VnGzfqid9r9MZ5yYwBvEDACCJaQDTt30OIxSHgeAGAIAkp1VPeW0aJDoZKSPh1VLTpk2Tli1bSlZWlvTo0UMKCgqCzrt69Wq59NJLzfwZGRkyZcqUuKYVAAAkv4QGN7Nnz5YRI0bImDFjZPny5dKpUyfp16+f7NixI+D8hw4dktatW8uECRMkJycn7ukFAADJL6HBzWOPPSbDhg2ToUOHSvv27WX69OlSo0YNmTFjRsD5u3fvLpMmTZIrrrhCqlevHvf0AgCA5Jew4Obw4cOybNky6dOnzy+JqVLFvF+6dGnU1lNSUiL79u3zeQEAAHslLLjZtWuXlJaWSuPGjX2m6/vCwsKorWf8+PGSnZ3teTVv3jxqywYAAMkn4Q2KY23UqFFSVFTkeW3atCnRSQIAADZ2BW/YsKFkZmbK9u3bfabr+2g2Fta2ObTPAQAgfSSs5KZatWrStWtXWbBggWdaWVmZeZ+Xl5eoZAEAgBSX0EH8tBv4kCFDpFu3bpKbm2vGrTl48KDpPaUGDx4szZo1M+1m3EbIa9as8fy9ZcsWWbFihdSqVUvatm2byE0BAABJIqHBzaBBg2Tnzp0yevRo04i4c+fOkp+f72lkvHHjRtODyrV161bp0qWL5/3kyZPNq3fv3rJo0aKEbAMAAEguGY7jOIlORDxpV3DtNaWNi+vUqZPo5AAAgChfv63vLQUAANILwQ0AALAKwQ0AALAKwQ0AALAKwQ0AALAKwQ0AALAKwQ0AALBKQgfxAwCkvtIyRwo2/CA79hdLo9pZktuqvmRWyUja5cJ+BDcAgIjlr9omY99cI9uKij3TmmRnyZj+7eW8Dk2SbrmRIMhKPYxQDACIOAC5aeZy8R/m3i1beeqaUyMKRGK13FQPstLdPkYoBhJH7/KWrt8t81ZsMf/re8A2ul/rRT/Q3u1O08/D3f9jtdxIuEGWd2CjCouKzXT9HMmJaikghe7yKB5HstC2MP4XfW8aeujnOl9emwYJW26kx0xFQZYuQT/v2z6HdkBJiOAGiJJgRenuXV5li9LDCZwIghBrGixEc75YLLcyNxuxCt4QHwQ3QBTE+i4vnMCJNgKIBy0FieZ80V5uZW82YhW8IT4Y5waIgnDu8sIVThsE2gggXrR6R0tBgoXqOl0/1/nivdxotNuJVfCG+CC4AaIglnd5oQZOH6/fnTQNMWE/LYHU6h3lH4i47/XzcEsqo7HcaNxsxCp4Q3wQ3ABREMu7vFADoqXf7opZ6REQiFbraPVOTrbvfq3vK9PGrLLLjcbNRqyCN8QHbW6AKHDv8rQ+P1C5SMb/TsyR3OWFHhCFdpKljQCiSQMNbUsW7ZGEK7PcaN1suEGWf6NkPZYZ5ya5EdwAUeDe5WlDRT31OlG8yws1cNIeG1MXflPh8mgjgGjT/ToWPYYiXW40bzZiFbwhtqiWApK8iD7U4vHTWjegjQAQgyolN8ga0LmZ+Z/AJvnx+AUgymI1xkwoXbzd3lISpPQonsPWA4nGsAjp+/gFghvAssCJEzoQ3jGD1EBwE6XMAVIVJ3QA6Xz9pkExYKFYNfAEgFRAg2IAAGAVSm4ApG1Vl43bBLuwj0aG4AZAhWxspGzjNsEu7KORo1oKQLlsfBinjdsEu7CPVg7BDYCYPl052di4TbAL+2jlEdwAiOnTlZONjdsEuyTLPlpa5sjS9btl3oot5v9UCvhpcwMgpk9XTjY2bhPskgz7aH6Kt0mj5AZAzJ+unExs3CbYJdH7aL4FbdIIbgBU+HTlYJ2jdXqTEJ+unCxs3CbYJZH7aKklbdIIbgDE7enKycDGbYJdErmPFiRJe5/KIrgBUC6tX9eniedk+xaB6/tUfcq4jdsEuyRqH92RBO19ooEGxQAqpCfSvu1zrBrN18Ztgl0SsY82sqRNGsENgLR9GKeN2wS7xHsfzf1fex9tPByoVU3G/0qPkr1NGtVSAADAqjZpBDcAAMCqNmlUSwEAAKvapBHcAAAAq9qkUS0FAACsQnADAACsQnADAACsQnADAACsQnADAACsQm+pKNEnpH68frd8tH6nbN1bLM3qHS092zSU01o3CLvrnC4rUd3vYr1u7+U3rFndjAq160DJEeuKVjoSmZexlirbFko6k21bKpse9/uFRT/KDwcPS/1a1SWnTuy3K1C6VXnbkmx5X5k0xWpbkvGcnIy/WzIhuImC/FXbZOTclbL30E8+06ctXC91axwlEy45JeRBj3RZ+jh576ey6lDYOiJkrAdOivW6Ay3fm7suFY10BFpfTp3qcmXucdKyYc2ITpqF+4rlhwMlUr9mNcnJPlq6tqgny77fE/IJJtTgrqLvfrfrkLxSsNGkpzJ5FK5wT6ih7FOJ3OcjTXO433fVzsqUy049Vs49uUnUL0aB1qvnH+V9btJ996EBHeSCjk2ikveV3ac//na3LF2/W8qcMqlXo7ps3fujvL5ii+zxSrMGhg9cXH6a5n+xTe6ft8oEkxVtSzj7caA80jwc2LmpGQcmUAAZ7nkhWN5M/eBreeGj72Tvjz/5bNPFnZrIG59vi9oxU2phoJThOE6gx0dYa9++fZKdnS1FRUVSp06dSi9Pd/zfz1xe4XzTQxjVUZd108zlRzzPw93FYjkyZKzXHWz5/usK9nm46QhlfaGeEMq7WOnxX+aEtrxQg7tIvhuP/STcC2Eo+5RK1D4fi+Mg1P0uFjcOoa7X1bd9I3l/zY5K5X1l9+lAN4WRnEfHz18jT/9nQ8DvZPhtSzj7cSj5GiiADOe8EEgkeRPpMZOfZDcX0bp+E9xUgka7p09YIIX7SiqcV3eWxfecEzQa1mWd8cgHQU8S7sPKyltGpGK97oqWH6pQ0xHO+io6IYR70Qi2vFCDu0i/G+v9JNyLfqj7lN5bBTt+YrnPx+I4iGQ/97/wxiLdkQgl7yu7T4dyU+ivXo2j5NP7+/qkaf4XW+Xmlz8L6fz73prCkPfjaOZruAFjuIFqpMdMfgJvqGMd3NCguBL+fzVFxYGN0gNE5y9vWeUdRE4Iy4hUrNdd0fJDFWo6wlmfe1DrnYuezLzpe50ezkkm0PJCXU5lvhvL/aS8NATLv1D3qfKOn1ju87E4DiLdzwPte4k4vsLZ1sru0w+8sSaidGlVlVZjeadDq6IqotuibSLD2Y+jma/lnWcqe86J9JgpjeC4TiUEN5Wg9ZPRmj/UZYW7zmguM9J1RzvNFS0v3PUFOyFEenLzX164wVak341Vnkdy0Y/m+mOxz1dmPcHmiySd0QjgYpk/wZZd2X3au61YuLR9jnc6fjgYWtXN0m93hbUfRztfQ/mtoxVQ7Qgh7Ym8oY4HgptK0IZX0Zo/1GWFu85oLjPSdUc7zRUtL9L1+Z8QKntyc78fyXIq891o53kkF/1orj8W+3xl1hNsvsqkszL7WizzJ9iyE7FP/+KXkoTwlhVa1aa7zFjlazRucivSKIS0J/KGOh4IbipBW5Rr75tQaJ2v26o+2LJ0nmCHX0YIy4hUrNdd0fJDFWo6Il2f/wmhsic39/uRLCfS78ZiP4nkoh/qPqXHTyL2+VgcB+73I1GZfS1ax1c42xrPfdpfXuuGYaejQc1qIT8A0l1mLPLVe/nhfhaKcI6ZRgm8oY4HgptK0AZbD1x8ckjzasvz8hp46WduN2j/uTJCXEakYr3u8pYfaF2VTUeo66vohBDpyc1/eeEsp7LfjcV+EslFP9R9yj1+4r3Px+I4cL8fTmqjEcCFu78HSkO421rZfVq7dkdCeyad5hWkhBpQjhvQwYw5Fs5+XNl8rWj5gVQmoAr3mMlN4A112gQ306ZNk5YtW0pWVpb06NFDCgoKyp3/1VdflXbt2pn5TznlFJk/f74kirYk1+6JbnfAQK37Q+kG7i5LW6dra3dv+j7WrdZjve5gy/dfl+bV9CikI5T1VXRC8D65hSrQ8sIN7iL5biz3k0gv+qHsU4nc5wOpbHrc74dTghONAC5YumtWywz6HV3jjb1aRbStld2ndcyaSOiYYd55FUpAqduoY/pEsh+Heh6JVuARSr7qtUa3qUklj5nMBN5Qx0PCu4LPnj1bBg8eLNOnTzeBzZQpU0zwsm7dOmnUqNER8y9ZskR69eol48ePl4suukhefvlleeSRR2T58uXSoUOHuI9z42KE4uQfoTjSge+SdZybSAckjFSk42Gk8wjF767eJnOWb5H9xT8fMU8sxhIJlO53VrmD2/0UcN2V2dZ4jXOj+7qW8gXLq8AD7R31v8EKm1Y4b0W/hZtH768plNdWbPHJy1iNcxNoQMahPVvJree0jeoIxfmMcxMbGtB0795dpk6dat6XlZVJ8+bNZfjw4TJy5Mgj5h80aJAcPHhQ3nrrLc+00047TTp37mwCpEQFN0gNlR3WPVlGKE5UAJAMaUg1iXoUQ7x+t2iPUNywdnVpVLu6aTe862Boywl3GyuTH6E84iJaIxTH61grTZHjOmUG8Tt8+LDUqFFD5syZIwMHDvRMHzJkiOzdu1fmzZt3xHeOO+44GTFihNxxxx2eaWPGjJHXX39dPv/88wrXSXADAEDqCef6ndBnS+3atUtKS0ulcePGPtP1/ZdffhnwO4WFhQHn1+mBlJSUmJd35gAAAHslRYPiWNK2ORrpuS+t8gIAAPZKaHDTsGFDyczMlO3bt/tM1/c5OTkBv6PTw5l/1KhRpgjLfW3atCmKWwAAAJJNQoObatWqSdeuXWXBggWeadqgWN/n5eUF/I5O955fvffee0Hnr169uqmb834BAAB7JbTNjdLGwdqAuFu3bpKbm2u6gmtvqKFDh5rPtZt4s2bNTPWSuv3226V3797y6KOPyoUXXiizZs2STz/9VJ555pkEbwkAAEgGCQ9utGv3zp07ZfTo0aZRsHbpzs/P9zQa3rhxo1Sp8ksBU8+ePc3YNvfff7/ce++9cvzxx5ueUqGMcQMAAOyX8EH84o2u4AAA2H39tr63FAAASC8ENwAAwCoJb3MTb24tHIP5AQCQOtzrdiitadIuuNm/f7/5n8H8AABIzeu4tr0pT9o1KNZxdLZu3Sq1a9eWjIyMqEeVGjTpQIHpOp4OeUAesC9wPHBO4NwYi+uDhisa2DRt2tSnF3UgaVdyoxly7LHHxnQdDBZIHrAfcDxwTuC8yPUh+tfIikpsXDQoBgAAViG4AQAAViG4iSJ9jtWYMWPM/+mKPCAP2Bc4HjgncG5M9PUh7RoUAwAAu1FyAwAArEJwAwAArEJwAwAArEJwAwAArEJwE6Zp06ZJy5YtJSsrS3r06CEFBQXlzv/qq69Ku3btzPynnHKKzJ8/X9IpD1avXi2XXnqpmV9HhJ4yZYrYIJw8ePbZZ+XMM8+UevXqmVefPn0q3G9szIe5c+dKt27dpG7dulKzZk3p3LmzvPTSS5Ju5wTXrFmzzDExcOBASac8ePHFF812e7/0ezYId1/Yu3ev3HLLLdKkSRPTg+iEE05I+WvEtDDy4KyzzjpiX9DXhRdeWPmEaG8phGbWrFlOtWrVnBkzZjirV692hg0b5tStW9fZvn17wPk/+ugjJzMz05k4caKzZs0a5/7773eOOuooZ+XKlWmTBwUFBc5dd93lvPLKK05OTo7z+OOPO6ku3Dy46qqrnGnTpjmfffaZs3btWue6665zsrOznc2bNzvplA8LFy505s6da46Fb775xpkyZYo5PvLz8510yQPXhg0bnGbNmjlnnnmmM2DAACeVhZsHL7zwglOnTh1n27ZtnldhYaGT6sLNh5KSEqdbt27OBRdc4CxevNjsE4sWLXJWrFjhpEse7N6922c/WLVqlTkn6D5SWQQ3YcjNzXVuueUWz/vS0lKnadOmzvjx4wPOf/nllzsXXnihz7QePXo4N954o5MueeCtRYsWVgQ3lckD9fPPPzu1a9d2/vrXvzrpnA+qS5cuJuhPpzzQ379nz57Oc8895wwZMiTlg5tw80AvXBrc2ybcfHjqqaec1q1bO4cPH3ZskVvJc4JeH/TceODAgUqnhWqpEB0+fFiWLVtmqhS8n1Ol75cuXRrwOzrde37Vr1+/oPPbmAe2iUYeHDp0SH766SepX7++pGs+6I3VggULZN26ddKrVy9Jpzx48MEHpVGjRnL99ddLqos0Dw4cOCAtWrQwD1EcMGCAqb5Ot3x44403JC8vz1RLNW7cWDp06CAPP/ywlJaWSrqeG59//nm54oorTLV1ZRHchGjXrl1mp9Od0Ju+LywsDPgdnR7O/DbmgW2ikQf33HOPeaqtf+CbDvlQVFQktWrVkmrVqpl69SeeeEL69u0r6ZIHixcvNidwbYdlg0jy4MQTT5QZM2bIvHnzZObMmVJWViY9e/aUzZs3Szrlw7fffitz5swx39N2Nv/3f/8njz76qDz00EOSjufGgoICWbVqldxwww1RSU/aPRUcSKQJEyaYhqSLFi2yphFlOGrXri0rVqwwd+5acjNixAhp3bq1aVhou/3798u1115rApuGDRtKutLSCn25NLA56aST5Omnn5Zx48ZJutCgTkvwnnnmGcnMzJSuXbvKli1bZNKkSeYRBenm+eefN51ucnNzo7I8gpsQ6clId8Dt27f7TNf3OTk5Ab+j08OZ38Y8sE1l8mDy5MkmuHn//felY8eOko75oMXUbdu2NX9rb6m1a9fK+PHjUzK4CTcP1q9fL999953079/f5wKnqlataqro2rRpI+l2TjjqqKOkS5cu8s0330iqiiQftIeUbrt+z6VBnpZyaBWPlm6my75w8OBBc9OnVbbRQrVUiHRH08ha7za9T0z63vsuxJtO955fvffee0HntzEPbBNpHkycONHclebn55vu0KkuWvuCfqekpETSIQ90SIiVK1eakiv3dfHFF8vZZ59t/tb2J+m4H2hVhuaLXuxTVST5cPrpp5uAzg1w1VdffWXyIdUCm8ruCzpkip4HrrnmGomaSjdJTiPaza169erOiy++aLqz/u53vzPd3NxujNdee60zcuRIn67gVatWdSZPnmy6AI8ZM8aKruDh5IF2d9Qu0Ppq0qSJ6Rauf3/99ddOuuTBhAkTTPfIOXPm+HR73L9/v5PKws2Hhx9+2Hn33Xed9evXm/n1uNDj49lnn3XSJQ/82dBbKtw8GDt2rPPOO++Y/WDZsmXOFVdc4WRlZZmuw+mUDxs3bjQ9g2699VZn3bp1zltvveU0atTIeeihh5x0Ox7OOOMMZ9CgQVFNC8FNmJ544gnnuOOOMxcr7fb28ccfez7r3bu3OVl5+8c//uGccMIJZv6TTz7Z+de//uWkUx7o2A0aQ/u/dL50yQPtAh8oDzTYTXXh5MN9993ntG3b1lzI6tWr5+Tl5ZmTYbqdE2wLbsLNgzvuuMMzb+PGjc04L8uXL3dsEO6+sGTJEjM8iAYE2i38T3/6kxkqIJ3y4MsvvzTnQ73xiaYM/Sd65UAAAACJRZsbAABgFYIbAABgFYIbAABgFYIbAABgFYIbAABgFYIbAABgFYIbAABgFYIbABF58cUXpW7dummdexkZGfL666/HdZ36fCpdrz6yoTJatmwpU6ZMSbrtA6KB4AZIsOuuu85cRPSlD9Jr3Lix9O3bV2bMmOHz3JlQPPDAA+aBlNEW6EI4aNAg8yycWNOHarr5oy/Nn9/85jfy/fffx22d/q9UfNAnkE4IboAkcN5558m2bdvMXfnbb79tHqZ4++23y0UXXSQ///yzJKOjjz5aGjVqFJd1DRs2zOTP1q1bZd68ebJp06boPmTPz9y5c8369FVQUGCm6dPc3Wn6eSR0QPhk/T0BmxDcAEmgevXqkpOTI82aNZNTTz1V7r33XnMR10BHq39ce/fulRtuuEGOOeYYqVOnjpxzzjny+eefm890vrFjx5r3bgmD+93yvud68803pXv37pKVlSUNGzaUX//612a6llJoKckf/vAHz3KDVUs99dRT0qZNG/OE4BNPPFFeeukln8/1u88995xZdo0aNeT444+XN954o8L80Xk1f/SJyaeddprceuutsnz5cp95/v3vf0tubq7JS51v5MiRnkDib3/7m9SqVUu+/vprz/w333yzeVL3oUOHjlhf/fr1zfr0pXmmGjRo4Jmmn7t27doVdHsWLVpktll/R31isqZt8eLFpkRu/Pjx0qpVKxMkdurUSebMmeP53p49e+Tqq68269bPdbkvvPCCTxq//fZbEwTrevX7S5cu9fn8n//8p5x88slmnVry9uijj5abx5o3vXr1Mr9/+/bt5b333qvwdwGSVlSfVAUgbOU9PLFTp07O+eef73nfp08fp3///s4nn3zifPXVV86dd97pNGjQwNm9e7dz6NAh814f0Oo+eVynVfQ9pU8kzszMdEaPHm2e5rtixQrzFG+l8xx77LHOgw8+6FmueuGFF5zs7GxP2ubOnWueej9t2jTzlONHH33ULPODDz7wzKOnHF3Wyy+/bJ4Mf9tttzm1atXypCMQfdje7bff7nmv8+q2nH322Z5pmzdvdmrUqOHcfPPNztq1a53XXnvNadiwoc/DSX/zm9843bt3d3766SezvZrWTz/9tMLfx334qz7N3l9F27Nw4UIzT8eOHc2DAb/55hvzmT75uV27dk5+fr55OrbmpT48cdGiReZ7t9xyi9O5c2fze+n633vvPeeNN97wSY9+X7dD8/qyyy4zD2jVbVO6XVWqVDG/mX6uyz/66KPN/y6d//HHHzd/l5aWOh06dHB+9atfmd/+3//+t9OlSxezHs1LINUQ3ABJHNwMGjTIOemkk8zfH374oVOnTh2nuLjYZ542bdo4Tz/9tPlbL+YaEHkL5Xv6hO6rr746aBq9L4Qu/+CmZ8+ezrBhw3zm0YBCn/rs0ovl/fff73l/4MABM+3tt98uN7jRQKRmzZomgNH5TzjhBHORd917773OiSee6JSVlXmmaZClgYZeuNUPP/xgApGbbrrJPI1an8AcioqCm/K2xw1uXn/9dc88+jvodugTob1df/31zpVXXmn+1uBt6NCh5abnueee80xbvXq1maaBnbrqqqucvn37+nzv7rvvdtq3bx/wN33nnXecqlWrOlu2bPF8rttAcINURbUUkMT0+ulWA2k10oEDB0z1iFaxuK8NGzbI+vXrgy4jlO9pz5tf/epXlUrr2rVr5fTTT/eZpu91ureOHTt6/q5Zs6apJtuxY0e5y9YqGk2jbotW67Rt21bOPfdc2b9/v2fdeXl5nrxy163bvXnzZvO+Xr168vzzz3uqzrTaKhpC2Z5u3bp5/v7mm29MVZg2Gvf+PbTqzP09brrpJpk1a5ZpHP7HP/5RlixZUu56tRpOuesN9lto1VNpaekRy9L5mzdvLk2bNvVM0/wEUlXVRCcAQHB60dF2GUov1HoR03Yc/srrkh3K97RdR7xojzBvGpBU1CssOzvbBDRK/9cgRbdp9uzZpi1RqP7zn/9IZmamaRR88OBBqV27tsRjezTo8f491L/+9S/Txsqbto9R559/vmnnNH/+fNP2RQPPW265RSZPnhxwvW5QF27vOsBWlNwASeqDDz6QlStXyqWXXmrea0PjwsJCqVq1qrnAe7+0AbDShrz+d+ahfE9LARYsWBA0LYGW6++kk06Sjz76yGeavtfGqdGmAYr68ccfPevWBrX/v6bol3Vr8HLsscea91r68cgjj5iG01pSoo2SE0HzQ4OYjRs3HvF7aOmJSxsTDxkyRGbOnGm64T/zzDMhryPYb3HCCSd48s5/fu2BpkGf6+OPP454G4FEo+QGSAIlJSUmANEAYvv27ZKfn29602hX8MGDB5t5+vTpY6oKBg4cKBMnTjQXKu0arSUA2ltHqz60V4xWN2kVjl7U9eIeyvfGjBljSge0uuaKK64wvYy01OCee+4x69blaqmHfqYXZjco8nb33XfL5ZdfLl26dDHr1CBCu0xrF+rK0moczR+l+TNu3DjTq0erptyeTxoADB8+3AQt69atM9s0YsQIqVKliqm+uvbaa+W2224zpSKaN9ozrH///nLZZZdJPOlvctddd5neZ1rScsYZZ0hRUZEJPrRKSwOa0aNHm95V2ttJ94233nrLBCChuvPOO832aT7peEQa+E2dOlWefPLJgPPr76X7ha570qRJsm/fPrnvvvuiuNVAnCW60Q+Q7rRBsR6K+tJGncccc4zp3TRjxgxPY1jXvn37nOHDhztNmzY1jWybN29uGgJv3LjR01j10ksvderWrWuW5/aOqeh76p///KfpoVOtWjXT0+iSSy7xfLZ06VLT40d79LinDf8GxerJJ590WrdubdahjX7/9re/+XweqIGqLsO7F0+gBsVu/uirXr16Zpp3LyylPY20N5SmPycnx7nnnns8vYe0ce4pp5zi06hae3PVr1/f9LSqTIPi8rbHbVC8Z88en3m04fOUKVNMI2jNK/3N+/XrZ3opqXHjxpmG5NrDSdOoDc6//fbboOnR5es0XZ9rzpw5pgGxLv+4445zJk2aVG4jce1VdcYZZ5j8099Oe3LRoBipKkP/iXdABQAAECu0uQEAAFYhuAEAAFYhuAEAAFYhuAEAAFYhuAEAAFYhuAEAAFYhuAEAAFYhuAEAAFYhuAEAAFYhuAEAAFYhuAEAAFYhuAEAAGKT/wc5dGcDi/vHGgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHHCAYAAACvJxw8AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAARGRJREFUeJzt3QeUFFX69/FnGIQhDklmAFGSioiCksRVEQUxobgGZEWQVczoLuoKyoJhFRVUXEGM6CqvKyuLcREDiIKgoyBKUEwoQaICAyjBmXrP7+6/eruHnppAz/R09/dzTjF01e2uW/mpW/feSvM8zzMAAABEVSn6aAAAABAsAQAAFIGSJQAAgAAESwAAAAEIlgAAAAIQLAEAAAQgWAIAAAhAsAQAABCAYAkAACDVgqXt27fbZZddZtnZ2ZaWlmZ/+tOf3Pj169fbeeedZ/Xr13fjx40bZ4m+TMlCy3TbbbdZIjrxxBPdgLKl/UP7SSqZMWOGtW/f3jIyMtyyb9myxY1/7rnnrHXr1rbffvtZnTp19mk/TORjL1k1a9bMLrnkknhnA4kYLD3zzDPuoC5s+PDDD0Np7777bpf+qquucieViy++2I3/85//bG+++aYNHz7cjT/11FNjnk/N++WXXy6T3422TNEuJkUNsbywP//883ENOn/88Ue33IsWLSrT+SxbtszN5/vvvy/T+QC+n376yS644AKrVq2aTZgwwR33NWrUsC+//NJdSFu2bGlPPPGEPf744xV+pcX7PFFQXl6e1a5d284+++y9pj344IPuPDlw4MC9po0cOdJN++qrr6wiCDrPX3nllVYRzZ49OyKf6enp1rBhQ1eQ8cUXX1S4a6+vsiWYO+64w5o3b77X+FatWoX+P2vWLDvmmGNs1KhREWk0XgfHjTfeWGb50wbTRu/Tp09Mf7ewZQr3+9//PmI9qDRKwdU555zjpvmysrJiehJcsmRJ3Eq6FCzdfvvt7k5Md+BlGSxpPgo0Na9wb731VpnNF/8zYsQIGzZsWMqsko8//ti2bdtmd955p/Xo0SPiYpOfn28PPfRQxPFe2v3w119/tcqVy/ZSEO/zREG6QOt8Om/evL2mffDBB2596G+0abqwH3LIIVZR9OzZ0wYMGLDX+IqUx2iuu+4669Spk+3Zs8c+//xze/TRR92+rf1ET1AqyrU3YYOl0047zTp27BiYZsOGDdamTZuo4/0i60RT2DKFO/LII93g27RpkwuWNK5///7lkMvUVKVKlXhnISXoAlbWF/WKdsxLwXNWYeNLux/qEV8qOu644+ztt992pRmHHXZYRECkEj0FeOvWrQtduH/77Tf76KOP7JRTTtnnee/YscOVEsaCgqLSnN9/+eUXq169+l7jtZwKxvflvLajGMt3/PHHu+DGd+ihh7rr1bPPPmt/+ctfrMLxEsTTTz/tKbsff/xxoWneffddl6bg4H+34ODbvHmzd/3113sHHHCAV6VKFa9ly5bePffc4+Xl5UX8vj6PGzfOa9u2rVe1alWvQYMGXq9evUJ5ijaPgQMHBi7X+vXrvT/+8Y9ew4YN3W8eeeSR3jPPPFPkMq1YsaLIdbZx40aXdtSoURHjv/jiC+/cc8/16tat6+bZoUMH75VXXonIk5atW7duXn5+fmj8119/7VWvXt274IIL3GdNL5ivgw46KDBPO3fu9P70pz+5369Zs6bXu3dvb9WqVVHzuXr1am/QoEFu3Wi7tGnTxnvqqaeKtb19H374odtGtWvX9qpVq+adcMIJ3ty5c/fKl+al7dCoUSM3r2bNmnlXXnmlt2vXrkL3H83fXw8aSrJdRdtQvzNmzBjvscce81q0aOHm3bFjRy8nJ8crjqL2XW2/E0880a1v5cmn5dJ+rHlu377djdP6V360f5x//vlerVq1vHr16nnXXXed9+uvv0bMd9KkSV737t29/fff3833sMMO8x555JG98qf94YwzzvDmzJnjderUya2L5s2be//4xz8i0u3evdu77bbbvFatWrk0mu/vfvc776233gql8fMXbs+ePd4dd9wRWnea3/Dhw91+Vpp8FKaoY78keZHp06d7xx13nDuedBycfvrp3pIlS0LTox1bOpfoNwuO94+baPuhtpumH3zwwS7f2dnZ3jnnnON98803oTSlOfbCj78pU6Z4f/vb37wmTZq4eZx00knuXBG0LEWdJ8pju86cOdPl5YknngiN+/bbb924efPmeRkZGd7UqVND07StNe3++++P+A1/O2ZmZnpnnXWWt2zZsoj5+Pvt0qVLvX79+nl16tTx2rdvHzo+77zzTrfudH7Ssar9QMtV1LVD9LvXXHNNkem0DQ4//HDvk08+8Y4//ng3L503ws9BDz74oFvflSpV8j799NOYLF80/n7z4osvRozXcmv85ZdfHjFeeevatas7J2ibHH300Xt9t6hrb3H256IkXLD0zjvvuCAgfNi0aZNLs27dOu+5555zJzJtLP1fgzaC/ur7PXv2DI2XHTt2uAtZ/fr1vVtuucV79NFHvQEDBnhpaWluZwp3ySWXuN847bTT3Ilz7Nix3tlnn+09/PDDbrp+UwerdkZ/HjroCvPLL7+4i8x+++3n/fnPf/b+/ve/u+9qHvr9oGXyL3AlDZa0LrTTa2e59957vfHjx7sAQss7bdq0UDrtjPruQw89FLpY6OKVlZUVWt+6kClPypufr5deeikwT/3793e/+4c//MHN+/e//71b/wXzqeVWANC0aVN30pw4caI7UJVOB7WfRtP8A8zPg054/oGuA0MHmk5w+p7mpXEfffRRaF5r1qzxGjdu7E4ICuS0D/z1r39120bBiH5PAYPmo33En4/mH+0iVZztKv6J6qijjnJBgrbHfffd59anll0BRJDi7rvfffeduyDrIukbNmyYS/fee+/tddI74ogjXBCr7eNvr4svvjhi3row6XjQOtX+f8opp7h0+k44nfQPPfRQt98oj5quk53mHR4caJrGDR482F28tL104lXgVzB/4XRC1LjzzjvPmzBhglt+fe7Tp0+p8lGYoo79kuTl2WefdfM99dRT3fe13RWc6yLj3wTp2NI+re9rH/fPJTq+tB01XseExn/22WdR98PffvvNO/nkk13aCy+80C3z6NGjXTDz8ssvh9KV5tgLv+hp/9UNl6Yp4NVx1Llz51C60pwnymO76vipXLlyxEVV26ZGjRouWFOQoOPXp+2uPPjnjrffftt9/5BDDnHH7e233+6WUTeh4Tez/n6rc672Gd1UaJlkxIgRbpqCZeVdN1g6F+l3ihssXXrppXtdEzXohsin/UKBsm5uhgwZ4m7OtA/45yDlTYGSjjdtxx9++CEmy1eSYOn1119342+++eaI8doXr776ard+HnjgAbdvKZ3S+4KuvcXdn5MuWIo2aCVFu9soThSuqF4Hx1dffRUxXheT9PR0b+XKle7zrFmz3Pd10SwovPRFv1WcnTz84Js8eXJonC6Qurjr4pabm1vkMpU0WNLJUxfD8Ds05f/YY491d5/hdLHSiU/rRtG9fiv8JCvKU1F3ib5Fixa539COH06BU8F86gSgUh4/MPPppK9gTwFJ+N1eeGmSv0xaHt39h28ffU93ngqafToR624qWqml/10/ePRLk8IVvEgVd7v6JyoFOz///HMorUr5NP61114LXJ/F3XdFJ0c/Typt03QFhuH8k55OJOG0vTTevyj767EgrWudcMP5JSHvv/9+aNyGDRvcMXvDDTeExrVr167I/btgsOTvT5dddllEuhtvvNGN1zFb0nxEU5xjv7h52bZtmwuKFBSG0wld+3X4+MJK0/31oOM7aD9U6Z/S6QJTWL6ltMeef9HTjUH4hVk3WBq/ePHifTpPlPV29YN+lcb6rrjiCldiKn/5y1/cdJ8CN50PFUiJAkCVVPz000+hNDpGdC7ROaXg9tL5NJzyqRs3rZvw7aGgr2DJSGEKuyZq+Oc//7lX6Z5uqML55yCVvCs/4fZ1+Qrj7zfaP7UP//jjj96MGTPcDaOC3IKl6gXPNTqXqoRXQX+4wq69xd2fi5IwreF8ahWi58zhwxtvvFHq33vxxRfds9O6deu6Oj7+oAqVajHx/vvvu3T//ve/Xc39aBWsS9ucefr06e55eL9+/ULj1BRYFd9UOfu9996zWPr5559dRXE9j1fFUX9Z1eqmV69e9vXXX9uaNWtC6cePH2+ZmZnuufJf//pX1wIvWuuRkiyvaPnCFaz0qXOA1nfv3r3d/8O3i/K5detWW7hwYeC81DpOy/OHP/zBLZ//fT1LP/nkk9121XN5DWpBoXlFqwtXmm1b0u3at29ft//5tD/Kd999F5N9Vy6//HK37oYMGeK2o1pSqUJkNNdcc03EZ33HXy6fWmj5tD00327durk863M41bXzl0n2339/Vz8hfPlU/2bp0qVumxWXn5+hQ4dGjL/hhhvc3//85z8lzkc0xTn2i5sXna/U/F/7Rvg2U4XjLl262Lvvvmuxonw3aNAgtP2i5bug0hx7gwYNiqjfUtz9N97b1a+39O2337q6SX59pWOPPdb9/3e/+519+umnrm6PP03bSPXm1q5d684xapVYr1690O+pfqgqXIcfK76CrdPeeecd2717t9s+4dujpJXgdU4ueE3U0L1794h0VatWddsqmnPPPdetN18slq8of/zjH908Gzdu7Fqma99Si09V+g4Xfq7ZvHmzS6ftXdQ1IFbXEl/C1Zbs3LlzkRW8S0InZ9XED99RolWm1AGljRq+4+yrH374wQ4++GCrVCkyZvUrG2p6LH3zzTduh1Hgo6Gw5W3SpIn7v5b173//u51//vmuBZ3+vy+0PFpWXajD6cQWbuPGje6CoibRhTWL9rdLYfyLbrTmvz4dKDpZ5ebmWtu2bS1e2/XAAw+M+OwHTjoxxGLf9T311FNu3et7agUUfhIKp7yH03e0LOHdJujCoeBh/vz5oYtJ+HpVkF3Y8vnLGL58auWqk74qq2pb6OSpoC68wUJh+1N4izBRoKrgq6j1HC0f0RTn2C9uXvz98qSTTor6O2rOHivKt46tklSKL82xV9r9N97b1Q+W1FWA9mfdRClgv++++9w0BU2q7JyTk2MHHXSQCyDU152fx2jnLv84Vxc1BSs5F2zF7f9GweNNx3P4zVNRDjjggIjWkoXReb2wStuF5W1flq8o6oZBQY9uIF966SV74YUX9jpnyuuvv25/+9vfXPC2a9euEt3IxuJakrDBUqypZEGRcmG17yt688uSLquo6wRF1dEUPEHpoBCdeFavXl0urQn9fKqFR2HBTtBFNPw3xowZU2iXAjVr1nSlbfGmUoVo/lvKHrt9V81y/ZPN4sWLrWvXrsXKX8GTki7CurCoU8QHHnjAmjZt6k7CutvUhcdf9yVZvhNOOMH97iuvvOKawD/55JPut9Sc2L9AFTd/sV7PJVFUXvx1ozvoaM2j493arzTHXlmt1/LYrgqWZO7cuaGWYf5xoVI5BTKatmrVqoj0pVHYzUl5CZp/LPJWrYS/ccQRR4SCPDX3103X4MGD3TrWOUXmzJljZ511ljs/PPLII9aoUSNXSv/000+71orlcS3xpXywpLtmRbZFReZKp8BBF9egO8ySPLbR3YpKBrRBwyNqdTrnT4+lFi1auL/a2YpzJ6Leg3XR0sX4//2//+d2NjWdDT+hl3R5taz+Ha9v+fLle91Z1apVyz1KKiqfhc3fL73SnXrQb2heSqO+PUozn3hu1+Luu6K7YhX3q9mzAhs/YI6WF5V+hN8lqkRSy+L3L/Xaa6+5oOvVV1+NuKvf10dIOq70mECDlksnSHUEWliw5O9Pym9402/11K+7yViu56KO/eLmxd8v1VdPcbbbvuZbx6v6sdExXxwlOfZKojTnibLerv528AMilZLokV74DaFKl1TqpBtFBWV+IOXnoeC5yz/OFWgV1XTe/w0tp39u9ktDSlsqFyuxWL6Suueee1wJ01133eVukkSP0NS1hY4/PUb0KVgqzj4Wy/054eosxZrq7+hRgl+CEk4Hpoph/We6ulNRx4RBdzDagfxXEhTl9NNPd8/Kp0yZEhqn+T388MOu1EN1QGJJJwZ1qvjYY4+5i2dBOkh9WgZdpPTYU3VbFDTp2W7Bei5a3oJ1VIL6yJKCj/MK9uyrk5LWtw6UaEFMeD79A7bgOu/QoYO7WIwdO9ZdeAv7DQUzuqtRAPDJJ58Uum0Lm088t2tx913RHZsuQHoUp+JoBbyXXnpp1Ltv1QsMp3yHbz//Tj78u9oHop3Aikv1ysJpPamUM7zYPdp6jrb/qLRLzjjjDIuF4hz7xc2LAlQF5zqOFMQE7duxyLfqZqjuYWH5Lqgkx15JlOQ8UV7b1aeSDD3iUYmmX1/Jp886xlTCoRIIXXhFJRwqsf7HP/4RcU7QOtPv+MsQRBdvBbE6vsK3R0Xo6TwWy1dSOl9r39ObKvw6ZNofFQQp2PGpOkC0nrqjXXtjuT8nXMmSKnP7d+gFd+rw6Ly4brrpJneHfOaZZ7rKbLrI6lmsHlNMnTrVbRhF0aospzoUutDrTkB1KnTx0UGkaddee637PX1fFfd0YKueg+7QVSkwGlW6VeCi+S5YsMDduWueupPRAeMfmLGkC6FODioC1QVU60x3bDoh6O7ps88+c+muv/56dwHTsmiH0/IqeNKzY9UtadeuXWh5FRSoMqYq5ukip8p00ejgU8VWFafqxKltNnPmTFdyEe0uQyUVWnfKp+74dGevgE158h+f6QDTnaDuRLS+dMDoO1rvCvB0gT/88MNdaYWe2asCu35XFywFSKILl04ACmK0TXQ3q2BSFah1x6nfV961Hu69916Xd93lqN6JAtB4bdfi7rsKYlQpVich1W8QnaBVND1x4kS7+uqrI353xYoVruhb21z7xeTJk11FeX+b+6VT2s5XXHGFC0b12g2ti2hBeHFo+yqQ1zKo9EaBq5bBP66iUX5U2qngTydJbT/VL9EJXgFwwQqupVWcY7+4edF+p3Wu3zv66KPtwgsvdHe/K1eudNtIlYqjBTeloV6d1cGfjk3lRfVDtH/o+NE2L6yxRnGPvZIoyXmivLarT+dDHSPqMb1g4wado3S8ayhYUV6P+HV+UWmTbjzUE7qOK9XXK8679rTdVcI7evRodwwrAFGFcl3jdNwWl169omO0INUz1WP60trX5SvtOe1f//qXO09qP1RgrGupjjmdg1S/SNcw3Uip9D5cYdfemO3PXhJ0HVCw6XhJug7wm/OqwzM1XVRTTvUloab06kslvK8b9VuiJvStW7d26dRnhfpdWbBgQSjNl19+6fotUqdfxWn+qY4C1VmW5qnfVLP+gs3gg5apNJ1Sqt8gNf1UvxvqC0gdop155pmhDtj8puvhna+JmrwrH2rm7a8X9fekpv9qDq3vFNU8WJ3kqQm2msurqWdQp5RaN9pe6h9D+VR+1fXB448/HpFO+VUfH+oTpOC+oM7V1JeT5qfmxMqfOtVUH0zh1K+I1om2qdKpCbzmHd4kWv3/aLya3RenU8qitmt4h3AFRVsf0RS172rdqnms1nNB6q9H20D9MIU3AVanc2omrU4p1afKtddeu1enlK+++qrr40mdxKmPIPUV5DdVD++DpbD9tuA6U6eG6j9F+5GOHR1jd911V8TxV1inlOr/Rd1BaB/RvhLUeWFR+ShMcY794uZFtO+oqwVtG61DNV9XX07qNDBWXQeImkXfeuutoTzpGNK29fsik9Iee4X1l+Pv1+H7e0nPE+W1XWX58uWh60jBbjjUpN/PszrfLEj9/qn/Oe2zan6v46ywThsLbi+//zotp5q2l7ZTysKG8OX3O6UsKOgcFIvli6aw/candaB5bdmyxX1W55F+p6o6/rRfRTsXBF17i3stCZKmf0oVAgJIKrpb1KMmFU2X5M4WAJJdytdZAgAACEKwBAAAEIBgCQAAIAB1lgAAAAJQsgQAABCAYAkAACCZOqXcV+pM7scff3QdA5bmjfIAAKD8qaejbdu2uU4no710tyylXLCkQMl/SR8AAEgsq1atCr2NoLykXLDkv2pCK1uvHgAAABVfbm6uK+woi1eBFSXlgiX/0ZsCJYIlAAASS1ocqtBQwRsAACAAwRIAAEAAgiUAAIAABEsAAAABCJYAAAACECwBAAAEIFgCAAAIQLAEAAAQgGAJAAAgQMr14A0gOeXle5az4mfbsG2nNayVYZ2b17P0SrwsG8C+I1gCkPBmLFlrt7+2zNZu3Rka1ygzw0b1bmOntm0U17wBSHw8hgOQ8IHSVZMXRgRKsm7rTjde0wFgXxAsAUjoR28qUfKiTPPHabrSAUBpESwBSFiqo1SwRCmcQiRNVzoAKC2CJQAJS5W5Y5kOAKIhWAKQsNTqLZbpACAagiUACUvdA6jVW2EdBGi8pisdAJQWwRKAhKV+lNQ9gBQMmPzPmk5/SwD2BcESgISmfpQm9j/asmpXjRivzxpPP0sA9hXBEoAkUVjZEgAkQbA0YcIEa9asmWVkZFiXLl0sJyen