From a330cd72efc056ec4a353011e75c54d7ae292441 Mon Sep 17 00:00:00 2001 From: Sergio Jimenez Jimenez Date: Wed, 8 Oct 2025 12:30:58 +0200 Subject: [PATCH] Initial metrics --- .gitignore | 1 + ocr_benchmark_notebook.ipynb | 652 +++++++++++++++++++++++++++++++++++ 2 files changed, 653 insertions(+) create mode 100644 ocr_benchmark_notebook.ipynb diff --git a/.gitignore b/.gitignore index b585786..48209c6 100644 --- a/.gitignore +++ b/.gitignore @@ -1 +1,2 @@ ~$*.docx +results/ diff --git a/ocr_benchmark_notebook.ipynb b/ocr_benchmark_notebook.ipynb new file mode 100644 index 0000000..3878835 --- /dev/null +++ b/ocr_benchmark_notebook.ipynb @@ -0,0 +1,652 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "be3c1872", + "metadata": {}, + "source": [ + "# AI-based OCR Benchmark Notebook\n", + "\n", + "This notebook benchmarks **AI-based OCR models** on scanned PDF documents/images in Spanish.\n", + "It excludes traditional OCR engines like Tesseract that require external installations." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "6a1e98fe", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n", + "Requirement already satisfied: pip in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (25.2)\n", + "Note: you may need to restart the kernel to use updated packages.\n", + "Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n", + "Requirement already satisfied: jupyter in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (1.1.1)\n", + "Requirement already satisfied: notebook in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter) (7.4.7)\n", + "Requirement already satisfied: jupyter-console in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter) (6.6.3)\n", + "Requirement already satisfied: nbconvert in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter) (7.16.6)\n", + "Requirement already satisfied: ipykernel in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter) (6.30.1)\n", + "Requirement already satisfied: ipywidgets in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter) (8.1.7)\n", + "Requirement already satisfied: jupyterlab in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter) (4.4.9)\n", + "Requirement already satisfied: comm>=0.1.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (0.2.3)\n", + "Requirement already satisfied: debugpy>=1.6.5 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (1.8.17)\n", + "Requirement already satisfied: ipython>=7.23.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (9.6.0)\n", + "Requirement already satisfied: jupyter-client>=8.0.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (8.6.3)\n", + "Requirement already satisfied: jupyter-core!=5.0.*,>=4.12 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (5.8.1)\n", + "Requirement already satisfied: matplotlib-inline>=0.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (0.1.7)\n", + "Requirement already satisfied: nest-asyncio>=1.4 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (1.6.0)\n", + "Requirement already satisfied: packaging>=22 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (25.0)\n", + "Requirement already satisfied: psutil>=5.7 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (7.1.0)\n", + "Requirement already satisfied: pyzmq>=25 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (27.1.0)\n", + "Requirement already satisfied: tornado>=6.2 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (6.5.2)\n", + "Requirement already satisfied: traitlets>=5.4.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel->jupyter) (5.14.3)\n", + "Requirement already satisfied: colorama in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (0.4.6)\n", + "Requirement already satisfied: decorator in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (5.2.1)\n", + "Requirement already satisfied: ipython-pygments-lexers in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (1.1.1)\n", + "Requirement already satisfied: jedi>=0.16 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (0.19.2)\n", + "Requirement already satisfied: prompt_toolkit<3.1.0,>=3.0.41 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (3.0.52)\n", + "Requirement already satisfied: pygments>=2.4.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (2.19.2)\n", + "Requirement already satisfied: stack_data in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel->jupyter) (0.6.3)\n", + "Requirement already satisfied: wcwidth in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from prompt_toolkit<3.1.0,>=3.0.41->ipython>=7.23.1->ipykernel->jupyter) (0.2.14)\n", + "Requirement already satisfied: parso<0.9.0,>=0.8.4 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jedi>=0.16->ipython>=7.23.1->ipykernel->jupyter) (0.8.5)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-client>=8.0.0->ipykernel->jupyter) (2.9.0.post0)\n", + "Requirement already satisfied: platformdirs>=2.5 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-core!=5.0.*,>=4.12->ipykernel->jupyter) (4.4.0)\n", + "Requirement already satisfied: pywin32>=300 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-core!=5.0.*,>=4.12->ipykernel->jupyter) (311)\n", + "Requirement already satisfied: six>=1.5 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from python-dateutil>=2.8.2->jupyter-client>=8.0.0->ipykernel->jupyter) (1.17.0)\n", + "Requirement already satisfied: widgetsnbextension~=4.0.14 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipywidgets->jupyter) (4.0.14)\n", + "Requirement already satisfied: jupyterlab_widgets~=3.0.15 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipywidgets->jupyter) (3.0.15)\n", + "Requirement already satisfied: async-lru>=1.0.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (2.0.5)\n", + "Requirement already satisfied: httpx<1,>=0.25.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (0.28.1)\n", + "Requirement already satisfied: jinja2>=3.0.3 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (3.1.6)\n", + "Requirement already satisfied: jupyter-lsp>=2.0.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (2.3.0)\n", + "Requirement already satisfied: jupyter-server<3,>=2.4.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (2.17.0)\n", + "Requirement already satisfied: jupyterlab-server<3,>=2.27.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (2.27.3)\n", + "Requirement already satisfied: notebook-shim>=0.2 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (0.2.4)\n", + "Requirement already satisfied: setuptools>=41.1.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab->jupyter) (80.9.0)\n", + "Requirement already satisfied: anyio in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from httpx<1,>=0.25.0->jupyterlab->jupyter) (4.11.0)\n", + "Requirement already satisfied: certifi in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from httpx<1,>=0.25.0->jupyterlab->jupyter) (2025.10.5)\n", + "Requirement already satisfied: httpcore==1.* in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from httpx<1,>=0.25.0->jupyterlab->jupyter) (1.0.9)\n", + "Requirement already satisfied: idna in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from httpx<1,>=0.25.0->jupyterlab->jupyter) (3.10)\n", + "Requirement already satisfied: h11>=0.16 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from httpcore==1.*->httpx<1,>=0.25.0->jupyterlab->jupyter) (0.16.0)\n", + "Requirement already satisfied: argon2-cffi>=21.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (25.1.0)\n", + "Requirement already satisfied: jupyter-events>=0.11.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.12.0)\n", + "Requirement already satisfied: jupyter-server-terminals>=0.4.4 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.5.3)\n", + "Requirement already satisfied: nbformat>=5.3.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (5.10.4)\n", + "Requirement already satisfied: prometheus-client>=0.9 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.23.1)\n", + "Requirement already satisfied: pywinpty>=2.0.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (3.0.2)\n", + "Requirement already satisfied: send2trash>=1.8.2 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.8.3)\n", + "Requirement already satisfied: terminado>=0.8.3 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.18.1)\n", + "Requirement already satisfied: websocket-client>=1.7 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.9.0)\n", + "Requirement already satisfied: babel>=2.10 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab-server<3,>=2.27.1->jupyterlab->jupyter) (2.17.0)\n", + "Requirement already satisfied: json5>=0.9.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab-server<3,>=2.27.1->jupyterlab->jupyter) (0.12.1)\n", + "Requirement already satisfied: jsonschema>=4.18.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab-server<3,>=2.27.1->jupyterlab->jupyter) (4.25.1)\n", + "Requirement already satisfied: requests>=2.31 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyterlab-server<3,>=2.27.1->jupyterlab->jupyter) (2.32.5)\n", + "Requirement already satisfied: sniffio>=1.