ray rune process optimization
This commit is contained in:
@@ -1,95 +1,16 @@
|
||||
# Imports
|
||||
import argparse, json, os, sys, time
|
||||
from typing import List
|
||||
import argparse, json, time, re
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
import fitz # PyMuPDF
|
||||
from paddleocr import PaddleOCR
|
||||
import re
|
||||
from jiwer import wer, cer
|
||||
from dataset_manager import ImageTextDataset
|
||||
from itertools import islice
|
||||
|
||||
def export_config(paddleocr_model):
|
||||
yaml_path = "paddleocr_pipeline_dump.yaml"
|
||||
paddleocr_model.export_paddlex_config_to_yaml(yaml_path)
|
||||
print("Exported:", yaml_path)
|
||||
|
||||
def pdf_to_images(pdf_path: str, dpi: int = 300, pages: List[int] = None) -> List[Image.Image]:
|
||||
"""
|
||||
Render a PDF into a list of PIL Images using PyMuPDF or pdf2image.
|
||||
'pages' is 1-based (e.g., range(1, 10) -> pages 1–9).
|
||||
"""
|
||||
images = []
|
||||
|
||||
if fitz is not None:
|
||||
doc = fitz.open(pdf_path)
|
||||
total_pages = len(doc)
|
||||
|
||||
# Adjust page indices (PyMuPDF uses 0-based indexing)
|
||||
if pages is None:
|
||||
page_indices = list(range(total_pages))
|
||||
else:
|
||||
# Filter out invalid pages and convert to 0-based
|
||||
page_indices = [p - 1 for p in pages if 1 <= p <= total_pages]
|
||||
|
||||
for i in page_indices:
|
||||
page = doc.load_page(i)
|
||||
mat = fitz.Matrix(dpi / 72.0, dpi / 72.0)
|
||||
pix = page.get_pixmap(matrix=mat, alpha=False)
|
||||
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
||||
|
||||
images.append(img)
|
||||
doc.close()
|
||||
else:
|
||||
raise RuntimeError("Install PyMuPDF or pdf2image to convert PDFs.")
|
||||
|
||||
return images
|
||||
|
||||
|
||||
def pdf_extract_text(pdf_path, page_num, line_tolerance=15) -> str:
|
||||
"""
|
||||
Extracts text from a specific PDF page in proper reading order.
|
||||
Adds '\n' when blocks are vertically separated more than line_tolerance.
|
||||
Removes bullet-like characters (, •, ▪, etc.).
|
||||
"""
|
||||
doc = fitz.open(pdf_path)
|
||||
|
||||
if page_num < 1 or page_num > len(doc):
|
||||
return ""
|
||||
|
||||
page = doc[page_num - 1]
|
||||
blocks = page.get_text("blocks") # (x0, y0, x1, y1, text, block_no, block_type)
|
||||
|
||||
# Sort blocks: top-to-bottom, left-to-right
|
||||
blocks_sorted = sorted(blocks, key=lambda b: (b[1], b[0]))
|
||||
|
||||
text_lines = []
|
||||
last_y = None
|
||||
|
||||
for b in blocks_sorted:
|
||||
y0 = b[1]
|
||||
text_block = b[4].strip()
|
||||
|
||||
# Remove bullet-like characters
|
||||
text_block = re.sub(r"[•▪◦●❖▶■]", "", text_block)
|
||||
|
||||
# If new line (based on vertical gap)
|
||||
if last_y is not None and abs(y0 - last_y) > line_tolerance:
|
||||
text_lines.append("") # blank line for spacing
|
||||
|
||||
text_lines.append(text_block.strip())
|
||||
last_y = y0
|
||||
|
||||
# Join all lines with real newlines
|
||||
text = "\n".join(text_lines)
|
||||
|
||||
# Normalize spaces
|
||||
text = re.sub(r"\s*\n\s*", "\n", text).strip() # remove spaces around newlines
|
||||
text = re.sub(r" +", " ", text).strip() # collapse multiple spaces to one