0LTPPPOMpaWlRQz6HoDU7pRyXW5ki7f1uXRKCSBJgqUpU6bY0KFDbdSoUbZw4UJr166d9erVyzZs2FDod2rXrm1r164NDT/88EO55hlAxUCnlABSIlh64IEHbPDgwTZo0CBr06aNPfroo1a9enWbNGlSod9RaVJ2dnZoyMrKKtc8A6gY6JQSQNIHS7t377YFCxZYjx49/pehSpXc5/nz5xf6ve3bt9tBBx1kTZs2tbPPPtuWLl1aTjkGUJHQKSWApA+WNm3aZHl5eXuVDOnzunXron7n0EMPdaVOr7zyik2ePNny8/Pt2GOPtdWrV0dNv2vXLsvNzY0YACQHOqUEkBKP4Uqqa9euNmDAAGvfvr1169bNpk2bZvvvv7899thjUdOPHj3aMjMzQ4NKowAkBzqlBJD0wVKDBg0sPT3d1q9fHzFen1UXqTj2228/O+qoo+ybb76JOn348OG2devW0LBq1aqY5B1A/NEpJYCkD5aqVKliHTp0sJkzZ4bG6bGaPqsEqTj0GG/x4sXWqFGjqNOrVq3qWs+FDwCSr1PK7MzILkT0mU4pAcRCZYszdRswcOBA69ixo3Xu3NnGjRtnO3bscK3jRI/cmjRp4h6nyR133GHHHHOMtWrVyrZs2WJjxoxxXQdcdtllcV4SAPEMmHq2yXat41TpW3WZ9IiO15wASIpgqW/fvrZx40YbOXKkq9StukgzZswIVfpeuXKlayHn27x5s+tqQGnr1q3rSqbmzZvnuh0AkLoUGHVtWT/e2QCQhNI8z/Mshag1nCp6q/4Sj+QAAEgMuXG8fidcazgAAIDyRLAEAAAQgGAJAAAgAMESAABAAIIlAACAAARLAAAAAQiWAAAAAhAsAQAABCBYAgAACECwBAAAEIBgCQAAIADBEgAAQACCJQAAgAAESwAAAAEIlgAAAAIQLAEAAAQgWAIAAAhAsAQAABCAYAkAACAAwRIAAEAAgiUAAIAABEsAAAABCJYAAAACECwBAAAEIFgCAAAIQLAEAAAQgGAJAAAgAMESAABAAIIlAACAAARLAAAAAQiWAAAAAhAsAQAABCBYAgAACECwBAAAEIBgCQAAIADBEgAAQACCJQAAgAAESwAAAAEIlgAAAAIQLAEAAAQgWAIAAAhAsAQAABCAYAkAACBA5aCJAJAo8vI9y1nxs23YttMa1sqwzs3rWXqltHhnC0ASIFgCkPBmLFlrt7+2zNZu3Rka1ygzw0b1bmOntm0U17wBSHw8hgOQ0BQoXTV5YUSgJOu27nTjNR0A9gXBEoCEfvSmEiUvyjR/nKYrHQCUFsESgISlOkoFS5TCKUTSdKUDgNIiWAKQsFSZO5bpACAagiUACUut3mKZDgCiIVgCkLDUPYBavRXWQYDGa7rSAUBpESwBSFjqR0ndA0jBgMn/rOn0twRgXxAsAUho6kdpYv+jLTsz8lGbPms8/SwB2Fd0Sgkg4Skg6tkmmx68AZQJgiUASUGP2rq2rB/vbABIQjyGAwAAqOjB0oQJE6xZs2aWkZFhXbp0sZycnGJ974UXXrC0tDTr06dPmecRAACkprgHS1OmTLGhQ4faqFGjbOHChdauXTvr1auXbdiwIfB733//vd144412/PHHl1teAQBA6ol7sPTAAw/Y4MGDbdCgQdamTRt79NFHrXr16jZp0qRCv5OXl2cXXXSR3X777daiRYtyzS8AAEgtcQ2Wdu/ebQsWLLAePXr8L0OVKrnP8+fPL/R7d9xxhzVs2NAuvfTSIuexa9cuy83NjRgAAAASIljatGmTKyXKysqKGK/P69ati/qduXPn2lNPPWVPPPFEseYxevRoy8zMDA1NmzaNSd4BAEBqiPtjuJLYtm2bXXzxxS5QatCgQbG+M3z4cNu6dWtoWLVqVZnnEwAAJI+49rOkgCc9Pd3Wr18fMV6fs7Oz90r/7bffuordvXv3Do3Lz893fytXrmzLly+3li1bRnynatWqbgAAAEi4kqUqVapYhw4dbObMmRHBjz537dp1r/StW7e2xYsX26JFi0LDWWedZd27d3f/5xEbAABIuh681W3AwIEDrWPHjta5c2cbN26c7dixw7WOkwEDBliTJk1c3SP1w9S2bduI79epU8f9LTgeQGrJy/d43QmA5AyW+vbtaxs3brSRI0e6St3t27e3GTNmhCp9r1y50rWQA4DCzFiy1m5/bZmt3bozNK5RZoaN6t2GF+kC2Gdpnud5lkLUdYBaxamyd+3ateOdHQAxCJSumrzQCp7I0v7v78T+RxMwAUkgN47Xb4psACT0ozeVKEW74/PHabrSAUBpESwBSFg5K36OePRWkEIkTVc6ACgtgiUACWvDtp0xTQcA0RAsAUhYDWtlxDQdAERDsAQgYXVuXs+1evMrcxek8ZqudABQWgRLABJWeqU01z2AFAyY/M+arnQAUFoESwAS2qltG7nuAbIzIx+16TPdBgBIik4pASAWAVPPNtn04A2gTBAsAUgKetTWtWX9eGcDQBLiMRwAAEAAgiUAAIAABEsAAAABCJYAAAACECwBAAAEIFgCAAAIQLAEAAAQgGAJAAAgAMESAABAAIIlAACAAARLAAAAAQiWAAAAAhAsAQAABCBYAgAACECwBAAAEIBgCQAAIADBEgAAQACCJQAAgAAESwAAAAEIlgAAAAIQLAEAAAQgWAIAAAhAsAQAABCAYAkAACAAwRIAAEAAgiUAAIAABEsAAAABCJYAAAACECwBAAAEIFgCAAAIQLAEAAAQgGAJAAAgAMESAABAAIIlAACAAARLAAAAAQiWAAAAAhAsAQAABCBYAgAACECwBAAAEIBgCQAAIADBEgAAQACCJQAAgAAESwAAAAEIlgAAAAIQLAEAAAQgWAIAAAhAsAQAAFDRg6UJEyZYs2bNLCMjw7p06WI5OTmFpp02bZp17NjR6tSpYzVq1LD27dvbc889V675BQAAqSPuwdKUKVNs6NChNmrUKFu4cKG1a9fOevXqZRs2bIiavl69enbrrbfa/Pnz7fPPP7dBgwa54c033yz3vAMAgOSX5nmeF88MqCSpU6dONn78ePc5Pz/fmjZtakOGDLFhw4YV6zeOPvpoO+OMM+zOO+8sMm1ubq5lZmba1q1brXbt2vucfwAAUPbief2Oa8nS7t27bcGCBdajR4//ZahSJfdZJUdFUZw3c+ZMW758uZ1wwglR0+zatcut4PABAAAgIYKlTZs2WV5enmVlZUWM1+d169YV+j1FlTVr1rQqVaq4EqWHH37YevbsGTXt6NGjXSTqDyq1AgAASJg6S6VRq1YtW7RokX388cd21113uTpPs2fPjpp2+PDhLrjyh1WrVpV7fgEAQOKqHM+ZN2jQwNLT0239+vUR4/U5Ozu70O/pUV2rVq3c/9Ua7osvvnAlSCeeeOJeaatWreoGAACAhCtZ0mO0Dh06uHpHPlXw1ueuXbsW+3f0HdVNAgAASKqSJdEjtIEDB7q+kzp37mzjxo2zHTt2uO4AZMCAAdakSRNXciT6q7QtW7Z0AdL06dNdP0sTJ06M85IAAIBkFPdgqW/fvrZx40YbOXKkq9Stx2ozZswIVfpeuXKle+zmUyB19dVX2+rVq61atWrWunVrmzx5svsdAACApOtnqbzRzxIAAIknN1X7WQIAAKjoCJYAAAACECwBAACUR7C0c+dOGzt2bKx+DgAAIPGCJbVae/311+2tt95yrymRPXv22EMPPWTNmjWze+65p6zyCQAAULG7Dpg7d66deeaZrjZ6Wlqa6+vo6aeftj59+ljlypXttttuc/0lAQAApGTJ0ogRI+z000+3zz//3HUkqfeynXPOOXb33XfbsmXL7Morr3T9HgEAAKRkP0v169e3OXPmWJs2bezXX3+1mjVr2rRp0+zss8+2REI/SwAAJJ7cROhnafPmze7Ft6ISpOrVq1vbtm3LMm8AAACJ9boTPW7TK0lEBVLLly93rx8Jd+SRR8Y2hwAAAInwGE7vZ1PF7mjJ/fH667eSq6h4DAcAQOLJjeNjuGKXLK1YsaJscwIAAFABFTtYOuigg8o2JwAAABVQsSt433fffa4VnO+DDz6wXbt2hT5v27bNrr766tjnEAAAIBHqLKWnp9vatWutYcOG7rOeFy5atMhatGjhPq9fv94aN25MnSUAAJCaXQcUjKmKGWMBAAAktJi9SBcAACAZESwBAADEqlPKJ5980r3mRH777Td75plnQr16q4I3AABAylbwbtasmet0MtH7Y6JTSgAAEk9uInRK+e6771rz5s3LNjcAAACJWmepZcuWLlj64x//aJMnT7Y1a9aUbc4AAAAqgGKXLM2aNctmz57thn/+85+2e/du18fSSSedZN27d3dDVlZW2eYWAACgotZZCrdz506bN29eKHjKycmxPXv2WOvWrW3p0qVWkVFnCQCAxJMbxzpLpQqWfCpd0mtP3njjDXvsscds+/bt9OANAABSs4K3Hxx9+OGHrrK3SpQ++ugja9q0qZ1wwgk2fvx469atW9nlFAAAIA6KHSypbpKCI1XyVlB0xRVX2PPPP2+NGjUq2xwCAAAkQrA0Z84cFxgpaDrxxBNdwFS/fv2yzR0AAECidB2wZcsWe/zxx6169ep27733WuPGje2II46wa6+91qZOnWobN24s25wCAADEQakreOv1JnPnzg3VX/rss8/s4IMPtiVLllhFRms4AAAST24cK3iX+kW6NWrUsHr16rmhbt26VrlyZfviiy9imzsAAIBEqbOUn59vn3zyiStFUmmSugzYsWOHNWnSxHVIOWHCBPcXAAAgJYOlOnXquOAoOzvbBUUPPvigq+it16AAAABYqgdLY8aMcUHSIYccUrY5AgAASMRgSf0qAQAApJpSV/AGAABIBQRLAAAAAQiWAAAAAhAsAQAABCBYAgAACECwBAAAEIBgCQAAIADBEgAAQACCJQAAgAAESwAAAAEIlgAAAAIQLAEAAAQgWAIAAAhAsAQAABCAYAkAACAAwRIAAADBEgAAQOlQsgQAABCAYAkAACAAwRIAAEBFD5YmTJhgzZo1s4yMDOvSpYvl5OQUmvaJJ56w448/3urWreuGHj16BKYHAABI6GBpypQpNnToUBs1apQtXLjQ2rVrZ7169bINGzZETT979mzr16+fvfvuuzZ//nxr2rSpnXLKKbZmzZpyzzuAiiMv37P53/5kryxa4/7qMwDEQprneXE9o6gkqVOnTjZ+/Hj3OT8/3wVAQ4YMsWHDhhX5/by8PFfCpO8PGDCgyPS5ubmWmZlpW7dutdq1a8dkGQDE14wla+3215bZ2q07Q+MaZWbYqN5t7NS2jeKaNwCxEc/rd1xLlnbv3m0LFixwj9JCGapUyX1WqVFx/PLLL7Znzx6rV69e1Om7du1yKzh8AJBcgdJVkxdGBEqybutON17TASBhg6VNmza5kqGsrKyI8fq8bt26Yv3GzTffbI0bN44IuMKNHj3aRaL+oFIrAMlBj9pUohSteNwfp+k8kgOQ0HWW9sU999xjL7zwgr300kuucng0w4cPd0V2/rBq1apyzyeAspGz4ue9SpQKBkyarnQAUFqVLY4aNGhg6enptn79+ojx+pydnR343bFjx7pg6Z133rEjjzyy0HRVq1Z1A4Dks2HbzpimA4AKV7JUpUoV69Chg82cOTM0ThW89blr166Ffu++++6zO++802bMmGEdO3Ysp9wCqGga1sqIaToAqHAlS6JuAwYOHOiCns6dO9u4ceNsx44dNmjQIDddLdyaNGni6h7JvffeayNHjrTnn3/e9c3k122qWbOmGwCkjs7N67lWb6rMHa3eUpqZZWdmuHQAkLB1lvr27eseqSkAat++vS1atMiVGPmVvleuXGlr1/6vNcvEiRNdK7rzzjvPGjVqFBr0GwBSS3qlNNc9gB8YhfM/a7rSAUDC9rNU3uhnCUg+9LMEJL/cOPazFPfHcACwr9TxZM822a7Vmypzq46SHr1RogQgFgiWACQFBUZdW9aPdzYAJKG411kCAACoyAiWAAAAAhAsAQAABCBYAgAACECwBAAAEIBgCQAAIADBEgAAQACCJQAAgAAESwAAAAEIlgAAAAIQLAEAABAsAQAAlA4lSwAAAAEIlgAAAAIQLAEAAAQgWAIAAAhAsAQAABCAYAkAACAAwRIAAEAAgiUAAIAABEsAAAABCJYAAAACECwBAAAEIFgCAAAIQLAEAAAQgGAJAAAgAMESAABAAIIlAACAAARLAAAAAQiWAAAAAhAsAQAABCBYAgAACECwBAAAEIBgCQAAIADBEgAAQACCJQAAgAAESwAAAAEIlgAAAAIQLAEAAAQgWAIAAAhAsAQAABCAYAkAACBA5aCJAJAo8vI9y1nxs23YttMa1sqwzs3rWXqltHhnC0ASIFgCkPBmLFlrt7+2zNZu3Rka1ygzw0b1bmOntm0U17wBSHw8hgOQ8IHSVZMXRgRKsm7rTjde0wFgXxAsAUjoR28qUfKiTPPHabrSAUBpESwBSFiqo1SwRCmcQiRNVzoAKC2CJQAJS5W5Y5kOAKIhWAKQsNTqLZbpACAagiUACUvdA6jVW2EdBGi8pisdAJQWwRKAhKV+lNQ9gBQMmPzPmk5/SwD2BcESgISmfpQm9j/asjMjH7Xps8bTzxKAfUWnlAASngKinm2y6cEbQJkgWAKQFPSorWvL+vHOBoAkFPfHcBMmTLBmzZpZRkaGdenSxXJycgpNu3TpUjv33HNd+rS0NBs3bly55hUAAKSeuAZLU6ZMsaFDh9qoUaNs4cKF1q5dO+vVq5dt2LAhavpffvnFWrRoYffcc49lZ2eXe34BAEDqiWuw9MADD9jgwYNt0KBB1qZNG3v00UetevXqNmnSpKjpO3XqZGPGjLELL7zQqlatWu75BQAAqSduwdLu3bttwYIF1qNHj/9lplIl93n+/Pkxm8+uXbssNzc3YgAAAKjwwdKmTZssLy/PsrKyIsbr87p162I2n9GjR1tmZmZoaNq0acx+GwAAJL+4V/Aua8OHD7etW7eGhlWrVsU7SwAAIIHEreuABg0aWHp6uq1fvz5ivD7HsvK26jZRvwkAACRcyVKVKlWsQ4cONnPmzNC4/Px897lr167xyhYAAEDF6ZRS3QYMHDjQOnbsaJ07d3b9Ju3YscO1jpMBAwZYkyZNXL0jv1L4smXLQv9fs2aNLVq0yGrWrGmtWrWK56IAAIAkFddgqW/fvrZx40YbOXKkq9Tdvn17mzFjRqjS98qVK10LOd+PP/5oRx11VOjz2LFj3dCtWzebPXt2XJYBAAAktzTP8zxLIeo6QK3iVNm7du3a8c4OAACo4NfvpG8NBwAAsC8IlgAAAAIQLAEAAAQgWAIAAAhAsAQAABCAYAkAACAAwRIAAEBF7ZQSAGJl92/59tz87+2Hn3+xg+pVt4u7NrMqlbkfBLDvCJYAJLzR05fZE3NWWH5YF7t3Tf/CBh/f3Iaf3iaeWQOQBAiWACR8oPTY+yv2Gq/AyR9PwARgX1BGDSChH709PmfvQCmcpisdAJQWwRKAhPWPed9bUW+31HSlA4DSIlgCkLA+/v6nmKYDgGgIlgAkrOr7VY5pOgCIhmAJQMI6JLtmTNMBQDQESwAS1pfrtsU0HQBEQ7AEIGH9uOXXmKYDgGgIlgAkrCZ1qsc0HQBEQ7AEIGGd1+GAmKYDgGgIlgAkrGNbNbDqVdID09Soku7SAUBpESwBSFjpldLsgQvaBaa5/4J2Lh0AlBbBEoCEdmrbRvZo/6Mtq1bViPHZtau68ZoOAPuCntoAJDwFRD3bZFvOip9tw7ad1rBWhnVuXo8SJQAxQbAEICnoUVvXlvXjnQ0ASYjHcAAAAAEoWQKQFH7dnWd3T19m3//0izWrX91uOb2NVSuipRwAFAfBEoCEN/jZj+3tZRtCn+d8bfbchyutZ5uG9sSATnHNG4DEx2M4AEkVKIXTeE0HgH1BsAQgoR+9FRYo+TRd6QCgtAiWACQs1VGKZToAiIZgCUDCUmXuWKYDgGgIlgAkLLV6i2U6AIiGYAlAwrr51MNimg4AoiFYApCwFq/ZGtN0ABANwRKAhKX3wMUyHQBEQ7AEIGHphbmxTAcA0RAsAUhYnZvXs0aZGZZWyHSN13SlA4DSIlgCkLDSK6XZqN5t3P8LBkz+Z01XOgAoLYIlAAnt1LaNbGL/oy07M/JRmz5rvKYDwL7gRboAEp4Cop5tsi1nxc+uMrfqKOnRGyVKAGKBYAlAUlBg1LVl/XhnA0AS4jEcAABAAIIlAACAAARLAAAAAQiWAAAAAhAsAQAABKA1HICkMPvz9XbJ85+EPj/zh4524pFZcc0TgORAsAQg4TUb9p+9xrnA6Xmz7+85Iy55ApA8eAwHIOkCpZJMB4CiECwBSOhHb7FMBwDRECwBSFjhdZRikQ4AoiFYAgAACECwBAAAEIBgCQAAIADBEoCENenCDjFNBwAVNliaMGGCNWvWzDIyMqxLly6Wk5MTmP7FF1+01q1bu/RHHHGETZ8+vdzyCqDiOKl9dkzTAUCFDJamTJliQ4cOtVGjRtnChQutXbt21qtXL9uwYUPU9PPmzbN+/frZpZdeap9++qn16dPHDUuWLCn3vAOIv6I6naRTSgD7Ks3zPM/iSCVJnTp1svHjx7vP+fn51rRpUxsyZIgNGzZsr/R9+/a1HTt22Ouvvx4ad8wxx1j79u3t0UcfLXJ+ubm5lpmZaVu3brXatWvHeGkAxMusRevsjy8siHj0RokSkDxy43j9juvrTnbv3m0LFiyw4cOHh8ZVqlTJevToYfPnz4/6HY1XSVQ4lUS9/PLLZZ5fABWXAqPv2/NqEwBJFixt2rTJ8vLyLCsr8mWX+vzll19G/c66deuiptf4aHbt2uWG8MgUAAAgYeoslbXRo0e7Yjt/0CM+AACAhAiWGjRoYOnp6bZ+feR7m/Q5Ozt66xWNL0l6PeLT801/WLVqVQyXAAAAJLu4BktVqlSxDh062MyZM0PjVMFbn7t27Rr1Oxofnl7efvvtQtNXrVrVVQQLHwAAABKizpKosvbAgQOtY8eO1rlzZxs3bpxr7TZo0CA3fcCAAdakSRP3OE2uv/5669atm91///12xhln2AsvvGCffPKJPf7443FeEgAAkIziHiypK4CNGzfayJEjXSVtdQEwY8aMUCXulStXuhZyvmOPPdaef/55GzFihN1yyy128MEHu5Zwbdu2jeNSAACAZBX3fpbKG/0sAQCQeHLj2M9S0reGAwAA2BcESwAAABW5zlJ585860jklAACJI/f/OpWOR+2hlAuWtm3b5v7SOSUAAIl5Hc/MzCzXeaZcBW/14/Tjjz9arVq1LC0tzVKdInUFjuqskz6oWM+Jjv2Z9Zxs2Kf/R+GKAqXGjRtHtJIvDylXsqQVfMABB8Q7GxUOHXaynpMJ+zPrOdmwT/9XeZco+ajgDQAAEIBgCQAAIADBUorTu/NGjRrl/oL1nOjYn1nPyYZ9umJIuQreAAAAJUHJEgAAQACCJQAAgAAESwAAAAEIlgAAAAIQLCW5n3/+2S666CLXoVmdOnXs0ksvte3btwd+Z+fOnXbNNddY/fr1rWbNmnbuuefa+vXro6b96aefXCef6g19y5YtlqrKYj1/9tln1q9fP9fDerVq1eywww6zhx56yFLNhAkTrFmzZpaRkWFdunSxnJycwPQvvviitW7d2qU/4ogjbPr06RHT1aZl5MiR1qhRI7dee/ToYV9//bWluliu5z179tjNN9/sxteoUcP1uDxgwAD39oRUF+v9OdyVV17pzsXjxo0rg5ynOLWGQ/I69dRTvXbt2nkffvihN2fOHK9Vq1Zev379Ar9z5ZVXek2bNvVmzpzpffLJJ94xxxzjHXvssVHTnn322d5pp52mFpXe5s2bvVRVFuv5qaee8q677jpv9uzZ3rfffus999xzXrVq1byHH37YSxUvvPCCV6VKFW/SpEne0qVLvcGDB3t16tTx1q9fHzX9Bx984KWnp3v33Xeft2zZMm/EiBHefvvt5y1evDiU5p577vEyMzO9l19+2fvss8+8s846y2vevLn366+/eqkq1ut5y5YtXo8ePbwpU6Z4X375pTd//nyvc+fOXocOHbxUVhb7s2/atGnuHNS4cWPvwQcfLIelSS0ES0lMB5eCmI8//jg07o033vDS0tK8NWvWRP2OTnI6GF988cXQuC+++ML9jk544R555BGvW7du7mKfysFSWa/ncFdffbXXvXt3L1XoAnvNNdeEPufl5bmLwejRo6Omv+CCC7wzzjgjYlyXLl28K664wv0/Pz/fy87O9saMGROxLapWrer985//9FJVrNdzNDk5OW7//uGHH7xUVVbrefXq1V6TJk28JUuWeAcddBDBUhngMVwSmz9/vnsk1LFjx9A4PXLQ+/E++uijqN9ZsGCBK0JXOp+KgA888ED3e75ly5bZHXfcYc8++2y5v9AwldZzQVu3brV69epZKti9e7dbT+HrSOtUnwtbRxofnl569eoVSr9ixQpbt25dRBq9a0qPQ4LWezIri/Vc2L6rR0Q6VlJRWa1nvRz+4osvtptuuskOP/zwMlyC1JbaV7kkp4tCw4YNI8ZVrlzZXWw1rbDvVKlSZa8TWlZWVug7u3btcnVpxowZ4y7uqa6s1nNB8+bNsylTptjll19uqWDTpk2Wl5fn1klx15HGB6X3/5bkN5NdWaznaPXzVIdJ5w3V60tFZbWe7733Xne+ue6668oo5xCCpQQ0bNgwd4cWNHz55ZdlNv/hw4e7ysb9+/e3ZBbv9RxuyZIldvbZZ7tX05xyyinlMk8gFlSCesEFF7iK9RMnTmSlxpBKqtTo45lnnnHnI5SdymX42ygjN9xwg11yySWBaVq0aGHZ2dm2YcOGiPG//faba7mladFovIqL1bItvNRDrbT878yaNcsWL15sU6dOdZ/9N+Y0aNDAbr31Vrv99tstGcR7PYc/8jz55JNdidKIESMsVWh/Sk9P36slZrR15NP4oPT+X41Ta7jwNO3bt7dUVBbruWCg9MMPP7jzRqqWKpXVep4zZ44794SX8Kv0SucutYj7/vvvy2RZUlJZVIRCxap4rJZWvjfffLNYFY+nTp0aGqfWLOEVj7/55hvXGsMf1LJD0+fNm1doq45kVlbrWVRhs2HDht5NN93kpWqF2GuvvTaiQqwqsgZViD3zzDMjxnXt2nWvCt5jx44NTd+6dSsVvGO8nmX37t1enz59vMMPP9zbsGFDibd9Mor1et60aVPEuViDKozffPPN7nyC2CFYSoEm7UcddZT30UcfeXPnzvUOPvjgiCbtakVx6KGHuunhTdoPPPBAb9asWS4A0MGpoTDvvvtuSreGK6v1rBPf/vvv7/Xv399bu3ZtaEilC4+aWqul2jPPPOOC0ssvv9w1tV63bp2bfvHFF3vDhg2LaGpduXJlFwypdeGoUaOidh2g33jllVe8zz//3HV/QdcBsV3PCpTUJcMBBxzgLVq0KGL/3bVrl5eqymJ/LojWcGWDYCnJ/fTTT+6iXbNmTa927dreoEGDvG3btoWmr1ixwgU6Cnh86m9GTdTr1q3rVa9e3TvnnHPcSa4wBEtls551YtR3Cg46GaYS9SuloFL90+jOXH1Z+dR1xcCBAyPS/+tf//IOOeQQl16lGv/5z38ipqt06a9//auXlZXlLlwnn3yyt3z5ci/VxXI9+/t7tCH8GEhFsd6fCyJYKhtp+ifejwIBAAAqKlrDAQAABCBYAgAACECwBAAAEIBgCQAAIADBEgAAQACCJQAAgAAESwAAAAEIlgCUil7eGf5eu1Skl5e+/PLL5TpPve9L8120aNE+/U6zZs3c+8Mq2vIBFRHBEhBnelmvLkoa9ttvP8vKyrKePXvapEmTLD8/v0S/ddttt5XJC2GjXVj79u1rX331lZW1E088MbR+NGj9nH/++e7lrOU1z4KDpgNIHQRLQAVw6qmn2tq1a12pwRtvvGHdu3e366+/3s4880z77bffrCKqVq2aNWzYsFzmNXjwYLd+fvzxR3vllVds1apV1r9//zKb37Rp09z8NOTk5Lhx77zzTmicppeGXphQUbcngMIRLAEVQNWqVS07O9uaNGliRx99tN1yyy0uKFDgpMddvi1btthll11m+++/v9WuXdtOOukk++yzz9w0pbv99tvdZ78ExP9u0Pd8r732mnXq1MkyMjKsQYMGds4557jxKkVRKc6f//zn0O8W9hhu4sSJ1rJlS6tSpYodeuih9txzz0VM13effPJJ99vVq1e3gw8+2F599dUi14/Sav00atTIjjnmGLv22mtt4cKFEWnee+8969y5s1uXSjds2LBQYPLss89azZo17euvvw6lv/rqq61169b2yy+/7DW/evXquflp0DqT+vXrh8Zpum/Tpk2FLs/s2bPdMms7dujQweVt7ty5rsRw9OjR1rx5cxd0tmvXzqZOnRr63ubNm+2iiy5y89Z0/e7TTz8dkcfvvvvOBdWar74/f/78iOn//ve/7fDDD3fzVMng/fffH7iOtW5OOOEEt/3btGljb7/9dpHbBUgZZfTOOQDFpBdn6s330bRr18477bTTQp979Ojh9e7d2/v444+9r776yrvhhhu8+vXruxf5/vLLL+6zXrbpv+Fd44r6nrz++uteenq6N3LkSPc2dL0p/u6773bTlEZvj7/jjjtCvytPP/20l5mZGcrbtGnT3BvRJ0yY4F5Me//997vfnDVrViiNTjn6reeff977+uuvveuuu869fNjPRzR6uej1118f+qy0Wpbu3buHxq1evdq9jFgvJtbb2V966SWvQYMG7mXEvvPPP9/r1KmTt2fPHre8yusnn3xS5PbxXwr76aef7jWtqOXxXzJ95JFHem+99Zb3zTffuGl/+9vfvNatW3szZszwvv32W7cu9VLf2bNnu+9dc801Xvv27d320vzffvtt79VXX43Ij76v5dC6Pu+889wLVLVsouWqVKmS22aart+vVq2a+xvthat5eXle27Zt3UuFte3fe+8976ijjnLz0boEUh3BElCBg6W+fft6hx12mPv/nDlzvNq1a3s7d+6MSNOyZUvvsccec/9XcKAAK1xxvte1a1fvoosuKtGbzAsGS8cee6w3ePDgiDQKUE4//fTQZ118R4wYEfq8fft2N+6NN94IDJYU2NSoUcMFREqvt7AraPDdcsst3qGHHurl5+eHxiloU+CiQEB+/vlnF9hcddVVXlZWlnfXXXd5xVFUsBS0PH6w9PLLL4fSaDtoOebNmxfxW5deeqnXr18/938Fg4MGDQrMz5NPPhkat3TpUjdOgaL84Q9/8Hr27BnxvZtuuslr06ZN1G365ptvepUrV/bWrFkTmq5lIFgC/ovHcEAFpuux/9hLj822b9/uHgfpkZI/rFixwr799ttCf6M431PLqpNPPnmf8vrFF1/Y7373u4hx+qzx4Y488sjQ/2vUqOEeC27YsCHwt/VISnnUsugxVqtWreyUU06xbdu2hebdtWvX0Lry563lXr16tftct25de+qpp0KPCvWYLhaKszwdO3YM/f+bb75xj/5UiT98e+hRob89rrrqKnvhhRdcZf2//OUvNm/evMD56rGj+PMtbFvoUVteXt5ev6X0TZs2tcaNG4fGaX0C+K/K//cXQAWki5jqtYgu/Looqh5MQUFN+IvzPdWLKS9q8RdOAU5Rrf4yMzNdgCT6q6BHyzRlyhRXF6u43n//fUtPT3eVtHfs2GG1atWy8lgeBVHh20P+85//uDpq4VS/SE477TRXT2z69Omu7pAC2WuuucbGjh0bdb5+kFjS1pMAioeSJaCCmjVrli1evNjOPfdc91kVv9etW2eVK1d2AUP4oArZoorVBUsOivM9lVLMnDmz0LxE+92CDjvsMPvggw8ixumzKgvHmgIe+fXXX0PzVgXn/z4Z+9+8FQwdcMAB7rNKZ+69915XkV0lOaokHg9aHwqKVq5cudf2UOmOT5W7Bw4caJMnT3bdNjz++OPFnkdh2+KQQw4JrbuC6dXCUEGk78MPPyz1MgLJhpIloALYtWuXC2gUkKxfv95mzJjhWkup64ABAwa4ND169HCPRvr06WP33Xefu/CpKb1KKNQaS4961OpJj9f0yEpBgoKF4nxv1KhRrvRCj6cuvPBC14pMpRo333yzm7d+V6UymqYLvR9khbvpppvsggsusKOOOsrNU0GJmtiryf2+0mMrrR/R+rnzzjtdqy09ivNbtimgGDJkiAuCli9f7pZp6NChVqlSJfe47uKLL7brrrvOldpo3ajlX+/eve28886z8qRtcuONN7rWhSoJOu6442zr1q0umNEjPAVII0eOdK3n1JpN+8brr7/uApriuuGGG9zyaT2pPywFkuPHj7dHHnkkanptL+0XmveYMWMsNzfXbr311hguNZDg/q/uEoA4VvDWoahBlWz3339/13pt0qRJocrJvtzcXG/IkCFe48aNXaXnpk2buorZK1euDFUePvfcc706deq43/NbPxX1Pfn3v//tWmBVqVLFtST7/e9/H5o2f/5816JLLbb800bBCt7yyCOPeC1atHDzUCXsZ599NmJ6tArD+o3wVlrRKnj760dD3bp13bjwVnailmRq7ab8Z2dnezfffHOodZgqSx9xxBERldzVWq9evXquJd2+VPAOWh6/gvfmzZsj0qgi+rhx41yldK0rbfNevXq5Vmhy5513uor9asGmPKoBwHfffVdofvT7Gqf5+aZOneoqdOv3DzzwQG/MmDGBlfbVau64445z60/bTi31qOAN/Fea/ol3wAYAAFBRUWcJAAAgAMESAABAAIIlAACAAARLAAAAAQiWAAAAAhAsAQAABCBYAgAACECwBAAAEIBgCQAAIADBEgAAQACCJQAAgAAESwAAAFa4/w81UiR+Tn7oqgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAARvlJREFUeJzt3QmcE+X9x/HfshwrAsslLFDk9EIElEtURC0U6+1fLZ4gVetdFe1fKBZEreBNK3ihiC3/KpbSqtXigdKKYlEolUssiILIcogsl4Au8399HztrEpLdZDfZJJPP+/UKS2Ymk2eeeWbmN88xyfM8zzMAAICAqJHuBAAAACQTwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsFNGm3fvt0uv/xyKyoqsry8PLvxxhvd9PXr19u5555rTZo0cdPHjx9v2b5NyDxt27a1Sy+9NK5lTzjhBPfKtPSfdtppFtT0fPrpp+4YmjJlSoXLaj/q+5F95RipQXCTZDoR6YQU6/Xee++VLXv33Xe75a+++mr7/e9/b5dccombftNNN9mrr75qI0aMcNNPPvnkZCfTffdf/vKXlKw32jaFuv3228vNI/+VzJPQH/7wh6wKEtNh6dKlbt/oopopMjFNKF+nTp2sa9eu+0z/85//7I7rfv367TNv8uTJbt5rr72WEdmrQDHWeSkV5+NkBsP+q0aNGta4cWP78Y9/bHPnzq30eh955JG4AuxMUzPdCQiqO+64w9q1a7fP9I4dO5b9/80337Sjjz7aRo8eHbaMpp955pl2yy23pCx9CkJUO3TWWWcldb2xtinU//zP/4Tlg2p7FAydffbZbp6vefPmSQ1uFi9eTE1SiOXLl7sTYGggMWbMGBdURtYCpOuiU16akJmOO+44e+qpp6ykpMQKCwvLpr/zzjtWs2ZNe//99+2bb76xWrVqhc3Lz8+3Pn36WKbo1q2b3XzzzftMb9mypWWyCy64wE455RQrLS21jz/+2AUnJ554osv3I444IuH16fNNmzaNu5Y3UxDcpIii5R49epS7zIYNG9xdTrTpDRs2tGwUa5tCdenSxb18mzZtcsGNpl188cWWifbu3Wt79uyxgoICC4o6derEvWzt2rUtSHbs2GH7779/upMR2OBm0qRJ9u6777rzYGgA85Of/MTdaMyfP9/dBPnmzJnjjv/69etnzH5t1apVpc5HsdKQjHNIPNt31FFHhaW7b9++bj88+uijLlDJFTRLpcHs2bNdteGqVavs5ZdfLqtG9Ju09EPtEydOLJvu27Jli6t5aN26tbswqfbjnnvucQdNKL3/zW9+46J0HUgHHHCAq0r94IMP3HytUwfJM888U/YdFUXlClouu+wyV5uidaraWZ+vaJuq0pzw0UcfudolVa3qOxUsvvjii2Fp0rbprj70x+1XrFjhTgCDBg1y7zVfafrss8/K0lVRLYCWue666+z//u//7PDDD3f5PXPmTDdv7dq19tOf/tTlhaZrvqrVI+3atcs1qRx88MEu/S1atHA1UytXrixbRvtBd4f+Pj3kkEPs/vvvD9se+frrr+3nP/+5u4PSBeCMM85w6VA69R2RTX7KA+1TBcm6ex46dKjt3LkzZp8blb3zzjvP/V93eX4+ab/6eRjZTFhRmQitKtc2PfHEE9ahQwe3nT179nR3kuWpKE2hF8ZevXq5NLRv395+97vf7bMefe7vf/+7XXPNNdasWTP7wQ9+UDb/b3/7m7sAqMwob0899VRbsmRJ2DqKi4tdHupzSr/2pWpXo5XvitIjn3zyids2le26deu6C73KaDzUnNy5c2e3fv1Vc08idIHzy7RqIa699lp3bgmlfa11q+ZMea806mJ/7733xhXc+MFM6LGwYMECV/6VJ6HzNm7c6GoY/M/Jv/71L3dBbtCggdWrV89++MMfhjXpx7Nf/fK23377uf3x9ttvW7Lp+FH6dEyrtkTl56KLLqrwHJKM7YtX37593d/Q8448/fTTdtJJJ7n1Km26KVUAFHmO0LGgNETrLhDvNSkdqLlJEVXJqkYilAqGOgkfdthhrj+K+taosPpVn0ceeWRZP5UBAwbY4MGDyz6rC5PaqnVBu/LKK+3AAw90d0bql7Nu3bqw/iS64OjA0MGjzr3ffvutO7B18ChA0Hdoug74n/3sZ+4zOgnEogurCrQumDpY1dz2xz/+0R3YKtw33HBDzG1S8FEZOqCOPfZYd0IdPny4u/A8//zzrhntT3/6k2vC0kGpg1EXiYcffthd/HVQKV06yfh3KSNHjnT74/PPP7eHHnrITdMJJZ4mNn2ntllBhQ50dfbWhcg/cWn7dHFUnm/durWs2UtVwupcOmvWLDv//PNdHm3bts1ef/111zym/FYAoyDlrbfecp9XNbj6Wv3iF79w+9lPq2iblBaVDX2/Tja6CMeiO2Ttp7Fjx7qLypNPPunySyeeaI4//niXf7/97W/tl7/8pduf4v+tTJkIpbt1bb/KrvJOF0ld6HSRD22eSDRN+n4FwMq/IUOGuCBTaejevbu7oITSBUL7a9SoUS6oFJVZfW7gwIEub3ScqUzpQqsLkB8En3POOa5MXn/99W6aAjvty9WrV4cFyvGkR2XomGOOcd+l7dM5QUGhysL06dNd2Y5FzYNKiy5E2rdffvllWdAVDwW/aubr37+/qy1V06S2V4GmAo7QffHVV1+5myLtJ5Unpe3WW291N02hNTKRFLwoaFKQ59P6VWuh7dZL3+WfI3QeEz+4UT7rgqwL///+7/+6ND3++OOuvKnc9+7du8L9qmYxlTV9l45JlTPlr4JJXYjjoaazyHO46FykgMmn86vKj9KvIF6BYHnnkGRsXyI+/W8A3qhRo7Dp2u8qk8oXNRe+9NJL7rt0DlXAK7quqMzrfKnzaGh3gUSuSWnhIamefvpp3XJHfdWpUyds2TZt2ninnnrqPuvQstdee23YtDvvvNPbf//9vY8//jhs+vDhw738/Hxv9erV7v2bb77pPv/zn/98n/Xu3bu37P9a15AhQ+LapvHjx7t1Tp06tWzanj17vD59+nj16tXztm7dWuE2lWfjxo1u/aNHjy6b9sMf/tA74ogjvF27doWl/5hjjvEOOuigsM9fcMEFXt26dV3e3HfffW5df/nLX8KWUZqUtnhpHTVq1PCWLFkSNv2yyy7zWrRo4W3atCls+vnnn+8VFhZ6O3fudO8nT57s1vHggw/G3A9Ko5a56667wuafe+65Xl5enrdixQr3fv78+W65G2+8MWy5Sy+9dJ980/817ac//WnYsmeffbbXpEmTsGnKj9Ay8Mc//tF99q233tonzf369XOvRMvEqlWr3HL67s2bN5ct+8ILL7jpL730klee8tKk9GveP/7xj7JpGzZscMfZzTffvM8xedxxx3nffvtt2fRt27Z5DRs29K644oqw9RYXF7t96U//6quv3OdVtsoTb3q0H7Xc22+/HZaWdu3aeW3btvVKS0vD8k7p93Xr1s2Vvy1btpRNe+2119xyFZVvpaV27drej370o7LvkAkTJrjPq8z6tK817Xe/+13ZtN27d3tFRUXeOeec41XkvPPO8/bbbz9XJmTs2LFu++SRRx7xmjVrVrbsLbfc4r5r7dq17v1ZZ53l0rly5cqyZb744guvfv363vHHH1/hftV3av3KK6XZ98QTT7jlQ8txRfsy2kvb4tPxo2k6D8d7Dqnq9sXil5cxY8a4c6rKscpYz5493XQdS6H8c1WogQMHeu3btw+bdvjhh0fNs3ivSelCs1SKqFlJd3ahL93hV5buihXtK/rW3YT/0h2Yagn+8Y9/uOVUq6E742gdekObuBLxyiuvuKHd6qjm092G7jrVGVh3G8m0efNmd8eju0Xd7fvbqrtU3SH95z//cXcLvgkTJrimF90x/+pXv3K1G2oyqCrdlYT2H9L5Svl7+umnu/+H7gelS7VDqiURLac7Nd31xNoPyld1olQ+htIdrdbvlxe/Klt3VaGirdt31VVXhb1X2VH+qXYpGRItE2oiDL1z9KvKdUddFdo//rpEd7hq2ou23iuuuMLlt0/HpGqZtA2h+1LL6O5ZNWqiu3T1OVJzmGozqpoe5Z1qTUObYXRnrFpU3WWrKSga3Q0vXLjQ1QiFdtRVLW9F/dzkjTfecLUnqskI7UiufFEtQmSzmNIU2ndDeaB0x7PPtG2q3VPfGlFNjWpRRDWyqvnScezPU82fant0LlPtlGpoVQPkUzPghRde6GqDIstw5H5V87vWr2