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from anyio->httpx<1,>=0.25.0->jupyterlab->jupyter) (1.3.1)\n", + "Requirement already satisfied: argon2-cffi-bindings in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from argon2-cffi>=21.1->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (25.1.0)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jinja2>=3.0.3->jupyterlab->jupyter) (3.0.3)\n", + "Requirement already satisfied: attrs>=22.2.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.27.1->jupyterlab->jupyter) (25.4.0)\n", + "Requirement already satisfied: jsonschema-specifications>=2023.03.6 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.27.1->jupyterlab->jupyter) (2025.9.1)\n", + "Requirement already satisfied: referencing>=0.28.4 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.27.1->jupyterlab->jupyter) (0.36.2)\n", + "Requirement already satisfied: rpds-py>=0.7.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.27.1->jupyterlab->jupyter) (0.27.1)\n", + "Requirement already satisfied: python-json-logger>=2.0.4 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (4.0.0)\n", + "Requirement already satisfied: pyyaml>=5.3 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (6.0.2)\n", + "Requirement already satisfied: rfc3339-validator in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.1.4)\n", + "Requirement already satisfied: rfc3986-validator>=0.1.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (0.1.1)\n", + "Requirement already satisfied: fqdn in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.5.1)\n", + "Requirement already satisfied: isoduration in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (20.11.0)\n", + "Requirement already satisfied: jsonpointer>1.13 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (3.0.0)\n", + "Requirement already satisfied: rfc3987-syntax>=1.1.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.1.0)\n", + "Requirement already satisfied: uri-template in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.3.0)\n", + "Requirement already satisfied: webcolors>=24.6.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (24.11.1)\n", + "Requirement already satisfied: beautifulsoup4 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from nbconvert->jupyter) (4.14.2)\n", + "Requirement already satisfied: bleach!=5.0.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from bleach[css]!=5.0.0->nbconvert->jupyter) (6.2.0)\n", + "Requirement already satisfied: defusedxml in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from nbconvert->jupyter) (0.7.1)\n", + "Requirement already satisfied: jupyterlab-pygments in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from nbconvert->jupyter) (0.3.0)\n", + "Requirement already satisfied: mistune<4,>=2.0.3 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from nbconvert->jupyter) (3.1.4)\n", + "Requirement already satisfied: nbclient>=0.5.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from nbconvert->jupyter) (0.10.2)\n", + "Requirement already satisfied: pandocfilters>=1.4.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from nbconvert->jupyter) (1.5.1)\n", + "Requirement already satisfied: webencodings in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from bleach!=5.0.0->bleach[css]!=5.0.0->nbconvert->jupyter) (0.5.1)\n", + "Requirement already satisfied: tinycss2<1.5,>=1.1.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from bleach[css]!=5.0.0->nbconvert->jupyter) (1.4.0)\n", + "Requirement already satisfied: fastjsonschema>=2.15 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from nbformat>=5.3.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (2.21.2)\n", + "Requirement already satisfied: charset_normalizer<4,>=2 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from requests>=2.31->jupyterlab-server<3,>=2.27.1->jupyterlab->jupyter) (3.4.3)\n", + "Requirement already satisfied: urllib3<3,>=1.21.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from requests>=2.31->jupyterlab-server<3,>=2.27.1->jupyterlab->jupyter) (2.5.0)\n", + "Requirement already satisfied: lark>=1.2.2 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from rfc3987-syntax>=1.1.0->jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.3.0)\n", + "Requirement already satisfied: cffi>=1.0.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from argon2-cffi-bindings->argon2-cffi>=21.1->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (2.0.0)\n", + "Requirement already satisfied: pycparser in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from cffi>=1.0.1->argon2-cffi-bindings->argon2-cffi>=21.1->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (2.23)\n", + "Requirement already satisfied: soupsieve>1.2 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from beautifulsoup4->nbconvert->jupyter) (2.8)\n", + "Requirement already satisfied: typing-extensions>=4.0.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from beautifulsoup4->nbconvert->jupyter) (4.15.0)\n", + "Requirement already satisfied: arrow>=0.15.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from isoduration->jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (1.3.0)\n", + "Requirement already satisfied: types-python-dateutil>=2.8.10 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from arrow>=0.15.0->isoduration->jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.11.0->jupyter-server<3,>=2.4.0->jupyterlab->jupyter) (2.9.0.20251008)\n", + "Requirement already satisfied: executing>=1.2.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data->ipython>=7.23.1->ipykernel->jupyter) (2.2.1)\n", + "Requirement already satisfied: asttokens>=2.1.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data->ipython>=7.23.1->ipykernel->jupyter) (3.0.0)\n", + "Requirement already satisfied: pure-eval in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data->ipython>=7.23.1->ipykernel->jupyter) (0.2.3)\n", + "Note: you may need to restart the kernel to use updated packages.\n", + "Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n", + "Requirement already satisfied: ipywidgets in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (8.1.7)\n", + "Requirement already satisfied: comm>=0.1.3 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipywidgets) (0.2.3)\n", + "Requirement already satisfied: ipython>=6.1.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipywidgets) (9.6.0)\n", + "Requirement already satisfied: traitlets>=4.3.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipywidgets) (5.14.3)\n", + "Requirement already satisfied: widgetsnbextension~=4.0.14 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipywidgets) (4.0.14)\n", + "Requirement already satisfied: jupyterlab_widgets~=3.0.15 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipywidgets) (3.0.15)\n", + "Requirement already satisfied: colorama in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (0.4.6)\n", + "Requirement already satisfied: decorator in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (5.2.1)\n", + "Requirement already satisfied: ipython-pygments-lexers in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (1.1.1)\n", + "Requirement already satisfied: jedi>=0.16 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (0.19.2)\n", + "Requirement already satisfied: matplotlib-inline in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (0.1.7)\n", + "Requirement already satisfied: prompt_toolkit<3.1.0,>=3.0.41 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (3.0.52)\n", + "Requirement already satisfied: pygments>=2.4.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (2.19.2)\n", + "Requirement already satisfied: stack_data in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=6.1.0->ipywidgets) (0.6.3)\n", + "Requirement already satisfied: wcwidth in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from prompt_toolkit<3.1.0,>=3.0.41->ipython>=6.1.0->ipywidgets) (0.2.14)\n", + "Requirement already satisfied: parso<0.9.0,>=0.8.4 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jedi>=0.16->ipython>=6.1.0->ipywidgets) (0.8.5)\n", + "Requirement already satisfied: executing>=1.2.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data->ipython>=6.1.0->ipywidgets) (2.2.1)\n", + "Requirement already satisfied: asttokens>=2.1.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data->ipython>=6.1.0->ipywidgets) (3.0.0)\n", + "Requirement already satisfied: pure-eval in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data->ipython>=6.1.0->ipywidgets) (0.2.3)\n", + "Note: you may need to restart the kernel to use updated packages.\n", + "Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n", + "Requirement already satisfied: ipykernel in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (6.30.1)\n", + "Requirement already satisfied: comm>=0.1.