eassyocr doctr
Some checks failed
build_docker / build_easyocr (linux/amd64) (push) Has been cancelled
build_docker / build_easyocr (linux/arm64) (push) Has been cancelled
build_docker / build_doctr (linux/amd64) (push) Has been cancelled
build_docker / essential (push) Successful in 1s
build_docker / essential (pull_request) Successful in 1s
build_docker / build_gpu (linux/amd64) (push) Has been cancelled
build_docker / build_gpu (linux/arm64) (push) Has been cancelled
build_docker / manifest_cpu (push) Has been cancelled
build_docker / manifest_gpu (push) Has been cancelled
build_docker / build_cpu (linux/amd64) (push) Has been cancelled
build_docker / build_doctr (linux/arm64) (push) Has been cancelled
build_docker / manifest_easyocr (push) Has been cancelled
build_docker / manifest_doctr (push) Has been cancelled
build_docker / build_cpu (linux/arm64) (push) Has been cancelled
build_docker / build_cpu (linux/amd64) (pull_request) Successful in 4m56s
build_docker / build_gpu (linux/amd64) (pull_request) Has been cancelled
build_docker / build_gpu (linux/arm64) (pull_request) Has been cancelled
build_docker / manifest_cpu (pull_request) Has been cancelled
build_docker / manifest_gpu (pull_request) Has been cancelled
build_docker / build_easyocr (linux/amd64) (pull_request) Has been cancelled
build_docker / build_easyocr (linux/arm64) (pull_request) Has been cancelled
build_docker / build_doctr (linux/amd64) (pull_request) Has been cancelled
build_docker / build_doctr (linux/arm64) (pull_request) Has been cancelled
build_docker / manifest_easyocr (pull_request) Has been cancelled
build_docker / manifest_doctr (pull_request) Has been cancelled
build_docker / build_cpu (linux/arm64) (pull_request) Has been cancelled
Some checks failed
build_docker / build_easyocr (linux/amd64) (push) Has been cancelled
build_docker / build_easyocr (linux/arm64) (push) Has been cancelled
build_docker / build_doctr (linux/amd64) (push) Has been cancelled
build_docker / essential (push) Successful in 1s
build_docker / essential (pull_request) Successful in 1s
build_docker / build_gpu (linux/amd64) (push) Has been cancelled
build_docker / build_gpu (linux/arm64) (push) Has been cancelled
build_docker / manifest_cpu (push) Has been cancelled
build_docker / manifest_gpu (push) Has been cancelled
build_docker / build_cpu (linux/amd64) (push) Has been cancelled
build_docker / build_doctr (linux/arm64) (push) Has been cancelled
build_docker / manifest_easyocr (push) Has been cancelled
build_docker / manifest_doctr (push) Has been cancelled
build_docker / build_cpu (linux/arm64) (push) Has been cancelled
build_docker / build_cpu (linux/amd64) (pull_request) Successful in 4m56s
build_docker / build_gpu (linux/amd64) (pull_request) Has been cancelled
build_docker / build_gpu (linux/arm64) (pull_request) Has been cancelled
build_docker / manifest_cpu (pull_request) Has been cancelled
build_docker / manifest_gpu (pull_request) Has been cancelled
build_docker / build_easyocr (linux/amd64) (pull_request) Has been cancelled
build_docker / build_easyocr (linux/arm64) (pull_request) Has been cancelled
build_docker / build_doctr (linux/amd64) (pull_request) Has been cancelled
build_docker / build_doctr (linux/arm64) (pull_request) Has been cancelled
build_docker / manifest_easyocr (pull_request) Has been cancelled
build_docker / manifest_doctr (pull_request) Has been cancelled
build_docker / build_cpu (linux/arm64) (pull_request) Has been cancelled
This commit is contained in:
322
src/doctr_service/doctr_tuning_rest.py
Normal file
322
src/doctr_service/doctr_tuning_rest.py
Normal file
@@ -0,0 +1,322 @@
|
||||
# doctr_tuning_rest.py
|
||||
# FastAPI REST service for DocTR hyperparameter evaluation
|
||||
# Usage: uvicorn doctr_tuning_rest:app --host 0.0.0.0 --port 8000
|
||||
|
||||
import os
|
||||
import re
|
||||
import time
|
||||
from typing import Optional
|
||||
from contextlib import asynccontextmanager
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from fastapi import FastAPI, HTTPException
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from doctr.models import ocr_predictor
|
||||
from jiwer import wer, cer
|
||||
from dataset_manager import ImageTextDataset
|
||||
|
||||
|
||||
def get_gpu_info() -> dict:
|
||||
"""Get GPU status information from PyTorch."""