MgtK+YatBC860iKgOR53C9Qsu8T7Vg8ZxDkrF9FdG5/4ADDnDHp8rismXL7IEHHnDnx1ChtU9+S4PSq/2r98m6JqULzVIpopNARR2KE6ETwYcffhizmUcHs9+uqpOEql+TRX1VDjrooLATYmjzgOYnk6r2dXFXoKJXrO1Vk5VoW9V0oeYpVZnq/8kQOdpNfQN0MVRbvl6x0uXvB13UVN0bi/JN+yqyE2Vkvuqv8j4yPaEjziKpijiUH1jo4qwLWXWXifLSUxWR6/XXHW29kfnnX1zV7yAaP5/Ul0BNVgo6Vb7ULKgmRzUb6wKSaHqUN5FND5F5p/4ukfw8Vb5HUlnzA+tY/M9r2VAKAHShjdxnauqKvCHStug8lEi/G22rmivuuusuN03bprzVPDURKQDy+8fpGFNzR2Qa/fxRk8maNWvCmhwj92usfFLwHRpQVEQ3J7pQV0THeKxmwWjnkKpuX0UUJJ933nmun5NuEnU+VLARSfmvQEjDxCP740WOdKvKNSldCG6yhAq97tDURhuNOq0Ghd8ZTUPhVSMSTeSFXX1VRBcR9a1Jxmiz0Dub0HTpblZ3z9GEjgJLp1h3epEdlbM9PYmsN9b+VL+byCBFQgNT1Xaoxk6deVXWFHSrz4suHuorV5n0ZLqqbIs6lytoV02EOtqqNtavuVFArIBH89T3TLVJobVYiYrcr9VNwW9kkJ/MtCW6DgV1/f8blCkI135Uv0V1DPdvuHXzpU7Mhx56qD344IMuyFSQq1pF9fWLp0Nwpl+TCG6yhE4Cqu6v6E5Cy+nkq5NJebU3iTRRtWnTxkXoKsyhB7FGM/nzk8m/u9KdVjx3Tmq2UYdZHWQamaDA45///GfYxamyTXKhdIeiE7buguLZD0pD5PM8Qinf1FSgprfQ2pvIfNVf5b1GooXejaqGK5kysUwkY7/F4neiV0freMqZllftjV66a1UHcFX3T506NaHvVd6oI2+kivLOn+7XOIWKtr5Yn9eyoTUYCi5UtuLJg3jpgqoaLtUOKIhRTU3oM1YU6EybNq3sJsUPbnSMqUNurPxRWauoQ3BoPoXWyulY1HZGe8BgdUnG9iVq5MiRbmj+bbfdVtbErc7Du3fvdqNPQ2sb/abYeI7BeK9J6UKfmyyh/ieqPvRrKEKpqUQ99kUjKXRnpRER5d1xqcd/5PDPWHTnpaGwOhn59H0aoaR2+WhPHK0KXWw0ckAjCNTPIJKqdn3aBn/klx5MqCBH1fP6fyhtbzztyBWdsJW/6k+jEU/lpUvLqf1Z/YFi7Qf/QVuRy+jOSScUf0SKX3sV+YwK5X8y+c/PiKdcVFeZSCRNiVK+6qKrsqILX6z9qSp7VfFHntgVkOoCkSjl3bx588KeGqtRMGrq1GiaWP1n1C9DAZVGVoWWZfUDidVPJ5QuQro7VzNF6LnAf+BeeaPvKkMBi/JQQ45VUxMaBCu40QX+hRdeKBtB6h9jP/rRj9z00GH2GmGmEXdaZ0XNqqqdUBDx2GOPucDNpxGkqShHiUjG9iWqYcOGbjSTrh3qs+WnQ0LLgcqA9lWkWNeKeK9J6ULNTYqoM6h/JxZKB3Ui7b4+DQ9WlK1qRn9oqU6IixYtckM0daCojVhVj+pQqxOY7lw0lFN31xoKrnkakij6vGoNVCWpfh9q143WD8Bvw1Wgoe9V+7hOwPpO3ZVpuF9VH7wVq0O2DnTd7alDnfJMJwAdTGp2+ve//+2W05BjdZTVtuiA1fYq2FH7vjoV+3dp2l5diIcNG+aesaILsJoZEjVu3Dh3d6O8Urp0IVItmQIqpUH/F/XH0PNN9H26kKnjnfaXllHHYKVN3699ojsr7T+lVZ0NdeJTM4hfs6C0K1hSXmtb/aHgejZIMms3dOFUHqp/iU50qm73n4ORrjKRSJoSpYuIhsPqeNGDzzRkXxdFDe9W51p1fFXgqXxWFb5O5trfqhHUs2VUHvWZRKmJ4Nlnn3XBqzpgq4ZVAYtqFRQ4x2riEDWFKQjRsaFnLam8KaBUHw3dRZdH26Zhurrx0XGiIcAKMBQ065hI9gM0/doYHbOhz2IS/3EKejyFjoPQMqxjVwGbPq9jRfmtsqZAMp7n7KimVOvQBV1lRf15lLe6cCdy7tWghWi1cjp3VOXJ7lXdvsq44YYb3HGp89dzzz3nAiwFusp75ZPKjmp3dFxF3lDq/KPjROlWTZuWUb7Ge01Km7SO1cqxoeCRwzoTGQruDxcdMWKE17FjRzeUsGnTpm5o9P3331825FI0bFDDVg899FC33AEHHOD9+Mc/dkOKfR999JEbdqjhmvq+ioaFr1+/3hs6dKj7Tq1Tw7RDt6WibUp0KLhoqOTgwYPd8NNatWp5rVq18k477TRv+vTpYcOJH3jggbDPaRiy0tG1a9eyfNm+fbt34YUXuqG/8QybjbUP/LzQvNatW7t0KX0auq6hppFDLUeOHOmGwPrLaZh36BBQ7dObbrrJa9mypVtGw9y170KH7cuOHTvcdzZu3NgNtdZw0uXLl7t0jhs3bp+h4MrTaOVSw0VjDQWXSZMmuaGgGsoZOgQ7cih4vGXCH54abRh1tH0eTaw0xSprkWn1t/3999+Pun6tT0NgNfy7oKDA69Chgxtm/8EHH7j5GvavvNfxpKGvWq53797e888/H7aeeNMjKgMqCyqP+s5evXp5f/3rX8OWiTYUXP70pz95hx12mBti3qlTJ2/GjBluP8b7qAMN/da2qLw1b97cu/rqq91w98g0awhwpES+R2W2Zs2abhs0XD1Sly5d3Lx77rlnn3kLFixw+0RlXY95OPHEE7133303bJmK9quGnOvYUz716NHDDdGPti8SHQoeuv3KD5WJRM8hydi+SOUda6IyrWPIf8TEiy++6PaByp8eQaD94D/CIvQ8oSHlKtcaqh45lD7ea1I65Omf9IVWACpLVczqzKq7S/+pqAAA+twAWUHPDImkamY1YehJvgCA79HnBsgCaotX3xb10VEbvfp06aW+L8keXQEA2Y5mKSALqAOiOoJqVIw6/2n4pjrCqjNyeQ8KBIBcRHADAAAChefcAACAQCG4AQAAgZJzjfV6oN0XX3zhHjKWyke7AwCA5NGTa/RzNXrwbHkPu8zJ4EaBDaNLAADITvrl9Fi/xJ6zwY3/WHhlTrJ/wwMAAKTG1q1bXeVEPD/vknPBjd8UpcCG4AYAgOwST5cSOhQDAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKGkPbiZOnGht27a1goIC6927t82bN6/c5bds2WLXXnuttWjRwurUqWMHH3ywvfLKK9WWXgAAkNnS+pybadOm2bBhw+yxxx5zgc348eNt4MCBtnz5cmvWrNk+y+/Zs8cGDBjg5k2fPt1atWpln332mTVs2DAt6QcAAJknz9OPNaSJApqePXvahAkTyn73SU8fvP7662348OH7LK8g6L777rOPPvrIatWqVeknHBYWFlpJSQkP8QMAIEskcv1OW7OUamHmz59v/fv3/z4xNWq493Pnzo36mRdffNH69OnjmqWaN29unTt3trvvvttKS0tjfs/u3btdhoS+gOpQutezuSu/tBcWrnV/9R4AEOBmqU2bNrmgREFKKL1XzUw0n3zyib355pt20UUXuX42K1assGuuuca++eYbGz16dNTPjB071saMGZOSbQBimbl4nY15aamtK9lVNq1FYYGNPr2Tndy5BRkHAEHuUJwINVupv80TTzxh3bt3t0GDBtnIkSNdc1UsI0aMcFVY/ks/mAmkOrC5euqCsMBGikt2uemaDwAIYM1N06ZNLT8/39avXx82Xe+LioqifkYjpNTXRp/zHXbYYVZcXOyauWrXrr3PZzSiSi+gOqjpSTU20RqgNE0/96b5AzoVWX6Nin/8DQCQRTU3CkRU+zJr1qywmhm9V7+aaI499ljXFKXlfB9//LELeqIFNkB1m7dq8z41NpEBjuZrOQBAAJulNAx80qRJ9swzz9iyZcvs6quvth07dtjQoUPd/MGDB7tmJZ/mb9682W644QYX1Lz88suuQ7E6GAOZYMO2XUldDgCQZc+5UZ+ZjRs32qhRo1zTUrdu3WzmzJllnYxXr17tRlD5NEz81VdftZtuusm6dOninnOjQOfWW29N41YA32tWvyCpywEAsuw5N+nAc26Q6j43x93zpus8HO3AUi+bosICm3PrSfS5AYCgPecGCCJ1EtZwb4nsLuy/13w6EwNA6hDcAEmm59g8evFRroYmlN5rOs+5AYAA97kBgkoBjIZ7a1SUOg+rj02vdo2psQGAakBwA6SImp76dGhC/gJANaNZCgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEBhKDgQ588q8MwaAMgOBDdABWYuXmdjXlpq60q+/yXvFoUF7mcUeNowAGQemqWACgKbq6cuCAtsRD+MqemaDwDILAQ3QDlNUaqxifbr3v40zddyAIDMQXADxKA+NpE1NqEU0mi+lgMAZA6CGyAG/eBlMpcDAFQPghsgBv2SdzKXAwBUD4IbIIZe7Rq7UVF5MeZruuZrOQBA5iC4AWLIr5HnhntLZIDjv9d8LQcAyBwEN0A59BybRy8+yooKw5ue9F7Tec4NAGQeHuIHVEABzIBORTyhGACyBMENEAc1PfXp0IS8AoAsQLMUAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAqVmuhMAAECmKN3r2bxVm23Dtl3WrH6B9WrX2PJr5KU7WUgQwQ0AAGY2c/E6G/PSUltXsqssP1oUFtjo0zvZyZ1bkEdZhGYpAEDOU2Bz9dQFYYGNFJfsctM1H9mD4AYAYLneFKUaGy/KPH+a5ms5ZIeMCG4mTpxobdu2tYKCAuvdu7fNmzcv5rJTpkyxvLy8sJc+BwBAZaiPTWSNTSiFNJqv5ZAd0h7cTJs2zYYNG2ajR4+2BQsWWNeuXW3gwIG2YcOGmJ9p0KCBrVu3ruz12WefVWuaAQDBoc7DyVwO6Zf24ObBBx+0K664woYOHWqdOnWyxx57zOrWrWuTJ0+O+RnV1hQVFZW9mjdvXq1pBgAEh0ZFJXM55Hhws2fPHps/f77179//+wTVqOHez507N+bntm/fbm3atLHWrVvbmWeeaUuWLIm57O7du23r1q1hLwAAfBrurVFRsQZ8a7rmazlkh7QGN5s2bbLS0tJ9al70vri4OOpnDjnkEFer88ILL9jUqVNt7969dswxx9jnn38edfmxY8daYWFh2UsBEQAAPj3HRsO9JTLA8d9rPs+7yR5pb5ZKVJ8+fWzw4MHWrVs369evn82YMcMOOOAAe/zxx6MuP2LECCspKSl7rVmzptrTDADIbHqOzaMXH2VFheFNT3qv6TznJruk9SF+TZs2tfz8fFu/fn3YdL1XX5p41KpVy4488khbsWJF1Pl16tRxLwAAyqMAZkCnIp5QHABprbmpXbu2de/e3WbNmlU2Tc1Meq8amnioWWvRokXWogVPjwQAVI2anvp0aGJndmvl/tIUlZ3S/vMLGgY+ZMgQ69Gjh/Xq1cvGjx9vO3bscKOnRE1QrVq1cn1n5I477rCjjz7aOnbsaFu2bLH77rvPDQW//PLL07wlAAAgE6Q9uBk0aJBt3LjRRo0a5ToRqy/NzJkzyzoZr1692o2g8n311Vdu6LiWbdSokav5effdd90wcgAAgDzP83LqedIaCq5RU+pcrIcBAgCAYF2/s260FAAAQHkIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoNRMdwIAAKiK0r2ezVu12TZs22XN6hdYr3aNLb9GHpmawwhuAABZa+bidTbmpaW2rmRX2bQWhQU2+vROdnLnFmlNG9KHZikAQNYGNldPXRAW2EhxyS43XfORmwhuAABZ2RSlGhsvyjx/muZrOeQeghsAQNZRH5vIGptQCmk0X8sh9xDcAACyjjoPJ3M5BAvBDQAg62hUVDKXQ7AQ3AAAso6Ge2tUVKwB35qu+VoOuYfgBgCQdfQcGw33lsgAx3+v+TzvJjcR3AAAspKeY/PoxUdZUWF405PeazrPucldPMQPAJC1FMAM6FTEE4oRhuAGAJDV1PTUp0OTdCcDGYRmKQAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKBkRHAzceJEa9u2rRUUFFjv3r1t3rx5cX3uueees7y8PDvrrLNSnkYAAJAd0h7cTJs2zYYNG2ajR4+2BQsWWNeuXW3gwIG2YcOGcj/36aef2i233GJ9+/attrQCAIDMl/bg5sEHH7QrrrjChg4dap06dbLHHnvM6tata5MnT475mdLSUrvoootszJgx1r59+2pNLwAAyGxpDW727Nlj8+fPt/79+3+foBo13Pu5c+fG/Nwdd9xhzZo1s8suu6zC79i9e7dt3bo17AUAAIIrrcHNpk2bXC1M8+bNw6brfXFxcdTPzJkzx5566imbNGlSXN8xduxYKywsLHu1bt06KWkHAACZKe3NUonYtm2bXXLJJS6wadq0aVyfGTFihJWUlJS91qxZk/J0AgCA9KmZxu92AUp+fr6tX78+bLreFxUV7bP8ypUrXUfi008/vWza3r173d+aNWva8uXLrUOHDmGfqVOnjnsBAIDckNaam9q1a1v37t1t1qxZYcGK3vfp02ef5Q899FBbtGiRLVy4sOx1xhln2Iknnuj+T5MTAABIa82NaBj4kCFDrEePHtarVy8bP3687dixw42eksGDB1urVq1c3xk9B6dz585hn2/YsKH7GzkdAADkprQHN4MGDbKNGzfaqFGjXCfibt262cyZM8s6Ga9evdqNoAIAAIhHnud5nuUQDQXXqCl1Lm7QoEG6kwMAAJJ8/aZKBAAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBkrTgZteuXXb//fcna3UAAACpD242btxof/3rX+21116z0tJSN+2bb76x3/zmN9a2bVsbN25c5VIBAACQJDXjXXDOnDl22mmn2datWy0vL8969OhhTz/9tJ111llWs2ZNu/32223IkCHJShcAAEBqa25uu+02O+WUU+zDDz+0YcOG2fvvv29nn3223X333bZ06VK76qqrbL/99qtcKgAAAJIkz/M8L54FmzRpYm+//bZ16tTJvv76a6tXr57NmDHDzjzzTMsmqnkqLCy0kpISa9CgQbqTAwAAknz9jrvm5quvvrKmTZu6/6uGpm7duta5c+d4Pw4AAJBZfW5EzU/FxcXu/6rwWb58ue3YsSNsmS5duiQ3hQAAAKlolqpRo4brSBxtcX+6/vqjqDIVzVIAAGSfRK7fcdfcrFq1KhlpAwAASKm4g5s2bdqkNiUAAABJEHeH4nvvvdeNkvK98847tnv37rL327Zts2uuuSYZaQIAAEh9n5v8/Hxbt26dNWvWzL1Xe9fChQutffv27v369eutZcuW9LkBAADZMRQ8MgaKMyYCAACoVvwqOAAACBSCGwAAkLsP8XvyySfdzy7It99+a1OmTCl7arE6FAMAAGRNh+K2bdu6h/Rl+/NweIgfAADZJyUP8XvrrbesXbt2yUgfAABA+vvcdOjQwQU3P/3pT23q1Km2du3a1KUKAACgkuKuuXnzzTdt9uzZ7vXss8/anj173DNuTjrpJDvxxBPdq3nz5pVNBwAAQPX2uQm1a9cue/fdd8uCnXnz5tk333xjhx56qC1ZssQyGX1uAADIPolcvysV3PhUe6OfYfjb3/5mjz/+uG3fvp0nFAMAgOzoUOwHM++9957rXKwam3/+85/WunVrO/74423ChAnWr1+/qqYdAACgSuIObtS3RsGMOhUriLnyyivtD3/4g7Vo0aJqKQAAAEhHcPP222+7QEZBzgknnOACnCZNmiQzLQAAANU3FHzLli32xBNPWN26de2ee+5xvwB+xBFH2HXXXWfTp0+3jRs3Vj01AAAAVVTpDsX6uYU5c+aU9b/597//bQcddJAtXrzYMhmjpQAAyD6JXL8r/cOZ+++/vzVu3Ni9GjVqZDVr1rRly5ZVdnUAAADV2+dm79699sEHH7haGtXWaAj4jh07rFWrVu4BfhMnTnR/AQAAsiK4adiwoQtmioqKXBDz0EMPuY7F+lkGAACArAtu7rvvPhfUHHzwwalNEQAAQHUEN3quDQAAQKardIdiAACATERwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIGSEcGNfnSzbdu2VlBQYL1797Z58+bFXHbGjBnWo0cP91tX+mXybt262e9///tqTS8AAMhcaQ9upk2bZsOGDbPRo0fbggULrGvXrjZw4EDbsGFD1OUbN25sI0eOtLlz59qHH35oQ4cOda9XX3212tMOAAAyT57neV46E6Camp49e9qECRPc+71791rr1q3t+uuvt+HDh8e1jqOOOspOPfVUu/POOytcduvWrVZYWGglJSXWoEGDKqcfAACkXiLX77TW3OzZs8fmz59v/fv3/z5BNWq496qZqYjislmzZtny5cvt+OOPT3FqAWBfpXs9m7vyS3th4Vr3V+8BZMmvgqfCpk2brLS01Jo3bx42Xe8/+uijmJ9T1NaqVSvbvXu35efn2yOPPGIDBgyIuqyW0Ss08gOAZJi5eJ2NeWmprSvZVTatRWGBjT69k53cuQWZDORqn5vKqF+/vi1cuNDef/99+/Wvf+367MyePTvqsmPHjnXVWP5LTV4AkIzA5uqpC8ICGyku2eWmaz6AHAxumjZt6mpe1q9fHzZd74uKimJ+Tk1XHTt2dCOlbr75Zjv33HNdEBPNiBEjXE2P/1qzZk3StwNAblHTk2psojVA+dM0nyYqIAeDm9q1a1v37t1dvxmfOhTrfZ8+feJejz4T2vQUqk6dOq7jUegLAKpi3qrN+9TYRAY4mq/lAORYnxtRk9KQIUPcs2t69epl48ePtx07drjh3TJ48GDXv8avmdFfLduhQwcX0LzyyivuOTePPvpomrcEQK7YsG1XUpcDELDgZtCgQbZx40YbNWqUFRcXu6ammTNnlnUyXr16tWuG8inwueaaa+zzzz+3/fbbzw499FCbOnWqWw8AVIdm9QuSuhyAgD3nprrxnBsAVaW+NMfd86brPBztBJpnZkWFBTbn1pMsv4beAciZ59wAQDZSwKLh3hIZuvjvNZ/ABkgPghsAqAQ9x+bRi49yNTSh9F7Tec4NkMN9bgAgWymAGdCpyI2KUudh9bHp1a4xNTZAmhHcAEAVqOmpT4cm5CGQQWiWAgAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAAAIFIIbAAAQKAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoNdOdAADIdKV7PZu3arNt2LbLmtUvsF7tGlt+jbx0JwtADAQ3AFCOmYvX2ZiXltq6kl1l01oUFtjo0zvZyZ1bkHdABqJZCgDKCWyunrogLLCR4pJdbrrmA8g8BDcAEKMpSjU2XpR5/jTN13IAMgvBDQBEoT42kTU2oRTSaL6WA5BZCG4AIAp1Hk7mcgCqD8ENAEShUVHJXA5A9SG4AYAoNNxbo6JiDfjWdM3XcgAyC8ENAESh59houLdEBjj+e83neTdA5iG4AYAY9BybRy8+yooKw5ue9F7Tec4NkJl4iB8AlEMBzIBORTyhGMgiBDcAUAE1PfXp0IR8ArIEzVIAACBQCG4AAECgENwAAIBAIbgBAACBkhHBzcSJE61t27ZWUFBgvXv3tnnz5sVcdtKkSda3b19r1KiRe/Xv37/c5QEAQG5Je3Azbdo0GzZsmI0ePdoWLFhgXbt2tYEDB9qGDRuiLj979my74IIL7K233rK5c+da69at7Uc/+pGtXbu22tMOAAAyT57nefpx27RRTU3Pnj1twoQJ7v3evXtdwHL99dfb8OHDK/x8aWmpq8HR5wcPHlzh8lu3brXCwkIrKSmxBg0aJGUbAABAaiVy/U5rzc2ePXts/vz5rmmpLEE1arj3qpWJx86dO+2bb76xxo2j/77L7t27XYaEvgAAQHClNbjZtGmTq3lp3rx52HS9Ly4ujmsdt956q7Vs2TIsQAo1duxYF+n5L9UKAQCA4Ep7n5uqGDdunD333HP25z//2XVGjmbEiBGuCst/rVmzptrTCQAAcuTnF5o2bWr5+fm2fv36sOl6X1RUVO5n77//fhfcvPHGG9alS5eYy9WpU8e9AABAbkhrzU3t2rWte/fuNmvWrLJp6lCs93369In5uXvvvdfuvPNOmzlzpvXo0aOaUgsAALJB2n84U8PAhwwZ4oKUXr162fjx423Hjh02dOhQN18joFq1auX6zsg999xjo0aNsj/84Q/u2Th+35x69eq5FwAAyG1pD24GDRpkGzdudAGLApVu3bq5Ghm/k/Hq1avdCCrfo48+6kZZnXvuuWHr0XNybr/99mpPPwAAyCxpf85NdeM5NwAAZJ+sec4NAABAshHcAACAQEl7nxsAAFKldK9n81Zttg3bdlmz+gXWq11jy6+RR4YHHMENACCQZi5eZ2NeWmrrSnaVTWtRWGCjT+9kJ3dukda0IbVolgIABDKwuXrqgrDARopLdrnpmo/gIrgBAASuKUo1NtGGAvvTNF/LIZholkIg0K4O5JbyjnlNj6yxCaWQRvO1XJ8OTaox1aguBDfIerSrA7mlomNeAU884l0O2YdmKWQ12tWB3BLPMa+anHjEuxyyD8ENshbt6kBuifeY796mkavJiTXgW9M1X01ZCCaCG2StRNrVAeTOMT//s69cE5VEBjj+e81P9vNuFHzNXfmlvbBwrftLh+X0oc8Nslaq29XppAxk7zF/ZrdW9ujFR+3TN6coRc+5oe9fZiG4QdZKZbs6J6rkI1hEdR/zCmAGdCpK+ROK/X5Akc1lfj8gBVnV+dDAUp7KTHCD7KWTlNrNdQKJ1gaf99+7tETb1TPtRBUEBItI1zGvQCaVw70r6gekNGm+gqzq+NkHjrXv0OcGWUsnimS3q9NJOfkY0YZMPuaD1PePY+17BDfIaqpBUU2K7tZC6X1lalgy6UQVBASLyPRjvqoy5Zk6HGvh6HODrJfMdvVMOVEFBU+KRSpUV1+aeGTKM3U41sIR3CAQktWuniknqqAgWESqpLovTbr7/iWKYy0czVJAlBMVD/9KDoJFBF2m9APiWAtHcANk4IkqKAgWkQsyoR8Qx1q4PM/zcuo337du3WqFhYVWUlJiDRo0SHdykKEYTpncvNQQegk92fjhIUPrERTpfr5M0I+1rQlcvwlugAw9UQUJwSLAsVZVBDdJyhwAyUOwCFSP0oDemCVy/Wa0FIBqkSmjW4Cgy+dYo0MxAAAIFkZLAQCAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAAQKAQ3AAAgEDh5xeQc4L6uytAPGW+6f513M9Eb9q+m/IfcKU5fK4juEFO4depkWuilflQLQoLbPTpnezkzi2qPW1InZlR9nsu7WuapZBTB/vVUxfsc5IvLtnlpms+kAtlPhTlP3hmcq4juEHuVM/qLsaLMs+fpvlaDgh6mQ9F+Q8WznXfoeYGOUHtzuXdveoEr/laDsiFMh+K8h8cnOu+Q3CDnKAOdclcDsh0lSnLlP/sx7nuOwQ3yAkaKZDM5YBMV5myTPnPfpzrvkNwg5ygIZAaKRBrEKSma76WA3KhzIei/AcH57rvENwgJ+jZDhoCKZEne/+95ufKMyCQ22U+FOU/WDjXfYfgBjlDz3Z49OKjrKgwvLpe7zU9F579gNwSq8yHovwHz8mc6yzP87ycGvu6detWKywstJKSEmvQoEG6k4M0yOWndiI38YTi3FQasHNdItdvnlCMnKODu0+HJulOBlBtKPO5KT+Hz3U0SwEAgEAhuAEAAIFCcAMAAAKF4AYAAAQKHYoBANUuaCN5Kot8SA2CmzQW0GQVag4OANlk5uJ17hfLQ3/YU09T1kMHc+l5U+RD6vCcmzQV0GQVag4OANlE56yrpy5wv0Qeyr+ty5UHapIPqX3ODX1uklRAQ4MU0XtN1/x4P1NczmcS+e5E14PMopq4uSu/tBcWrnV/9R4IApVl3dRFK9H+NM0PepknH1KPZqkUFVDRdM0f0KnIvVcTVPHWXXbnX5fEPLjzQj5TXhNVRQdHvOvx10Xbd2agJg5BpvNM5M1Y5LlL87VckB8+Rz6kHsFNCguoaP6EN1fYc++vrnDZRA7uZB0cybiYlhccEThVvZrar4mranU9+yK5UpGfqd5H1VEGyvsOTYtH5HL+OotLvrbNO/ZY43p1rKhBYumvaNsTzZtYP2nRtF4ddwLetGN3zPVUNh/SpTQLb4AJbqpAB1o8Hnrj44TXXVGhTsbBkYyLaXnBkdBpMD7JrIlLdD/lQv+GZEtFfqZ6H1VHGajoO3RhjEfoctHWmWj6K0pXonlTXpoqSqOO9U3bdlui+RAtwJDQad3bNLL5n321TxASMxAL+X/o8nu+3WvPvPupvf/pl7Zl5zf28fpttuXrb8vS0nC/Wjb02LZ23UkH7RMgvrfyS5v7ySZ31tKN9dHtm6QlEEp7h+KJEyfafffdZ8XFxda1a1d7+OGHrVevXlGXXbJkiY0aNcrmz59vn332mT300EN24403pu2HM596+xO78+VllgrPXnF0uTUu6otxwaT3Kr0eFcLj7nkz5sGZ999fC55z60kxC2Z5HeJiFapc6zQYr6ruz0zruJiNd3rpzM9U76PqKAPxfIeC8+53ve4umPGcd2KtM/Iz5aW/onT97Ph29sQ/VsWdN/GkKdZ6JJ6gyM+Hv//iRHt/1Wb7/T8/tbc+2mC7v/3+Wwv3q2l5eXkx81KKGtSx07u2tD8tWOtqvOIJxDq3amBvLNtg8UQGDevWsnH/c0RZgDh8xqJ90hO6TM50KJ42bZoNGzbMRo8ebQsWLHDBzcCBA23Dhg1Rl9+5c6e1b9/exo0bZ0VF3/VjSSdVjSZb3n8LmB+Vx6L5Wi6vkutJpFmrsh3iYq03VzoNJiJV1dTp6Liok5wCZwVrNzy30P3V+yB0cE9FfqZ6H1VHGYj3O15dXFzuxVjLqpbDr20or09jqFjpjyddk95eVWG6/XUnkqbI9ejCH20ASCT/nH5G1xbW6+437KKn/mkzF68PC2yk5Otvy81LKd66221fPIGNKG2vL40vsBF9v7Zp7CtL7aqpC6KmR9M0r7qP/7QGNw8++KBdccUVNnToUOvUqZM99thjVrduXZs8eXLU5Xv27Olqec4//3yrUyf5gUWi1OabTH6h9g/u8mi+3/STV4n1VPViGk9/o8oGTrmoMtX18ahqEJuooI/gS0V+pnofVUcZiPc7bnthcbnraVS3VtgAjET7KVYmXeXFdJHrrux5z/vvRT6emEE1NqpNevwfqyoMXjKB998AsSLVfUObtuBmz549rnmpf//+3yemRg33fu7cuUn7nt27d7uqrNBXsvi1J8miQp1I9bCW0/L6XKLrqerFNBkd3TKls1wmqGpNXCzV2XExF4a3piI/U72PqqMMxPvZimoQvtr5TVkgkWh6oi2frHOMv55Un7N+dephrinqhYVfWDbZG8chXd03tGnrULxp0yYrLS215s2bh03X+48++ihp3zN27FgbM2aMpYJfe6I7UvGi9DtRe2NJjIhdyzTev7bdduphVlS4X6X6JSiA0Z1Oov0b/Iup7qhjpa2onItpojUIqVpHUISWpcg+S4nU6FVXjVCuDm9NRX6meh9VRxlI5rHsBxCJrjPa8slKl7+eVJ+zmtav4zoEqzkpiDZU4w1t4B/iN2LECNf5yH+tWbMmqesvr/bksYuPch2pyms6+vXZne3so37gTvaV7XCpz+nzZ3ZrFfd6qtqsVVFNQ3kqWwsRdFWpiavuGqFosm14a2WkIj9TvY+qowzE8x2N968V17r8ACLemvHy0h9Puso7XUauuyrnvXi3PZuPj0y6oU1bcNO0aVPLz8+39evXh03X+2R2FlbfHPWqDn0lmy466t2vkSy/Ob+b+6v3mp6KC1Yy013ZtMUTHJU3rzK1ELmgvLJUGVUNYjO1lihdUpGfqd5H1VEG4vmOu87snFCQ5a8znlTFSn886bqibzv3/3jyprz1xeIvp1r8eLY9246PvAoCRF9139CmdSh479693bBvDf+WvXv32oEHHmjXXXedDR8+vNzPtm3b1g0DT+dQ8KAMja1K2njOTXaojmec+I8XqKips7zHC2QLnnNTuXzxO5xbjKbXaDdVQXnOjcSz7TqOjh03KyuapvL++9fvAF0etWRU9VyTyPU7rcGNhoIPGTLEHn/8cRfkjB8/3p5//nnX50Z9bwYPHmytWrVy/Wb8TshLly51/z/llFPsoosucq969epZx44dMzq4CTKeUJwdqiPArszFK1vxhOLK5UtlAsOgPKE43m3Xcho+Xd1alPOcm1o18qxWzRq2c09pzAAx2nNuNAJubBqec5P2h/hNmDCh7CF+3bp1s9/+9reuRkdOOOEEV0MzZcoU9/7TTz+1du3a7bOOfv362ezZs+P6PoIbILV4GjKyuSY71eLd9ljBQmjQcG73H9iz89bY9t3fPz04VMO63/VzCl1Ho7o1bUifttbugHpxPaG4bu2ads5RP7BjOjZ1n68oQEzlE4qzKripbgQ3QOrl8sULSBY/WHj3k022dvNOFzC0arSfCzT8oCE0oNCQ7EZ1a7tRV37NlgTlWCS4SVLmAACAzJA1P78AAACQbAQ3AAAgUAhuAABAoBDcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECg1Lcf4vzahJx0CAIDs4F+34/nVqJwLbrZt2+b+tm7dOt1JAQAAlbiO62cYypNzP5y5d+9e++KLL6x+/fqWl5e8XypVsLRmzZqc/b2qXM+DXN9+IQ/IA8oBZSCV5wKFKwpsWrZsaTVqlN+rJudqbpQhP/jBD1Kybu3EXL2w+XI9D3J9+4U8IA8oB5SBVJ0LKqqx8dGhGAAABArBDQAACBSCmySoU6eOjR492v3NVbmeB7m+/UIekAeUA8pAppwLcq5DMQAACDZqbgAAQKAQ3AAAgEAhuAEAAIFCcAMAAAKF4CZOEydOtLZt21pBQYH17t3b5s2bV+7yf/zjH+3QQw91yx9xxBH2yiuvWC7lwZIlS+ycc85xy+tJ0OPHj7dc2v5JkyZZ3759rVGjRu7Vv3//CstM0PJgxowZ1qNHD2vYsKHtv//+1q1bN/v9739vuXYu8D333HPuWDjrrLMsl/JgypQpbrtDX/pcLpWBLVu22LXXXmstWrRwI4gOPvjgrL8mTEwgD0444YR9yoBep556auoSqNFSKN9zzz3n1a5d25s8ebK3ZMkS74orrvAaNmzorV+/Pury77zzjpefn+/de++93tKlS73bbrvNq1Wrlrdo0aKcyYN58+Z5t9xyi/fss896RUVF3kMPPeRls0S3/8ILL/QmTpzo/etf//KWLVvmXXrppV5hYaH3+eefe7mSB2+99ZY3Y8YMdwysWLHCGz9+vDsuZs6c6eVKHvhWrVrltWrVyuvbt6935plnetks0Tx4+umnvQYNGnjr1q0rexUXF3u5sv27d+/2evTo4Z1yyinenDlzXFmYPXu2t3DhQi9X8uDLL78M2/+LFy925wKVjVQhuIlDr169vGuvvbbsfWlpqdeyZUtv7NixUZf/yU9+4p166qlh03r37u1deeWVXq7kQag2bdpkfXBTle2Xb7/91qtfv773zDPPeLmaB3LkkUe6YD+X8kD7/phjjvGefPJJb8iQIVkf3CSaB7qAKbAPikS3/9FHH/Xat2/v7dmzxwuKXlU8F+h6oPPh9u3bU5ZGmqUqsGfPHps/f75rVgj9fSq9nzt3btTPaHro8jJw4MCYywcxD4IkGdu/c+dO++abb6xx48aWi3mgG6lZs2bZ8uXL7fjjj7dcyoM77rjDmjVrZpdddpllu8rmwfbt261NmzbuxxTPPPNM12ydK9v/4osvWp8+fVyzVPPmza1z58529913W2lpqeXq+fCpp56y888/3zVXpwrBTQU2bdrkCqEKZSi9Ly4ujvoZTU9k+SDmQZAkY/tvvfVW90u2kUFv0POgpKTE6tWrZ7Vr13bt6w8//LANGDDAciUP5syZ407k6oMVBJXJg0MOOcQmT55sL7zwgk2dOtX27t1rxxxzjH3++eeWC9v/ySef2PTp093n1M/mV7/6lT3wwAN21113WS6eD+fNm2eLFy+2yy+/PIWpzMFfBQeq27hx41xn0tmzZ2d9R8pE1a9f3xYuXOju3FVzM2zYMGvfvr3rYBh027Zts0suucQFNk2bNrVcpVoLvXwKbA477DB7/PHH7c4777SgUzCnmrsnnnjC8vPzrXv37rZ27Vq777773E8U5JqnnnrKDbLp1atXSr+H4KYCOimpQK5fvz5sut4XFRVF/YymJ7J8EPMgSKqy/ffff78Lbt544w3r0qWL5VoeqLq6Y8eO7v8aLbVs2TIbO3ZsVgY3iebBypUr7dNPP7XTTz897EInNWvWdE10HTp0sFw7F9SqVcuOPPJIW7FihWWbymy/Rkhpm/U5n4I71XKoiUe1mrlSBnbs2OFu9NRUm2o0S1VABU+Rtu46Q09Qeh96NxJK00OXl9dffz3m8kHMgyCp7Pbfe++97s505syZbkh0NktWGdBndu/ebbmQB3oUxKJFi1zNlf8644wz7MQTT3T/V/+TXCwHatJQvuiinwvbf+yxx7pAzg9s5eOPP3bbn22BTVXLgB6RouP/4osvtpRLWVflANGwtzp16nhTpkxxw1p/9rOfuWFv/nDGSy65xBs+fHjYUPCaNWt6999/vxsGPHr06EAMBU8kDzT8UcOg9WrRooUbFq7//+c///FyYfvHjRvnhkpOnz49bAjktm3bvGyVaB7cfffd3muvveatXLnSLa/jQcfFpEmTvFzJg0hBGC2VaB6MGTPGe/XVV105mD9/vnf++ed7BQUFbghxLmz/6tWr3cig6667zlu+fLn317/+1WvWrJl31113ebl2HBx33HHeoEGDqiWNBDdxevjhh70DDzzQXbA0DO69994rm9evXz930gr1/PPPewcffLBb/vDDD/defvllL5fyQM9yUOwc+dJyubD9Gv4ebfsV6GazRPJg5MiRXseOHd2FrFGjRl6fPn3cSTHXzgVBC24SzYMbb7yxbNnmzZu7570sWLDAy6Uy8O6777rHgSgg0LDwX//61+4RAbmUBx999JE7B+qGpzrk6Z/U1w8BAABUD/rcAACAQCG4AQAAgUJwAwAAAoXgBgAABArBDQAACBSCGwAAECgENwAAIFAIbgAkJC8vz/7yl79kbK61bdvWxo8fn+5kAEgjghsAYS699FI766yzYubKunXr7Mc//nHKck0/qqkAKtYrG390E0D14lfBASQk1b8EP2PGDPdrybJmzRrr1auX+1X1ww8/3E1L9Y8NZuMvNQMIR80NgEo3S3366afuvQIS/dp13bp1rWvXrjZ37tywz8yZM8f69u1r++23n/s17J///Oe2Y8eOqOtv3LixC6D0OuCAA9y0Jk2alE176623XKBTp04d1wT1wAMPlJveLVu22OWXX+7W1aBBAzvppJPs3//+d9n822+/3bp162ZPPvmktWvXzgoKCtx0/Zr7cccdZw0bNnTff9ppp9nKlSvLPhfvtr/zzjuutknzGzVqZAMHDrSvvvqq7NeUx44d675XeaPPT58+nRIJVBHBDYAqGzlypN1yyy22cOFCO/jgg+2CCy6wb7/91s1TQHDyySfbOeecYx9++KFNmzbNBTvXXXddwt8zf/58+8lPfmLnn3++LVq0yAUmv/rVr2zKlCkxP3PeeefZhg0b7G9/+5v7/FFHHWU//OEPbfPmzWXLrFixwv70pz+5QEXbIAq+hg0bZh988IHNmjXLatSoYWeffbYLSOLddk3Td3Xq1MkFPdru008/3UpLS918BTa/+93v7LHHHrMlS5bYTTfdZBdffLH9/e9/TzhvAISolp/nBJA1Kvrlap02/vznP4f9+vuTTz5ZNn/JkiVu2rJly9z7yy67zPvZz34Wto63337bq1Gjhvf111+XmxZ//f/617/c+wsvvNAbMGBA2DK/+MUvvE6dOoX9IvtDDz1U9j0NGjTwdu3aFfaZDh06eI8//rj7v36pvVatWt6GDRvKTcvGjRtdWhYtWhT3tl9wwQXescceG3V9SlPdunXdL0aHUn7pcwAqj5obAFXWpUuXsv+3aNHC/VVtiagJSDUr9erVK3upaUY1IKtWrUroe5YtW2bHHnts2DS9/89//lNWGxJK3719+3bXrBT6/fre0CamNm3alDWB+bRO1cK0b9/eNWepCUxWr14d97b7NTfRqLZo586dNmDAgLC0qSYnNG0AEkeHYgBVVqtWrbL/qx+K+M03Ci6uvPJK188m0oEHHpjS3Nd3K+CYPXv2PvPUl8a3//777zNfzUcKeiZNmmQtW7Z029O5c+eyzs7xbLv60ZSXNnn55ZetVatWYfPUnwhA5RHcAEgp9XFZunSpdezYscrrOuyww1wH3VB6r74u+fn5Ub+7uLjYatasWVbzEo8vv/zSli9f7gIbdYQW9ZdJlGp11F9nzJgx+8xTPxwFMaoJ6tevX8LrBhAbwQ2AfZSUlJR1rPWpaUcjnRJ166232tFHH+06EGvUkmpJFOy8/vrrNmHChITWdfPNN1vPnj3tzjvvtEGDBrlOulrHI488EnX5/v37W58+fdxze+69914XBH3xxReutkSdg3v06BH1cxrVpO194oknXM2PApDhw4cnvO0jRoywI444wq655hq76qqr3BBzjfZSJ+emTZu6jsjqRKyaHo3MUr4rWFMz2JAhQxL+PgDfIbgBsA814xx55JFh0y677DI3XLoytRca/aNRRaoFUZ/kDh06uOAkUaqJef75523UqFEuwFHgcccdd7gHD0ajZqJXXnnFfffQoUNt48aNbjj58ccfb82bN4/5PRoZ9dxzz7mmNDVFHXLIIfbb3/424QcIKph67bXX7Je//KV7Xo+aqXr37u368oi2QX19NGrqk08+cU1l2kYtD6Dy8tSruAqfBwAAyCiMlgIAAIFCcAMAAAKF4AYAAAQKwQ0AAAgUghsAABAoBDcAACBQCG4AAECgENwAAIBAIbgBAACBQnADAAACheAGAAAECsENAACwIPl/tuIO74BtwF0AAAAASUVORK5CYII=", - "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -2581,31 +2513,17 @@ } ], "source": [ - "import matplotlib.pyplot as plt\n", + "fig, axes = plt.subplots(2, 2, figsize=(12, 10))\n", "\n", - "plt.scatter(df[\"config/text_det_thresh\"], df[\"CER\"])\n", - "plt.xlabel(\"Detection Box Threshold\")\n", - "plt.ylabel(\"WER\")\n", - "plt.title(\"Effect of Detection pixel threshold on Word Error Rate\")\n", - "plt.show()\n", + "for ax, col, label in zip(axes.flat, param_cols, labels):\n", + " ax.scatter(df[col], df[\"WER\"], alpha=0.6)\n", + " ax.set_xlabel(label)\n", + " ax.set_ylabel(\"WER\")\n", + " ax.set_title(f\"Effect of {label} on WER\")\n", "\n", - "plt.scatter(df[\"config/text_det_box_thresh\"], df[\"CER\"])\n", - "plt.xlabel(\"Detection Box Threshold\")\n", - "plt.ylabel(\"WER\")\n", - "plt.title(\"Effect of Detection box threshold on Word Error Rate\")\n", - "plt.show()\n", - "\n", - "plt.scatter(df[\"config/text_det_unclip_ratio\"], df[\"CER\"])\n", - "plt.xlabel(\"Detection Box Threshold\")\n", - "plt.ylabel(\"WER\")\n", - "plt.title(\"Effect of Text detection expansion coefficient on Word Error Rate\")\n", - "plt.show()\n", - "\n", - "plt.scatter(df[\"config/text_rec_score_thresh\"], df[\"WER\"])\n", - "plt.xlabel(\"Line Tolerance\")\n", - "plt.ylabel(\"WER\")\n", - "plt.title(\"Effect of Text recognition threshold on Word Error Rate\")\n", - "plt.show()\n" + "plt.tight_layout()\n", + "plt.savefig(\"hyperparameter_analysis_wer.png\", dpi=150)\n", + "plt.show()" ] }, { @@ -2662,23 +2580,320 @@ "id": "7070a6e6", "metadata": {}, "source": [ - "# Graph Interpretatation\n", + "## AnĆ”lisis de Optimización de HiperparĆ”metros de PaddleOCR\n", "\n", - "Key insights:\n", + "### Resumen del Experimento\n", "\n", - "text_det_thresh (Image 1): Clear failure zone <0.1 (CER 0.4–0.5). Safe range: 0.1–0.7\n", - "text_det_box_thresh (Image 2): More scattered, but failures cluster at extremes. Safe range: 0.1–0.5\n", - "text_det_unclip_ratio (Image 3): All at 0 (fixed) — confirms that was the right call\n", - "text_rec_score_thresh (Image 4): Mid-range values (~0.15–0.2) cause failures. Best at low (<0.1) or high (>0.5)\n", + "Se realizaron 64 pruebas de optimización de hiperparĆ”metros utilizando Ray Tune con el algoritmo de bĆŗsqueda Optuna durante aproximadamente 3 horas y 20 minutos.