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (0.2.3)\n", + "Requirement already satisfied: debugpy>=1.6.5 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (1.8.17)\n", + "Requirement already satisfied: ipython>=7.23.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (9.6.0)\n", + "Requirement already satisfied: jupyter-client>=8.0.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (8.6.3)\n", + "Requirement already satisfied: jupyter-core!=5.0.*,>=4.12 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (5.8.1)\n", + "Requirement already satisfied: matplotlib-inline>=0.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (0.1.7)\n", + "Requirement already satisfied: nest-asyncio>=1.4 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (1.6.0)\n", + "Requirement already satisfied: packaging>=22 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (25.0)\n", + "Requirement already satisfied: psutil>=5.7 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (7.1.0)\n", + "Requirement already satisfied: pyzmq>=25 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (27.1.0)\n", + "Requirement already satisfied: tornado>=6.2 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (6.5.2)\n", + "Requirement already satisfied: traitlets>=5.4.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipykernel) (5.14.3)\n", + "Requirement already satisfied: colorama in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel) (0.4.6)\n", + "Requirement already satisfied: decorator in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel) (5.2.1)\n", + "Requirement already satisfied: ipython-pygments-lexers in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel) (1.1.1)\n", + "Requirement already satisfied: jedi>=0.16 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel) (0.19.2)\n", + "Requirement already satisfied: prompt_toolkit<3.1.0,>=3.0.41 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel) (3.0.52)\n", + "Requirement already satisfied: pygments>=2.4.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel) (2.19.2)\n", + "Requirement already satisfied: stack_data in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ipython>=7.23.1->ipykernel) (0.6.3)\n", + "Requirement already satisfied: wcwidth in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from prompt_toolkit<3.1.0,>=3.0.41->ipython>=7.23.1->ipykernel) (0.2.14)\n", + "Requirement already satisfied: parso<0.9.0,>=0.8.4 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jedi>=0.16->ipython>=7.23.1->ipykernel) (0.8.5)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-client>=8.0.0->ipykernel) (2.9.0.post0)\n", + "Requirement already satisfied: platformdirs>=2.5 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-core!=5.0.*,>=4.12->ipykernel) (4.4.0)\n", + "Requirement already satisfied: pywin32>=300 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jupyter-core!=5.0.*,>=4.12->ipykernel) (311)\n", + "Requirement already satisfied: six>=1.5 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from python-dateutil>=2.8.2->jupyter-client>=8.0.0->ipykernel) (1.17.0)\n", + "Requirement already satisfied: executing>=1.2.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data->ipython>=7.23.1->ipykernel) (2.2.1)\n", + "Requirement already satisfied: asttokens>=2.1.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data->ipython>=7.23.1->ipykernel) (3.0.0)\n", + "Requirement already satisfied: pure-eval in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from stack_data->ipython>=7.23.1->ipykernel) (0.2.3)\n", + "Note: you may need to restart the kernel to use updated packages.\n", + "Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n", + "Requirement already satisfied: easyocr in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (1.7.2)\n", + "Requirement already satisfied: transformers in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (4.57.0)\n", + "Requirement already satisfied: torch in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (2.8.0+cpu)\n", + "Requirement already satisfied: pdf2image in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (1.17.0)\n", + "Requirement already satisfied: pillow in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (11.3.0)\n", + "Requirement already satisfied: jiwer in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (4.0.0)\n", + "Requirement already satisfied: paddleocr in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (3.2.0)\n", + "Requirement already satisfied: hf_xet in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (1.1.10)\n", + "Requirement already satisfied: paddlepaddle in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (3.2.0)\n", + "Requirement already satisfied: torchvision>=0.5 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from easyocr) (0.23.0+cpu)\n", + "Requirement already satisfied: opencv-python-headless in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from easyocr) (4.12.0.88)\n", + "Requirement already satisfied: scipy in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from easyocr) (1.16.2)\n", + "Requirement already satisfied: numpy in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from easyocr) (2.1.2)\n", + "Requirement already satisfied: scikit-image in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from easyocr) (0.25.2)\n", + "Requirement already satisfied: python-bidi in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from easyocr) (0.6.6)\n", + "Requirement already satisfied: PyYAML in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from easyocr) (6.0.2)\n", + "Requirement already satisfied: Shapely in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from easyocr) (2.1.2)\n", + "Requirement already satisfied: pyclipper in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from easyocr) (1.3.0.post6)\n", + "Requirement already satisfied: ninja in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from easyocr) (1.13.0)\n", + "Requirement already satisfied: filelock in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from transformers) (3.13.1)\n", + "Requirement already satisfied: huggingface-hub<1.0,>=0.34.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from transformers) (0.35.3)\n", + "Requirement already satisfied: packaging>=20.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from transformers) (25.0)\n", + "Requirement already satisfied: regex!=2019.12.17 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from transformers) (2025.9.18)\n", + "Requirement already satisfied: requests in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from transformers) (2.32.5)\n", + "Requirement already satisfied: tokenizers<=0.23.0,>=0.22.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from transformers) (0.22.1)\n", + "Requirement already satisfied: safetensors>=0.4.3 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from transformers) (0.6.2)\n", + "Requirement already satisfied: tqdm>=4.27 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from transformers) (4.67.1)\n", + "Requirement already satisfied: fsspec>=2023.5.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from huggingface-hub<1.0,>=0.34.0->transformers) (2024.6.1)\n", + "Requirement already satisfied: typing-extensions>=3.7.4.3 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from huggingface-hub<1.0,>=0.34.0->transformers) (4.15.0)\n", + "Requirement already satisfied: sympy>=1.13.3 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from torch) (1.13.3)\n", + "Requirement already satisfied: networkx in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from torch) (3.3)\n", + "Requirement already satisfied: jinja2 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from torch) (3.1.6)\n", + "Requirement already satisfied: setuptools in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from torch) (80.9.0)\n", + "Requirement already satisfied: click>=8.1.8 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jiwer) (8.3.0)\n", + "Requirement already satisfied: rapidfuzz>=3.9.7 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jiwer) (3.14.1)\n", + "Requirement already satisfied: paddlex<3.3.0,>=3.2.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from paddlex[ocr-core]<3.3.0,>=3.2.0->paddleocr) (3.2.1)\n", + "Requirement already satisfied: aistudio_sdk>=0.3.5 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from paddlex<3.3.0,>=3.2.0->paddlex[ocr-core]<3.3.0,>=3.2.0->paddleocr) (0.3.8)\n", + "Requirement already satisfied: chardet in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from paddlex<3.3.0,>=3.2.0->paddlex[ocr-core]<3.3.0,>=3.2.0->paddleocr) (5.2.0)\n", + "Requirement already satisfied: colorlog in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from paddlex<3.3.0,>=3.2.0->paddlex[ocr-core]<3.3.0,>=3.2.0->paddleocr) (6.9.0)\n", + "Requirement already satisfied: modelscope>=1.28.