|
||||
info = {
|
||||
"cuda_available": torch.cuda.is_available(),
|
||||
"device": "cuda" if torch.cuda.is_available() else "cpu",
|
||||
"gpu_count": 0,
|
||||
"gpu_name": None,
|
||||
"gpu_memory_total": None,
|
||||
"gpu_memory_used": None,
|
||||
}
|
||||
|
||||
if info["cuda_available"]:
|
||||
try:
|
||||
info["gpu_count"] = torch.cuda.device_count()
|
||||
if info["gpu_count"] > 0:
|
||||
info["gpu_name"] = torch.cuda.get_device_name(0)
|
||||
info["gpu_memory_total"] = f"{torch.cuda.get_device_properties(0).total_memory / (1024**3):.2f} GB"
|
||||
info["gpu_memory_used"] = f"{torch.cuda.memory_allocated(0) / (1024**3):.2f} GB"
|
||||
except Exception as e:
|
||||
info["gpu_error"] = str(e)
|
||||
|
||||
return info
|
||||
|
||||
|
||||
# Model configuration via environment variables
|
||||
DEFAULT_DET_ARCH = os.environ.get("DOCTR_DET_ARCH", "db_resnet50")
|
||||
DEFAULT_RECO_ARCH = os.environ.get("DOCTR_RECO_ARCH", "crnn_vgg16_bn")
|
||||
|
||||
|
||||
# Global state for model and dataset
|
||||
class AppState:
|
||||
model: Optional[object] = None
|
||||
dataset: Optional[ImageTextDataset] = None
|
||||
dataset_path: Optional[str] = None
|
||||
det_arch: str = DEFAULT_DET_ARCH
|
||||
reco_arch: str = DEFAULT_RECO_ARCH
|
||||
# Track current model config for cache invalidation
|
||||
current_config: Optional[dict] = None
|
||||
device: str = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
|
||||
state = AppState()
|
||||
|
||||
|
||||
def create_model(
|
||||
assume_straight_pages: bool = True,
|
||||
straighten_pages: bool = False,
|
||||
preserve_aspect_ratio: bool = True,
|
||||
symmetric_pad: bool = True,
|
||||
disable_page_orientation: bool = False,
|
||||
disable_crop_orientation: bool = False,
|
||||
) -> object:
|
||||
"""Create DocTR model with given configuration."""
|
||||
model = ocr_predictor(
|
||||
det_arch=state.det_arch,
|
||||
reco_arch=state.reco_arch,
|
||||
pretrained=True,
|
||||
assume_straight_pages=assume_straight_pages,
|
||||
straighten_pages=straighten_pages,
|
||||
preserve_aspect_ratio=preserve_aspect_ratio,
|
||||
symmetric_pad=symmetric_pad,
|
||||
)
|
||||
|
||||
# Apply orientation settings if supported
|
||||
if hasattr(model, 'disable_page_orientation'):
|
||||
model.disable_page_orientation = disable_page_orientation
|
||||
if hasattr(model, 'disable_crop_orientation'):
|
||||
model.disable_crop_orientation = disable_crop_orientation
|
||||
|
||||
# Move to GPU if available
|
||||
if state.device == "cuda":
|
||||
model = model.cuda()
|
||||
|
||||
return model
|
||||
|
||||
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: FastAPI):
|
||||
"""Load DocTR model at startup with default configuration."""
|
||||
gpu_info = get_gpu_info()
|
||||
print("=" * 50)
|
||||
print("GPU STATUS")
|
||||
print("=" * 50)
|
||||
print(f" CUDA available: {gpu_info['cuda_available']}")
|
||||
print(f" Device: {gpu_info['device']}")
|
||||
if gpu_info['cuda_available']:
|
||||
print(f" GPU count: {gpu_info['gpu_count']}")
|
||||
print(f" GPU name: {gpu_info['gpu_name']}")
|
||||
print(f" GPU memory total: {gpu_info['gpu_memory_total']}")
|
||||
print("=" * 50)
|
||||
|
||||
print(f"Loading DocTR models...")
|
||||
print(f" Detection: {state.det_arch}")
|
||||
print(f" Recognition: {state.reco_arch}")
|
||||
|
||||
# Load with default config
|
||||
state.model = create_model()
|
||||
state.current_config = {
|
||||
"assume_straight_pages": True,
|
||||
"straighten_pages": False,
|
||||
"preserve_aspect_ratio": True,
|
||||
"symmetric_pad": True,
|
||||
"disable_page_orientation": False,
|
||||
"disable_crop_orientation": False,
|
||||
}
|
||||
|
||||
if gpu_info['cuda_available']:
|
||||
gpu_after = get_gpu_info()
|
||||
print(f" GPU memory after load: {gpu_after.get('gpu_memory_used', 'N/A')}")
|
||||
|
||||
print("Model loaded successfully!")