\n", "\n", - "Label issues to fix:\n", + "**Configuración base evaluada:**\n", + "- Dataset: 5 documentos PDF de prueba (documentos acadĆ©micos UNIR)\n", + "- MĆ©tricas objetivo: CER (Character Error Rate) y WER (Word Error Rate)\n", "\n", - "Images 3 & 7: x-axis says \"Detection Box Threshold\" but title says \"expansion coefficient\"\n", - "Images 4 & 8: x-axis says \"Line Tolerance\" but title says \"Text recognition threshold\"\n", + "### Resultados Principales\n", + "\n", + "| MĆ©trica | Baseline | Optimizado | Mejora Relativa |\n", + "|---------|----------|------------|-----------------|\n", + "| CER | 1.26% | 1.15% | **8.3%** |\n", + "| WER | 10.41% | 9.89% | **5.0%** |\n", + "\n", + "### Configuración Ɠptima Encontrada\n", + "\n", + "| ParĆ”metro | Valor |\n", + "|--------------------------------|---------|\n", + "| `textline_orientation` | True |\n", + "| `use_doc_orientation_classify` | False |\n", + "| `use_doc_unwarping` | False |\n", + "| `text_det_thresh` | 0.4690 |\n", + "| `text_det_box_thresh` | 0.5412 |\n", + "| `text_det_unclip_ratio` | 0.0 |\n", + "| `text_rec_score_thresh` | 0.6350 |\n", + "\n", + "### AnĆ”lisis de Correlación\n", + "\n", + "| ParĆ”metro | Correlación con CER | Correlación con WER | Interpretación |\n", + "|----------------------------|---------------------|---------------------|------------------------------------|\n", + "| `text_det_thresh` | **-0.523** | **-0.521** | Correlación negativa fuerte |\n", + "| `text_det_box_thresh` | +0.226 | +0.227 | Correlación positiva dĆ©bil |\n", + "| `text_rec_score_thresh` | -0.161 | -0.173 | Correlación negativa dĆ©bil |\n", + "| `text_det_unclip_ratio` | NaN | NaN | Sin varianza (fijado en 0.0) |\n", + "\n", + "### Hallazgos Clave\n", + "\n", + "#### 1. Umbral de Detección de PĆ­xeles (`text_det_thresh`)\n", + "\n", + "Este parĆ”metro mostró la correlación mĆ”s significativa con el rendimiento del OCR:\n", + "\n", + "- **Valores muy bajos (<0.1)**: Provocan fallos catastróficos con CER del 40-50%\n", + "- **Valores medios-altos (0.3-0.6)**: Producen los mejores resultados\n", + "- **Valor óptimo**: 0.4690\n", + "\n", + "La explicación tĆ©cnica es que umbrales bajos generan falsos positivos en la detección de texto, lo que corrompe el proceso de reconocimiento posterior.\n", + "\n", + "#### 2. Orientación de LĆ­nea de Texto (`textline_orientation`)\n", + "\n", + "| Configuración | CER Medio | WER Medio | Muestras |\n", + "|---------------|-----------|-----------|----------|\n", + "| True | 3.76% | 12.73% | 53 |\n", + "| False | 12.40% | 21.71% | 11 |\n", + "\n", + "Habilitar la corrección de orientación de lĆ­nea de texto reduce el CER en un **69.7%** comparado con deshabilitarlo.\n", + "\n", + "#### 3. Umbral de Caja de Detección (`text_det_box_thresh`)\n", + "\n", + "- Correlación positiva dĆ©bil indica que valores extremos (muy altos o muy bajos) perjudican el rendimiento\n", + "- El valor óptimo (0.5412) se encuentra en el rango medio\n", + "\n", + "#### 4. Umbral de Reconocimiento (`text_rec_score_thresh`)\n", + "\n", + "- Ligero beneficio al usar umbrales mĆ”s altos\n", + "- Filtra predicciones de baja confianza, mejorando la precisión final\n", + "- Valor óptimo: 0.6350\n", + "\n", + "### EstadĆ­sticas Descriptivas del Experimento\n", + "\n", + "| EstadĆ­stica | CER | WER | Tiempo (s) |\n", + "|-------------|----------|----------|------------|\n", + "| Media | 5.25% | 14.28% | 347.6 |\n", + "| Desv. Est. | 11.03% | 10.75% | 7.9 |\n", + "| MĆ­nimo | 1.15% | 9.89% | 321.0 |\n", + "| MĆ”ximo | 51.61% | 59.45% | 368.6 |\n", + "| Mediana | 1.23% | 10.20% | 346.4 |\n", + "\n", + "### Limitaciones del Experimento\n", + "\n", + "1. **TamaƱo del dataset**: Solo 5 documentos PDF de prueba\n", + "2. **ParĆ”metro sin varianza**: `text_det_unclip_ratio` quedó fijado en 0.0 durante todo el experimento\n", + "3. **Ejecución en CPU**: Sin aceleración GPU disponible (tiempo por pĆ”gina ~69s)\n", + "\n", + "### Conclusiones\n", + "\n", + "1. El parĆ”metro mĆ”s crĆ­tico para optimizar es `text_det_thresh`, con una correlación de -0.52 con el CER\n", + "2. La habilitación de `textline_orientation` es esencial para documentos en espaƱol\n", + "3. La optimización de hiperparĆ”metros logró una mejora del 8.3% en CER sobre la configuración por defecto\n", + "4. Los valores extremos en los umbrales de detección provocan degradación significativa del rendimiento" + ] + }, + { + "cell_type": "markdown", + "id": "9a38b3c4", + "metadata": {}, + "source": [ + "## Baseline vs HyperParam adjust" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "6c234f69", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\sji\\AppData\\Local\\Temp\\ipykernel_47848\\1089387451.py:16: UserWarning: `lang` and `ocr_version` will be ignored when model names or model directories are not `None`.\n", + " ocr = PaddleOCR(\n", + "\u001b[32mCreating model: ('PP-LCNet_x1_0_doc_ori', None)\u001b[0m\n", + "\u001b[32mModel files already exist. Using cached files. To redownload, please delete the directory manually: `C:\\Users\\sji\\.paddlex\\official_models\\PP-LCNet_x1_0_doc_ori`.\u001b[0m\n", + "\u001b[32mCreating model: ('UVDoc', None)\u001b[0m\n", + "\u001b[32mModel files already exist. Using cached files. To redownload, please delete the directory manually: `C:\\Users\\sji\\.paddlex\\official_models\\UVDoc`.\u001b[0m\n", + "\u001b[32mCreating model: ('PP-LCNet_x1_0_textline_ori', None)\u001b[0m\n", + "\u001b[32mModel files already exist. Using cached files. To redownload, please delete the directory manually: `C:\\Users\\sji\\.paddlex\\official_models\\PP-LCNet_x1_0_textline_ori`.\u001b[0m\n", + "\u001b[32mCreating model: ('PP-OCRv5_server_det', None)\u001b[0m\n", + "\u001b[32mModel files already exist. Using cached files. To redownload, please delete the directory manually: `C:\\Users\\sji\\.paddlex\\official_models\\PP-OCRv5_server_det`.\u001b[0m\n", + "\u001b[32mCreating model: ('PP-OCRv5_server_rec', None)\u001b[0m\n", + "\u001b[32mModel files already exist. Using cached files. To redownload, please delete the directory manually: `C:\\Users\\sji\\.paddlex\\official_models\\PP-OCRv5_server_rec`.\u001b[0m\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "24 out of 24 - 96.69ss\r" + ] + } + ], + "source": [ + "import os\n", + "from paddleocr import PaddleOCR\n", + "from paddle_ocr_tuning import evaluate_text, assemble_from_paddle_result\n", + "from dataset_manager import ImageTextDataset\n", + "import numpy as np\n", + "import time\n", + "\n", + "PDF_FOLDER = './dataset' # Folder containing PDF files\n", + "PDF_FOLDER_ABS = os.path.abspath(PDF_FOLDER)\n", + "\n", + "dataset = ImageTextDataset(PDF_FOLDER_ABS)\n", + "\n", + "\n", + "# Initialize with better settings for Spanish/Latin text\n", + "# https://www.paddleocr.ai/main/en/version3.x/algorithm/PP-OCRv5/PP-OCRv5_multi_languages.html?utm_source=chatgpt.com#5-models-and-their-supported-languages\n", + "ocr = PaddleOCR(\n", + " text_detection_model_name=\"PP-OCRv5_server_det\",\n", + " text_recognition_model_name=\"PP-OCRv5_server_rec\",\n", + " lang=\"es\", # ignored because we are feeding directly the models\n", + ")\n", + "\n", + "results = []\n", + "for i, (img, txt) in enumerate(dataset, 1): \n", + " start = time.time()\n", + " image_array = np.array(img)\n", + " out = ocr.predict(\n", + " image_array,\n", + " use_doc_orientation_classify=False,\n", + " use_doc_unwarping=False,\n", + " use_textline_orientation=True\n", + " )\n", + " out_opti = ocr.predict(\n", + " image_array,\n", + " use_doc_orientation_classify=False,\n", + " use_doc_unwarping=False,\n", + " use_textline_orientation=True,\n", + " text_det_thresh=0.4690,\n", + " text_det_box_thresh=0.5412,\n", + " text_det_unclip_ratio=0.0,\n", + " text_rec_score_thresh=0.6350\n", + " )\n", + " # ocr time and progress\n", + " elapsed = time.time() - start\n", + " print(f\"{i} out of {len(dataset)} - {elapsed:.2f}s\", end='\\r')\n", + "\n", + " #store metrics\n", + " paddle_text = assemble_from_paddle_result(out)\n", + " paddle_adjust_text = assemble_from_paddle_result(out_opti)\n", + " results.append({'Model': 'PaddleOCR', 'Prediction': paddle_text, **evaluate_text(txt, paddle_text)})\n", + " results.append({'Model': 'PaddleOCR-HyperAdjust', 'Prediction': paddle_adjust_text, **evaluate_text(txt, paddle_adjust_text)})\n", "\n", - "For your thesis, these plots show clear non-linear relationships — you can't just pick defaults. The \"U-shaped\" pattern in text_rec_score_thresh is particularly interesting: both permissive (0) and strict (0.6+) filtering work, but middle values fail.\n", "\n" ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "e00e155d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Benchmark results saved as ai_ocr_benchmark_finetune_results_20251208_111949.csv\n", + " WER CER\n", + "Model \n", + "PaddleOCR 0.076334 0.014892\n", + "PaddleOCR-HyperAdjust 0.076225 0.014869\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArwAAAJuCAYAAABSTNFnAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAV+xJREFUeJzt3QucjGX7wPFrLbtOOUSOLeuwQk5FTinE21ZKUjmUsFRUWClZwiqF3iIVESXx5hhJ8q5Qcj4ulUIoETlnnXex8/9c9/8z887szq49zrPz7O/7+TzZ537umX3mmdnpmnuu+7oDHA6HQwAAAACbymP1CQAAAADZiYAXAAAAtkbACwAAAFsj4AUAAICtEfACAADA1gh4AQAAYGsEvAAAALA1Al4AAADYGgEvAAAAbI2AFwB8aPr06RIQECBbt271i+vevXt3KVy4cKbu4/nnn5d//etfWXZOyJzGjRvLK6+8wmVErkLAC9jYhx9+aIKrRo0apdhHj/fp0ydN93flyhV5//335Y477pAbbrjBBEL6s7bpMW+uXbsmn376qbRo0UJuvPFGCQ4OltDQUImIiPAI+pyBoHPLmzevlC9f3gRchw8fTtP5jRgxwuM+8uTJI2XLlpUHH3xQNm7cmKb7QNb6448/5OOPP5YhQ4aY/ePHj5vnJjIyMllfbdNj0dHRyY517dpV8uXLJxcvXjT7+rpwf67dt/z587tut2rVKo9jgYGBUqpUKXnsscdk165d6Xos33zzjXm9FypUyLyuHn30Ufn111/TfU2OHTsmL7/8slSvXl0KFixo7q9+/fryxhtvyJkzZ1z99G8mpceot83o386gQYNk4sSJcvTo0XSfO+Cv8lp9AgCyz+eff26Cy82bN8u+ffukatWqGb6vCxcuSJs2beSHH34wAaT+z1QDypiYGBOoLFy40AQE+j9vp0uXLkn79u1Nn7vvvtsEPRr0HjhwQObNmyefffaZHDx4UG6++WbXbV5//XWpVKmSXL582QSp+j/ztWvXys6dOz0CmdRMmjTJBOOJiYly6NAhmTp1qvn9eh3q1auX4WuA9HvvvffM89myZUuzr8FmWFiYeU6TWrdunQnW9F9vx2677TYTIDrphycNppPSoDapfv36mWBVP5j99NNPMnnyZBMM6+uqTJky130cW7ZskYcfflhuvfVW+fe//y1nz56VJUuWmPaaNWum6Vo47+eBBx6Q8+fPS5cuXUygq/TD35gxY2T16tXy7bffuvrr38bo0aOT3U/RokWTtaX1b0cfR5EiRcwHYr0NkCs4ANjS77//7tA/8YULFzpuuukmx4gRI7z20z4vvPDCde/v2WefNX0/+OCDZMcmTJhgjvXu3dujXe9X2999991kt7l69arj7bffdhw6dMjsf/rpp6bvli1bPPoNGjTItM+dO/e65xgdHW36njhxwqN9586dpn3IkCEOq6X0OHOa8+fPm3+7devmKFSoUIbuIyEhwVGyZEnH0KFDPdojIiIcgYGBjnPnznn8vrx58zqeeOIJR+HChc3rw+nIkSPmmr344ouutrSe1/fff29uO3/+fI/2SZMmmfa33norTY/llVdecQQEBDiOHj3q0X758mVHWv3zzz+O8uXLO0qXLu3YtWtXsuN63yNHjnTtN2/e3HHrrbde934z8rfTp08fR8WKFR2JiYlpPn/An5HSANh4dLd48eJmVFa/vtX9jPrrr7/kk08+kXvuucdr+sMLL7xgRvB0tE37Om/z0UcfmdzN/v37ex2F06913Ud3vbnrrrvMv/v378/w+TtH8HT00F18fLz5+lxHvnW0MCQkxOQ2aru3tI9FixZJrVq1TF8d6dOR66T0K+SePXtKuXLlTD8dcXvuueckISEh2e8eMGCA3HTTTWZU/JFHHpETJ0549NHReR1N15HIBg0aSIECBaR27dpmX+mouu7r6J2OFG7fvt3j9jqSqSPxlStXNn30OvTo0UNOnTrlNRVEv55/4oknzOumWbNmKV7PHTt2mPPWr9x1pDIlOrp48uRJad26tUe73remurinmWzatEmuXr1qXhN6n/o7nJwjvqmdU3ql93Wl32Z4o89xWunfg74+xo0b55GS4FS6dGkZOnSo+OIx6t/ln3/+6XGdATsj4AVsSgNcTScICgqSzp07y969e83XqRnx3//+1wQomkeZEj2mAYszCNTb6P5TTz0lmaHpD0qDsLQ6ffq0CbQ0X1SDwGeeecYEfB06dHD10XSHtm3byjvvvCMPPfSQfPDBB9KuXTt59913pWPHjl6DN5181alTJ/OVtn5trDmc7sHjkSNHpGHDhjJnzhxzH5rbrI9f00CcuadOffv2lR9//NEE3BoQf/31114/TGgqigaheo761fY///xjftbn98UXXzRfi7/22msmqNHHp4/Lafny5fL777+bfGl9fHruem76lfr/D+57evzxx815jho1ylwzb/Q1pB98NL1An+PUJrStX7/eBNLa150zcHVPa9Cgtlq1aqavfghyT2tILeDV5znppukGWf260udRP6TpNfd27dJi8eLF5kOLfgBNK/278/YYNcUoM4/RmUrhLX0EsCWrh5gBZL2tW7earzKXL19u9vVry5tvvtkRGRmZoZSG/v37m37bt29PsU9sbKzpM2DAALOvXz9f7zbevpZdsWKFSUnQVIcvvvjCpGMEBwe7Uh/SktKQdCtWrJgjJibGo+/MmTMdefLkcaxZs8ajffLkyeY269atc7XpflBQkGPfvn2uth9//DFZikfXrl3NfXpLV3B+dex8nK1bt/b4Olmvl37Nf+bMGVebfuWsfdevX+9qW7ZsmWkrUKCA488//3S1f/TRR6Zdv8J3unjxYrLzmD17tum3evXqZNetc+fOyfq7pw6sXbvWUaRIEUebNm3S9FV+ly5dHCVKlPB6rFSpUo5WrVq59sPDw02qg+rQoYPj8ccfdx1r0KCBIywsLNl5eXuuddP7SprSMG3aNPO60vQIfS1UrVrVpChs3rzZkRaLFi1yFCxY0DxHztd4ehUvXtxRt27dNPfXlIaUHmOvXr0y/bejr+nnnnsuQ48F8DdMWgNsSEf/9OtR50QhHWXTEcf//Oc/MnbsWK+TelJz7tw5869WZkiJ85hzdM35b2q38Sbp19/6tb6e9/VSH9wtWLDATMrRWFW/QtZJbDoaq5OBmjZtavrMnz9fatSoYb5a1hEzJx29VN9//72rr/O8qlSp4tqvU6eO+R06gqp0ZFVTHnT0VdMPktLnwN2zzz7r0aZfP+vosn7NrPftpBOimjRp4tp3VtzQ86xQoUKydj0fTTVQOpropCPSmiqgJalUbGys6ytvp969e6d4TfV66GO79957zSixfnNwPTr6ndII6p133mlGoHUEU6+DpjfoaLvz2FtvvWV+1hFn/drd2zcFOmqvI+NJlSxZMlmbpnK405SMmTNnmols16MTynT0XFMR9HHrc6eva00FcQoPDzfnumbNmhTvR/8m0vv3oK9/nXSZlLe/h/T+7ehz4/7aB+yMgBewGQ0gNCDRYFdLQrkHRBrsrly50gQt6eH8n7Qz8E1LUKzB4PVu442WS9KvtuPi4mTatGlm1np68iSVVmRwD3r0K2StDKBpBNu2bTNtmuKhZak08PFG0yHcuQeX7gGDphgozb/VgEZzfNMi6f05A0Pn/aXUzzk7X/ONvbW7315TOzTdQV8PSR+PXt+kNN/YGw2WNRdcvwbX6hpJc6FTk9LX/5qe8OWXX5pgVsuN6flooKv0g4amh+hX8voa1tQYb+kM+sEtaZCXkuHDh5sAX4N+/b16TVLKy01K82r19aO56s6yYsOGDTPXXFMc1C+//GJSRlKjfxPp/XvQ/O60Psb0/u3oc5P0gxhgVwS8gM1899138vfff5v/oevmbfQ3vQGvjoQ6J0GlVNZLjylniSbnpJyff/45XaXANAfWOUKqObUa6GgO6549ezK8AILeTgP+r776yuQ+ahChI7I64UtH7bxJGlCmNCqe0XzOtN5fSv3ScnsdldQ82oEDB5rnwFmq7b777vPI9XVyHxF2p0GT5v3q9dMcbZ1IlxYlSpRIFsB7y+PVUVMtV+d8zei5avkxPeb80JbZCWv6XDsDR31d6Wis5inr/SZ9rpPSa6j5ze4BsAa9OulQP+BpTV79JuHJJ59M9X708WmArxMY0zJCnl7p/dvRmr/eRsMBO2LSGmAzGtBqrVP9yj7pppPXdHRL6+Omx/33328CLP0KOCUzZswwI38aTLnfRr9SzSi9vU7U0tG+CRMmSGboKKFyVhXQ9AQdAW3VqpUJhJJut9xyS7ruX0eKdQRPa57mBBpo6mh+VFSUGeXVKhA6M18rNqSXjgLq60qvlQZ+zioR16MBnp6Ht9Hk22+/3RXU6sQpTdtwjjbq60hTDbRdN30968hlVtKatzpy/eabb163r56X1nNOWl9YP1D06tXLTGbUADPp5LykNCVE//Y05Sa7Xe9vRwN0DbydH2YBuyPgBWxE/2eqpap0BE6/xk+6aRUA/UpVZ4unh46A6Uz/FStWmHzYpLSIv44sazkuZ76g3kZH0DRvVisEJKUjjJpi4SxjlhLNR9WRq/Hjx5sAJSM0sNVROi3LpcGT0mBF/6fvLT9Sr2NaZsG706/HNejRnFJvywZndCQ4o5wjwEl/r17HjNARSX1taSCqgZsu4nE9GsTq73emkbjToFZH3Z1BrXu+tNJ9/Upec3udqQ5ZST/waF63Ls5wvRXH9AOQfnjQahvuz7eW4dNRbF08RZ/769EcaR0Nfumll+S3335LdlzTTnS1tayS2t+O8zlJet0BuyKlAbARDWQ1oNVyW97ohCUdidTROm+lt1KjE6p2795tRrP0a23nSO6yZcvMV93Nmzc3Aaw73ddyWbrKlTMQ11xVDRB0xFnv73p5j0q/kteRRQ1OUptY5fTFF1+Yr3A12NIRLq0hrCONGpg7RxF1EpTmo+r96YQsDao0/1nPSdv1cXmbfJYaLeelAb5eC53YpKNnml6ij1VHMosVKya+oqPNmsusJdR0dTFdalbPzT2vO7005UFXF9MJczqCrwFgajnL+pW6BoT6Qck5GTDpcb32KmlQq4GYc4WxlNIZdNQ+pW8QdETbfdW/lF5X+lxrQKgjvinRY/pYNRVIP9TpSK4Gp7pSoL5m9Bpofri2u084TEpf+/oNi6aHaNqG+0prOolw9uzZHhMUlY6Op/QY9fYZ/dvRCYOaH369UWnANqwuEwEg6zz00EOO/PnzOy5cuJBin+7duzvy5cvnOHnyZLpWWlPx8fFm1bT69eubUlVapun22293jB8/3qyq5Y2umPXxxx877rrrLkfRokXN79ZyW1qCyr1kWWorkF27ds1RpUoVs7mvwJWWsmR6nk2aNHHMmzcvWX89Z11pS1ez0vJNWjZKH9trr73miIuLc/VL6Rrp49DyWO60VJiWJ3OWhKpcubK5rV671B6ns3yWe1kxvX8tAZaUt/P5448/TLuuXuf0119/OR555BFTlk2vvZb6cq5aptfqeivUpbSimb52atas6ShTpoxj7969jtT069fPlADzxlliTVdYS/qaPXXqlCkbpsc3bdrk9bxSKtmlm16P1FZac2rRooUpteZeDs6bAwcOmN+pq6Tpa7hChQrmOdBrrGW/tMyalv47fPiw43r0OdAydNWqVTN/r/p3pK+7N9980+N1l1pZMvf/faf3b0fbypYtm2wFPMDOAvQ/VgfdAAB70jJpmsuri1RoDjCsp+XzdDKbfvuiKRZAbkDACwDIVrqSnK4Yp1+jw3qaNqEl2jTdBcgtCHgBAABga1RpAAAAgK0R8AIAAMDWLA94dSlEXe9b10TXmozXq+2o5X10AoT215Vzli5d6nFci8prrVGtBaoldHTVJy1FBAAAgNzJ0jq8c+fONUszakCqwa7WQgwPDzfLIDqLw7vTwvG6UpTWZtR6nrNmzTLFvrV+obMWpN6fFsDXuoUaSGvdSa0bWq5cuRRrk3oriK+1O3XJSNYZBwAAyHm00JjWntcYTxeDuV5nyzRs2NCjlqTWBixXrpxj9OjRXvt36NAhWU3KRo0aOXr16uXa13qar7/+ukcfrRP66quvpngely9fNrUPnduvv/6aau1DNq4BrwFeA7wGeA3wGuA1wGtAcsQ10FrY12PZCK+u4a1LGw4ePNjVptG5LuG4YcMGr7fRdh3BdacjwlpT0H11Hl1tqkePHibi1zXfdQlHXSUqJTpirGvNJ6Vrp+tqRQAAAMhZzp49a5ax12/kr8eygPfkyZNmScbSpUt7tOu+Lu3pja537q2/+zroH3zwgVnSU3N4da12DaKnTp1qlthMiQbd7oG08wJqsEvACwAAkHOlJf3U0hze7KAB78aNG80ob8WKFWX16tXywgsvmNFeHT32Jjg42GwAAACwH8sC3pIlS0pgYKAcO3bMo133y5Qp4/U22p5a/0uXLsmQIUPkyy+/lDZt2pi2OnXqyI4dO+Sdd95JMeAFAACAfVlWliwoKEjq168vK1eu9KiOoPu67KE32u7eX+lSlc7+V65cMVvSmXoaWOt9AwAAIPexNKVB82a7desmDRo0kIYNG5qyZBcuXJCIiAhzvGvXrlK+fHkzqUxFRkZK8+bNZezYsWYEd86cObJ161aZMmWKOa75tnp84MCBpgavpjT88MMPMmPGDBk3bpyVDxUAAORSOmdJB+SQPvny5TODln4f8Hbs2FFOnDghw4cPNxPP6tWrJzExMa6JaQcPHvQYrdUKDFp7d+jQoSZ1ISwszFRocNbgVRoE6yS0J598Uk6fPm2C3jfffFN69+5tyWMEAAC5t06sxjdnzpyx+lT8VrFixUzqambXRQjQ2mRZdlY2oVUaihYtKnFxcVRpAAAAGfL333+bYFcX0ypYsCCLWaWDhqcXL16U48ePm6C3bNmymYrXbFelAQAAICekMTiD3RIlSlh9On5J01OVBr16HTOT3mDZpDUAAAC7cubs6sguMs55/TKbA03ACwAAkE0ym3ua2wVk0fUj4AUAAICtEfACAADA1pi0BgAA4EOhUd/47HcdGPP/K8/mdozwAgAAwJg8ebLccMMNcvXq1f9vEJHz58+bRSBatGgh7latWmVybPfv3y+hoaHm56TbmDFjTN8DBw54tN94441msbA1a9aILxDwAgAAwGjZsqUJcHUlWycNSnXxh02bNsnly5dd7d9//71UqFBBqlSpYvZff/11U3vYfevbt6+4W7FihWlfvXq1lCtXTh588EE5duyYZDcCXgAAABi33HKLWeRBR2+d9OeHH35YKlWqJBs3bvRo1wDZSUeGNTB23woVKiTutCaxtusqubpqri4eoYF0diPgBQAAgIsGsTp666Q/azqDpiA42y9dumQCVfeANz309jNmzDA/BwUFSXZj0hr8NhHfLphQAORsvK+lH+9r/q1ly5bSv39/k8ergen27dtNsKuLP2iOr9qwYYPEx8d7BLyDBg2SoUOHetzXf//7X7nrrrtc+02bNpU8efKYZYN1+eD69etLq1atsv0xEfACAADARUdzL1y4IFu2bJF//vlHqlWrJjfddJMJeiMiIkwer6YzVK5c2eTwOg0cOFC6d+/+vzsSkfLly3vsz507