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from paddlex<3.3.0,>=3.2.0->paddlex[ocr-core]<3.3.0,>=3.2.0->paddleocr) (1.30.0)\n", + "Requirement already satisfied: pandas>=1.3 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from paddlex<3.3.0,>=3.2.0->paddlex[ocr-core]<3.3.0,>=3.2.0->paddleocr) (2.3.3)\n", + "Requirement already satisfied: prettytable in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from paddlex<3.3.0,>=3.2.0->paddlex[ocr-core]<3.3.0,>=3.2.0->paddleocr) (3.16.0)\n", + "Requirement already satisfied: py-cpuinfo in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from paddlex<3.3.0,>=3.2.0->paddlex[ocr-core]<3.3.0,>=3.2.0->paddleocr) (9.0.0)\n", + "Requirement already satisfied: pydantic>=2 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from paddlex<3.3.0,>=3.2.0->paddlex[ocr-core]<3.3.0,>=3.2.0->paddleocr) (2.12.0)\n", + "Requirement already satisfied: ruamel.yaml in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from paddlex<3.3.0,>=3.2.0->paddlex[ocr-core]<3.3.0,>=3.2.0->paddleocr) (0.18.15)\n", + "Requirement already satisfied: ujson in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from paddlex<3.3.0,>=3.2.0->paddlex[ocr-core]<3.3.0,>=3.2.0->paddleocr) (5.11.0)\n", + "Requirement already satisfied: imagesize in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from paddlex[ocr-core]<3.3.0,>=3.2.0->paddleocr) (1.4.1)\n", + "Requirement already satisfied: opencv-contrib-python==4.10.0.84 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from paddlex[ocr-core]<3.3.0,>=3.2.0->paddleocr) (4.10.0.84)\n", + "Requirement already satisfied: pypdfium2>=4 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from paddlex[ocr-core]<3.3.0,>=3.2.0->paddleocr) (4.30.0)\n", + "Requirement already satisfied: httpx in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from paddlepaddle) (0.28.1)\n", + "Requirement already satisfied: protobuf>=3.20.2 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from paddlepaddle) (6.32.1)\n", + "Requirement already satisfied: opt-einsum==3.3.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from paddlepaddle) (3.3.0)\n", + "Requirement already satisfied: psutil in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from aistudio_sdk>=0.3.5->paddlex<3.3.0,>=3.2.0->paddlex[ocr-core]<3.3.0,>=3.2.0->paddleocr) (7.1.0)\n", + "Requirement already satisfied: bce-python-sdk in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from aistudio_sdk>=0.3.5->paddlex<3.3.0,>=3.2.0->paddlex[ocr-core]<3.3.0,>=3.2.0->paddleocr) (0.9.46)\n", + "Requirement already satisfied: colorama in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from click>=8.1.8->jiwer) (0.4.6)\n", + "Requirement already satisfied: urllib3>=1.26 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from modelscope>=1.28.0->paddlex<3.3.0,>=3.2.0->paddlex[ocr-core]<3.3.0,>=3.2.0->paddleocr) (2.5.0)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pandas>=1.3->paddlex<3.3.0,>=3.2.0->paddlex[ocr-core]<3.3.0,>=3.2.0->paddleocr) (2.9.0.post0)\n", + "Requirement already satisfied: pytz>=2020.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pandas>=1.3->paddlex<3.3.0,>=3.2.0->paddlex[ocr-core]<3.3.0,>=3.2.0->paddleocr) (2025.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pandas>=1.3->paddlex<3.3.0,>=3.2.0->paddlex[ocr-core]<3.3.0,>=3.2.0->paddleocr) (2025.2)\n", + "Requirement already satisfied: annotated-types>=0.6.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pydantic>=2->paddlex<3.3.0,>=3.2.0->paddlex[ocr-core]<3.3.0,>=3.2.0->paddleocr) (0.7.0)\n", + "Requirement already satisfied: pydantic-core==2.41.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pydantic>=2->paddlex<3.3.0,>=3.2.0->paddlex[ocr-core]<3.3.0,>=3.2.0->paddleocr) (2.41.1)\n", + "Requirement already satisfied: typing-inspection>=0.4.2 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pydantic>=2->paddlex<3.3.0,>=3.2.0->paddlex[ocr-core]<3.3.0,>=3.2.0->paddleocr) (0.4.2)\n", + "Requirement already satisfied: six>=1.5 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from python-dateutil>=2.8.2->pandas>=1.3->paddlex<3.3.0,>=3.2.0->paddlex[ocr-core]<3.3.0,>=3.2.0->paddleocr) (1.17.0)\n", + "Requirement already satisfied: charset_normalizer<4,>=2 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from requests->transformers) (3.4.3)\n", + "Requirement already satisfied: idna<4,>=2.5 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from requests->transformers) (3.10)\n", + "Requirement already satisfied: certifi>=2017.4.17 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from requests->transformers) (2025.10.5)\n", + "Requirement already satisfied: mpmath<1.4,>=1.1.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from sympy>=1.13.3->torch) (1.3.0)\n", + "Requirement already satisfied: pycryptodome>=3.8.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from bce-python-sdk->aistudio_sdk>=0.3.5->paddlex<3.3.0,>=3.2.0->paddlex[ocr-core]<3.3.0,>=3.2.0->paddleocr) (3.23.0)\n", + "Requirement already satisfied: future>=0.6.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from bce-python-sdk->aistudio_sdk>=0.3.5->paddlex<3.3.0,>=3.2.0->paddlex[ocr-core]<3.3.0,>=3.2.0->paddleocr) (1.0.0)\n", + "Requirement already satisfied: anyio in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from httpx->paddlepaddle) (4.11.0)\n", + "Requirement already satisfied: httpcore==1.* in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from httpx->paddlepaddle) (1.0.9)\n", + "Requirement already satisfied: h11>=0.16 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from httpcore==1.*->httpx->paddlepaddle) (0.16.0)\n", + "Requirement already satisfied: sniffio>=1.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from anyio->httpx->paddlepaddle) (1.3.1)\n", + "Requirement already satisfied: MarkupSafe>=2.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from jinja2->torch) (3.0.3)\n", + "Requirement already satisfied: wcwidth in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from prettytable->paddlex<3.3.0,>=3.2.0->paddlex[ocr-core]<3.3.0,>=3.2.0->paddleocr) (0.2.14)\n", + "Requirement already satisfied: ruamel.yaml.clib>=0.2.7 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from ruamel.yaml->paddlex<3.3.0,>=3.2.0->paddlex[ocr-core]<3.3.0,>=3.2.0->paddleocr) (0.2.14)\n", + "Requirement already satisfied: imageio!=2.35.0,>=2.33 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from scikit-image->easyocr) (2.37.0)\n", + "Requirement already satisfied: tifffile>=2022.8.12 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from scikit-image->easyocr) (2025.10.4)\n", + "Requirement already satisfied: lazy-loader>=0.4 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from scikit-image->easyocr) (0.4)\n", + "Note: you may need to restart the kernel to use updated packages.\n", + "Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n", + "Requirement already satisfied: PyMuPDF in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (1.26.4)\n", + "Note: you may need to restart the kernel to use updated packages.\n", + "Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n", + "Requirement already satisfied: pandas in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (2.3.3)\n", + "Requirement already satisfied: numpy>=1.26.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pandas) (2.1.2)\n", + "Requirement already satisfied: python-dateutil>=2.8.2 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pandas) (2.9.0.post0)\n", + "Requirement already satisfied: pytz>=2020.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pandas) (2025.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pandas) (2025.2)\n", + "Requirement already satisfied: six>=1.5 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from python-dateutil>=2.8.2->pandas) (1.17.0)\n", + "Note: you may need to restart the kernel to use updated packages.\n", + "Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n", + "Requirement already satisfied: matplotlib in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (3.10.6)\n", + "Requirement already satisfied: contourpy>=1.0.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (1.3.3)\n", + "Requirement already satisfied: cycler>=0.10 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (4.60.1)\n", + "Requirement already satisfied: kiwisolver>=1.3.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (1.4.9)\n", + "Requirement already satisfied: numpy>=1.23 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (2.1.2)\n", + "Requirement already satisfied: packaging>=20.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (25.0)\n", + "Requirement already satisfied: pillow>=8 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (11.3.0)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (3.2.5)\n", + "Requirement already satisfied: python-dateutil>=2.7 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib) (2.9.0.post0)\n", + "Requirement already satisfied: six>=1.5 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from python-dateutil>=2.7->matplotlib) (1.17.0)\n", + "Note: you may need to restart the kernel to use updated packages.