deliverable_12_11_2025 (#3)

This commit is contained in:
2025-11-17 10:52:00 +00:00
parent d823f195d6
commit 6d6bebfed9
8 changed files with 3158 additions and 139 deletions

251
paddle_ocr_tuning.py Normal file
View File

@@ -0,0 +1,251 @@
# Imports
import argparse, json, os, sys, time
from typing import List
import numpy as np
from PIL import Image
import fitz # PyMuPDF
from paddleocr import PaddleOCR
import re
from jiwer import wer, cer
def export_config(paddleocr_model):
yaml_path = "paddleocr_pipeline_dump.yaml"
paddleocr_model.export_paddlex_config_to_yaml(yaml_path)
print("Exported:", yaml_path)
def pdf_to_images(pdf_path: str, dpi: int = 300, pages: List[int] = None) -> List[Image.Image]:
"""
Render a PDF into a list of PIL Images using PyMuPDF or pdf2image.
'pages' is 1-based (e.g., range(1, 10) -> pages 19).
"""
images = []
if fitz is not None:
doc = fitz.open(pdf_path)
total_pages = len(doc)
# Adjust page indices (PyMuPDF uses 0-based indexing)
if pages is None:
page_indices = list(range(total_pages))
else:
# Filter out invalid pages and convert to 0-based
page_indices = [p - 1 for p in pages if 1 <= p <= total_pages]
for i in page_indices:
page = doc.load_page(i)
mat = fitz.Matrix(dpi / 72.0, dpi / 72.0)
pix = page.get_pixmap(matrix=mat, alpha=False)
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
images.append(img)
doc.close()
else:
raise RuntimeError("Install PyMuPDF or pdf2image to convert PDFs.")
return images
def pdf_extract_text(pdf_path, page_num, line_tolerance=15) -> str:
"""
Extracts text from a specific PDF page in proper reading order.
Adds '\n' when blocks are vertically separated more than line_tolerance.
Removes bullet-like characters (, •, ▪, etc.).
"""
doc = fitz.open(pdf_path)
if page_num < 1 or page_num > len(doc):
return ""
page = doc[page_num - 1]
blocks = page.get_text("blocks") # (x0, y0, x1, y1, text, block_no, block_type)
# Sort blocks: top-to-bottom, left-to-right
blocks_sorted = sorted(blocks, key=lambda b: (b[1], b[0]))
text_lines = []
last_y = None
for b in blocks_sorted:
y0 = b[1]
text_block = b[4].strip()
# Remove bullet-like characters
text_block = re.sub(r"[•▪◦●❖▶■]", "", text_block)
# If new line (based on vertical gap)
if last_y is not None and abs(y0 - last_y) > line_tolerance:
text_lines.append("") # blank line for spacing
text_lines.append(text_block.strip())
last_y = y0
# Join all lines with real newlines
text = "\n".join(text_lines)
# Normalize spaces
text = re.sub(r"\s*\n\s*", "\n", text).strip() # remove spaces around newlines
text = re.sub(r" +", " ", text).strip() # collapse multiple spaces to one
text = re.sub(r"\n{3,}", "\n\n", text).strip() # avoid triple blank lines
doc.close()
return text
def evaluate_text(reference, prediction):
return {'WER': wer(reference, prediction), 'CER': cer(reference, prediction)}
def _normalize_box_xyxy(box):
"""
Accepts:
- [[x,y],[x,y],[x,y],[x,y]] (quad)
- [x0, y0, x1, y1] (flat)
- [x0, y0, x1, y1, x2, y2, x3, y3] (flat quad)
Returns (x0, y0, x1, y1)
"""
# Quad as list of points?
if isinstance(box, (list, tuple)) and box and isinstance(box[0], (list, tuple)):
xs = [p[0] for p in box]
ys = [p[1] for p in box]
return min(xs), min(ys), max(xs), max(ys)
# Flat list
if isinstance(box, (list, tuple)):
if len(box) == 4:
x0, y0, x1, y1 = box
# ensure order
return min(x0, x1), min(y0, y1), max(x0, x1), max(y0, y1)
if len(box) == 8:
xs = box[0::2]
ys = box[1::2]
return min(xs), min(ys), max(xs), max(ys)
# Fallback
raise ValueError(f"Unrecognized box format: {box!r}")
def assemble_from_paddle_result(paddleocr_predict, min_score=0.0, line_tol_factor=0.6):
"""
Robust line grouping for PaddleOCR outputs:
- normalizes boxes to (x0,y0,x1,y1)
- adaptive line tolerance based on median box height
- optional confidence filter
- inserts '\n' between lines and preserves left→right order
"""
result = paddleocr_predict
boxes_all = [] # (x0, y0, x1, y1, y_mid, text, score)
for item in result:
res = item.json.get("res", {})
boxes = res.get("rec_boxes", []) or [] # be defensive
texts = res.get("rec_texts", []) or []
scores = res.get("rec_scores", None)
for i, (box, text) in enumerate(zip(boxes, texts)):
try:
x0, y0, x1, y1 = _normalize_box_xyxy(box)
except Exception:
# Skip weird boxes gracefully
continue
y_mid = 0.5 * (y0 + y1)
score = float(scores[i]) if (scores is not None and i < len(scores)) else 1.0
t = re.sub(r"\s+", " ", str(text)).strip()
if not t:
continue
boxes_all.append((x0, y0, x1, y1, y_mid, t, score))
if min_score > 0:
boxes_all = [b for b in boxes_all if b[6] >= min_score]
if not boxes_all:
return ""
# Adaptive line tolerance
heights = [b[3] - b[1] for b in boxes_all]
median_h = float(np.median(heights)) if heights else 20.0
line_tol = max(8.0, line_tol_factor * median_h)
# Sort by vertical mid, then x0
boxes_all.sort(key=lambda b: (b[4], b[0]))
# Group into lines
lines, cur, last_y = [], [], None
for x0, y0, x1, y1, y_mid, text, score in boxes_all:
if last_y is None or abs(y_mid - last_y) <= line_tol:
cur.append((x0, text))
else:
cur.sort(key=lambda t: t[0])
lines.append(" ".join(t[1] for t in cur))
cur = [(x0, text)]
last_y = y_mid
if cur:
cur.sort(key=lambda t: t[0])
lines.append(" ".join(t[1] for t in cur))
res = "\n".join(lines)
res = re.sub(r"\s+\n", "\n", res).strip()
return res
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--pdf-folder", required=True)
parser.add_argument("--dpi", type=int, default=300)
parser.add_argument("--textline-orientation", type=lambda s: s.lower()=="true", default=True)
parser.add_argument("--text-det-box-thresh", type=float, default=0.6)
parser.add_argument("--text-det-unclip-ratio", type=float, default=1.5)
parser.add_argument("--text-rec-score-thresh", type=float, default=0.0)
parser.add_argument("--line-tolerance", type=float, default=0.6)
parser.add_argument("--min-box-score", type=float, default=0.0)
parser.add_argument("--pages-per-pdf", type=int, default=2)
parser.add_argument("--lang", default="es")
args = parser.parse_args()
ocr = PaddleOCR(
text_detection_model_name="PP-OCRv5_server_det",
text_recognition_model_name="PP-OCRv5_server_rec",
lang=args.lang,
)
cer_list, wer_list = [], []
time_per_page_list = []
t0 = time.time()
for fname in os.listdir(args.pdf_folder):
if not fname.lower().endswith(".pdf"):
continue
pdf_path = os.path.join(args.pdf_folder, fname)
images = pdf_to_images(pdf_path, dpi=args.dpi, pages=range(1, args.pages_per_pdf+1))
for i, img in enumerate(images):
ref = pdf_extract_text(pdf_path, i+1)
arr = np.array(img)
tp0 = time.time()
out = ocr.predict(
arr,
text_det_box_thresh=args.text_det_box_thresh,
text_det_unclip_ratio=args.text_det_unclip_ratio,
text_rec_score_thresh=args.text_rec_score_thresh,
use_textline_orientation=args.textline_orientation
)
pred = assemble_from_paddle_result(out, args.min_box_score, args.line_tolerance)
time_per_page_list.append(float(time.time() - tp0))
m = evaluate_text(ref, pred)
cer_list.append(m["CER"])
wer_list.append(m["WER"])
metrics = {
"CER": float(np.mean(cer_list) if cer_list else 1.0),
"WER": float(np.mean(wer_list) if wer_list else 1.0),
"TIME": float(time.time() - t0),
"PAGES": int(len(cer_list)),
"TIME_PER_PAGE": float(np.mean(time_per_page_list) if time_per_page_list else float(time.time() - t0)),
}
print(json.dumps(metrics))
if __name__ == "__main__":
main()