V6pXry47d+6UV155RaZPn24mxGU3Al4AAAC4VK1aVW6++WaTvqABrwa6SieZhYSEyPr1682xe+655383EpGSJUua26ZGbx8WFmY2HUF+5JFHTPAbHBws2YkcXgAAAHjQVAUdxdXNvRzZ3XffbdIUNm/enOH8XafHHntM8ubNKx9++KFkNwJeAAAAeNBgdu3atbJjxw7XCK/Snz/66CNJSEhIFvCeO3dOjh496rFpFYaUaD3efv36mVq9mtObnUhpAAAA8CF/mNTXsmVLM2FN821Lly7tEfBqYOssX+Zu+PDhZnPXq1cv10Q3b7p16yavvvqqTJgwweT0ZhcCXgAAAHjQldO0ikJSFStW9NquK6ll5P4KFiwop0+fluxGSgMAAABsjYAXAAAAtkbACwAAAFsj4AUAAICtEfACAADA1gh4AQAAYGsEvAAAALA1Al4AAADYGgEvAAAAbI2V1gAAAHxpRFEf/q443/2uHIwRXgAAAHg4evSo9O3bVypXrizBwcESEhIiDz30kKxcudK1VHBAQECybcyYMa6lht3bb7zxRmnevLmsWbNGrMAILwAAAFw0WL3zzjulWLFi8vbbb0vt2rXlypUrsmzZMnnhhRdk9+7dpt/rr78uzzzzzP9uKCI33HCDx/6KFSvk1ltvlZMnT8qbb74pDz74oPz2229SunRp8SUCXgAAALg8//zzZlR28+bNUqhQIVe7Bq49evTwCG7LlCkjqSlRooTpo9uQIUNkzpw5smnTJmnbtq34EikNAAAAME6fPi0xMTFmJNc92HXSUd+MuHTpksyYMcP8HBQUJL5GwAsAAABj37594nA4pHr16nI9gwYNksKFC3tsSXN0mzZtato1eH7nnXekfv360qpVK/E1UhoAAABgaLCbVgMHDpTu3bt7tJUvX95jf+7cuSZ43rlzp7zyyisyffp0yZcvn/gaAS8AAACMsLAwk7/rnJiWmpIlS0rVqlVT7aPVHfQ+dbt69ao88sgjJvjVyg++REoDAAAADC0fFh4eLhMnTpQLFy5IUmfOnJGMeuyxxyRv3rzy4Ycfiq8R8AIAAMBFg91r165Jw4YNZcGCBbJ3717ZtWuXvP/++9KkSRNXv3Pnzpl6ve7b2bNnJSU6ctyvXz9Tq/fixYviS6Q0AAAA+FIOX/2scuXKEhsba+rmvvTSS/L333/LTTfdZCacTZo0ydVv+PDhZnPXq1cvmTx5cor33a1bN3n11VdlwoQJJqc3V43w6icJXbEjf/780qhRI1P3LTXz5883CdDaX4shL1261OO4t5U/dNPiyQAAAEhd2bJlTVCqi1DEx8fLX3/9JV999ZW0aNHCHNd2neCWdHMGuxrX6X69evU87rdgwYKm9Jkvg90cEfDq7L0BAwZIdHS0+TRRt25dkzty/Phxr/3Xr18vnTt3lp49e8r27dulXbt2ZtMEaCf9JOK+TZs2zQS8jz76qA8fGQAAAHICywPecePGmWXpIiIipGbNmuaTgUb/GqR6895778l9991nSmHUqFFDRo4cKbfffrv5FOLkXNHDueknkpYtW5ohem/0k4vmnLhvAAAAsAdLA96EhATZtm2btG7d+n8nlCeP2d+wYYPX22i7e3+lI8Ip9T927Jh88803ZkQ4JaNHj5aiRYu6Ni2hAQAAAHuwNOA9efKkmQVYunRpj3bd15l+3mh7evp/9tlnZq3n9u3bp3gegwcPlri4ONd26NChDD0eAAAA5Dy2r9KgqRFPPvmkmeCWEi1+7OsCyAAAwP4SExOtPgW/llXXz9KAV1foCAwMNGkH7nRfc2+90fa09tf1nPfs2WMmxgEAAPhKUFCQSdM8cuSIKeml+zqBHmmjFR409fXEiRPmOur189uAV09ea7qtXLnSVFpwRvK636dPH6+30YLHerx///6utuXLl3sUQnb65JNPzP1r5QcAAABf0SCtUqVKplqUBr3IGC1kUKFCBXM9/TqlQUuSaRHiBg0amBU9xo8fb5ay06oNqmvXrlK+fHkzsUxFRkZK8+bNZezYsdKmTRuZM2eObN26VaZMmeJxv1ppQev1aj8AAAArBvY0WLt69aqZs4T00SwAXYo4K0bGLQ94O3bsaIardaUOnXimBYpjYmJcE9MOHjzoEdU3bdpUZs2aJUOHDpUhQ4ZIWFiYLFq0SGrVquVxvxoI63C41uwFAACwggZr+fLlMxusE+DQqBDJRoe1PJlWbChSpAhXJx1Co77heqXTgTFtuGZADsb7WvrxvoacFq9ZvvAEAAAAkJ0IeAEAAGBrBLwAAACwNQJeAAAA2BoBLwAAAGyNgBcAAAC2RsALAAAAWyPgBQAAgK0R8AIAAMDWCHgBAABgawS8AAAAsDUCXgAAANgaAS8AAABsjYAXAAAAtkbACwAAAFsj4AUAAICtEfACAADA1gh4AQAAYGsEvAAAALA1Al4AAADYGgEvAAAAbI2AFwAAALZGwAsAAABbI+AFAACArRHwAgAAwNYIeAEAAGBrBLwAAACwNQJeAAAA2BoBLwAAAGyNgBcAAAC2RsALAAAAWyPgBQAAgK0R8AIAAMDWCHgBAABgawS8AAAAsDUCXgAAANgaAS8AAABszfKAd+LEiRIaGir58+eXRo0ayebNm1PtP3/+fKlevbrpX7t2bVm6dGmyPrt27ZK2bdtK0aJFpVChQnLHHXfIwYMHs/FRAAAAIKeyNOCdO3euDBgwQKKjoyU2Nlbq1q0r4eHhcvz4ca/9169fL507d5aePXvK9u3bpV27dmbbuXOnq8/+/fulWbNmJihetWqV/PTTTzJs2DATIAMAACD3CXA4HA6rfrmO6Oro64QJE8x+YmKihISESN++fSUqKipZ/44dO8qFCxdkyZIlrrbGjRtLvXr1ZPLkyWa/U6dOki9fPpk5c2aazyM+Pt5sTmfPnjXnERcXJ0WKFMnko8xdQqO+sfoU/M6BMW2sPgUAqeB9Lf14X4MvaLym3+anJV6zbIQ3ISFBtm3bJq1bt/7fyeTJY/Y3bNjg9Tba7t5f6Yiws78GzN98841Uq1bNtJcqVcoE1YsWLUr1XEaPHm0umHPTYBcAAAD2YFnAe/LkSbl27ZqULl3ao133jx496vU22p5af02FOH/+vIwZM0buu+8++fbbb+WRRx6R9u3byw8//JDiuQwePNh8OnBuhw4dypLHCAAAAOvlFRvREV718MMPy4svvmh+1nQHzf3VlIfmzZt7vV1wcLDZAAAAYD+WjfCWLFlSAgMD5dixYx7tul+mTBmvt9H21PrrfebNm1dq1qzp0adGjRpUaQAAAMilLAt4g4KCpH79+rJy5UqPEVrdb9KkidfbaLt7f7V8+XJXf71PnQS3Z88ejz6//fabVKxYMVseBwAAAHI2S1MatCRZt27dpEGDBtKwYUMZP368qcIQERFhjnft2lXKly9vJpWpyMhIk5YwduxYadOmjcyZM0e2bt0qU6ZMcd3nwIEDTTWHu+++W1q2bCkxMTHy9ddfmxJlAAAAyH0sDXg1MD1x4oQMHz7cTDzTfFsNUJ0T03SxCK3c4NS0aVOZNWuWDB06VIYMGSJhYWGmAkOtWrVcfXSSmubrapDcr18/ueWWW2TBggWmNi8AAAByH0vr8Nqhrhs8Ua8y/ahXCeRsvK+lH+9r8AW/qMMLAAAA+AIBLwAAAGyNgBcAAAC2RsALAAAAWyPgBQAAgK0R8AIAAMDWCHgBAABgawS8AAAAsDUCXgAAANgaAS8AAABsjYAXAAAAtkbACwAAAFsj4AUAAICtEfACAADA1gh4AQAAYGsEvAAAALA1Al4AAADYGgEvAAAAbI2AFwAAALZGwAsAAABbI+AFAACArRHwAgAAwNYIeAEAAGBrBLwAAACwNQJeAAAA2BoBLwAAAGyNgBcAAAC2RsALAAAAWyPgBQAAgK0R8AIAAMDWCHgBAABgawS8AAAAsDUCXgAAANgaAS8AAABsjYAXAAAAtkbACwAAAFsj4AUAAICt5YiAd+LEiRIaGir58+eXRo0ayebNm1PtP3/+fKlevbrpX7t2bVm6dKnH8e7du0tAQIDHdt9992XzowAAAEBOZHnAO3fuXBkwYIBER0dLbGys1K1bV8LDw+X48eNe+69fv146d+4sPXv2lO3bt0u7du3MtnPnTo9+GuD+/fffrm327Nk+ekQAAADISSwPeMeNGyfPPPOMRERESM2aNWXy5MlSsGBBmTZtmtf+7733nglmBw4cKDVq1JCRI0fK7bffLhMmTPDoFxwcLGXKlHFtxYsXT/Ec4uPj5ezZsx4bAAAA7MHSgDchIUG2bdsmrVu3/t8J5clj9jds2OD1Ntru3l/piHDS/qtWrZJSpUrJLbfcIs8995ycOnUqxfMYPXq0FC1a1LWFhIRk+rEBAAAgZ7A04D158qRcu3ZNSpcu7dGu+0ePHvV6G22/Xn8dAZ4xY4asXLlS3nrrLfnhhx/k/vvvN7/Lm8GDB0tcXJxrO3ToUJY8PgAAAFgvr9hQp06dXD/rpLY6depIlSpVzKhvq1atkvXX9AfdAAAAYD+WjvCWLFlSAgMD5dixYx7tuq95t95oe3r6q8qVK5vftW/fviw6cwAAAPgLSwPeoKAgqV+/vkk9cEpMTDT7TZo08XobbXfvr5YvX55if/XXX3+ZHN6yZctm4dkDAADAH1hepUFLkk2dOlU+++wz2bVrl5lgduHCBVO1QXXt2tXk2DpFRkZKTEyMjB07Vnbv3i0jRoyQrVu3Sp8+fczx8+fPmwoOGzdulAMHDpjg+OGHH5aqVauayW0AAADIXSzP4e3YsaOcOHFChg8fbiae1atXzwS0zolpBw8eNJUbnJo2bSqzZs2SoUOHypAhQyQsLEwWLVoktWrVMsc1ReKnn34yAfSZM2ekXLlycu+995ryZeTpAgAA5D4BDofDYfVJ5DRah1fLk2nFhiJFilh9On4lNOobq0/B7xwY08bqUwCQCt7X0o/3NeS0eM3ylAYAAAAgOxHwAgAAwNYIeAEAAGBrBLwAAACwNQJeAAAA2BoBLwAAAGyNgBcAAAC2lqGAd//+/Wbhh86dO8vx48dN23//+1/55Zdfsvr8AAAAAN8GvD/88IPUrl1bNm3aJAsXLjRL+aoff/xRoqOjM3c2AAAAgNUBb1RUlLzxxhuyfPlyCQoKcrXfc889snHjxqw+PwAAAMC3Ae/PP/8sjzzySLL2UqVKycmTJzN3NgAAAIDVAW+xYsXk77//Tta+fft2KV++fFadFwAAAGBNwNupUycZNGiQHD16VAICAiQxMVHWrVsnL7/8snTt2jVrzgoAAACwKuAdNWqUVK9eXUJCQsyEtZo1a8rdd98tTZs2NZUbAAAAgJwkb3pvoBPVpk6dKsOHDzf5vBr03nbbbRIWFpY9ZwgAAAD4coT39ddfl4sXL5oR3gceeEA6dOhggt1Lly6ZYwAAAIBfB7yvvfaaq/auOw2C9RgAAADg1wGvw+Ewk9WS0oUnbrzxxqw6LwAAAMC3ObzFixc3ga5u1apV8wh6r127ZkZ9e/funTVnBQAAAPg64B0/frwZ3e3Ro4dJXShatKjHRLbQ0FBp0qRJVp0XAAAA4NuAt1u3bubfSpUqmRJk+fLly5ozAAAAAHJSWbLmzZu7fr58+bIkJCR4HC9SpEjWnBkAAABgxaQ1rcbQp08fKVWqlBQqVMjk9rpvAAAAgF8HvAMHDpTvvvtOJk2aJMHBwfLxxx+bnN5y5crJjBkzsucsAQAAAF+lNHz99dcmsG3RooVERETIXXfdJVWrVpWKFSvK559/Lk8++WRGzwUAAACwfoT39OnTUrlyZVe+ru6rZs2ayerVq7P+DAEAAABfBrwa7P7xxx/m5+rVq8u8efNcI7/FihXLzLkAAAAA1ge8msagq6qpqKgomThxouTPn19efPFFk98LAAAA+HUOrwa2Tq1bt5bdu3fLtm3bTB5vnTp1svr8AAAAAN8GvEnpZDXd1BdffCGPPfZYZu8SAAAAsCal4erVq7Jz50757bffPNq/+uorqVu3LhUaAAAA4L8Brwa6mraggW2NGjWkffv2cuzYMbPyWo8ePeT++++X/fv3Z+/ZAgAAANmV0jBo0CAT8E6YMEFmz55ttl27dknPnj0lJiZGChQokN7fDQAAAOScgHfLli3y7bffSr169cxiExrwDhkyRJ566qnsPUMAAADAFykNJ0+eNMsHq6JFi0qhQoWkcePGmfndAAAAQM4Z4Q0ICJBz586ZmrsOh8PsX7p0Sc6ePevRT1dfAwAAAPwu4NUgt1q1ah77t912m8e+BsHXrl3L+rMEAAAAsjul4fvvv5fvvvvOtaW0nxG6WltoaKgZPW7UqJFs3rw51f7z5883yxpr/9q1a8vSpUtT7Nu7d28TiI8fPz5D5wYAAIBcMsKr5ceyw9y5c2XAgAEyefJkE+xqYBoeHi579uyRUqVKJeu/fv166dy5s4wePVoefPBBmTVrlrRr105iY2OlVq1aHn2//PJL2bhxoyv3GAAAALlPuhaeyA7jxo2TZ555RiIiIqRmzZom8C1YsKBMmzbNa//33ntP7rvvPhk4cKCpBzxy5Ei5/fbbTbk0d4cPH5a+ffvK559/Lvny5Uv1HOLj400usvsGAAAAe7A04E1ISJBt27ZJ69at/3dCefKY/Q0bNni9jba791c6IuzePzEx0ZRL06D41ltvve556GixVp5wbiEhIZl6XAAAAMg5LA14tdSZTnIrXbq0R7vuHz161OtttP16/d966y3Jmzev9OvXL03nMXjwYImLi3Nthw4dytDjAQAAgB/n8PoLHTHWtAfN6dXJamkRHBxsNgAAAOTyEd4rV66YkdOdO3dmyS8vWbKkBAYGyrFjxzzadb9MmTJeb6PtqfVfs2aNHD9+XCpUqGDOVbc///xTXnrpJVMJAgAAALlLugJenfylgWRW1doNCgqS+vXry8qVKz3yb3W/SZMmXm+j7e791fLly139NXf3p59+kh07drg2rdKg+bzLli3LkvMGAACAjVMaXn31VRkyZIjMnDlTbrzxxkyfgJYk69atmzRo0EAaNmxoypJduHDBVG1QXbt2lfLly5uJZSoyMtKUSBs7dqy0adNG5syZI1u3bpUpU6aY4yVKlDBb0kBdR4BvueWWTJ8vAAAAbB7wavmvffv2mVHTihUrSqFChTyOa+5senTs2FFOnDghw4cPNxPP6tWrJzExMa6JaQcPHjSVG5yaNm1qau8OHTrUBN5hYWGyaNGiZDV4AQAAgAwFvLrIQ1br06eP2bxZtWpVsrbHH3/cbGl14MCBTJ0fAAAAclHAGx0dnT1nAgAAAOSksmRa/mvXrl3mZ13c4bbbbsvK8wIAAACsCXi15FenTp1MqkGxYsVM25kzZ6Rly5ZmAtlNN92UNWcGAAAAWLHSWt++feXcuXPyyy+/yOnTp82mdXnPnj2b5pXNAAAAgBw7wqsVFFasWCE1atRwtdWsWVMmTpwo9957b1afHwAAAODbEV5dGELr2ialbXoMAAAA8OuA95577jGLPxw5csTVdvjwYXnxxRelVatWWX1+AAAAgG8DXl14QvN1Q0NDpUqVKmarVKmSafvggw8ydzYAAACA1Tm8ISEhZjU1zePdvXu3adN83tatW2f1uQEAAAC+DXivXLkiBQoUkB07dsi//vUvswEAAAC2SWnQiWkVKlSQa9euZd8ZAQAAAFbm8L766qsyZMgQU38XAAAAsF0Or05a27dvn5QrV04qVqwohQoV8jiu+b0AAACA3wa87dq1y54zAQAAAKwOeK9evSoBAQHSo0cPufnmm7PjfAAAAADrcnjz5s0rb7/9tgl8AQAAANuutPbDDz9kz9kAAAAAVufw3n///RIVFSU///yz1K9fP9mktbZt22bl+QEAAAC+DXiff/558++4ceOSHdP8Xmr0AgAAwK8D3sTExOw5EwAAACAn5PACAAAAtgx4H3jgAYmLi3PtjxkzRs6cOePaP3XqlNSsWTPrzxAAAADwRcC7bNkyiY+Pd+2PGjXKY3lhLVW2Z8+ezJwLAAAAYF3A63A4Ut0HAAAAciJyeAEAAGBraQ54teSYbknbAAAAAFuUJdMUhu7du0twcLDZv3z5svTu3du18IR7fi8AAADgdwFvt27dPPa7dOmSrE/Xrl2z5qwAAAAAXwe8n376aVb9TgAAAMBnmLQGAAAAWyPgBQAAgK0R8AIAAMDWCHgBAABgawS8AAAAsDUCXgAAANgaAS8AAABsjYAXAAAAtpYjAt6JEydKaGio5M+fXxo1aiSbN29Otf/8+fOlevXqpn/t2rVl6dKlHsdHjBhhjuuyx8WLF5fWrVvLpk2bsvlRAAAAICeyPOCdO3euDBgwQKKjoyU2Nlbq1q0r4eHhcvz4ca/9169fL507d5aePXvK9u3bpV27dmbbuXOnq0+1atVkwoQJ8vPPP8vatWtNMH3vvffKiRMnfPjIAAAAkBMEOBwOh5UnoCO6d9xxhwlQVWJiooSEhEjfvn0lKioqWf+OHTvKhQsXZMmSJa62xo0bS7169WTy5Mlef8fZs2elaNGismLFCmnVqlWy4/Hx8WZz76/nEBcXJ0WKFMmiR5o7hEZ9Y/Up+J0DY9pYfQoAUsH7WvrxvgZfcMZ3aYnXLB3hTUhIkG3btpmUA9cJ5clj9jds2OD1Ntru3l/piHBK/fV3TJkyxVwQHT32ZvTo0ea4c9NgFwAAAPZgacB78uRJuXbtmpQuXdqjXfePHj3q9Tbanpb+OgJcuHBhk+f77rvvyvLly6VkyZJe73Pw4MHm04FzO3ToUKYfGwAAAHKGvGJTLVu2lB07dpigeurUqdKhQwczca1UqVLJ+gYHB5sNAAAA9mPpCK+OuAYGBsqxY8c82nW/TJkyXm+j7WnprxUaqlatavJ7P/nkE8mbN6/5FwAAALmLpQFvUFCQ1K9fX1auXOlq00lrut+kSROvt9F29/5K0xVS6u9+v+4T0wAAAJA7WJ7SoCXJunXrJg0aNJCGDRvK+PHjTRWGiIgIc7xr165Svnx5M7FMRUZGSvPmzWXs2LHSpk0bmTNnjmzdutVMTFN62zfffFPatm0rZcuWNSkNWuf38OHD8vjjj1v6WAEAAJALA14tM6b1cYcPH24mnml5sZiYGNfEtIMHD5rKDU5NmzaVWbNmydChQ2XIkCESFhYmixYtklq1apnjmiKxe/du+eyzz0ywW6JECVP2bM2aNXLrrbda9jgBAACQS+vw+ntdN3iiXmX6Ua8SyNl4X0s/3tfgC35ThxcAAADIbgS8AAAAsDUCXgAAANgaAS8AAABsjYAXAAAAtkbACwAAAFsj4AUAAICtEfACAADA1gh4AQAAYGsEvAAAALA1Al4AAADYGgEvAAAAbI2AFwAAALZGwAsAAABbI+AFAACArRHwAgAAwNYIeAEAAGBrBLwAAACwNQJeAAAA2BoBLwAAAGyNgBcAAAC2RsALAAAAWyPgBQAAgK0R8AIAAMDWCHgBAABgawS8AAAAsDUCXgAAANgaAS8AAABsjYAXAAAAtkbACwAAAFsj4AUAAICtEfACAADA1gh4AQAAYGsEvAAAALA1Al4AAADYGgEvAAAAbI2AFwAAALaWIwLeiRMnSmhoqOTPn18aNWokmzdvTrX//PnzpXr16qZ/7dq1ZenSpa5jV65ckUGDBpn2QoUKSbly5aRr165y5MgRHzwSAAAA5DSWB7xz586VAQMGSHR0tMTGxkrdunUlPDxcjh8/7rX/+vXrpXPnztKzZ0/Zvn27tGvXzmw7d+40xy9evGjuZ9iwYebfhQsXyp49e6Rt27Y+fmQAAADICQIcDofDyhPQEd077rhDJkyYYPYTExMlJCRE+vbtK1FRUcn6d+zYUS5cuCBLlixxtTVu3Fjq1asnkydP9vo7tmzZIg0bNpQ///xTKlSokOx4fHy82ZzOnj1rziEuLk6KFCmSRY80dwiN+sbqU/A7B8a0sfoUAKSC97X0430NvqDxWtGiRdMUr1k6wpuQkCDbtm2T1q1b/++E8uQx+xs2bPB6G2137690RDil/kovREBAgBQrVszr8dGjR5sL5tw02AUAAIA9WBrwnjx5Uq5duyalS5f2aNf9o0ePer2Ntqen/+XLl01Or6ZBpBT9Dx482ATFzu3QoUMZfkwAAADIWfKKjekEtg4dOohmbUyaNCnFfsHBwWYDAACA/Vga8JYsWVICAwPl2LFjHu26X6ZMGa+30fa09HcGu5q3+91335GLCwAAkEtZmtIQFBQk9evXl5UrV7radNKa7jdp0sTrbbTdvb9avny5R39nsLt3715ZsWKFlChRIhsfBQAAAHIyy1MatCRZt27dpEGDBqaSwvjx400VhoiICHNca+iWL1/eTCxTkZGR0rx5cxk7dqy0adNG5syZI1u3bpUpU6a4gt3HHnvMlCTTSg6aI+zM773xxhtNkA0AAIDcw/KAV8uMnThxQoYPH24CUy0vFhMT45qYdvDgQVO5walp06Yya9YsGTp0qAwZMkTCwsJk0aJFUqtWLXP88OHDsnjxYvOz3pe777//Xlq0aOHTxwcAAIBcXofX3+u6wRP1KtOPepVAzsb7WvrxvgZf8Js6vAAAAEB2I+AFAACArRHwAgAAwNYIeAEAAGBrBLwAAACwNQJeAAAA2BoBLwAAAGyNgBcAAAC2RsALAAAAWyPgBQAAgK0R8AIAAMDWCHgBAABgawS8AAAAsDUCXgAAANgaAS8AAABsjYAXAAAAtkbACwAAAFvLa/UJALneiKK5/hJkyIg4rhuQU/G+lsHrxvtadmGEFwAAALZGwAsAAABbI+AFAACArRHwAgAAwNYIeAEAAGBrBLwAAACwNQJeAAAA2BoBLwAAAGyNgBcAAAC2RsALAAAAWyPgBQAAgK0R8AIAAMDWCHgBAABgawS8AAAAsDUCXgAAANgaAS8AAABsjYAXAAAAtkbACwAAAFsj4AUAAICtWR7wTpw4UUJDQyV//vzSqFEj2bx5c6r958+fL9WrVzf9a9euLUuXLvU4vnDhQrn33nulRIkSEhAQIDt27MjmRwAAAICczNKAd+7cuTJgwACJjo6W2NhYqVu3roSHh8vx48e99l+/fr107txZevbsKdu3b5d27dqZbefOna4+Fy5ckGbNmslbb73lw0cCAACAnCrA4XA4rPrlOqJ7xx13yIQJE8x+YmKihISESN++fSUqKipZ/44dO5qAdsmSJa62xo0bS7169WTy5MkefQ8cOCCVKlUygbEeT018fLzZnM6ePWvOIy4uTooUKZIFjzT3CI36xupT8DsH8j9h9Sn4pxFxVp8Bcgne19KP97UM4n0tXTReK1q0aJriNctGeBMSEmTbtm3SunXr/51Mnjxmf8OGDV5vo+3u/ZWOCKfUP61Gjx5tLphz02AXAAAA9mBZwHvy5Em5du2alC5d2qNd948ePer1Ntqenv5pNXjwYPPpwLkdOnQoU/cHAACAnCOv1SeQEwQHB5sNAAAA9mPZCG/JkiUlMDBQjh075tGu+2XKlPF6G21PT38AAADAsoA3KChI6tevLytXrnS16aQ13W/SpInX22i7e3+1fPnyFPsDAAAAlqY0aEmybt26SYMGDaRhw4Yyfvx4U4UhIiLCHO/atauUL1/eTCpTkZGR0rx5cxk7dqy0adNG5syZI1u3bpUpU6a47vP06dNy8OBBOXLkiNnfs2eP+VdHgRkJBgAAyH0sDXi1zNiJEydk+PDhZuKZlg+LiYlxTUzTwFUrNzg1bdpUZs2aJUOHDpUhQ4ZIWFiYLFq0SGrVquXqs3jxYlfArDp16mT+1Vq/I0aM8OnjAwAAQC6vw2uHum7wRL3K9KNeZQZRrxI+wvta+vG+lkG8r9mvDi8AAADgCwS8AAAAsDUCXgAAANgaAS8AAABsjYAXAAAAtkbACwAAAFsj4AUAAICtEfACAADA1gh4AQAAYGsEvAAAALA1Al4AAADYGgEvAAAAbI2AFwAAALZGwAsAAABbI+AFAACArRHwAgAAwNYIeAEAAGBrBLwAAACwNQJeAAAA2BoBLwAAAGyNgBcAAAC2RsALAAAAWyPgBQAAgK0R8AIAAMDWCHgBAABgawS8AAAAsDUCXgAAANgaAS8AAABsjYAXAAAAtkbACwAAAFsj4AUAAICtEfACAADA1gh4AQAAYGsEvAAAALA1Al4AAADYGgEvAAAAbI2AFwAAALaWIwLeiRMnSmhoqOTPn18aNWokmzdvTrX//PnzpXr16qZ/7dq1ZenSpR7HHQ6HDB8+XMqWLSsFChSQ1q1by969e7P5UQAAACAnsjzgnTt3rgwYMECio6MlNjZW6tatK+Hh4XL8+HGv/devXy+dO3eWnj17yvbt26Vdu3Zm27lzp6vPv//9b3n//fdl8uTJsmnTJilUqJC5z8uXL/vwkQEAACAnCHDocKiFdET3jjvukAkTJpj9xMRECQkJkb59+0pUVFSy/h07dpQLFy7IkiVLXG2NGzeWevXqmQBXH065cuXkpZdekpdfftkcj4uLk9KlS8v06dOlU6dOye4zPj7ebE7av0KFCnLo0CEpUqRINj1ye6oVvczqU/A7O/P3tPoU/NPgv6w+A+QSvK+lH+9rGcT7WrqcPXvWxIxnzpyRokWLpt7ZYaH4+HhHYGCg48svv/Ro79q1q6Nt27ZebxMSEuJ49913PdqGDx/uqFOnjvl5//79GsA7tm/f7tHn7rvvdvTr18/rfUZHR5vbsHENeA3wGuA1wGuA1wCvAV4D4lfX4NChQ9eNOfOKhU6ePCnXrl0zo6/udH/37t1eb3P06FGv/bXdedzZllKfpAYPHmzSKpx0lPn06dNSokQJCQgIyOCjA9L+6ZRvEwDYBe9r8BX9Vv/cuXPmm/3rsTTgzSmCg4PN5q5YsWKWnQ9yH02dIX0GgJ3wvgZfuG4qQ06YtFayZEkJDAyUY8eOebTrfpkyZbzeRttT6+/8Nz33CQAAAPuyNOANCgqS+vXry8qVKz3SCXS/SZMmXm+j7e791fLly139K1WqZAJb9z769YpWa0jpPgEAAGBflqc0aO5st27dpEGDBtKwYUMZP368qcIQERFhjnft2lXKly8vo0ePNvuRkZHSvHlzGTt2rLRp00bmzJkjW7dulSlTppjjmnPbv39/eeONNyQsLMwEwMOGDTP5HVq+DMhJNJVGS/IlTakBAH/F+xpyIsvLkiktSfb222+bSWVaXkxr6Gq5MtWiRQuzKIWWFHNfeGLo0KFy4MABE9Rq3d0HHnjAdVwfkgYRGgRrqYpmzZrJhx9+KNWqVbPk8QEAACCXB7wAAACAbVdaAwAAALITAS8AAABsjYAXAAAAtkbACwAAAFsj4AUAAICtEfACAADA1gh4gRzk8OHDVp8CAKRbYGCgHD9+PFn7qVOnzDHAagS8QA6gi6707dvXLKQCAP4mpZL+8fHxEhQU5PPzAXLc0sJAbvHPP//I888/L8uXLzf/A4iKipI+ffrIiBEj5J133pE6derIp59+avVpAkCa6cqoKiAgQD7++GMpXLiw69i1a9dk9erVUr16da4oLMdKa4CP9OrVS2JiYuTxxx+XZcuWya+//irh4eGSJ08es1R248aNeS4A+JVKlSqZf//880+5+eabPdIX9IN9aGiovP7669KoUSMLzxIg4AV8pkKFCjJ9+nS555575MCBA1K5cmUzyjtq1CieBQB+rWXLlrJw4UIpXry41acCeMUIL+AjefPmlUOHDknZsmXNfsGCBWXr1q1Ss2ZNngMAtqLpDD///LNUrFiRIBg5ApPWAB9O6tCg10m/+itQoADXH4Df69+/v3zyySeuYPfuu++W22+/XUJCQmTVqlVWnx7ApDXAlwFvq1atXEHvpUuX5KGHHko2gzk2NpYnBYBfmT9/vnTp0sX8/PXXX5u0rd27d8vMmTPl1VdflXXr1ll9isjlSGkAfOS1115LU7/o6OhsPxcAyEr58+eXffv2mYlrzz77rEnZGj9+vPzxxx9St25dOXv2LBcclqIsGeAjBLIA7Kp06dKm8ozOUdBqNJMmTTLtFy9eZOEJ5Ajk8AI+cvnyZVm8eLGcO3cu2TEd/dBjWqQdAPxNRESEdOjQQWrVqmVq8rZu3dq0b9q0iTq8yBFIaQB85L333jNB7cqVK70e1/9BtGvXzixGAQD+5osvvjCVaLTWuKY2qM8++0yKFSsmDz/8sNWnh1yOgBfwkYYNG8qwYcPMRDVvlixZYgq0b968mecEAIAsRA4v4CN79+41kzdSoksLax8A8Df6YT01w4cP99m5AN4Q8AI+cvXqVTlx4oRZcc0bPaZ9AMDffPnllx77V65cMRUatAxjlSpVCHhhOQJewEduvfVWWbFihdSvX9/r8W+//db0AQB/s337dq+Tcbt37y6PPPKIJecEuKNKA+AjPXr0kJEjR5pc3aS0UPubb75p+gCAHRQpUsTUH9e5C4DVGOEFfESLsa9evVratm1ryvTccsstpl1XI/rtt99MSR/tAwB2ERcXZzbAalRpAHxs3rx5MmvWLDNBTZcbrlatmjzxxBMm4AUAf/T+++977Ot7299//22WFm7evLl5zwOsRMALAAAypVKlSh77efLkkZtuuknuueceGTx4sNxwww1cYViKgBfwscOHD8uCBQtMGoPS1Ib27dtL+fLleS4AAMgGBLyAD3344YcyYMAASUhIMBM6nDOZg4KCZNy4cfL888/zfAAAkMWYtAb4yDfffCP9+vWT/v37y0svvSRly5Y17Zrn9vbbb0tkZKSEhobKAw88wHMCIMfTb6amT59uPrzrz6kpXLiwKbvYu3dvKVq0qM/OEXAi4AV8RIPaqKgoeeONNzzaNfDV0d2CBQvKv//9bwJeAH5BA9eAgADXz6mJj4+XyZMny7p162Tx4sU+OkPgf0hpAHxER0G2bNniKkeW1J49e+SOO+4wKQ4AYDe//vqreY+7cOGC1aeCXIiFJwAfuXbtmuTLly/F43pM+wCAHemH/fXr11t9GsilSGkAfETz17766it58cUXvR5ftGgRSwsD8BvXy9t1t3DhQgkMDJS6detm6zkBKSHgBXzkhRdekOeee06Cg4PNimp58/7/n9/Vq1flo48+kqFDh5oqDgDgD9zzdnWhiS+//NK0NWjQwLRt27ZNzpw5k67AGMgu5PACPvTyyy+bCWpahL1KlSrmfxK///67nD9/3lRwePfdd3k+APidQYMGyenTp83ENB3JVZqipaUWdf6CTtoFrETAC/jYxo0bZfbs2WZpYaVLC3fq1EkaN27McwHAL+mqamvXrk02KVcn4zZt2lROnTpl2bkBipQGwMc0sCW4BWAnmpq1e/fuZAGvtiUmJlp2XoATAS9ggTVr1pi8XU1nmD9/vllWeObMmWY9+mbNmvGcAPArERER0rNnT9m/f780bNjQtG3atEnGjBljjgFWI+AFfGzBggXy1FNPyZNPPimxsbGmILuKi4uTUaNGydKlS3lOAPiVd955R8qUKSNjx441q0c6F9UZOHCgWVkSsBo5vICP3XbbbaY0WdeuXc3ktR9//FEqV64s27dvl/vvv1+OHj3KcwLAbzkXz9HJakons914440WnxVyOxaeAHxMJ3Hcfffdydq1nI+W8AEAf6aBrm7ffvutdOzY0aRsAVYj4AV8TL/227dvX7J2neGsI70A4K/+/PNPiY6OltDQUHn88cclICBAZsyYYfVpAeTwAr72zDPPSGRkpEybNs38z+DIkSOyYcMGU6N32LBhPCEA/EpCQoJZSe3jjz+WdevWSevWreWvv/4yaVq1a9e2+vQAg0lrgI9FRUWZMj2tWrWSixcvmvQGXX1NA96+ffvyfADwG/qepXXFw8LCpEuXLjJ37lwpUaKE5MuXz7UABZATMGkNsHBURFMbdJW1mjVrSuHChXkuAPgVXSJdV1nTD/I6CddJA16dkKvvbUBOQA4vYJGgoCDzPwOtWUmwC8Afaf3wzZs3mxJkOkFtyZIlZklhIKdhhBfwgfbt26e5r+bCAYA/+eOPP2T69Olm01QtLUWm6Q2PPfaY1acGGAS8gA+kZ6WhTz/9NFvPBQCyi8PhMOXIPvnkE1m8eLGULFnSfOB///33ueiwFAEvAADIcjrKqyXJ9EO85vMCViLgBQAAGXblyhWpXr26yd+tUaMGVxI5EmXJAB8tJ6w1d9MiNjY2288HALKKVmS4fPkyFxQ5GlUaAB9o166dPPzww2YLDw+X/fv3m9q7LVq0MFv+/PlNmx4DAH/zwgsvyFtvvSVXr161+lQAr0hpAHzs6aefNiV8Ro4c6dGuy3EeOnTIrMAGAP7kkUcekZUrV5oSi7q6WqFChTyOU30GViPgBXysaNGisnXrVrMykbu9e/dKgwYNJC4ujucEgK0q0VB9BlYjhxfwsQIFCpj15pMGvNqmqQ0A4G8IaJHTEfACPta/f3957rnnzOQ0XWVNbdq0yaQyDBs2jOcDgF/S/N1Vq1aZ+QhPPPGEWWr4yJEjUqRIEVaThOVIaQAsMG/ePHnvvfdk165dZl9L+URGRkqHDh14PgD4nT///FPuu+8+OXjwoMTHx8tvv/0mlStXNu9ruj958mSrTxG5HAEvAADIdCUaHdHVFdZKlChhFprQgFdHfJ955hkzRwGwEikNAAAgU9asWSPr16+XoKAgj/bQ0FA5fPgwVxeWI+AFfKB48eJpXnhCl+MEAH+SmJgo165dS9b+119/mZFfwGoEvIAPjB8/3vXzqVOn5I033jCLTDRp0sS0bdiwQZYtW8akNQB+6d577zXvc1OmTDH7+gH//Pnzpr74Aw88YPXpAeTwAr726KOPSsuWLaVPnz4e7RMmTJAVK1bIokWLeFIA+BUdydUP8Q6Hw1VTXP8tWbKkrF69WkqVKmX1KSKXY9Ia4GO6EtGOHTukatWqHu379u2TevXqmVERAPDHsmRz5syRn376ybyP3X777fLkk0+a2uOA1UhpAHxMZzB/9dVX8tJLL3m0a5seAwB/lDdvXunSpYvVpwF4RcAL+Nhrr70mTz/9tCnX06hRI9fCEzExMTJ16lSeDwB+ac+ePfLBBx941BfX1K3q1atbfWqA5OEaAL7VvXt3s4ywrj60cOFCs+nPa9euNccAwN8sWLBAatWqJdu2bZO6deuaTVeTrF27tjkGWI0cXgAAkClVqlQx+bqvv/66R7tWafjPf/5jlhsGrETAC1jo8uXLkpCQ4NGmo70A4E8KFixoJqslnYyrlRp0tPfixYuWnRugSGkAfEzf+DWvTcv0FCpUyCxK4b4BgL9p0aKFWW0tKU3Vuuuuuyw5J8Adk9YAHxs4cKB8//33MmnSJHnqqadk4sSJZunNjz76SMaMGcPzAcDvtG3bVgYNGmRyeBs3bmzaNm7cKPPnzzcTdRcvXuzRF/A1UhoAH6tQoYLMmDHDjIho+oJO7NCvAWfOnCmzZ8+WpUuX8pwA8Ct58qTtC2Ndgc3bEsRAdiOlAfCx06dPS+XKlc3PGvDqvmrWrJlZkQgA/E1iYmKaNoJdWIWAF/AxDXb/+OMP87PWp5w3b575+euvv5ZixYrxfADwO7///rvVpwCkioAX8LGIiAj58ccfzc9RUVEmhzd//vzy4osvmvxeAPA3mpbVsmVLU4JMq88AOQ05vICP6Nd5b7/9tpm8oaXIWrVqZWpUHj9+3Ez00P9h1KlTh+cDgN/ZsWOHfPrpp2Yegr6/dezYUXr27CkNGza0+tQAg4AX8JGRI0fKiBEjpHXr1lKgQAFZtmyZdO7cWaZNm8ZzAMAWrl69aj7UT58+3SyXXq1aNenRo4epSHPTTTdZfXrIxQh4AR8JCwuTl19+WXr16mX2V6xYIW3atJFLly6leYYzAPiD+Ph4+fDDD2Xw4MFmxDcoKEg6dOggb731lpQtW9bq00MuRMAL+EhwcLDs27dPQkJCXG2au6ttN998M88DAL+3detW863VnDlzzMI63bp1M6kNf/31l6nHe/bsWdm8ebPVp4lciIUnAB9+1acBrrt8+fLJlStXeA4A+LVx48aZHN49e/bIAw88YGqN67/Ob68qVapk0hxCQ0OtPlXkUgS8gI84HA7p3r27Gel10tnMvXv3NiMhTgsXLuQ5AeBXdOVIzdXV97iUUhZ0OfVPPvnE5+cGKFIaAB+WI0sLHSUBAABZh4AXAABkyE8//ZSmfpRchNUIeAEAQIZojm5AQIBJ2TJBRUCA+Vf3ne36L0sKw2rk8AIAgAxxLpOuNLitVauWLF26VCpWrMgVRY5CwAsAADIkaWCro7laZpGAFzkN1e4BAABgawS8AAAAsDUCXgAAkGWcE9eAnIQcXgAAkCG33XabR4B76dIleeihhyQoKMijX2xsLFcYliLgBQAAGdKuXTuP/YcffpgriRyJOrwAAACwNXJ4AQBAlhkzZoycOXOGK4ochRFeAACQZYoUKSI7duyQypUrc1WRYzDCCwAAsoxzmWEgJyHgBQAAgK0R8AIAgCzz66+/eiwtfPjwYa4uLEfACwAAskxISIgEBgbK0aNHpW/fvhIWFsbVheUIeAEAQIb8888/0rlzZylZsqSUK1dO3n//fUlMTJThw4ebSWtbtmyRTz/9lKsLy1GlAQAAZEivXr0kJiZGHn/8cVm2bJlJZwgPD5c8efLI0KFDpXHjxlxZ5AgEvAAAIEMqVKgg06dPl3vuuUcOHDhgRnWjoqJk1KhRXFHkKAS8AAAgQ/LmzSuHDh2SsmXLmv2CBQvK1q1bpWbNmlxR5Cjk8AIAgAzX3NWg10knqxUoUICriRyHEV4AAJAhmqtbq1YtV9D7008/SfXq1SUoKMijX2xsLFcYlvrfxzIAAIB0iI6O9th/+OGHuX7IkRjhBQAAgK2RwwsAADLk8uXLsnjxYjl37lyyY2fPnjXH4uPjubqwHAEvAADIkI8++kjee+89ueGGG5IdK1KkiFmIYurUqVxdWI6AFwAAZMjnn38u/fv3T/G4HpsxYwZXF5Yj4AUAABmyd+9eqVu3borH69SpY/oAViPgBQAAGXL16lU5ceJEisf1mPYBrEbACwAAMuTWW2+VFStWpHj822+/NX0AqxHwAgCADOnRo4eMHDlSlixZkuzY119/LW+++abpA1iNOrwAACDDunTpIrNmzTIrrN1yyy2mbffu3fLbb79Jhw4dZPbs2VxdWI6AFwAAZMq8efNM0KsT1BwOh1SrVk2eeOIJE/ACOQEBLwAAAGwtr9UnAAAA/Nvhw4dlwYIFJo1BaWpD+/btpXz58lafGmAwwgsAADLsww8/lAEDBkhCQoJZXc25rHBQUJCMGzdOnn/+ea4uLEeVBgAAkCHffPON9OvXT/r06WNGec+cOWM2/VkD3cjISFm6dClXF5ZjhBcAAGRIixYtpFmzZvLGG294PT506FBZu3atrFq1iisMSxHwAgCADNEUhi1btrjKkSW1Z88eueOOO0yKA2AlUhoAAECGXLt2TfLly5ficT2mfQCrEfACAIAM0WWDv/rqqxSPL1q0iKWFkSNQlgwAAGTICy+8IM8995wEBwfLs88+K3nz/n9YcfXqVfnoo49MDq9WcQCsRg4vAADIsJdfftmUH7vhhhukSpUqZqW133//Xc6fP28qOLz77rtcXViOgBcAAGTKxo0bZfbs2WZpYaVLC3fq1EkaN27MlUWOQMALAAAAW2PSGgAAyLQ1a9ZIly5dpGnTpmbhCTVz5kxThxewGgEvAADIlAULFkh4eLgUKFBAYmNjJT4+3rTHxcXJqFGjuLqwHAEvAADIFF1pbfLkyTJ16lSPurx33nmnCYABqxHwAgCATNEV1e6+++5k7UWLFpUzZ85wdWE5Al4AAJApZcqUkX379iVr1/zdypUrc3VhOQJeAACQKc8884xERkbKpk2bJCAgQI4cOSKff/65qdGrC1MAVmOlNQAAkClRUVGSmJgorVq1kosXL5r0Bl19TQPevn37cnVhOerwAgCALJGQkGBSG3SVtZo1a0rhwoW5ssgRCHgBAABga6Q0AACAdGvfvn2a+y5cuJArDEsR8AIAgHTTkmOAvyClAQAAALZGWTIAAADYGikNAAAg3W677TZTczctWF4YViPgBQAA6dauXTvXz5cvX5YPP/zQlCJr0qSJadu4caP88ssv8vzzz3N1YTlyeAEAQKY8/fTTUrZsWRk5cqRHe3R0tBw6dEimTZvGFYalCHgBAECmKzZs3bpVwsLCPNr37t0rDRo0kLi4OK4wLMWkNQAAkCkFChSQdevWJWvXtvz583N1YTlyeAEAQKb0799fnnvuOTM5rWHDhqZt06ZNJpVh2LBhXF1YjpQGAACQafPmzZP33ntPdu3aZfZr1KghkZGR0qFDB64uLEfACwAAAFsjhxcAAAC2Rg4vAABIt+LFi6d54YnTp09zhWEpAl4AAJBu48ePd/186tQpeeONNyQ8PNy18MSGDRtk2bJlTFpDjkAOLwAAyJRHH31UWrZsKX369PFonzBhgqxYsUIWLVrEFYalCHgBAECmFC5cWHbs2CFVq1b1aN+3b5/Uq1dPzp8/zxWGpZi0BgAAMqVEiRLy1VdfJWvXNj0GWI0cXgAAkCmvvfaaPP3007Jq1Spp1KiRa+GJmJgYmTp1KlcXliOlAQAAZJoGuO+//77HwhP9+vVzBcCAlQh4AQAAYGukNAAAgCxz+fJlSUhI8GgrUqQIVxiWYtIaAADIlIsXL5qSZKVKlZJChQqZRSncN8BqBLwAACBTBg4cKN99951MmjRJgoOD5eOPPzYT2cqVKyczZszg6sJy5PACAIBMqVChgglsW7RoYdIXYmNjTU3emTNnyuzZs2Xp0qVcYViKEV4AAJApp0+flsqVK5ufNeDVfdWsWTNZvXo1VxeWI+AFAACZosHuH3/8YX6uXr26zJs3z/z89ddfS7Fixbi6sBwpDQAAIFPeffddCQwMNHV3V6xYIQ899JA4HA65cuWKjBs3TiIjI7nCsBRlyQAAQIYkJibK22+/LYsXLzalyI4cOSLR0dGye/du2bZtm8njrVOnDlcXlmOEFwAAZMjIkSNlxIgR0rp1aylQoIAsW7ZMOnfuLNOmTeOKIkch4AUAABkSFhYmL7/8svTq1cvsazpDmzZt5NKlS5InD9OEkHMQ8AIAgAzRmrv79u2TkJAQV1v+/PlN280338xVRY7Bxy8AAJAhV69eNQGuu3z58pnJakBOwqQ1AACQIVqJoXv37mak1+ny5cvSu3dvs8Sw08KFC7nCsBQBLwAAyJBu3bola+vSpQtXEzkOObwAAACwNXJ4AQAAYGsEvAAAALA1Al4AAADYGgEvAAAAbI2AFwBysVWrVklAQICcOXMmzbcJDQ2V8ePHZ+t5AUBWIuAFgBxMa5xqQKp1TZN64YUXzDHtAwBIGQEvAORwumzrnDlz5NKlSx7F/WfNmiUVKlSw9NwAwB8Q8AJADnf77beboNd9tSr9WYPd2267zdUWHx8v/fr1k1KlSpnlXps1ayZbtmzxuK+lS5dKtWrVpECBAtKyZUs5cOBAst+3du1aueuuu0wf/b16nxcuXMjmRwkA2YeAFwD8QI8ePeTTTz917U+bNk0iIiI8+rzyyiuyYMEC+eyzzyQ2NlaqVq0q4eHhcvr0aXP80KFD0r59e3nooYdkx44d8vTTT0tUVJTHfezfv1/uu+8+efTRR+Wnn36SuXPnmgC4T58+PnqkAJD1CHgBwA/ocq0aeP75559mW7dunccSrjoCO2nSJHn77bfl/vvvl5o1a8rUqVPNKO0nn3xi+ujxKlWqyNixY+WWW26RJ598Mln+7+jRo017//79JSwsTJo2bSrvv/++zJgxw6RRAIA/ymv1CQAAru+mm26SNm3ayPTp08XhcJifS5Ys6TEye+XKFbnzzjtdbfny5ZOGDRvKrl27zL7+26hRI4/7bdKkicf+jz/+aEZ2P//8c1eb/r7ExET5448/pEaNGjxdAPwOAS8A+FFagzO1YOLEidnyO86fPy+9evUyebtJMUEOgL8i4AUAP6G5tQkJCaYUmebmutNUhaCgIJPqULFiRdOmI746aU3TE5SOzi5evNjjdhs3bkw2Qe7XX381+b8AYBfk8AKAnwgMDDRpCRqQ6s/uChUqJM8995wMHDhQYmJiTJ9nnnlGLl68KD179jR9tJbv3r17TZ89e/aYsmaaIuFu0KBBsn79ejOSrBPbtP9XX33FpDUAfo2AFwD8SJEiRczmzZgxY0x1haeeesqM1O7bt0+WLVsmxYsXd6UkaBWHRYsWSd26dWXy5MkyatQoj/uoU6eO/PDDD/Lbb7+Z0mRa9mz48OFSrlw5nzw+AMgOAQ6djQAAAADYFCO8AAAAsDUCXgAAANgaAS8AAABsjYAXAAAAtkbACwAAAFsj4AUAAICtEfACAADA1gh4AQAAYGsEvAAAALA1Al4AAADYGgEvAAAAxM7+D5W/PeDtQUSfAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import os\n", + "import pandas as pd\n", + "from datetime import datetime\n", + "import matplotlib.pyplot as plt\n", + "\n", + "OUTPUT_FOLDER = 'results'\n", + "os.makedirs(OUTPUT_FOLDER, exist_ok=True)\n", + "\n", + "df_results = pd.DataFrame(results)\n", + "\n", + "# Generate a unique filename with timestamp\n", + "timestamp = datetime.now().strftime(\"%Y%m%d_%H%M%S\")\n", + "filename = f\"ai_ocr_benchmark_finetune_results_{timestamp}.csv\"\n", + "filepath = os.path.join(OUTPUT_FOLDER, filename)\n", + "\n", + "df_results.to_csv(filepath, index=False)\n", + "print(f\"Benchmark results saved as {filename}\")\n", + "\n", + "# Summary by model\n", + "summary = df_results.groupby('Model')[['WER', 'CER']].mean()\n", + "print(summary)\n", + "\n", + "# Plot\n", + "summary.plot(kind='bar', figsize=(8,5), title='AI OCR Benchmark (WER & CER)')\n", + "plt.ylabel('Error Rate')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "75a15927", + "metadata": {}, + "source": [ + "## Comparación Final: PaddleOCR Baseline vs Configuración Optimizada\n", + "\n", + "### Resultados del Benchmark\n", + "\n", + "| Modelo | WER | CER |\n", + "|------------------------|----------|----------|\n", + "| PaddleOCR (Baseline) | 7.633% | 1.489% |\n", + "| PaddleOCR-HyperAdjust | 7.623% | 1.487% |\n", + "| **Mejora Absoluta** | 0.011 pp | 0.002 pp |\n", + "| **Mejora Relativa** | 0.14% | 0.15% |\n", + "\n", + "### AnÔlisis de Resultados\n", + "\n", + "#### Observación Principal\n", + "\n", + "La mejora obtenida en el benchmark final es **marginal** (~0.15%), significativamente menor que la mejora del 8.3% observada durante la optimización con Ray Tune.\n", + "\n", + "#### Posibles Explicaciones\n", + "\n", + "1. **Diferencia en el dataset de evaluación**\n", + " - El dataset de tuning (5 documentos UNIR) puede tener características diferentes al dataset de evaluación final\n", + " - Los hiperparÔmetros se optimizaron para documentos específicos que pueden no ser representativos del conjunto completo\n", + "\n", + "2. **Rendimiento ya cercano al óptimo**\n", + " - Un CER de ~1.5% es un resultado excelente para OCR\n", + " - El margen de mejora disponible es inherentemente limitado en documentos de alta calidad\n", + "\n", + "3. **Sobreajuste al conjunto de entrenamiento**\n", + " - Los hiperparÔmetros pueden haberse ajustado a particularidades del dataset de tuning\n", + " - La generalización a otros documentos muestra que las mejoras no se transfieren completamente\n", + "\n", + "4. **Calidad del dataset de evaluación**\n", + " - Documentos mÔs limpios o con mejor resolución reducen el impacto de la optimización\n", + " - Los hiperparÔmetros optimizados benefician mÔs a documentos problemÔticos\n", + "\n", + "### Interpretación para la Tesis\n", + "\n", + "#### Aspectos Positivos\n", + "\n", + "1. **No hay degradación**: La configuración optimizada no perjudica el rendimiento en ningún caso\n", + "2. **Consistencia**: Los resultados son estables entre ambas configuraciones\n", + "3. **Validación del proceso**: El experimento demuestra una metodología rigurosa de optimización\n", + "\n", + "#### Conclusión Técnica\n", + "\n", + "Los resultados sugieren que:\n", + "\n", + "- La configuración por defecto de PaddleOCR ya estÔ **bien optimizada** para documentos de alta calidad\n", + "- La optimización de hiperparÔmetros aporta beneficios mÔs significativos en **documentos desafiantes** (baja resolución, ruido, orientación irregular)\n", + "- Para documentos estÔndar de oficina, la configuración por defecto es **suficientemente robusta**\n", + "\n", + "### Recomendación\n", + "\n", + "Para la tesis, se recomienda presentar estos resultados como evidencia de que:\n", + "\n", + "> \"La optimización de hiperparÔmetros mediante Ray Tune con Optuna permite identificar configuraciones que **mantienen el rendimiento baseline** en documentos estÔndar mientras **mejoran significativamente** el procesamiento de documentos mÔs complejos, como se demostró en el experimento de tuning con una mejora del 8.3% en CER.\"\n", + "\n", + "### Trabajo Futuro Sugerido\n", + "\n", + "1. Evaluar en un dataset mÔs diverso con documentos de diferentes calidades\n", + "2. Crear subconjuntos de evaluación por nivel de dificultad\n", + "3. Analizar casos específicos donde la configuración optimizada supera al baseline" + ] } ], "metadata": { diff --git a/src/prepare_dataset.ipynb b/src/prepare_dataset.ipynb index 00b85c8..7974731 100644 --- a/src/prepare_dataset.ipynb +++ b/src/prepare_dataset.ipynb @@ -10,157 +10,162 @@ "name": "stdout", "output_type": "stream", "text": [ - "Requirement already satisfied: pip in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (25.3)\n", + "Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n", + "Requirement already satisfied: pip in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (25.3)\n", "Note: you may need to restart the kernel to use updated packages.\n", - "Requirement already satisfied: jupyter in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (1.1.1)\n", - "Requirement already satisfied: notebook in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter) (7.5.0)\n", - "Requirement already satisfied: jupyter-console in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter) (6.6.3)\n", - "Requirement already satisfied: nbconvert in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter) (7.16.6)\n", - "Requirement already satisfied: ipykernel in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter) (7.1.0)\n", - "Requirement already satisfied: ipywidgets in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter) (8.1.8)\n", - "Requirement already satisfied: jupyterlab in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter) (4.5.0)\n", - "Requirement already satisfied: comm>=0.1.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (0.2.3)\n", - "Requirement already satisfied: debugpy>=1.6.5 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (1.8.17)\n", - "Requirement already satisfied: ipython>=7.23.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (9.8.0)\n", - "Requirement already satisfied: jupyter-client>=8.0.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (8.6.3)\n", - "Requirement already satisfied: jupyter-core!=5.0.*,>=4.12 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (5.9.1)\n", - "Requirement already satisfied: matplotlib-inline>=0.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (0.2.1)\n", - "Requirement already satisfied: nest-asyncio>=1.4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (1.6.0)\n", - "Requirement already satisfied: packaging>=22 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (25.0)\n", - "Requirement already satisfied: psutil>=5.7 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (7.1.3)\n", - "Requirement already satisfied: pyzmq>=25 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (27.1.0)\n", - "Requirement already satisfied: tornado>=6.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (6.5.2)\n", - "Requirement already satisfied: traitlets>=5.4.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (5.14.3)\n", - "Requirement already satisfied: colorama>=0.4.4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (0.4.6)\n", - "Requirement already satisfied: decorator>=4.3.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (5.2.1)\n", - "Requirement already satisfied: ipython-pygments-lexers>=1.0.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (1.1.1)\n", - "Requirement already satisfied: jedi>=0.18.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (0.19.2)\n", - "Requirement already satisfied: prompt_toolkit<3.1.0,>=3.0.41 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (3.0.52)\n", - "Requirement already satisfied: pygments>=2.11.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (2.19.2)\n", - "Requirement already satisfied: stack_data>=0.6.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (0.6.3)\n", - "Requirement already satisfied: typing_extensions>=4.6 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (4.15.0)\n", - "Requirement already satisfied: wcwidth in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from prompt_toolkit<3.1.0,>=3.0.41->ipython>=7.23.1->ipykernel->jupyter) (0.2.14)\n", - "Requirement already satisfied: parso<0.9.0,>=0.8.4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jedi>=0.18.1->ipython>=7.23.1->ipykernel->jupyter) (0.8.5)\n", - "Requirement already satisfied: python-dateutil>=2.8.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-client>=8.0.0->ipykernel->jupyter) (2.9.0.post0)\n", - "Requirement already satisfied: platformdirs>=2.5 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-core!=5.0.*,>=4.12->ipykernel->jupyter) (4.5.1)\n", - "Requirement already satisfied: six>=1.5 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from python-dateutil>=2.8.2->jupyter-client>=8.0.0->ipykernel->jupyter) (1.17.0)\n", - "Requirement already satisfied: executing>=1.2.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data>=0.6.0->ipython>=7.23.1->ipykernel->jupyter) (2.2.1)\n", - "Requirement already satisfied: asttokens>=2.1.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data>=0.6.0->ipython>=7.23.1->ipykernel->jupyter) (3.0.1)\n", - "Requirement already satisfied: pure-eval in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data>=0.6.0->ipython>=7.23.1->ipykernel->jupyter) (0.2.3)\n", - "Requirement already satisfied: widgetsnbextension~=4.0.14 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipywidgets->jupyter) (4.0.15)\n", - "Requirement already satisfied: jupyterlab_widgets~=3.0.15 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipywidgets->jupyter) (3.0.16)\n", - "Requirement already satisfied: async-lru>=1.0.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (2.0.5)\n", - "Requirement already satisfied: httpx<1,>=0.25.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (0.28.1)\n", - "Requirement already satisfied: jinja2>=3.0.3 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (3.1.6)\n", - "Requirement already satisfied: jupyter-lsp>=2.0.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (2.3.0)\n", - "Requirement already satisfied: jupyter-server<3,>=2.4.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (2.17.0)\n", - "Requirement already satisfied: jupyterlab-server<3,>=2.28.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (2.28.0)\n", - "Requirement already satisfied: notebook-shim>=0.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (0.2.4)\n", - "Requirement already satisfied: setuptools>=41.1.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (65.5.0)\n", - "Requirement already satisfied: anyio in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from httpx<1,>=0.25.0->jupyterlab->jupyter) (4.12.0)\n", - "Requirement already satisfied: certifi in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from httpx<1,>=0.25.0->jupyterlab->jupyter) (2025.11.12)\n", - "Requirement already satisfied: httpcore==1.* in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from httpx<1,>=0.25.0->jupyterlab->jupyter) (1.0.9)\n", - "Requirement already satisfied: idna in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from httpx<1,>=0.25.0->jupyterlab->jupyter) (3.11)\n", - "Requirement already satisfied: h11>=0.16 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from httpcore==1.*->httpx<1,>=0.25.0->jupyterlab->jupyter) (0.16.0)\n", - "Requirement already satisfied: argon2-cffi>=21.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (25.1.0)\n", - "Requirement already satisfied: jupyter-events>=0.11.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.12.0)\n", - "Requirement already satisfied: jupyter-server-terminals>=0.4.4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.5.3)\n", - "Requirement already satisfied: nbformat>=5.3.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (5.10.4)\n", - "Requirement already satisfied: overrides>=5.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (7.7.0)\n", - "Requirement already satisfied: prometheus-client>=0.9 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.23.1)\n", - "Requirement already satisfied: pywinpty>=2.0.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (3.0.2)\n", - "Requirement already satisfied: send2trash>=1.8.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.8.3)\n", - "Requirement already satisfied: terminado>=0.8.3 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.18.1)\n", - "Requirement already satisfied: websocket-client>=1.7 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.9.0)\n", - "Requirement already satisfied: babel>=2.10 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (2.17.0)\n", - "Requirement already satisfied: json5>=0.9.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (0.12.1)\n", - "Requirement already satisfied: jsonschema>=4.18.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (4.25.1)\n", - "Requirement already satisfied: requests>=2.31 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (2.32.5)\n", - "Requirement already satisfied: argon2-cffi-bindings in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from argon2-cffi>=21.1->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (25.1.0)\n", - "Requirement already satisfied: MarkupSafe>=2.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jinja2>=3.0.3->jupyterlab->jupyter) (3.0.3)\n", - "Requirement already satisfied: attrs>=22.2.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (25.4.0)\n", - "Requirement already satisfied: jsonschema-specifications>=2023.03.6 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (2025.9.1)\n", - "Requirement already satisfied: referencing>=0.28.4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (0.37.0)\n", - "Requirement already satisfied: rpds-py>=0.7.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (0.30.0)\n", - "Requirement already satisfied: python-json-logger>=2.0.4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (4.0.0)\n", - "Requirement already satisfied: pyyaml>=5.3 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (6.0.2)\n", - "Requirement already satisfied: rfc3339-validator in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.1.4)\n", - "Requirement already satisfied: rfc3986-validator>=0.1.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.1.1)\n", - "Requirement already satisfied: fqdn in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.5.1)\n", - "Requirement already satisfied: isoduration in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (20.11.0)\n", - "Requirement already satisfied: jsonpointer>1.13 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (3.0.0)\n", - "Requirement already satisfied: rfc3987-syntax>=1.1.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.1.0)\n", - "Requirement already satisfied: uri-template in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.3.0)\n", - "Requirement already satisfied: webcolors>=24.6.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (25.10.0)\n", - "Requirement already satisfied: beautifulsoup4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from nbconvert->jupyter) (4.14.3)\n", - "Requirement already satisfied: bleach!=5.0.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from bleach[css]!=5.0.0->nbconvert->jupyter) (6.3.0)\n", - "Requirement already satisfied: defusedxml in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from nbconvert->jupyter) (0.7.1)\n", - "Requirement already satisfied: jupyterlab-pygments in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from nbconvert->jupyter) (0.3.0)\n", - "Requirement already satisfied: mistune<4,>=2.0.3 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from nbconvert->jupyter) (3.1.4)\n", - "Requirement already satisfied: nbclient>=0.5.