|
||||
text = re.sub(r"\n{3,}", "\n\n", text).strip() # avoid triple blank lines
|
||||
|
||||
doc.close()
|
||||
return text
|
||||
|
||||
def evaluate_text(reference, prediction):
|
||||
return {'WER': wer(reference, prediction), 'CER': cer(reference, prediction)}
|
||||
|
||||
@@ -189,18 +110,15 @@ def assemble_from_paddle_result(paddleocr_predict, min_score=0.0, line_tol_facto
|
||||
|
||||
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--pdf-folder", required=True)
|
||||
parser.add_argument("--dpi", type=int, default=300)
|
||||
parser.add_argument("--textline-orientation", type=lambda s: s.lower()=="true", default=True)
|
||||
parser.add_argument("--text-det-box-thresh", type=float, default=0.6)
|
||||
parser.add_argument("--text-det-unclip-ratio", type=float, default=1.5)
|
||||
parser.add_argument("--text-rec-score-thresh", type=float, default=0.0)
|
||||
parser.add_argument("--line-tolerance", type=float, default=0.6)
|
||||
parser.add_argument("--min-box-score", type=float, default=0.0)
|
||||
parser.add_argument("--pages-per-pdf", type=int, default=2)
|
||||
parser.add_argument("--lang", default="es")
|
||||
args = parser.parse_args()
|
||||
|
||||
@@ -211,32 +129,27 @@ def main():
|
||||
text_recognition_model_name="PP-OCRv5_server_rec",
|
||||
lang=args.lang,
|
||||
)
|
||||
|
||||
|
||||
dataset = ImageTextDataset(args.pdf_folder)
|
||||
cer_list, wer_list = [], []
|
||||
time_per_page_list = []
|
||||
t0 = time.time()
|
||||
|
||||
for fname in os.listdir(args.pdf_folder):
|
||||
if not fname.lower().endswith(".pdf"):
|
||||
continue
|
||||
pdf_path = os.path.join(args.pdf_folder, fname)
|
||||
images = pdf_to_images(pdf_path, dpi=args.dpi, pages=range(1, args.pages_per_pdf+1))
|
||||
for i, img in enumerate(images):
|
||||
ref = pdf_extract_text(pdf_path, i+1)
|
||||
arr = np.array(img)
|
||||
tp0 = time.time()
|
||||
out = ocr.predict(
|
||||
arr,
|
||||
text_det_box_thresh=args.text_det_box_thresh,
|
||||
text_det_unclip_ratio=args.text_det_unclip_ratio,
|
||||
text_rec_score_thresh=args.text_rec_score_thresh,
|
||||
use_textline_orientation=args.textline_orientation
|
||||
)
|
||||
pred = assemble_from_paddle_result(out, args.min_box_score, args.line_tolerance)
|
||||
time_per_page_list.append(float(time.time() - tp0))
|
||||
m = evaluate_text(ref, pred)
|
||||
cer_list.append(m["CER"])
|
||||
wer_list.append(m["WER"])
|
||||
for img, ref in islice(dataset, 5, 10):
|
||||
arr = np.array(img)
|
||||
tp0 = time.time()
|
||||
out = ocr.predict(
|
||||
arr,
|
||||
text_det_box_thresh=args.text_det_box_thresh,
|
||||
text_det_unclip_ratio=args.text_det_unclip_ratio,
|
||||
text_rec_score_thresh=args.text_rec_score_thresh,
|
||||
use_textline_orientation=args.textline_orientation
|
||||
)
|
||||
pred = assemble_from_paddle_result(out, args.min_box_score, args.line_tolerance)
|
||||
time_per_page_list.append(float(time.time() - tp0))
|
||||
m = evaluate_text(ref, pred)
|
||||
cer_list.append(m["CER"])
|
||||
wer_list.append(m["WER"])
|
||||
|
||||
metrics = {
|
||||
"CER": float(np.mean(cer_list) if cer_list else 1.0),
|
||||
|
||||
Reference in New Issue
Block a user