\n", + "Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n", + "Requirement already satisfied: seaborn in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (0.13.2)\n", + "Requirement already satisfied: numpy!=1.24.0,>=1.20 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from seaborn) (2.1.2)\n", + "Requirement already satisfied: pandas>=1.2 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from seaborn) (2.3.3)\n", + "Requirement already satisfied: matplotlib!=3.6.1,>=3.4 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from seaborn) (3.10.6)\n", + "Requirement already satisfied: contourpy>=1.0.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (1.3.3)\n", + "Requirement already satisfied: cycler>=0.10 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (0.12.1)\n", + "Requirement already satisfied: fonttools>=4.22.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (4.60.1)\n", + "Requirement already satisfied: kiwisolver>=1.3.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (1.4.9)\n", + "Requirement already satisfied: packaging>=20.0 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (25.0)\n", + "Requirement already satisfied: pillow>=8 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (11.3.0)\n", + "Requirement already satisfied: pyparsing>=2.3.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (3.2.5)\n", + "Requirement already satisfied: python-dateutil>=2.7 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (2.9.0.post0)\n", + "Requirement already satisfied: pytz>=2020.1 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pandas>=1.2->seaborn) (2025.2)\n", + "Requirement already satisfied: tzdata>=2022.7 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from pandas>=1.2->seaborn) (2025.2)\n", + "Requirement already satisfied: six>=1.5 in c:\\users\\sji\\desktop\\mastersthesis\\.venv\\lib\\site-packages (from python-dateutil>=2.7->matplotlib!=3.6.1,>=3.4->seaborn) (1.17.0)\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "%pip install --upgrade pip\n", + "%pip install --upgrade jupyter\n", + "%pip install --upgrade ipywidgets\n", + "%pip install -U ipykernel\n", + "\n", + "# Install necessary packages\n", + "%pip install easyocr transformers torch pdf2image pillow jiwer paddleocr hf_xet paddlepaddle\n", + "# pdf reading\n", + "%pip install PyMuPDF\n", + "\n", + "# Data analysis and visualization\n", + "%pip install pandas\n", + "%pip install matplotlib\n", + "%pip install seaborn" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "ae33632a", + "metadata": {}, + "outputs": [], + "source": [ + "# Imports\n", + "import os\n", + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "from pdf2image import convert_from_path\n", + "from PIL import Image, ImageOps\n", + "import easyocr\n", + "from transformers import TrOCRProcessor, VisionEncoderDecoderModel\n", + "import torch\n", + "from jiwer import wer, cer\n", + "from paddleocr import PaddleOCR\n", + "import fitz # PyMuPDF" + ] + }, + { + "cell_type": "markdown", + "id": "0e00f1b0", + "metadata": {}, + "source": [ + "## 1 Configuration" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "dda5534d", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Neither CUDA nor MPS are available - defaulting to CPU. Note: This module is much faster with a GPU.\n", + "Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.52, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`.\n", + "Some weights of VisionEncoderDecoderModel were not initialized from the model checkpoint at microsoft/trocr-base-stage1 and are newly initialized: ['encoder.pooler.dense.bias', 'encoder.pooler.dense.weight']\n", + "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n", + "C:\\Users\\sji\\AppData\\Local\\Temp\\ipykernel_17700\\3778845089.py:12: DeprecationWarning: The parameter `use_angle_cls` has been deprecated and will be removed in the future. Please use `use_textline_orientation` instead.\n", + " paddleocr_model = PaddleOCR(lang='es', use_angle_cls=True) # PaddleOCR in Spanish\n", + "c:\\Users\\sji\\Desktop\\MastersThesis\\.venv\\Lib\\site-packages\\paddle\\utils\\cpp_extension\\extension_utils.py:718: UserWarning: No ccache found. Please be aware that recompiling all source files may be required. You can download and install ccache from: https://github.com/ccache/ccache/blob/master/doc/INSTALL.md\n", + " warnings.warn(warning_message)\n", + "\u001b[32mCreating model: ('PP-LCNet_x1_0_doc_ori', None)\u001b[0m\n", + "\u001b[32mModel files already exist. Using cached files. To redownload, please delete the directory manually: `C:\\Users\\sji\\.paddlex\\official_models\\PP-LCNet_x1_0_doc_ori`.\u001b[0m\n", + "\u001b[32mCreating model: ('UVDoc', None)\u001b[0m\n", + "\u001b[32mModel files already exist. Using cached files. To redownload, please delete the directory manually: `C:\\Users\\sji\\.paddlex\\official_models\\UVDoc`.\u001b[0m\n", + "\u001b[32mCreating model: ('PP-LCNet_x1_0_textline_ori', None)\u001b[0m\n", + "\u001b[32mModel files already exist. Using cached files. To redownload, please delete the directory manually: `C:\\Users\\sji\\.paddlex\\official_models\\PP-LCNet_x1_0_textline_ori`.\u001b[0m\n", + "\u001b[32mCreating model: ('PP-OCRv5_server_det', None)\u001b[0m\n", + "\u001b[32mModel files already exist. Using cached files. To redownload, please delete the directory manually: `C:\\Users\\sji\\.paddlex\\official_models\\PP-OCRv5_server_det`.\u001b[0m\n", + "\u001b[32mCreating model: ('latin_PP-OCRv5_mobile_rec', None)\u001b[0m\n", + "\u001b[32mModel files already exist. Using cached files. To redownload, please delete the directory manually: `C:\\Users\\sji\\.paddlex\\official_models\\latin_PP-OCRv5_mobile_rec`.\u001b[0m\n" + ] + } + ], + "source": [ + "PDF_FOLDER = './instructions' # Folder containing PDF files\n", + "OUTPUT_FOLDER = 'results'\n", + "os.makedirs(OUTPUT_FOLDER, exist_ok=True)\n", + "\n", + "LANGUAGES = ['es'] # OCR language(s)\n", + "#device = 'cuda' if torch.cuda.is_available() else 'cpu'\n", + "device = 'cpu'\n", + "# Initialize AI OCR models\n", + "easyocr_reader = easyocr.Reader(LANGUAGES)\n", + "trocr_processor = TrOCRProcessor.from_pretrained('microsoft/trocr-base-stage1')\n", + "trocr_model = VisionEncoderDecoderModel.from_pretrained('microsoft/trocr-base-stage1').to(device)\n", + "paddleocr_model = PaddleOCR(lang='es', use_angle_cls=True) # PaddleOCR in Spanish" + ] + }, + { + "cell_type": "markdown", + "id": "84c999e2", + "metadata": {}, + "source": [ + "## 2 Helper Functions" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "9596c7df", + "metadata": {}, + "outputs": [], + "source": [ + "def pdf_to_images(pdf_path):\n", + " return convert_from_path(pdf_path)\n", + "\n", + "def ocr_easyocr(img):\n", + " result = easyocr_reader.readtext(np.array(img))\n", + " res = ' '.join([r[1] for r in result])\n", + " plt.figure(figsize=(10, 12))\n", + " plt.imshow(img)\n", + " plt.axis('off')\n", + " plt.title(res, fontsize=10)\n", + " plt.show()\n", + " return res\n", + "\n", + "def pdf_extract_text(pdf_path, page_num) -> str:\n", + " \"\"\"\n", + " Extracts text from a specific PDF page in proper reading order.\n", + " \"\"\"\n", + " doc = fitz.open(pdf_path)\n", + " \n", + " if page_num < 1 or page_num > len(doc):\n", + " return \"\"\n", + " \n", + " page = doc[page_num - 1]\n", + " blocks = page.get_text(\"blocks\") # returns list of (x0, y0, x1, y1, \"text\", block_no, block_type)\n", + " \n", + " # Sort blocks top-to-bottom, left-to-right\n", + " blocks_sorted = sorted(blocks, key=lambda b: (b[1], b[0])) # y0, then x0\n", + " \n", + " text = \" \".join([b[4].replace('\\n', ' ').strip() for b in blocks_sorted])\n", + " return text\n", + "\n", + "def evaluate_text(reference, prediction):\n", + " return {'WER': wer(reference, prediction), 'CER': cer(reference, prediction)}" + ] + }, + { + "cell_type": "markdown", + "id": "e42cae29", + "metadata": {}, + "source": [ + "## 3 Run AI OCR Benchmark" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "9b55c154", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\Users\\sji\\Desktop\\MastersThesis\\.venv\\Lib\\site-packages\\torch\\utils\\data\\dataloader.py:666: UserWarning: 'pin_memory' argument is set as true but no accelerator is found, then device pinned memory won't be used.