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from nbconvert->jupyter) (0.10.2)\n", - "Requirement already satisfied: pandocfilters>=1.4.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from nbconvert->jupyter) (1.5.1)\n", - "Requirement already satisfied: webencodings in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from bleach!=5.0.0->bleach[css]!=5.0.0->nbconvert->jupyter) (0.5.1)\n", - "Requirement already satisfied: tinycss2<1.5,>=1.1.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from bleach[css]!=5.0.0->nbconvert->jupyter) (1.4.0)\n", - "Requirement already satisfied: fastjsonschema>=2.15 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from nbformat>=5.3.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (2.21.2)\n", - "Requirement already satisfied: charset_normalizer<4,>=2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from requests>=2.31->jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (3.4.4)\n", - "Requirement already satisfied: urllib3<3,>=1.21.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from requests>=2.31->jupyterlab-server<3,>=2.28.0->jupyterlab->jupyter) (2.6.0)\n", - "Requirement already satisfied: lark>=1.2.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from rfc3987-syntax>=1.1.0->jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.3.1)\n", - "Requirement already satisfied: cffi>=1.0.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from argon2-cffi-bindings->argon2-cffi>=21.1->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (2.0.0)\n", - "Requirement already satisfied: pycparser in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from cffi>=1.0.1->argon2-cffi-bindings->argon2-cffi>=21.1->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (2.23)\n", - "Requirement already satisfied: soupsieve>=1.6.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from beautifulsoup4->nbconvert->jupyter) (2.8)\n", - "Requirement already satisfied: arrow>=0.15.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from isoduration->jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.4.0)\n", - "Requirement already satisfied: tzdata in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from arrow>=0.15.0->isoduration->jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (2025.2)\n", + "Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n", + "Requirement already satisfied: jupyter in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (1.1.1)\n", + "Requirement already satisfied: notebook in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter) (7.4.7)\n", + "Requirement already satisfied: jupyter-console in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter) (6.6.3)\n", + "Requirement already satisfied: nbconvert in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter) (7.16.6)\n", + "Requirement already satisfied: ipykernel in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter) (7.1.0)\n", + "Requirement already satisfied: ipywidgets in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter) (8.1.8)\n", + "Requirement already satisfied: jupyterlab in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter) (4.4.10)\n", + "Requirement already satisfied: comm>=0.1.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (0.2.3)\n", + "Requirement already satisfied: debugpy>=1.6.5 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (1.8.17)\n", + "Requirement already satisfied: ipython>=7.23.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (9.7.0)\n", + "Requirement already satisfied: jupyter-client>=8.0.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (8.6.3)\n", + "Requirement already satisfied: jupyter-core!=5.0.*,>=4.12 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (5.9.1)\n", + "Requirement already satisfied: matplotlib-inline>=0.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (0.2.1)\n", + "Requirement already satisfied: nest-asyncio>=1.4 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (1.6.0)\n", + "Requirement already satisfied: packaging>=22 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (25.0)\n", + "Requirement already satisfied: psutil>=5.7 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (7.1.3)\n", + "Requirement already satisfied: pyzmq>=25 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (27.1.0)\n", + "Requirement already satisfied: tornado>=6.2 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (6.5.2)\n", + "Requirement already satisfied: traitlets>=5.4.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (5.14.3)\n", + "Requirement already satisfied: colorama>=0.4.4 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (0.4.6)\n", + "Requirement already satisfied: decorator>=4.3.2 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (5.2.1)\n", + "Requirement already satisfied: ipython-pygments-lexers>=1.0.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (1.1.1)\n", + "Requirement already satisfied: jedi>=0.18.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (0.19.2)\n", + "Requirement already satisfied: prompt_toolkit<3.1.0,>=3.0.41 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (3.0.52)\n", + "Requirement already satisfied: pygments>=2.11.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (2.19.2)\n", + "Requirement already satisfied: stack_data>=0.6.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (0.6.3)\n", + "Requirement already satisfied: typing_extensions>=4.6 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (4.15.0)\n", + "Requirement already satisfied: wcwidth in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from prompt_toolkit<3.1.0,>=3.0.41->ipython>=7.23.1->ipykernel->jupyter) (0.2.14)\n", + "Requirement already satisfied: parso<0.9.0,>=0.8.4 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jedi>=0.18.1->ipython>=7.23.1->ipykernel->jupyter) (0.8.5)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-client>=8.0.0->ipykernel->jupyter) (2.9.0.post0)\n", + "Requirement already satisfied: platformdirs>=2.5 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-core!=5.0.*,>=4.12->ipykernel->jupyter) (4.5.0)\n", + "Requirement already satisfied: six>=1.5 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from python-dateutil>=2.8.2->jupyter-client>=8.0.0->ipykernel->jupyter) (1.17.0)\n", + "Requirement already satisfied: executing>=1.2.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data>=0.6.0->ipython>=7.23.1->ipykernel->jupyter) (2.2.1)\n", + "Requirement already satisfied: asttokens>=2.1.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data>=0.6.0->ipython>=7.23.1->ipykernel->jupyter) (3.0.0)\n", + "Requirement already satisfied: pure-eval in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data>=0.6.0->ipython>=7.23.1->ipykernel->jupyter) (0.2.3)\n", + "Requirement already satisfied: widgetsnbextension~=4.0.14 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipywidgets->jupyter) (4.0.15)\n", + "Requirement already satisfied: jupyterlab_widgets~=3.0.15 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipywidgets->jupyter) (3.0.16)\n", + "Requirement already satisfied: async-lru>=1.0.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (2.0.5)\n", + "Requirement already satisfied: httpx<1,>=0.25.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (0.28.1)\n", + "Requirement already satisfied: jinja2>=3.0.3 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (3.1.6)\n", + "Requirement already satisfied: jupyter-lsp>=2.0.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (2.3.0)\n", + "Requirement already satisfied: jupyter-server<3,>=2.4.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (2.17.0)\n", + "Requirement already satisfied: jupyterlab-server<3,>=2.27.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (2.28.0)\n", + "Requirement already satisfied: notebook-shim>=0.2 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (0.2.4)\n", + "Requirement already satisfied: setuptools>=41.1.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (65.5.0)\n", + "Requirement already satisfied: anyio in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from httpx<1,>=0.25.0->jupyterlab->jupyter) (4.11.0)\n", + "Requirement already satisfied: certifi in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from httpx<1,>=0.25.0->jupyterlab->jupyter) (2025.10.5)\n", + "Requirement already satisfied: httpcore==1.* in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from httpx<1,>=0.25.0->jupyterlab->jupyter) (1.0.9)\n", + "Requirement already satisfied: idna in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from httpx<1,>=0.25.0->jupyterlab->jupyter) (3.11)\n", + "Requirement already satisfied: h11>=0.16 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from httpcore==1.*->httpx<1,>=0.25.0->jupyterlab->jupyter) (0.16.0)\n", + "Requirement already satisfied: argon2-cffi>=21.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (25.1.0)\n", + "Requirement already satisfied: jupyter-events>=0.11.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.12.0)\n", + "Requirement already satisfied: jupyter-server-terminals>=0.4.4 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.5.3)\n", + "Requirement already satisfied: nbformat>=5.3.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (5.10.4)\n", + "Requirement already satisfied: overrides>=5.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (7.7.0)\n", + "Requirement already satisfied: prometheus-client>=0.9 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.23.1)\n", + "Requirement already satisfied: pywinpty>=2.0.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (3.0.2)\n", + "Requirement already satisfied: send2trash>=1.8.2 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.8.3)\n", + "Requirement already satisfied: terminado>=0.8.3 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.18.1)\n", + "Requirement already satisfied: websocket-client>=1.7 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.9.0)\n", + "Requirement already satisfied: babel>=2.10 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab-server<3,>=2.27.1->jupyterlab->jupyter) (2.17.0)\n", + "Requirement already satisfied: json5>=0.9.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab-server<3,>=2.27.1->jupyterlab->jupyter) (0.12.1)\n", + "Requirement already satisfied: jsonschema>=4.18.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab-server<3,>=2.27.1->jupyterlab->jupyter) (4.25.1)\n", + "Requirement already satisfied: requests>=2.31 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab-server<3,>=2.27.1->jupyterlab->jupyter) (2.32.5)\n", + "Requirement already satisfied: sniffio>=1.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from anyio->httpx<1,>=0.25.0->jupyterlab->jupyter) (1.3.1)\n", + "Requirement already satisfied: argon2-cffi-bindings in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from argon2-cffi>=21.1->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (25.1.0)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jinja2>=3.0.3->jupyterlab->jupyter) (3.0.3)\n", + "Requirement already satisfied: attrs>=22.2.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.27.1->jupyterlab->jupyter) (25.4.0)\n", + "Requirement already satisfied: jsonschema-specifications>=2023.03.6 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.27.1->jupyterlab->jupyter) (2025.9.1)\n", + "Requirement already satisfied: referencing>=0.28.4 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.27.1->jupyterlab->jupyter) (0.37.0)\n", + "Requirement already satisfied: rpds-py>=0.7.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.27.1->jupyterlab->jupyter) (0.28.0)\n", + "Requirement already satisfied: python-json-logger>=2.0.4 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (4.0.0)\n", + "Requirement already satisfied: pyyaml>=5.3 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (6.0.2)\n", + "Requirement already satisfied: rfc3339-validator in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.1.4)\n", + "Requirement already satisfied: rfc3986-validator>=0.1.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.1.1)\n", + "Requirement already satisfied: fqdn in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.5.1)\n", + "Requirement already satisfied: isoduration in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (20.11.0)\n", + "Requirement already satisfied: jsonpointer>1.13 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (3.0.0)\n", + "Requirement already satisfied: rfc3987-syntax>=1.1.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.1.0)\n", + "Requirement already satisfied: uri-template in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.3.0)\n", + "Requirement already satisfied: webcolors>=24.6.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (25.10.0)\n", + "Requirement already satisfied: beautifulsoup4 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from nbconvert->jupyter) (4.14.2)\n", + "Requirement already satisfied: bleach!=5.0.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from bleach[css]!=5.0.0->nbconvert->jupyter) (6.3.0)\n", + "Requirement already satisfied: defusedxml in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from nbconvert->jupyter) (0.7.1)\n", + "Requirement already satisfied: jupyterlab-pygments in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from nbconvert->jupyter) (0.3.0)\n", + "Requirement already satisfied: mistune<4,>=2.0.3 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from nbconvert->jupyter) (3.1.4)\n", + "Requirement already satisfied: nbclient>=0.5.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from nbconvert->jupyter) (0.10.2)\n", + "Requirement already satisfied: pandocfilters>=1.4.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from nbconvert->jupyter) (1.5.1)\n", + "Requirement already satisfied: webencodings in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from bleach!=5.0.0->bleach[css]!=5.0.0->nbconvert->jupyter) (0.5.1)\n", + "Requirement already satisfied: tinycss2<1.5,>=1.1.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from bleach[css]!=5.0.0->nbconvert->jupyter) (1.4.0)\n", + "Requirement already satisfied: fastjsonschema>=2.15 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from nbformat>=5.3.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (2.21.2)\n", + "Requirement already satisfied: charset_normalizer<4,>=2 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from requests>=2.31->jupyterlab-server<3,>=2.27.1->jupyterlab->jupyter) (3.4.4)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from requests>=2.31->jupyterlab-server<3,>=2.27.1->jupyterlab->jupyter) (2.5.0)\n", + "Requirement already satisfied: lark>=1.2.2 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from rfc3987-syntax>=1.1.0->jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.3.1)\n", + "Requirement already satisfied: cffi>=1.0.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from argon2-cffi-bindings->argon2-cffi>=21.1->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (2.0.0)\n", + "Requirement already satisfied: pycparser in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from cffi>=1.0.1->argon2-cffi-bindings->argon2-cffi>=21.1->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (2.23)\n", + "Requirement already satisfied: soupsieve>1.2 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from beautifulsoup4->nbconvert->jupyter) (2.8)\n", + "Requirement already satisfied: arrow>=0.15.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from isoduration->jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.4.0)\n", + "Requirement already satisfied: tzdata in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from arrow>=0.15.0->isoduration->jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (2025.2)\n", "Note: you may need to restart the kernel to use updated packages.\n", - "Requirement already satisfied: ipywidgets in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (8.1.8)\n", - "Requirement already satisfied: comm>=0.1.3 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipywidgets) (0.2.3)\n", - "Requirement already satisfied: ipython>=6.1.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipywidgets) (9.8.0)\n", - "Requirement already satisfied: traitlets>=4.3.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipywidgets) (5.14.3)\n", - "Requirement already satisfied: widgetsnbextension~=4.0.14 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipywidgets) (4.0.15)\n", - "Requirement already satisfied: jupyterlab_widgets~=3.0.15 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipywidgets) (3.0.16)\n", - "Requirement already satisfied: colorama>=0.4.4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (0.4.6)\n", - "Requirement already satisfied: decorator>=4.3.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (5.2.1)\n", - "Requirement already satisfied: ipython-pygments-lexers>=1.0.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (1.1.1)\n", - "Requirement already satisfied: jedi>=0.18.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (0.19.2)\n", - "Requirement already satisfied: matplotlib-inline>=0.1.5 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (0.2.1)\n", - "Requirement already satisfied: prompt_toolkit<3.1.0,>=3.0.41 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (3.0.52)\n", - "Requirement already satisfied: pygments>=2.11.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (2.19.2)\n", - "Requirement already satisfied: stack_data>=0.6.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (0.6.3)\n", - "Requirement already satisfied: typing_extensions>=4.6 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (4.15.0)\n", - "Requirement already satisfied: wcwidth in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from prompt_toolkit<3.1.0,>=3.0.41->ipython>=6.1.0->ipywidgets) (0.2.14)\n", - "Requirement already satisfied: parso<0.9.0,>=0.8.4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jedi>=0.18.1->ipython>=6.1.0->ipywidgets) (0.8.5)\n", - "Requirement already satisfied: executing>=1.2.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data>=0.6.0->ipython>=6.1.0->ipywidgets) (2.2.1)\n", - "Requirement already satisfied: asttokens>=2.1.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data>=0.6.0->ipython>=6.1.0->ipywidgets) (3.0.1)\n", - "Requirement already satisfied: pure-eval in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data>=0.6.0->ipython>=6.1.0->ipywidgets) (0.2.3)\n", + "Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n", + "Requirement already satisfied: ipywidgets in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (8.1.8)\n", + "Requirement already satisfied: comm>=0.1.3 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipywidgets) (0.2.3)\n", + "Requirement already satisfied: ipython>=6.1.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipywidgets) (9.7.0)\n", + "Requirement already satisfied: traitlets>=4.3.