|
||||
yield
|
||||
state.model = None
|
||||
state.dataset = None
|
||||
|
||||
|
||||
app = FastAPI(
|
||||
title="DocTR Tuning API",
|
||||
description="REST API for DocTR hyperparameter evaluation",
|
||||
version="1.0.0",
|
||||
lifespan=lifespan,
|
||||
)
|
||||
|
||||
|
||||
class EvaluateRequest(BaseModel):
|
||||
"""Request schema with all tunable DocTR hyperparameters."""
|
||||
pdf_folder: str = Field("/app/dataset", description="Path to dataset folder")
|
||||
|
||||
# Processing flags (require model reinit)
|
||||
assume_straight_pages: bool = Field(True, description="Skip rotation handling for straight documents")
|
||||
straighten_pages: bool = Field(False, description="Pre-straighten pages before detection")
|
||||
preserve_aspect_ratio: bool = Field(True, description="Maintain document proportions during resize")
|
||||
symmetric_pad: bool = Field(True, description="Use symmetric padding when preserving aspect ratio")
|
||||
|
||||
# Orientation flags
|
||||
disable_page_orientation: bool = Field(False, description="Skip page orientation classification")
|
||||
disable_crop_orientation: bool = Field(False, description="Skip crop orientation detection")
|
||||
|
||||
# Output grouping
|
||||
resolve_lines: bool = Field(True, description="Group words into lines")
|
||||
resolve_blocks: bool = Field(False, description="Group lines into blocks")
|
||||
paragraph_break: float = Field(0.035, ge=0.0, le=1.0, description="Minimum space ratio separating paragraphs")
|
||||
|
||||
# Page range
|
||||
start_page: int = Field(5, ge=0, description="Start page index (inclusive)")
|
||||
end_page: int = Field(10, ge=1, description="End page index (exclusive)")
|
||||
|
||||
|
||||
class EvaluateResponse(BaseModel):
|
||||
"""Response schema matching CLI output."""
|
||||
CER: float
|
||||
WER: float
|
||||
TIME: float
|
||||
PAGES: int
|
||||
TIME_PER_PAGE: float
|
||||
model_reinitialized: bool = False
|
||||
|
||||
|
||||
class HealthResponse(BaseModel):
|
||||
status: str
|
||||
model_loaded: bool
|
||||
dataset_loaded: bool
|
||||
dataset_size: Optional[int] = None
|
||||
det_arch: Optional[str] = None
|
||||
reco_arch: Optional[str] = None
|
||||
cuda_available: Optional[bool] = None
|
||||
device: Optional[str] = None
|
||||
gpu_name: Optional[str] = None
|
||||
gpu_memory_used: Optional[str] = None
|
||||
gpu_memory_total: Optional[str] = None
|
||||
|
||||
|
||||
def doctr_result_to_text(result, resolve_lines: bool = True, resolve_blocks: bool = False) -> str:
|
||||
"""
|
||||
Convert DocTR result to plain text.
|
||||
Structure: Document -> pages -> blocks -> lines -> words
|
||||
"""
|
||||
lines = []
|
||||
for page in result.pages:
|
||||
for block in page.blocks:
|
||||
for line in block.lines:
|
||||
line_text = " ".join([w.value for w in line.words])
|
||||
lines.append(line_text)
|
||||
if resolve_blocks:
|
||||
lines.append("") # paragraph separator
|
||||
|
||||
text = " ".join([l for l in lines if l]).strip()
|
||||
text = re.sub(r"\s+", " ", text).strip()
|
||||
return text
|
||||
|
||||
|
||||
def evaluate_text(reference: str, prediction: str) -> dict:
|
||||
"""Calculate WER and CER metrics."""
|
||||
return {"WER": wer(reference, prediction), "CER": cer(reference, prediction)}
|
||||
|
||||
|
||||
@app.get("/health", response_model=HealthResponse)
|
||||
def health_check():
|
||||
"""Check if the service is ready."""