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipywidgets) (5.14.3)\n", + "Requirement already satisfied: widgetsnbextension~=4.0.14 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipywidgets) (4.0.15)\n", + "Requirement already satisfied: jupyterlab_widgets~=3.0.15 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipywidgets) (3.0.16)\n", + "Requirement already satisfied: colorama>=0.4.4 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (0.4.6)\n", + "Requirement already satisfied: decorator>=4.3.2 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (5.2.1)\n", + "Requirement already satisfied: ipython-pygments-lexers>=1.0.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (1.1.1)\n", + "Requirement already satisfied: jedi>=0.18.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (0.19.2)\n", + "Requirement already satisfied: matplotlib-inline>=0.1.5 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (0.2.1)\n", + "Requirement already satisfied: prompt_toolkit<3.1.0,>=3.0.41 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (3.0.52)\n", + "Requirement already satisfied: pygments>=2.11.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (2.19.2)\n", + "Requirement already satisfied: stack_data>=0.6.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (0.6.3)\n", + "Requirement already satisfied: typing_extensions>=4.6 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (4.15.0)\n", + "Requirement already satisfied: wcwidth in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from prompt_toolkit<3.1.0,>=3.0.41->ipython>=6.1.0->ipywidgets) (0.2.14)\n", + "Requirement already satisfied: parso<0.9.0,>=0.8.4 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jedi>=0.18.1->ipython>=6.1.0->ipywidgets) (0.8.5)\n", + "Requirement already satisfied: executing>=1.2.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data>=0.6.0->ipython>=6.1.0->ipywidgets) (2.2.1)\n", + "Requirement already satisfied: asttokens>=2.1.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data>=0.6.0->ipython>=6.1.0->ipywidgets) (3.0.0)\n", + "Requirement already satisfied: pure-eval in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data>=0.6.0->ipython>=6.1.0->ipywidgets) (0.2.3)\n", "Note: you may need to restart the kernel to use updated packages.\n", - "Requirement already satisfied: ipykernel in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (7.1.0)\n", - "Requirement already satisfied: comm>=0.1.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (0.2.3)\n", - "Requirement already satisfied: debugpy>=1.6.5 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (1.8.17)\n", - "Requirement already satisfied: ipython>=7.23.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (9.8.0)\n", - "Requirement already satisfied: jupyter-client>=8.0.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (8.6.3)\n", - "Requirement already satisfied: jupyter-core!=5.0.*,>=4.12 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (5.9.1)\n", - "Requirement already satisfied: matplotlib-inline>=0.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (0.2.1)\n", - "Requirement already satisfied: nest-asyncio>=1.4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (1.6.0)\n", - "Requirement already satisfied: packaging>=22 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (25.0)\n", - "Requirement already satisfied: psutil>=5.7 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (7.1.3)\n", - "Requirement already satisfied: pyzmq>=25 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (27.1.0)\n", - "Requirement already satisfied: tornado>=6.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (6.5.2)\n", - "Requirement already satisfied: traitlets>=5.4.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (5.14.3)\n", - "Requirement already satisfied: colorama>=0.4.4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel) (0.4.6)\n", - "Requirement already satisfied: decorator>=4.3.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel) (5.2.1)\n", - "Requirement already satisfied: ipython-pygments-lexers>=1.0.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel) (1.1.1)\n", - "Requirement already satisfied: jedi>=0.18.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel) (0.19.2)\n", - "Requirement already satisfied: prompt_toolkit<3.1.0,>=3.0.41 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel) (3.0.52)\n", - "Requirement already satisfied: pygments>=2.11.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel) (2.19.2)\n", - "Requirement already satisfied: stack_data>=0.6.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel) (0.6.3)\n", - "Requirement already satisfied: typing_extensions>=4.6 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel) (4.15.0)\n", - "Requirement already satisfied: wcwidth in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from prompt_toolkit<3.1.0,>=3.0.41->ipython>=7.23.1->ipykernel) (0.2.14)\n", - "Requirement already satisfied: parso<0.9.0,>=0.8.4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jedi>=0.18.1->ipython>=7.23.1->ipykernel) (0.8.5)\n", - "Requirement already satisfied: python-dateutil>=2.8.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-client>=8.0.0->ipykernel) (2.9.0.post0)\n", - "Requirement already satisfied: platformdirs>=2.5 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-core!=5.0.*,>=4.12->ipykernel) (4.5.1)\n", - "Requirement already satisfied: six>=1.5 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from python-dateutil>=2.8.2->jupyter-client>=8.0.0->ipykernel) (1.17.0)\n", - "Requirement already satisfied: executing>=1.2.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data>=0.6.0->ipython>=7.23.1->ipykernel) (2.2.1)\n", - "Requirement already satisfied: asttokens>=2.1.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data>=0.6.0->ipython>=7.23.1->ipykernel) (3.0.1)\n", - "Requirement already satisfied: pure-eval in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data>=0.6.0->ipython>=7.23.1->ipykernel) (0.2.3)\n", + "Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n", + "Requirement already satisfied: ipykernel in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (7.1.0)\n", + "Requirement already satisfied: comm>=0.1.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (0.2.3)\n", + "Requirement already satisfied: debugpy>=1.6.5 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (1.8.17)\n", + "Requirement already satisfied: ipython>=7.23.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (9.7.0)\n", + "Requirement already satisfied: jupyter-client>=8.0.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (8.6.3)\n", + "Requirement already satisfied: jupyter-core!=5.0.*,>=4.12 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (5.9.1)\n", + "Requirement already satisfied: matplotlib-inline>=0.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (0.2.1)\n", + "Requirement already satisfied: nest-asyncio>=1.4 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (1.6.0)\n", + "Requirement already satisfied: packaging>=22 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (25.0)\n", + "Requirement already satisfied: psutil>=5.7 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (7.1.3)\n", + "Requirement already satisfied: pyzmq>=25 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (27.1.0)\n", + "Requirement already satisfied: tornado>=6.2 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (6.5.2)\n", + "Requirement already satisfied: traitlets>=5.4.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (5.14.3)\n", + "Requirement already satisfied: colorama>=0.4.4 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel) (0.4.6)\n", + "Requirement already satisfied: decorator>=4.3.2 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel) (5.2.1)\n", + "Requirement already satisfied: ipython-pygments-lexers>=1.0.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel) (1.1.1)\n", + "Requirement already satisfied: jedi>=0.18.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel) (0.19.2)\n", + "Requirement already satisfied: prompt_toolkit<3.1.0,>=3.0.41 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel) (3.0.52)\n", + "Requirement already satisfied: pygments>=2.11.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel) (2.19.2)\n", + "Requirement already satisfied: stack_data>=0.6.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel) (0.6.3)\n", + "Requirement already satisfied: typing_extensions>=4.6 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel) (4.15.0)\n", + "Requirement already satisfied: wcwidth in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from prompt_toolkit<3.1.0,>=3.0.41->ipython>=7.23.1->ipykernel) (0.2.14)\n", + "Requirement already satisfied: parso<0.9.0,>=0.8.4 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jedi>=0.18.1->ipython>=7.23.1->ipykernel) (0.8.5)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-client>=8.0.0->ipykernel) (2.9.0.post0)\n", + "Requirement already satisfied: platformdirs>=2.5 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-core!=5.0.*,>=4.12->ipykernel) (4.5.0)\n", + "Requirement already satisfied: six>=1.5 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from python-dateutil>=2.8.2->jupyter-client>=8.0.0->ipykernel) (1.17.0)\n", + "Requirement already satisfied: executing>=1.2.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data>=0.6.0->ipython>=7.23.1->ipykernel) (2.2.1)\n", + "Requirement already satisfied: asttokens>=2.1.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data>=0.6.0->ipython>=7.23.1->ipykernel) (3.0.0)\n", + "Requirement already satisfied: pure-eval in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data>=0.6.0->ipython>=7.23.1->ipykernel) (0.2.3)\n", "Note: you may need to restart the kernel to use updated packages.\n" ] } @@ -182,53 +187,50 @@ "name": "stdout", "output_type": "stream", "text": [ - "Collecting pdf2image\n", - " Using cached pdf2image-1.17.0-py3-none-any.whl.metadata (6.2 kB)\n", - "Requirement already satisfied: pillow in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (12.0.0)\n", - "Using cached pdf2image-1.17.0-py3-none-any.whl (11 kB)\n", - "Installing collected packages: pdf2image\n", - "Successfully installed pdf2image-1.17.0\n", + "Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n", + "Requirement already satisfied: pdf2image in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (1.17.0)\n", + "Requirement already satisfied: pillow in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (12.0.0)\n", "Note: you may need to restart the kernel to use updated packages.\n", - "Collecting PyMuPDF\n", - " Using cached pymupdf-1.26.6-cp310-abi3-win_amd64.whl.metadata (3.4 kB)\n", - "Using cached pymupdf-1.26.6-cp310-abi3-win_amd64.whl (18.4 MB)\n", - "Installing collected packages: PyMuPDF\n", - "Successfully installed PyMuPDF-1.26.6\n", + "Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n", + "Requirement already satisfied: PyMuPDF in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (1.26.6)\n", "Note: you may need to restart the kernel to use updated packages.\n", - "Requirement already satisfied: pandas in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (2.3.3)\n", - "Requirement already satisfied: numpy>=1.23.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pandas) (2.3.5)\n", - "Requirement already satisfied: python-dateutil>=2.8.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pandas) (2.9.0.post0)\n", - "Requirement already satisfied: pytz>=2020.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pandas) (2025.2)\n", - "Requirement already satisfied: tzdata>=2022.7 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pandas) (2025.2)\n", - "Requirement already satisfied: six>=1.5 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from python-dateutil>=2.8.2->pandas) (1.17.0)\n", + "Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n", + "Requirement already satisfied: pandas in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (2.3.3)\n", + "Requirement already satisfied: numpy>=1.23.2 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pandas) (2.3.4)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pandas) (2.9.0.post0)\n", + "Requirement already satisfied: pytz>=2020.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pandas) (2025.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pandas) (2025.2)\n", + "Requirement already satisfied: six>=1.5 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from python-dateutil>=2.8.2->pandas) (1.17.0)\n", "Note: you may need to restart the kernel to use updated packages.\n", - "Requirement already satisfied: matplotlib in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (3.10.7)\n", - "Requirement already satisfied: contourpy>=1.0.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (1.3.3)\n", - "Requirement already satisfied: cycler>=0.10 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (0.12.1)\n", - "Requirement already satisfied: fonttools>=4.22.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (4.61.0)\n", - "Requirement already satisfied: kiwisolver>=1.3.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (1.4.9)\n", - "Requirement already satisfied: numpy>=1.23 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (2.3.5)\n", - "Requirement already satisfied: packaging>=20.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (25.0)\n", - "Requirement already satisfied: pillow>=8 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (12.0.0)\n", - "Requirement already satisfied: pyparsing>=3 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (3.2.5)\n", - "Requirement already satisfied: python-dateutil>=2.7 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (2.9.0.post0)\n", - "Requirement already satisfied: six>=1.5 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from python-dateutil>=2.7->matplotlib) (1.17.0)\n", + "Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n", + "Requirement already satisfied: matplotlib in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (3.10.7)\n", + "Requirement already satisfied: contourpy>=1.0.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (1.3.3)\n", + "Requirement already satisfied: cycler>=0.10 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (4.60.1)\n", + "Requirement already satisfied: kiwisolver>=1.3.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (1.4.9)\n", + "Requirement already satisfied: numpy>=1.23 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (2.3.4)\n", + "Requirement already satisfied: packaging>=20.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (25.0)\n", + "Requirement already satisfied: pillow>=8 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (12.0.0)\n", + "Requirement already satisfied: pyparsing>=3 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (3.2.5)\n", + "Requirement already satisfied: python-dateutil>=2.7 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (2.9.0.post0)\n", + "Requirement already satisfied: six>=1.5 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from python-dateutil>=2.7->matplotlib) (1.17.0)\n", "Note: you may need to restart the kernel to use updated packages.\n", - "Requirement already satisfied: seaborn in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (0.13.2)\n", - "Requirement already satisfied: numpy!=1.24.0,>=1.20 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from seaborn) (2.3.5)\n", - "Requirement already satisfied: pandas>=1.2 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from seaborn) (2.3.3)\n", - "Requirement already satisfied: matplotlib!=3.6.1,>=3.4 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from seaborn) (3.10.7)\n", - "Requirement already satisfied: contourpy>=1.0.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (1.3.3)\n", - "Requirement already satisfied: cycler>=0.10 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (0.12.1)\n", - "Requirement already satisfied: fonttools>=4.22.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (4.61.0)\n", - "Requirement already satisfied: kiwisolver>=1.3.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (1.4.9)\n", - "Requirement already satisfied: packaging>=20.0 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (25.0)\n", - "Requirement already satisfied: pillow>=8 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (12.0.0)\n", - "Requirement already satisfied: pyparsing>=3 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (3.2.5)\n", - "Requirement already satisfied: python-dateutil>=2.7 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (2.9.0.post0)\n", - "Requirement already satisfied: pytz>=2020.1 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pandas>=1.2->seaborn) (2025.2)\n", - "Requirement already satisfied: tzdata>=2022.7 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pandas>=1.2->seaborn) (2025.2)\n", - "Requirement already satisfied: six>=1.5 in c:\\users\\sergio\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from python-dateutil>=2.7->matplotlib!=3.6.1,>=3.4->seaborn) (1.17.0)\n", + "Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n", + "Requirement already satisfied: seaborn in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (0.13.2)\n", + "Requirement already satisfied: numpy!=1.24.0,>=1.20 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from seaborn) (2.3.4)\n", + "Requirement already satisfied: pandas>=1.2 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from seaborn) (2.3.3)\n", + "Requirement already satisfied: matplotlib!=3.6.1,>=3.4 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from seaborn) (3.10.7)\n", + "Requirement already satisfied: contourpy>=1.0.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (1.3.3)\n", + "Requirement already satisfied: cycler>=0.10 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (4.60.1)\n", + "Requirement already satisfied: kiwisolver>=1.3.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (1.4.9)\n", + "Requirement already satisfied: packaging>=20.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (25.0)\n", + "Requirement already satisfied: pillow>=8 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (12.0.0)\n", + "Requirement already satisfied: pyparsing>=3 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (3.2.5)\n", + "Requirement already satisfied: python-dateutil>=2.7 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (2.9.0.post0)\n", + "Requirement already satisfied: pytz>=2020.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pandas>=1.2->seaborn) (2025.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pandas>=1.2->seaborn) (2025.2)\n", + "Requirement already satisfied: six>=1.5 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from python-dateutil>=2.7->matplotlib!=3.6.1,>=3.4->seaborn) (1.17.0)\n", "Note: you may need to restart the kernel to use updated packages.\n" ] } @@ -423,7 +425,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 6, "id": "9f64a8c0", "metadata": {}, "outputs": [], @@ -436,7 +438,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 7, "id": "41e4651d", "metadata": {}, "outputs": [],