|
||||
gpu_info = get_gpu_info()
|
||||
return HealthResponse(
|
||||
status="ok" if state.model is not None else "initializing",
|
||||
model_loaded=state.model is not None,
|
||||
dataset_loaded=state.dataset is not None,
|
||||
dataset_size=len(state.dataset) if state.dataset else None,
|
||||
det_arch=state.det_arch,
|
||||
reco_arch=state.reco_arch,
|
||||
cuda_available=gpu_info.get("cuda_available"),
|
||||
device=gpu_info.get("device"),
|
||||
gpu_name=gpu_info.get("gpu_name"),
|
||||
gpu_memory_used=gpu_info.get("gpu_memory_used"),
|
||||
gpu_memory_total=gpu_info.get("gpu_memory_total"),
|
||||
)
|
||||
|
||||
|
||||
@app.post("/evaluate", response_model=EvaluateResponse)
|
||||
def evaluate(request: EvaluateRequest):
|
||||
"""
|
||||
Evaluate OCR with given hyperparameters.
|
||||
Returns CER, WER, and timing metrics.
|
||||
Note: Model will be reinitialized if processing flags change.
|
||||
"""
|
||||
if state.model is None:
|
||||
raise HTTPException(status_code=503, detail="Model not loaded yet")
|
||||
|
||||
# Load or reload dataset if path changed
|
||||
if state.dataset is None or state.dataset_path != request.pdf_folder:
|
||||
if not os.path.isdir(request.pdf_folder):
|
||||
raise HTTPException(status_code=400, detail=f"Dataset folder not found: {request.pdf_folder}")
|
||||
state.dataset = ImageTextDataset(request.pdf_folder)
|
||||
state.dataset_path = request.pdf_folder
|
||||
|
||||
if len(state.dataset) == 0:
|
||||
raise HTTPException(status_code=400, detail="Dataset is empty")
|
||||
|
||||
# Check if model needs to be reinitialized
|
||||
new_config = {
|
||||
"assume_straight_pages": request.assume_straight_pages,
|
||||
"straighten_pages": request.straighten_pages,
|
||||
"preserve_aspect_ratio": request.preserve_aspect_ratio,
|
||||
"symmetric_pad": request.symmetric_pad,
|
||||
"disable_page_orientation": request.disable_page_orientation,
|
||||
"disable_crop_orientation": request.disable_crop_orientation,
|
||||
}
|
||||
|
||||
model_reinitialized = False
|
||||
if state.current_config != new_config:
|
||||
print(f"Model config changed, reinitializing...")
|
||||
state.model = create_model(**new_config)
|
||||
state.current_config = new_config
|
||||
model_reinitialized = True
|
||||
|
||||
# Validate page range
|
||||
start = request.start_page
|
||||
end = min(request.end_page, len(state.dataset))
|
||||
if start >= end:
|
||||
raise HTTPException(status_code=400, detail=f"Invalid page range: {start}-{end}")
|
||||
|
||||
cer_list, wer_list = [], []
|
||||
time_per_page_list = []
|
||||
t0 = time.time()
|
||||
|
||||
for idx in range(start, end):
|
||||
img, ref = state.dataset[idx]
|
||||
arr = np.array(img)
|
||||
|
||||
tp0 = time.time()
|
||||
# DocTR expects a list of images
|
||||
result = state.model([arr])
|
||||
|
||||
pred = doctr_result_to_text(
|
||||
result,
|
||||
resolve_lines=request.resolve_lines,
|
||||
resolve_blocks=request.resolve_blocks,
|
||||
)
|
||||
time_per_page_list.append(float(time.time() - tp0))
|
||||
|
||||
m = evaluate_text(ref, pred)
|
||||
cer_list.append(m["CER"])
|
||||
wer_list.append(m["WER"])
|
||||
|
||||
return EvaluateResponse(
|
||||
CER=float(np.mean(cer_list)) if cer_list else 1.0,
|
||||
WER=float(np.mean(wer_list)) if wer_list else 1.0,
|
||||
TIME=float(time.time() - t0),
|
||||
PAGES=len(cer_list),
|
||||
TIME_PER_PAGE=float(np.mean(time_per_page_list)) if time_per_page_list else 0.0,
|
||||
model_reinitialized=model_reinitialized,
|
||||
)
|
||||
|
||||
|
||||
@app.post("/evaluate_full", response_model=EvaluateResponse)
|
||||
def evaluate_full(request: EvaluateRequest):
|
||||
"""Evaluate on ALL pages (ignores start_page/end_page)."""
|
||||
request.start_page = 0
|
||||
request.end_page = 9999
|
||||
return evaluate(request)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import uvicorn
|
||||
uvicorn.run(app, host="0.0.0.0", port=8000)
|
||||
Reference in New Issue
Block a user