\n", + " warnings.warn(warn_msg)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsAAAAPDCAYAAAC9zL31AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAm9NJREFUeJzt3QV0HcfBhuGRmZnZjsPM3CRtkiZlTJmZ4S8zMzOlzE25ado0aZiZGjQzM0u+/3lHGuX6+pLAtpR5n3Oc2NKF3dnZ3W9nZ2YbCoVCIUiSJEmZ6LGvF0CSJEnamwzAkiRJyooBWJIkSVkxAEuSJCkrBmBJkiRlxQAsSZKkrBiAJUmSlBUDsCRJkrJiAJb2gK1bt4ZPf/rT4ZFHHtnXi5K9yy67LPzoRz/a14vxmPb9738/XHnllft6MSSpbgbgFi9/+cvDM57xjH29GN0KJ7yGhoawdu3a0BX89Kc/DcOGDesSdeatb31rDL8zZ84MXRHb7S9/+Uvdr//Yxz4WjjrqqNAVzZ07N67PnXfeudvvHnroobidTjjhhC5x3Ohq+0xn+MUvfhF++MMfhuOPPz48FnWFc0O1Ot4dj51dUem+2VXL5Mwzzwxvf/vbQ1cyt0z9vO6668Lhhx8eevfuHfefth772rqe7Tq2FtrgZS97WeHpT396obNMnTq18NWvfrXQFaxdu7awZs2afb0Y3coVV1zBY7S7TLn95Cc/KQwdOnSf15lf/vKXhXPOOaewffv2QlfFdvvzn/9c9+s/+tGPFo488shCV9TY2FhYsmRJYceOHbv8fPPmzYVjjz22cOmll+6x727rMbHaPpN+V+0Pr6Gel/vdD3/4w/g5lX7ft2/fmss1bNiwwpYtW3b53c0339z6GaUefPDBwmGHHRbLf1+eS+qtr3PmzInrcccdd3Src0NpHe/sYy/7yrJlywpdUVtzQnvLpvR9XbVMVq1aVVi/fn2nfNavf/3rQo8ePQpvfOMbO7TvljsGn3DCCYUXv/jFhQULFsQy3bZtW3zNzp0798h6tme79wpdXFNTU0z1PXrs2cbqoUOHhlzt2LEjXqXltL33ZJ150YteFP9o79S9nj17hnHjxu328/79+4dbb701dBennHJKWLJkSeu/3/a2t4X169eHn/zkJ60/GzFiRGxtGTJkSHjwwQcr1sdyv2e/qmXw4MHhz3/+c3jBC17Q+rMLL7wwTJkyJcyfP3+31x9wwAHhnnvuCfvK9u3bQ58+fbr9uaHWflCpjnfWd7Ov8EeP6qplwjGgs1x44YXhPe95T+zC9OUvfzn069ev5rm53vo5a9as8PrXvz5MmjSp9WdtqcOduZ6VdChl0ETNrV4KkIVl5bhVmtDQxL85ePbt2zdMmDAhvj69d968eeEd73hHLNRUsOm2w9/+9rdwyCGHxPdx4C3XHE6zOrenkm3btoX3vve9YfLkyfF93H5mAyf33XdfeMpTnhJPDhzoTz/99LiRyt3m4rNY1jFjxsRKcdppp4Vbbrllt+b2yy+/PBx33HFhwIAB8QRWetL561//Go455pj4GTNmzAgf//jHQ2NjY83yqXYbmsrKOvKdF1xwQVi3bl3ra1jGc845J4waNSoeuM8444xw++237/I5LPd3v/vd8LSnPS0MHDgw9lWlcr/qVa8K06dPjzv9gQceGL7+9a+Htli1alU8cU6cODEuG7c/fvOb31R9T6XtTfm/613vip/FMp544om79THkvZQd3/XMZz4zfn8xtu3Tn/70MHbs2DBo0KB4i5b+oMW6Yp0p9vjHPz68+c1v3uVnK1asiCd9PqeSavWuHMqAMMMy8foPf/jD8cRYqlrd27lzZ/jEJz4RD3iUJXX1X//61263yX73u9/Fesmy/epXv6qr3vDZX/jCF+L24bPZ7tTbSrffrrrqqtjtgdeOHz8+vO9979tl/Wsdu8phH3nnO98Z6+vIkSPje5sb03ddzs9+9rOt+9GRRx4ZLrroolAPtinLkf7wfpa/+Gcp7LG+xT9Pr0/K/Z79oJaXvexl4cc//nHrv7ds2RJ++9vfxp8Xq2ebsd78nOWivM4+++ywadOmWM4/+9nPYh1Nx/60by9YsCDWK8qY7cL+y/ZN0j7Htud4yXGqI9Lx59///nc4+OCD43HivPPO2+VCpHg//8EPfhC/l+1cjOV85StfWff+V+4YvGbNmnjhPHr06Fhm+++/f+vFT3Ed5+9nnXVW/Pnw4cPjz9N5kP2N406qoxy70vGq2j5Y7nY/y7fffvvFOkc509WlFvraU4587kEHHRS+853v7Pbdf/rTn+LyU2/YP2644YY2bLHmsuN7OObzGZQT54/0HZXKpq37Zrky+dSnPhWP75wLXv3qV8fjSmnXsM4oA7oPcIzi96zHE5/4xFg/UJqF2C6cT1gm9vMXvvCFYfny5TXLcc6cOeH666+P68Cxn2WqdW6mjpfbd0vrJ3/nGMHr+TufVa6Lwt5Yz6rqbisu0/R9xhlnFIYMGVL42Mc+VnjooYcKP/vZzwoNDQ2ttxz/8Ic/xN//85//LMybN69w0003FX7wgx+0Nm9PmjSp8IlPfCI2i6dbaNy+6927d+GUU04pXHfddYUHHnigsGnTpvhdb3vb23ZZHpaFZUouuOCCwuTJkwt/+tOfCrNmzSpcdtllhd/+9rfxdwsXLiyMGDGi8KxnPatwyy23xFt3P/7xj+Pnl1u3t771rYUJEybEZb/vvvvi74cPHx6Xu7i5/cQTTyxceeWV8TWnn356XO7k6quvjuv/05/+NC4P5TJt2rRYXrXKp9JtvYEDBxYe//jHx1t4V111VWHmzJmFF77wha2vufzyywu/+MUvCvfff3/hf//7X+FVr3pVYezYsbvcSmC5x4wZE9ef5eK7uV3/kY98JJbN7Nmz4238AQMGFH73u9/VfcuBMv7iF78Yl43P/cY3vlHo2bNnXK9KKm3vV7/61fFnlOEjjzwSP5dbuNQz3HjjjfHWzec///m4Lb/+9a/H27fFXSDuvPPOwve+973CPffcE9/3oQ99qNCvX7+4vl21zpT61a9+FT9j69atrT/7yle+EutRpVtJtepduS4Qn/zkJ2P5c4v4b3/7W6wzlG1b6h7Lxff+5je/iWX0nve8J27btM3S7WeW5Y9//GOsZ4sXL66r3vBZlAPrRH245pprWm/5l97W5vOou9zWYz9gPUeNGhXXod5jVzmUB8vAsqd9a/DgwbvUgU996lOFgw46qPCvf/0rrgv1m3rL9m7rbbpK3QRqdfVpT1egtFzUcZY37SMcS+hKQBkWny5Kt9m3v/3tQq9evVq3GduVf1Mn2D533313fM2GDRviH/a78847r/XYz+1RjkEHH3xw4ZWvfGV8PWVM/TrwwAPj71OZDBo0qPCSl7ykcO+998Y/HekCkY4/Z599dtzHb7vttrgMxfW6eDusXr260KdPn3icSNi/i39W7/5Xegx+05veVDjqqKPicrCc//nPf+K+WLrc3G6mDqbtRfnRTQMXXXRR/N3DDz8cX/vUpz61cPjhhxeampqq7oOldYbjIeXCNuM7vvzlL8d98r///W/FOsQ5Y/z48a2fy/85flIOxd/N/vGPf/wjfu5znvOc2MWhtPtStS4QfAbZgdv3rCfHXeoE26Fa2bR13ywtE9aP8wfbjM/++Mc/HrdzcT3rjDJgu7Fcb3jDG+I5jDr+zW9+s7BixYr4+9IsdOGFF8ZzDut0ww03FE4++eTC+eefX6jlwx/+cPxu8Pkc22udm9etW1d23y2tn/ycsvna174W/053ktLy7ez1bE8XiA4H4NNOO22X1xx//PGF9773vfHv7DQHHHBAxb6Q5fr2pP5rFEixWgGYisT7OGiU8/73v78wffr0istSvG4bN26MG57wkfA+ws0XvvCFXQq7+EB48cUXx5+lPnRPeMITCp/5zGd2+R5OKOwg9ZRPuYM6ByFOPskll1wSg2ClPngc+DhJ//3vf2/9Gcv49re/veb3cUB+9rOfXfH39VS4Jz/5yYX/+7//q/j7ctubkwHruWjRol1eS3myHfGCF7yg8KQnPWmX3z/vec+reeI/9NBD407WVetMKX5O6Cq+EDniiCN2OZmWqlXv6ukDTLih/2xb6h7r+ulPf3q340HqX5YOkhwUaymuN1y8caBMgbdWqPnABz4QQ1PxBQInck6SKQjUOnaVQ/mlbQlOWJyIUx3gIoXgff311+/yPoIy9bUzAzCfwQVJ+sMFS7Xf84eTViXFy/WMZzwjntxx1llnxYvL0gBczlOe8pTWbUaQ5PVz586te92oo6XbjZNr//79C//+979b38e6pkBcSVsCMP/moqq4rhSXZ+my8ndCevL9738/1v1Ut+rd/0qPwYTVV7ziFWXXp3S5661HhAleRyNAtX2wNOwRel7zmtfs8prnPve5ux1zi+23334xlBbjwpqgUvzdP/rRj1p/TyMAP+NCtS0BmMaMhGMvP+N4VKls2rNvlpYJDRecE4udeuqpu9SzzigDlofPraRcFirGBRSfx4VmJdTVyZMnF/7yl7+01hMu4gjttbJYuX23XN96yo7PSErLt7PXsz0BuMMdLY844ohd/s3txtQs/dznPjfeQuMW0Gte85rYt6zabdiEWy6ln1sLTe/0Q+G2TqXfc/u6nv6G3DLi9u+pp57a+jPexy3V+++/f5fXFi8n6460/nfddVe8JcxttfSHcuD22ubNm9tVPtz65bZjcvLJJ8dbO+k2+rJly+JncVuILhDcut+4ceNu/fe4lVDq29/+djj22GPjLTiWldt95fr9VbtF/MlPfjLe9uT2JZ/BrcVan1G6velTyGdxW6a47LitnW7nsR3oFlGMsijGetONgttR3MrhM3hfWp6uWGdKcRvtJS95Settabqz3Hvvvbt0/SlVq96Vwy1Rlp1bS7z+Qx/60G7brVrdo6/q4sWLd1l/8O/S9S+te7XqDe+ne8kTnvCEUA9ez7IV91djOagPCxcurOvYVYquHpRfcZ3r1avXLuvCrB+UL12Qisv+5z//+S63oTsDtwGpn+kPtzKr/Z4/9U4Fx21LblnOnj073pot15+duv7+978/Hru4NUpZ/+Mf/2jdZtzWZXuxTTnOMUtEurVZrd5Shix7KjvqA1MKFpcfn9mZ/X65/cqt/nrqASiPP/7xj7FOgi4Ez3/+81vHLdS7/5XuB294wxtidxNuqdO9pnSb1uPhhx+OXVPYLhz7p02bFn9ez/G/dB+qZ19O6NrCNqIbXfF602WgtO635fhXSfFn0IWEda32GZ2xb3KcK51NpvjfnVUG7Kv1Hutw2223hac+9anx+My+k85n1c67//nPf+LyPulJT4r/psskZVPc/am9Waxee2M9a+nwILjScMCBMPWPoq8glYZ+lxT4G9/4xvDFL34xBplqoYL+OaWdrTm4lPa3K+6jWKuz+p7qzF68HmmZ0/pzwqXv17Oe9ayywaa95VMNffXoe0P/3alTp8aTE2GAwSLFOGgU48BLWKQjPK+ngrEsN910U93fzev53q997WvxJMV30Ien9LtrbW/KjWBKhef/xTig1Iv1oVy/9KUvxb6jfM9znvOc1uXpinWmHPqacVIkvNEnkH7BbNtKatW7Uink8B76YHHhRH2gLuwJpXWvVr3ZG9uh9NjVHpQ7Lr744l0uFMB+2Jk4HlabYq/W76s5//zzw2tf+9p4IueEQ1/SUvTH/uUvfxkvnDhBsl8+73nPaw2F7Lfse4S4Sy+9NHzzm98MH/zgB+PxhD6YlcqPC3ACZSkuyivVn3IIRMX905PU/7B4YFu5elB6rilGmfB7tjPjCq655prw1a9+tc37X+l6UO6Mi/nnP/8Zy45w8KY3vSkev+rFsnFs4IIj9VU+7LDDah7/OyrVfb63tGGi9Bje1uNfZ+y7e2Pf7KwyaMvxjhDLMZs/7DfsJwRC/l3tvMs4l9WrV+/yXXz/3XffHetuupgrl8U6y95Yz1r2+FB7VpKd8hvf+EbsBM3JNo0a5uqC1p96sMLFAxN4Hy1hCSdONiDhsRwO0hyoyg3sKZU6/tNBO+F9DGiiM3i9GARBwOVEVPqnuIJVKp9y2Oi0tCU33nhj/Kw0GIRlZnAPV3aHHnpo3LlXrlxZc1l5HwOyCOFHH310XMa2tlrxGQwGefGLXxxbgGiFYB7WtuL72b5cEZeWWxpFSqtuaTinLEqXh5ZSBktQP3hv8YCarlhnymE5abHhwPrrX/96l8E27a13xQgpnDQJKHwPdw84Ebel7hE4OOEWrz/4d631r1VvWB72k2qD/opRN9iPikMM38FFXfGI5LYgMNFSU1znuFvDRVpSPIiztNy52O0uaNl+6UtfGo9Hleoa5ctgMY4ZhF/KonjAJzhx0mrICfWOO+6I+wd3uSod+6m3tGAyyKi0/No6EwN1kgtG7ogV4w4KIZRWpPbi/YRbTsQM/OO7WPb27n+l5zkaMbi44IKQu3DlpBbw4jKk4YPv5e4N4Zn9oFareyW8ty37MgMs2f+5a1C6zpUuePaUcmXTGfsm27m0jhf/u7PKgPNOvce6Bx54IG73z33uc/FuJYPuarWm83oGsf32t7/d5Q4R+yj1hQvWatqS2/bletZjj06Dxm00CoqrIW4zsVNzIkutV9yeufrqq+PtIyonzfCV0OrFCGyu4AgbX/nKV3YZTchnceDggE2Y5ETKSZxCYlQxI+lpheC7uHXHAZUTOLcwSkcSc3XM7ah3v/vd8RYcB0taPLiFQqtIvT7ykY/EUbi8n5ZHDn7cHiO4c1ukVvlUOviynrQKcNuZsMv6pWBIWEijJfk961DPlRbv43YQt57ZWfkMdu627Lh8BqNqCVSM6GQbcQJqawCk6wMtkpyEaYUkEDPzATsLO82Tn/zkuN6cXCkHwhPLXTzjQFoeRrZygcHJmJkNilsJumKdqdYKzPLwPQT6jtS7UpQTJwYOiLRosY+loNKWuse6f/SjH437Jy3WtFZzYC3XoteWesP3MksFt4U5+LLdqQ/M0FGubLmIIzy85S1viWVGKGC5OH50ZHo9piXjAMzycgAuPQYRsLnrwMw21DNG49MKSXDgAqF0JoU9ifC/dOnS3X5OuKynDOiSwvYs1/oL6j/15dprr431nbpOi1LChQL767nnnhu/k3+zzQhWad9jn2Xb8B3sW+zz3A1gf06zibA/sg+z7dty8ULLEMtIdwDqPHWU8Es4ZDuWtsi1FcvKPkYd5MKtI/tf8ftoAafhgpZ0upSk8irFOSJ1O6Gxg2M8+w5lSWjmYo19mhH+7cG2Z9/m2MvsHX//+9/jdiidRacYFzocE9iWXByxDkxDSKhi39tbypVNZ+ybHE/oysK5lQs/7n7QYsoFe2eWAecaGj04jjGNGMe8K664InYlKs1I1DF+z3mK11LH2Her4dxOPbngggt2a92lvGgdZtkrKbfvtseeXs+6dHQQXLWBaQycoOM4owEZhHHSSSftMgCIkXwM6GGAS1qUSiOYGVDEaEFGVDJ69rOf/exus0AwYOgd73hHHGxAh25GqTNiM7nrrrsK5557buwMz8AwRuAzorDcuvFZb3nLW+LocZaPztpMCJ+U63BNB3B+RofwhBGnDChgIAflwOTQaaaHWuVTaWDHd77znTjoghGpjOJkZHJy++23F4477rj4u/333z/ONFFuEEHpACgGCbz85S+PZc9sCpT1+973vqoPPygtA0bhUoYMNmIbMVDhpS99adUJ76ttb2alYLQyg8vYps985jPj6PDiUaEMQqJsGUDypS99aZfPYjswiIff0+H/W9/61m51tivWmXLo6J9mNqhHtXpXrg68+93vLowcOTJuOwYTUl+Ky7KeusfACgbnTZw4MW4zXp8GplR7CEE99YbPZhQ3dZnPnjJlSutAo3Kfy8huBrWxTceNGxcHtxWPNK9nVplSvJ/3UJ7sI+985zt3W04GcDHAiMFcLOfo0aMLT3ziE+OsGXtzFohKD9KoNFi21nKVDoJju7M/pm3GiPLi5WUGB9ab9WdfYLBvGnyK5cuXx4fF8P70gA+wfJRp2odmzJgRB2Mx+rxamZTDIFpeT11hPzjkkEMKn/vc53YZ1FquLEvXtdx3Uh85ZvC6dDzoyP6XBksxAwXv4TzHd6ZBSeXqODMoUbeZvSTVWwb08hmUHedW9oPi76q0D5YrB/Z1yp96zPb7+c9/XrPMGQTMTBbsdwzefdzjHhdnlKj03dS34u1fTj3nr9IBV+XKpq37Zrky4XOpm9RbBkIyAwXn7c4uA7Yb9YftyLGG5UzLVXrsYtAd50ley2A7Zg6p9rAXZgWpdB753e9+F5ebQXGVjjPl9t32DILr7PVszyC4Bv7T8RitvYH5M3l87Z56HKa6Lrpu0LJKq3zx7VZJ0r7BwDHuLtQzR7K6ni7/JDgpZ/Qjpu8Tt25POukkw68k7QN0Z/ve974Xu9fQhYb+32kAu7onA7DUhdFHjScG0S+63ieKSZI6F/1lmaGDp/YxNR99zJkOjz7S6p7sAiFJkqSs7PFp0CRJkqSuxAAsSZKkrBiAJUmSlBUDsCRJkrJiAJYkSVJWDMCSJEnKigFYkiRJWTEAS5IkKSsGYEmSJGXFACxJkqSsGIAlSZKUFQOwJEmSsmIAliRJUlYMwJIkScqKAViSJElZMQBLkiQpKwZgSZIkZcUALEmSpKwYgCVJkpQVA7AkSZKyYgCWJElSVgzAkiRJyooBWJIkSVkxAEuSJCkrBmBJkiRlxQAsSZKkrBiAJUmSlBUDsCRJkrJiAJYkSVJWDMCSJEnKigFYkiRJWTEAS5IkKSsGYEmSJGXFACxJkqSsGIAlSZKUFQOwJEmSsmIAliRJUlYMwJIkScqKAViSJElZMQBLkiQpKwZgSZIkZcUALEmSpKwYgCVJkpQVA7AkSZKyYgCWJElSVgzAkiRJyooBWJIkSVkxAEuSJCkrBmBJkiRlxQAsSZKkrBiAJUmSlBUDsCRJkrJiAJYkSVJWDMCSJEnKigFYkiRJWTEAS5IkKSsGYEmSJGXFACxJkqSsGIAlSZKUFQOwJEmSsmIAliRJUlYMwJIkScqKAViSJElZMQBLkiQpKwZgSZIkZcUALEmSpKwYgCVJkpQVA7AkSZKyYgCWJElSVgzAkiRJyooBWJIkSVkxAEuSJCkrBmBJkiRlxQAsSZKkrBiAJUmSlBUDsCRJkrJiAJYkSVJWDMCSJEnKigFYkiRJWTEAS5IkKSsGYEmSJGXFACxJkqSsGIAlSZKUFQOwJEmSsmIAliRJUlYMwJIkScqKAViSJElZMQBLkiQpKwZgSZIkZcUALEmSpKwYgCVJkpQVA7AkSZKyYgCWJElSVgzAkiRJyooBWJIkSVkxAEuSJCkrBmBJkiRlxQAsSZKkrBiAJUmSlBUDsCRJkrJiAJYkSVJWDMCSJEnKigFYkiRJWTEAS5IkKSsGYEmSJGXFACxJkqSsGIAlSZKUFQOwJEmSsmIAliRJUlYMwJIkScqKAViSJElZMQBLkiQpKwZgSZIkZcUALEmSpKwYgCVJkpQVA7AkSZKyYgCWJElSVgzAkiRJyooBWJIkSVkxAEuSJCkrBmBJkiRlxQAsSZKkrBiAJUmSlBUDsCRJkrJiAJYkSVJWDMCSJEnKigFYkiRJWTEAS5IkKSsGYEmSJGXFACxJkqSsGIAlSZKUFQOwJEmSsmIAliRJUlYMwJIkScqKAViSJElZMQBLkiQpKwZgSZIkZcUALEmSpKwYgCVJkpQVA7AkSZKyYgCWJElSVgzAkiRJyooBWJIkSVkxAEuSJCkrBmBJkiRlxQAsSZKkrBiAJUmSlBUDsCRJkrJiAJYkSVJWDMCSJEnKigFYkiRJWTEAS5IkKSsGYEmSJGXFACxJkqSsGIAlSZKUFQOwJEmSsmIAliRJUlYMwJIkScqKAViSJElZMQBLkiQpKwZgSZIkZcUALEmSpKwYgCVJkpQVA7AkSZKyYgCWJElSVgzAkiRJyooBWJIkSVkxAEuSJCkrBmBJkiRlxQAsSZKkrBiAJUmSlBUDsCRJkrJiAJYkSVJWDMCSJEnKigFYkiRJWTEAS5IkKSsGYEmSJGXFACxJkqSsGIAlSZKUFQOwJEmSsmIAliRJUlYMwJIkScqKAViSJElZMQBLkiQpKwZgSZIkZcUALEmSpKwYgCVJkpQVA7AkSZKyYgCWJElSVgzAkiRJyooBWJIkSVkxAEuSJCkrBmBJkiRlxQAsSZKkrBiAJUmSlBUDsCRJkrJiAJYkSVJWDMCSJEnKigFYkiRJWTEAS5IkKSsGYEmSJGXFACxJkqSsGIAlSZKUFQOwJEmSsmIAliRJUlYMwJIkScqKAViSJElZMQBLkiQpKwZgSZIkZcUALEmSpKwYgCVJkpQVA7AkSZKyYgCWJElSVgzAkiRJyooBWJIkSVkxAEuSJCkrBmBJkiRlxQAsSZKkrBiAJUmSlBUDsCRJkrJiAJYkSVJWDMCSJEnKigFYkiRJWTEAS5IkKSsGYEmSJGXFACxJkqSsGIAlSZKUFQOwJEmSsmIAliRJUlYMwJIkScqKAViSJElZMQBLkiQpKwZgSZIkZcUALEmSpKwYgCVJkpQVA7AkSZKyYgCWJElSVgzAkiRJyooBWJIkSVkxAEuSJCkrBmBJkiRlxQAsSZKkrBiAJUmSlBUDsCRJkrJiAJYkSVJWDMCSJEnKigFYktSlFQqF+EePfW5r7S0GYHWbA6IHxV1RHjt37rRc9qFVq1aFf//732Hz5s2hu1ixYkW46qqrwrZt2/bZMqT9uVb95XezZs0KF198cdi6dWvojrZs2RIuvfTSsHz58ja/l3X+z3/+E5YuXRq6s3q39caNG+O2njdv3l5bNpbr5ptvjvWsPcfSpqamcM0114SHH3645vmrnj/1vKctn63KelX5ndQlcIC6/vrrw4QJE8J+++23rxeny1i5cmX473//G0477bQwceLEfb04WVq7dm247bbbwnHHHRcGDBgQuksAvvHGG8NRRx0V+vbtu8+Wg2VYs2ZNOPfcc0OvXuVPRZs2bQr/+te/wqGHHrpPl7UjuNC44447wuTJk8OYMWPa9d7x48eHcePGhe6qsbExXgSMGjUqnHDCCaGhoWG31xDWrrvuurBkyZJw1lln7bVl43tvv/32eG6ZMWNGuwLwfffdF3bs2BH233//sutOwF63bl3Vz+nRo0c45phjYh1hH2W789mlpk2bFg455JDW+sF+VO4CnH2Ksh42bFib1ykXBmB1iwDMwYADyZ4MwLTQLFiwIBx55JEVT8hdCQe9+fPnx1YTqbtZtmxZvIhj/y6Hn99www1h+PDh4eSTTy4bmroDW+GaQ+LChQtby6PctuTY++CDD4ZnP/vZ3eZisi3Hai7mSuv+wQcfHIMvKBPOcZgzZ04MtgcccMBu56LiOzeE6iuvvDJMnTo1DBo0aJfX8b5yAVqP6vpneWkvIUxya5ir6+4QgCdNmhRe//rXP+ZOFsrD+eefH0/QvXv3Lvt7wkD//v3j6/r06dNtA7BCbL1/yUteEnr27FlxOxISuRvAnb7H0rbmXHL22Wfv8rNrr7023HrrreGZz3xm2frPRcKQIUPC05/+9LgPVEOZ0mJOCFbbdP2zvFQGBwhOnlw9pytnbkFxsOGAUnoATf2heE066fJaXsfPeT8/T3/ndfyOgwtSKxXfV/wZ6fe8J31esfSZpQf+tPzpe/istC6ly8xn86d4mdOy9OvXr7UFoVz58PngfbWWj/9v3749/rzc8iSURVqmWuVd63XVtil/Z3n4NwGo0nqm76hWjmkZ+DstKOkz0+uK14mySJ/TXsX1iM+pVp7l3peWNW2P4vWvVperlU9ar1rfXa0s0+vA99eqA9XqOO9L+0+ptL8dffTR8XX8u3RZ+Bl/Ut3le/h32i9r1bVUJuW2c6X9tlqZ8Tksaz3bubR8UGu5i+tUtTpaXD9KjxvV9otydY3yTMtYrR7XUyfT/lapnhDg0n5f7niZ+hDzO/7O8larp5XKMO3r/J9lqvX64jqc6mxbAnql/afS72u9v6Ov06MMwOqWGBzy5z//OZx00knx1tJNN90UNmzYEA9Q9MfkT3HApZsArbsMdODAN3DgwPjeww8/PN5G+uMf/xhWr14d//6zn/0sHlDpr/aMZzwjfg59bbkSHzt2bLjsssvC+vXr43vPO++82HXikksuia/ldm0x+i6zXE984hN3CdMMmOAWF7fBWEb693Gbl/5dxctMn7iHHnooHoAJu/SFPPHEE+Pf6X/6l7/8JbaQpf6B6QD/wAMPxH5nrBM/Gzx4cAwT9PssPujfeeedsc8dZcF3zZ07Nx7w6VP8+Mc/PpZBOrDyOZQP6/TII4/Ekwifddhhh8X308qTlp2QSSvH/fffH1/H74499ti4XSqFHk5orA/91vg7y8M68pncKjz99NNja3f6DpaF/rcsC61HrDfb54wzzoit42m5KWO2D61LvP5///tfXO7nP//5sb8dA4xojWHgTTqpsh3OPPPM2H+uLScWlotl5vOoawyA4mdsHz6PvpzVPo969de//jWWPduQ7UNdpKVo+vTp8bPoH0jZcMeCbUW9pO8g27c4iFLuvJ9loXzYBrym9I4Bn0kd5XXUy1SWlM3jHve4MGXKlF3qAL+n7rJt2c6UJXdNqJfsV7yW98+ePTvWFcqf97FtqCf0s+Q1t9xyS7wV/NSnPnWXz2dZ+HzWP10AsT1PPfXUXVoHuU3MZ7BdWXZun7OfjBw5MraI0ee2UlmzXf7whz/EOsk+VRqsL7/88rgs55xzTsULC76L8qV7FscgXkdZUU9Hjx5dNcjy/byPMmR9+U6OHaeccko48MADy16o3nPPPbFcOC6wDx1xxBHx9cUXcnw2+zz1g/JPAZe6w2uL9+dKde1Zz3pWDKMM8KRc+Zw0AJHtQD0uXr+0L7K/U+f5TuoYy8f+Tr1j+Rncxn5APUnvS/1n2Y58Bj9jn6M+8/7iO3GsO+VMFzW+iy4VvJ99le1da1/ls1knzgPsO2m/ZHuVw2dz7OXcQpmC9WbMRTpOq3szAKtb4uBEcKH/EydhDu4cnDhYc/LipMBBFJxcGEjDAZ+TLeGR0Edw5SDIwZrQxAn07rvvjgd43s+BOx2AOXBygGawBCGCcJBayjg58HmpBaUYg3wIRMWjewlg//jHP+Ly8V3pJMDPXvrSl4ahQ4fGEyShnM9+whOeEG+HpcFLnKQ4aPN9fG9xnzA+n9cwKpmTDycGlpFyIbgTRorDOOvEenNC4KTHyY/P5bWEUW5bUl6g/H7729/GcuEz6HNGGbINWE/KNrUmXX311fHkQThh2fle+vil1p1q25Rl57sIwgQe3svyEBQIgmmbEK4oW4IR4YGy4sR/0UUXhVe96lXxe0H5LFq0KIZgyoLlTIGQusFnc4HAOhHg+Ezq0N/+9rfwwhe+sGqraTksP59PeGRb8ndO2GzPV7ziFbv11StGqFq8eHH8frYDFzf8jPdQrpT3b37zm3jifspTnhLXgSDASZ3yIcykC4RUD1gOti0ncZaDzy1theK1fDb70YgRI2KZUb6pLNNAGt5LaOKz2Gf4OX/n/ewPbG8+m21P/SHE8DrKmbBHCKJOsb2oM2kfTAh31DFez77B6wg9XMz96le/ihctKdjyc0Iwy8jrUpBOdYCyLr0gTajTbFcuiA466KBdghblSBhMZVmprlJvCI7si1zYsM9SDix/WsdKCLPsdwRwjlt8Hsvypz/9KS43n5dQPoQwypeLZF6f6gh1nnqbtjn7CvWDup/2UfZxyoTye/GLXxxDcLW6xj6AK664Iv6fcuDzKBfqGcv4spe9rPXWPNvs97//fTwupX2I4xLLTBmzH6cLt3QsAduYzyNkE4rTBR51h32V/ZA6kFqjqS8EbC7SGGz2nOc8J9YBZmH5+9//Hl7wghdU3Vc5pvzud7+Lx3vqCq+9995744UQ+2jx+JI0MI6GD5afYzDbiPMD63rBBRcYgh8DDMDqtjggcQDkpJhaNmhl4uBL6wqtnYQtTky07nGA5yDL6zjBcADm74TdmTNnxgMuf+dAWNzvKt2OJWg87WlPiyet9t4e54TFiYXWYw6qKQwSUFhuvpeDL4GYMPjKV76ytbWF1heWk/WphKBO+OTEwUklLSehgRMTJwtCCZ+VsN6cWHl9up3MieznP/95XAYO9OkkTJlz4uHEyjIRUPk7JwUCN9/DiZqTFAGfQRyphZtWwlrlRlmzDmxT3sN7aY3m/wQvWhD5DhCsii9SUkv3D3/4wxh4UwBO5U6oI9DymuLWK1ruKZu0bNQNfk6Ao2wo/7YgMHCiL14uyujCCy+M27jcSPFilB8ne0IUYbS4mwbbltDJMqcwQflwMme6LMqc96SWei4O2LasG6+j7NhWpXWI11H3U4BgmQnvP/jBD+KFC9+Zwgl3CbhQS9sl1UsCBghT1HFaMosvtqjjtN5V6rOeQjv7NAGLAJnWnZbVX/7ylzEwEXRS2fJa6jMttenOBtuX5SYssa+WCyn8jH2QixwCfJqdgWUgVPN/1qlSwOFYQEh+7nOf2/q61KL405/+NIanagGaZS5usee9HMMoW+5olAZggunznve82Lqd9gnqCeV8/PHHx/fyOsqHcmC5UpBl+/B67mwxqPDJT35ya12vVNf4LI6XHI/S9uNn7G9sB8Is24SfcawlHHOsSq2wfCf7fhrUVQ77Atv7SU96UjxWF29r6jYXb9xdKp45g23FMZiyYx1S1wvqNOG/uNxK6xbLyXGAY0DxcrJ/0/hQjP2HsuTihmNOKi/KkcDPhWTqsrGnUHasU/FFA1j24rt4HBe4eKK+F+PCztmBqnMeYHVbHJQIbcW39fgZByZOxqlllAM4B25aOTmRpFHIbe3LRRDkQN2RvqHc8iVUcQIs/hyWhYMxB7YUgPm+4nXj/4Q6Qn6l27K0KnFS5eRe/Pn8nQBK+OAEW9zqxgmmuGtCupDg5EcYBWXJZ3NCSi2Y6TM4YfFaglL6Lr6Hf/O+tpQ3v+eEnsJv+hkXJZwICAjpZ5zgi1vu+BnLxneXzoyRBooUh9/0Hn5WXFb8LIWBts49m5ahdLn4Dpa/nhk7eD2ttsWBBIQMwlmavqx4nk9CGCfCNF8sAY0TKLf3i0eZc/JMgbj4+yjL4tYzfkY58nO+N+HuBRc9xV050vvTzzhp84ewW1oHOSGXntAT6gqfT90tDr+gfhF6qFPFZUhZc0u6eNlZR8qOZahWxlwMsyyE+uI7NLQK0k2j+AKqGK+hNZswyj6afgbKgfdywV0p/PHdrE9x1wX+zzZl2YvLO5UbLfMp/KbXE3CQ9jvex75N6C++yEjbnbrAhWnxHaNKdS3V4+K7NfyMiyLKOs1owAUx24z6V9wFIX1nam2uVIbsF3RvKv5u1pfjI9+dLkYS6k/xMTg1ZrC/pW4K5bAt2M6E8uLl5Du4aCyeYo7v4zjD/pS6x6R9je9hednP9vTc35wnaLX/yU9+0vqHi6vSOZJTt6u03/GH43a1hhI1swVY3VrpQIt0IkkDZMBJjoM83SA4OBD2OPmlPqv14mDd0dkhOFBx0OVEUum7OVjTAlHc97Ie6TYjJ7NyIYOfpVvWxVMRlRsIlFrG0wAdTposOyfY0hMN5Vw8zQ+fR3nTgkprEbcQCbCp/24t5QZUsSwEktSdJJ2UCKi09nJhwd9pfUx9WIuxTLy/0oUD4YHQSP3gMwhZaVBVW6U+nmm5KDv+pP7AtbAtyi0r68VycRuWYFAsDY5iG6R+oISx0tbWNJCn3DJTftwS5+TO3/k8vi8tM2GH1kJakatdBFJ3UwBqS/2lfLhwLddPmn9zoZa2TeqSwXKUu7Bi3y7XJakYZUMrNQGOOkodo36x3Rh9X23Z6bpBneHWe+nreH/qB11JatVN5c12o3yLW6Nr7ROE6NRlBywP9azcBXIKirS4Us7pDlelupaWkeVifTiuUCfSnZRUJyhjthmhtC1Sdx4CcrluC2wbjrelx5pygz3T4Lx0rCon1V0uysqVTWl95jjAenJXpbTLFuXNd9WqXx3Fcby4C1pa1tJZIVg+7iY6C0TbGYD1mJUO0hw0aFHgxMBgC/oh0rrBbdM0IGdvSf2GK/WDLR553Z6wzUG5UktrCj9tmRuyOPywXJQbB+ZSBF5aV9L3UK4vf/nL4605+hjST5hbwvV0gygnLXsKFSwXLV/cukwDrDhRpNHd9eK19MfkVjJhIp2Qy/WTrUdqPfrnP//Z2pJOGEt3HjqCdUtdE8pNbk8rFi1xSKP26ylrPpOQQ1nyHXxOuogsXuY0wLJWn2jqSqWgXc/6Vfr8FAI7a27T1A3irrvuihcq3IHhAo+AUe3iM+2flFFpyyn4GbfVK61HGoxFeE6BP4WattTddBwpnpUDlcq9uEtOLam7C12muDAglPP/4vCblpc/bd3WvCf1Ny5XzunCpp5tXc/xm8+pNuVeqTR4kDsRpevG9qXeEND3JMog3dGqh/2R284ArCykfqj0f6O/I6GMWSRe/epXd/hJOcX95oqVO9FwouNATEtK6qNXigMuJ5viidPrXQ4+n5aOcoPNOKjTilipC0U1nDj4Q7ClBb2ergzcsuUigz509EelvyUnlHr6pRW3UIP1YdlT32PKjwsZAivbNLUup/7e9aKsuDNAVxq6BqTb0gQiwlBbpeWimwAzhLA9+Dy2JQMRO4LAxTbgFiz9iCttg9RXkxCfZuAo/l0pggiDjmgJpH9lCiWsS7q9jjR1XGplrvT9XIiwvdgWlboRlMNnU2dpySz9/NRKzzJU2m/aKrWKEmi4Hc/xgdZguhZUm3s1TT/Ifkof0WoXs+WkgZeUO32dKSM+k22VuhyVU1omvJ5AmgJSailkP6lUfpRxpS4oxdjGXMRxUUvrYrpblu4ClR4X2nqsSmXI+9IUd8UoG+pfZ4XMNG1cuqNR6/jF9medOSY4z/pjl32AlRUOtIQwWiw5wBKAin9X63n1lQ6WvK/4JJCmAis9oXGy5Xfc+ixtXUutrBysCan0WS7tR8jrUktZOYRLbt8VzzyR3seycEsx9VtsC05WtAIRLtvaSsUJnosOAgO3PatJI9mLvyMtO7fW0+A9TvLclqWPXnHXitTSU690q5OW6RR+0+3p9nR/IGSwrPSVTuE3LVd7Pq8Y4Z+yrBXwU3cB6mPq7pLwdwYfFf+MoMpteMqyuEWutCzZPwiJhOLS27/F9ZL9izpMq3KlOl4O5cVFExcKpa/hvQQvLng6s+WNUMS2YjYH9knqZ+m0aKX4Hd1A2tsPlHKiDOl+QWt+6Zy7lbo2lZYlP+P7udgCdYM6Uu5Ci8+l/y/Hh3oeKc3xg/0tPYK6Uj1mn6aupekTS5e7Wj9o9mXKMF3wFL+PC1DCKi3xnYHlpFWebk6lxxZa4Yv7XbNslCn7D/tyR+/cqOsyAOsxj5MaB/8UajigceDlJF08JRUnVsIAB/80WXo9Bz9OPJz0GRWebp1zYuL2YWlY4QTOyZMRzoTvdAuRkxm3oFN/PrpscBJgNHlaboIaXQoYyV0OB25aBgkxtHBzAkmfz8mM/mwE6/ZM38MJhMEiDISjlSx1NUjLxQk9DRjju3gNP0+vIWjyHk74tdBNhRZjypL38rmUF+EonRAJLpyYCVnppEyZM3K72mCYUmnWjRQK+Ry2C10iigcL1YsQzR+WK60724EuIJRLR7Cs9GGkDhBy0nrzh3qbBnmCcEGdZPoryo91ozyZyYMpxUq3LRc4pWVJmZcOJCMssh58RqqXfC7dCJihAnwvdYzvThcz/GG70DpeaXAa2zTVMQaBpjrG/wmo9H1OfXU7E0GUsMM24gK1XB/cUrTCg/pG2ad1ZFk53lSrg6kVm8CdusZQ19g2bMNS/J6yZLqwVOYsL+VNoGWfRpp7N80IkLYl7+E4QkhNM73UQn3gdSxjWjeCItOCFV/opwFrHOcYPJi2GXWO/sZ8bzkcf9JjgNnXisuQsuNYRR1KM410FOtC3WW/SXPBp+MSYxVKBx5yjKZcOY5S39PrU1/i0ovIfS0tW+mfrrSMXZFdINSt1WqpAQdsDnIEXFoBONhyYOf2FqEq4aqf3zOHaJomjemmavUbI4gxwwC3+H/xi1/EkMvn839ODsUnDMIGt8aZE5ZpsQgqnDQIu4S71JrJoDFGfnOrlBM/wTG1VjJtUCWsI7ex6V/IdGBpSi8O2OnRmvW0ABWP5k7/p98by0CI4eRG2XFyJbzze6an4sTJMhL+KTdaDHkNLS+URZrCrNr38j30y+W2NGXIxQqfUTz1FwGC7UdI4/dcyPB/AkwKBPWgfDgxcruX7+OEzOcwoKRS/8RqKGNCBgGedWZ78nnUq0oj4kvXvxq6k3BCZu5S1pN6QXmzDfiuNG8xYZl6Rr1n5DjbIbVmMX0cF1Hpu3gtLfQEET6HOsQy0zWoeHR8avlkij3KnfIi7BJYqON0dwFlyHzA1HFGrlPH0wwVadq8cuvKvxlMRR3jYpBAyPoRvFh2ypU6VM82qXe7pRk/WC8u2tg/6unPSt1nP6PeEKooJ0IWZcHy8ujb1Fe+dFlS1wnWkakG+SzKnZ+X3p3hvWxPZkZhn+NYwOdyfAHzdhdfELAdqR9MC8YyUdYENpaJrgwcV0r37XLYrnR1ok4QnPkOjiFsv+L5jfkM7p5Q1zkuEL6pP1wEEMAoo9L1SVgP5uOlDJm2juXlPXwP+wrHubbOwV1JGgdCUKdeMgiaesp3lWvx5xjJsrH/cJxmvfkZ5cg25hhVvG/sK2mwJXMzl14Ysn50D2NdVV5DwUsEdXHpyWYcMNNBh9DICZgWgtJBWRzwOSDTwpAGTnFA5uDHyYEQlVoXiltD0nQytEDRApbmN+Ugw6h7/l+p9TSd4GldIJDwXvrLcmIjcBefePgeWgW5pcvJngMX4Zf3FI9y5mTAerDctKgQojiYpRkk+Bnlklp9i9eDAzUnZoJD6v/M8rDuxcvPCYB1phWsuB8e381n0xpWPA9uelgFy5T6FBLEWPY0xVjqssCJk23BSYyAwTpWO6FR5pwICbZsO7YDy8YJl+1QOnMGy8JypCeisQxsH35GnUiBk89lQA/rWNq3M7WMst0IFSwfn0Ew5j2Ud7U+p2k7srzpwoK6mZaLz2fdCdRsD8qz3CDChLpDvaa+VLrVz+dTL2h1Z93Ypmxf1r+4O0jqTsJ6sJx8N30601y39HVN24Py4/OKnwTIuvMzQn1xq2gKKXwGdZv1oW4VT12WZhCgXNn3+J5Ux9N3Ut4sV5orOr2Pz+d3lB+fQYhjm6SQmVC3WD4CWHFo5TP4XrZH8RMBK0nzD9MC/LrXva7q9il9H8eTtJ+B9/Kd1L20rNQvtinrkO6AcLygDNNT1lg3tjnbKz35Dlz4sR+yLdLfKTNCM/tE6bR+qdsB5UIdYfvwnWwflql4H69W19LnsI35HL6DOpwGClI/iu/m8Fq2V7oLQX1hmdPypadf8u/UZSN9D/s45UCwpMz4PWVV3PWC16X1Ke3/ns4F6a5Hte3FslE3+Kw0poF1od5zbCiegSTdyaMMqMN8D/sCr2d7pWM168Y+RnlUmoe4dDn4PM4NlQYF8zsaRTiuVGuxZ31Kp7ZL+Fy2QVv64efGAKwur7iKlhtwVnqCq/X6Su8r97rS91c7mZZ7b7X3Vfquaq8pt0zl3tue9S09kXbks+v9/koBmFvdbV3+SmVebV2qLW89y11P+XXG59WzvG0tn1rLXK3+dnR/6uw6Vu/nlkOw4eltXMw9+9nPbvOgtlr7cUfKuzPqUVuXq9bn1PN51X6/N49V5bS1TNtSlvXeeai1zG39PLWPXSDU5ZU7CNTT9aHe19fzuvbedm3rcnbW+/fk+nbmLeiOvr+eMt+Ty9uR+tKR93Vm+XTWa9v6uj1Vx9pS9qmVnBZ7uhO0NfzW830dKe89WY86e7/ozHLYE+/fk6/v7M80+O4dDoKT1CVw0K937lqps9CtgG4WPkhAyotdICR1CfSlo28eg6/st6a9IU0nRt1rz/zYkrovA7AkSZKy4r1GSZIkZcUALEmSpKwYgCVJkpQVA7AkSZKyYgCWJElSVgzAkiRJyooBWJIkSVkxAEuSJCkrBmBJkiRlxQAsSZKkrPTa1wugrmvHzkL42UOrwtptTft6USRJUhv0amgIT582NPRoCGHq4L77enG6HAOwqgbgz92xLMxav21fL4okSWqDvj0bwoHD+oZePRoMwGUYgFVRr4YQ3nDIqLB6W+O+XhRJktTGFuD9hvQNPRoa9vWidEkNhUKhsK8XQpIkSdpbHAQnSZKkrBiAJUmSlBUDsCRJkrJiAJYkSVJWDMCSJEnKigFYkiRJWTEAS5IkKSsGYEmSJGXFACxJkqSsGIAlSZKUFQOwJEmSsmIAliRJUlYMwJIkScqKAViSJElZMQBLkiQpK7329QJI2vMKhULYsGNn2NS4Mwzq3SMM6tUjNDQ07OvFkiRpn7AFWMog/N65aks4/5+PhJP+/ED4xK1LQlNhXy+VJEn7ji3AUhuCZKnObkUt9x0d+Z7U8vvBmxeH65dtCqP79QpPmzYs9LTxd68p3aYd2Zad8TkdxXLs2FkIa7Y1hT49G8KwPj29m9BJci5b1n1bUyGs3d4U+vfqEYb09i6V9iwDsFSHbU07w88eWh1uXr4pcEiePrhveP7M4WH64D6ddpDmBLB+x87wq4dXh7tWbQlNhUI4aFi/8PpDRoVBvXu27zNDiJ932aINoW+PhvChY8aFU8cN9MSyl7BNL1+0IXztnuVxG37q+PFh5tB+7fqsB9dtCx+6eXGsi+8+alx43PhBYV9oLITwgZsXhz/PWRvX6aunTApnTRhkneqksn3fTYvDX+euDYP79AxfO2VSOGN8HmVL96w3XLMgXLt0Yxjbv1e48Iyp4dAR/ff1YukxzAAs1eGR9dvCu29cGNZv39n6s4vnrwt/fuKMMKZ/7075Dj75i3cuC5+/c2k8EWJArx7hmFEDwuMnDm5X+Jq1flv4wl3LQuPOQnjx/iPCqw4aFXrsg5Npar3M4UReipb3i+evD317NoSXHTCi/QF47dbwl7lrY/eVMyYM3mcBeM22xvDXuevC7A3b47+vWLwhBmB1UtnOW7tL2RKAc9i3FmzcES6Zvy6s2tYU5m7YHm5esdkArD3KPsBSHTbv2Bl2tHSc7dOj+URz0/JN4aLZayt2W2irWeu2hQsfWBnDb7+WPgrcDt2wo6ldn7dtZyF85o6l8WRy1Kj+4dMnTAgDeu39k+SWxp3hnwvWh9/NWhPmbtjWaeXV7RSaW+S7u149GmKYB/9lUKU6R88GyrZHUdlWv/OzZPOO8IfZa+MFSXuPE10FXT56txxbKQEG6kp7ki3AUhudMGZAuH/N1thS8cuHV4eXHDAiDG5nF4VkZ6EQfj9rTVi2pTEM7NUjtvj+fd66dn8eIfNfC9aHP8xaG0b16xm+dNKkMGlg733SSvTQuq3hpf+dG/s1fvCYceETx43f68ugzkO/1A8fOz78Y966MKpfr/C8/Ybv60V6zBjet2f4yDHj4h0D+utfMGNY1dfTDeXN1y4I/Xo1hIvPnxnOmtD2O0VdxZRBfcJHjh0fu0DQxeysdtz1ktrCACy1Ef1yxw/oHVte7li5OdywbFM4d9KQDn3myq2N4dePrIkthPTRPW70gI4F4BDCXSu3hKNG9g+vPGjkPu1H2LSzuSWbZWKQi7q3htAQg9lzZgyLrZQNj4Hb712pbLmgeO5+w+sqW/qDF4r2se6sV0NDHO/w2oNHBVbZGqU9zXsMUhvRBYL+tPx/a1Mh/PKh1R06+dBae8n89eHhdVvjZ778wJGtt5jbi3e/7+ix4V9Pnhk/r2fLrUWpo2I4aWiIt+vpT2747Tw5l23ruvfIb921bxiApbZqCOFx4weHw0Y0D2b698L14ZF1W9v9cZsbd4afPLgq9v09ZHi/cE4HW5PjIrb0JaQP4b4Y9CZJUldmFwipHYb26RGev9+IcMfKRWHFlsY4GO6Dx/Rrc9ik9ffGZZtap1d70f4jwoi+7ZzyrNDczWD7zkJYtbUxrNveFBp3htiazGcO79srzv/b1pYVPpeW7uVbdsQ5hTGkT88wpl+vRwdDFX1mWo7UKM50bsV9nQn6DSUD4WigrlV26XPpRrF8S2Mc9MO/6TM9pn+vOGNGvbfj+SzKidkx+vXqEVvc0s+ZjmnRph2xVX9on55xSiYG53SnFqm0zcCAyrTs/JwtuHZbUyzDxkIhDO7dI4zt33uX19X67ELL4EYGxHHXonT7s4347P49e8Rt25ay29nyfv7PfLDV6kVaFi4i2Q83Nu5sHZg3Jq1TG+pE/N6WMuN7YwkWCmHd9p1xwBnLNKJfr9g/t9K+xOdQ9Ku3NYbVW5tiPePzRvfvFfebHlWWp56yZb9Ke0/xjaedO0Osz6Vq7fOFln2SGSjop08ZMP6Muk8f79JlqIby2dLY/P70vrTMjG+gTNiXxraURfG2Sa/b0rQzvrct+1wqN/bdlVsa4//5N/WPMRCDa5R7Z0nLkY6XG1uOlxyjRrf7GBVC/17N9bH4O/jspZt3xO3FfjJ2QK/4PXZJqp8BWGqnZ04fFr56z/J4YmSGgzceOjqM7Ne2XYqQ9eMHV4UtTYU4SO3ZLf0q2xN2blu5OQ5MunrxxrBw0/YYVgkhnEyG9e0ZDh/RP7xg5ojw5ClDmg+UdQRO1o2+yX+cszbM27A9bGoZaU7L8rTBfcJTpw4NL9x/RJhcNMCOk+knb1sS/rt4QzxTE0oIKPjtI2ti4N9FQwhnTxwcPnzM+IpdNTixPrJuW/jNI2vCJQvWxSmTNjY2xc/n4D9uQO84cJBpxg4b0b810FbCif7lV84Lc9ZvC+86cmx42YEjY3/KP81ZG75+z/L4XWwbTtJHjuwfvn3alDB1cJ/QXTCP9OuvmR9Pnj88Y0o4etSAGI7uXLU5/Oj+VXF6LQIjFycDe/cI05jXer/hrRdgterGzx9aHb5897IYkH521rQ4gClZuqUxvPjyuWHZlh1xUNaXTp5Yd5ce6tzf5q0Ln7htSQxD3zh1csXp3life1ZvCb9+ZHW4bOGGGAZSPRvYu2fcn540ZWjsrjRjSJ+aF1hzNmwPr7xyXrxw/OJJE8PZk4aEzTua4t2ZH96/KizYuD0Qq4b16RVOHz8wLhsXlcXLzswrVyzaEN/D/kg9ox6x/oTmk8cOioNmTxs3qHXGg1I/fXBV+Ordy2NgomwnF5Xtiq2N4U3XLghLNu2I/168ufn/fMe7blwYBygWY3+ifj9lypDdtinl9/C6bXE6x//Eu1jb4kMoCF30x+XCaNqQvuGZ04aG588cEcb171UzSDOQl5lnJgzoHX71hOmxLs3buD18/s5lsZsXIZtgz/76moNHhbcdNrr1/Wy5z925NO7j+w/tG35y5rR43KomlflNyzaF385aE65fuinWOy4gCIn9evYII/v1DMeNHhgu2G9YePyEwbFu7AnsS0xVyPHy0gXrw8JNO1qPlxyjKJNzJg8JLz1gRDh4WO3GEi5QOUYt2rQ9fOiY8eGC/YbH4+Ds9dvCTx9cHceI8LvmC6weYcLA3uEpU4bGcp0yaN8MeO5uDMBSOxGIzp88JAZYDnz/XbSheWBQG1oteLjBpQs3xH8/fdqwMGVg20IWn8GJ9pO3LY2BM7U4kDfSAZaTweptTWH2+u3hX/PXh2fNGBYfXkALbrWWqFtXbI4hiscoE0b4TE5enFk2Ne6IJ1/C7O9nrwn/OG9mPACnkzEP3mBwYKlFm3fEP6VYivceNS70LxMKtjbtDD9+YFWcH5ngW9hl/ZpbbGldIvT9+uHV8XPecMio2AWk0qbg4oD1I+Dfv3Zr2Nq4M56kmTOZEJXexoNJaA3mNd0pALPMd6zcErcF67j/jqbwjXtWxAdyEKLStqQhfuOOxrBkc2O8C8EF1PcfNyVe3FSrx/9bszXcu3prbGnlbkNxAOZn63c0hfvWbI115NUHjwxHjOhf137B8v7wfyvjshPmyk2xlp5uSEj89n0r4vqEojrB77noYr3Zxj9/aFX41PETYoDgwqjSYvA5t6/cHD+bqQMJwu+9cVHcv1mu9LZ127eH5bN3hPcdNW6XAMz7PnzL4nDhA6tinWTJKWOqNPWL1uAH1m4Lf5qzJnztlMnxYq1cmVBu967ZGgZvbC7b4gBMKCLsE1R3KZOW95Vz5vhBMQAXlx9l87k7l8ULdy6ECukuTEvr4dbCzrj+CzbtCNct3RhD3fdP50Kq+nZk/e5ZvTXup5QB25+LittWbG7+jpagy/HoD7PWhDcdOjr0bvk4jjHsw6wHFw4bdzRVDcCsB8v30VsXhz/OXtt6dyq2eLe8hmVgu7JcF81eE86bPCR87sSJ4YChfTs1IHLM+N7/VoQv39XcIFJ6jNrYcoy6Y9WWOGaEBxIxOLlPj8rHKMqf+ssAacaHbG/aGQdef+SWxfFiraGlfvH+TY2NcT3vXrUl/G3e2vC906eEk8f6wKNaDMBSOzGlLq05v3lkdWzB5UT7lKlD4+2qenCQJLBxgON2Iy0DbR2rxonwdVfPD7ev3BJbeo8Z1T+cN3lonKqNmSo4ANNKwEkznuy2NsZWWFpwv3XqpDj3ZtkTy8Yd4dVXzQ93r94SH0lKK+/Tpg6NJ2NOVPR5Zm5fAhNTwi3evL01ANPa9f6jxsaDPRZv2hFbtWipOXXswNgKUvqtx44a0Dr3cTFaZT9z+9LwhTuXxffTovSs6cPihceUwc3LMmf99tgPm6dncZJ5/82LwqbGphiEe9dxAmjaWQjf/d+K8Nk7lsZWHGbMYF1poWP9b16+ud3dUroCuju8/fqF4WcProotgqwb25P+5sxtfd2yjeG7962MIf8/izaEt1y3ILbeUSfrUXrTnflb2UaEHoLMxfPWxwBc7wNnblzefOFEHaalrBQXee9gfR5aFbsa0LLGUxlpbebv23buDA+tbW7ZpNWRsMCFHC1l7GPNnSKq47Ufv3VJ+NEDK2PI4E7HOZMGx1ZT1otAVTxHLz//0l3LYiDnooKZXF5+wMjY8s7xYOXWphgk/zh7TQx5XGxw7GhrreLJk8znzTEDXGQy3SG7zotmjgj7De27y+sJ/M+cPnSXnxETP3Hb0vCD+1fG8MRnnjt5SGyV5u90CVq9tTFuh18/vCbWC4LY666ZH/5+3n6x9bYeCzduj/WO99JF6bkzhofDR/SL++g1SzbG41N7x/pyjHp4/bbw8ivmxTLgY7hoo26fMm5QGD+gVzw20Gp/9ZKNsbWU7/0LD3BZvz389uzp4aBhnROCaWD46C2Lw9fvXREvlGjppyGEmYE4XnIXjjne2U4sBxcF/3fDwhia3374mJp3q0A3hy/dtTx8+o6l8ZhIuGVwM7MF8X7uhBDAaQHnAuQ1V88PF5+/X7yzo8oMwFI7cfA8fvSAcOzoAeHapZvCNUs3hXtXb4kHpXoOrM2T2K+Jfz9zwqBwxMjm1pW2PCiCrg88ne6kMQPDO44YE0/SBJfi22ssz5OnDA3PmD4svOyKubF18PezVofXHTwqLns5zG/MQZVQ+sWTJ4VXHDhyl1u2LOvTpg0L9x+2NQbr4hZADshPnTYs/sHtKzbH29QEWE5OzHNabx84bqlyq533Mujw26dODiePGxQvPtJnsA1o1eZWN0GH27o8UY8yecLEwTW/ixPog+u2xiD3jiPGhg8cPbY1/BGwOMFxC7M7Yp24Jf3A2q2xew4toS+cOSI+ECWVC616nKxfcNmceNHCHQlO1C+aObxdAYH3cCFIIKSljy4NbzlsdOyHWXVZC4Xw7wXcJm+KLYXPnj58t4siLla+ce+KeLHJtqF1k8cFx24vRfWTbU8o5gERb71uQQw/H7plcdwXDh3er+Z6Mb8ugZVby5TZaw4eGftvpi4+tOjSdaR5uUO8LU1YZpmeOGlw+Pnjp8UgVPw9p48bGKf4ok5zsdieGsXte7paJV+9e1lLAG4ILzpgRF3TMbK8tCQTdt9w6OjY9aX5YnnXvqN0KaKuEDKvWboxTvlIV6g3HjKqZvlxAfGRW5fE8Etr64/OmBpDW9qcHLe4nd/e+MmdmbddtzDuu3wm4fqTx08I0+nqUtKvmG5fbzx0S3jnDQvDVYs3xotaAuhvzq7/Iq8S1oG6+K37msPvsaP6h2+eNiUek4r7Xp8wekB4zozh4fJF68Mbr10Q7zAQZk8aOzCcUkdLLcdYwjyve//R42JwLu6qxIUFx34eJU03Lholvve/leHTx09wBqAquudRXeoiOCkSvDjYccsqzeVbV1/HuevigZCWWwJm33YcqDjJXnTu9PDPJ+0XnjtjWLwlW65vGa1YPK72zS197gjNVy7eUDZs043y0oXr43oQLJiXtFyjNp9JKP3k8ePjcnQ2LhA4SWxuLMQ+bT89c1o4fXxz38niEwZ/792yft88dXJssV7fcos8DQSr9ahibk+/6qCR4WPHjQ/D+jYHF/6wjgS32PWjm+KWMoPcfnbm1LiOcSBOSfkRUj55woTQv2dDPJFzZ6KlO2270Ifz1HHNfXe5kKLVsxZaxAisbDEC2bmTd794YV2+cc/yGELpm/2Ts6bGi7HSk3yaBYWWOFpMqR9c+H3nvhUxpNZy+aIN8Ts+cMy4uM8QPFOd4LPioKrWZSuEW1ZsDss2N8Z9mYBaGn7TMnERwly3tFTuq9vTHKs+f9KEcMXTDgj/d8SYMHFg71h+pcvD+hGSP3H8+NgVhXLjUcX1VAu2JWXIdiT8njZuYMvt+uY/XFCmMm0rjlm/eGhV7LeMZ0wbFr57+uSw35A+LV1cdq3bfC/zodOfmos90EWLi5yOPpVy/sbtsSsJx5mZQ/qGn541LZw0ZkDruhYvB3fb6ILx1ZMnxX2QCz26JHGxUMtD67bFbUTf9I8cMz6MaDlGFX8+dY66Pm5Ar7gPEYS5AFVlBmCpIxoaYutqagH9y9y1MbjVQn+1nz20Op5UOJGfOaF2S2U5HGiPHDkgBt9a7+eE9sRJQ+LgltRnsFwYYBQ2o7XBCaza7ADphNbZJ3NOTH+asy625vLJbzt8TM3+h/yOEPzEyUNagy3vr/ldIYSTxw0MHz9ufAyAjzUj+/aMAYHb3M3zq5YvO26BH9rSVeHeNVvCiq2163ElXMxxQUYuJQyxXxTPBlJue9OtgEF6qfVxckl/eFrb6EqzfGtj/Hz6UU4dVL2vMutL6yBdbHDJgvWxz2stLCndON562Oi6btPHGSJa5gifVGOZ9sT+0hZ89/5D+8VjVq1l4Xd04yDcge4D60v6H1fCNuKpj3QH6cz1JdQxKJFjF7NJsN/SkltrPRioy2Cyfi0XedSlei6Qq9XZ3z2yJg4Opo6868gxsVtRreU4b8qQeOcCtEjz/lroVsZ6MsCtdzwel//s/Yf0DU+YOKS16xlP4VRlBmCpAxpaQiKtEJi/YXvs81itZYHf0S/tzpWb44GTvoC0Wu4N9N9LA0sIOISKUpzE0y1/WjjSwLq9iRMTfXppHKF8CSP1TDFH6xy333klA7Hoa1mrlYdbiZ85YUKc0eCxOGjkdYeMCk+eOrRm+VEHj2kJikwltWpr+1uPKMfiEPvP+etjX+Rq6LPLdGMxPO/XHJ6L0WLG7X4QNOrp3gIu+M6d1PxYXWZP+N/arTXrBMGawFHPbClIt9LpqsNsCh1tWexKuCikfy0YmMbAsno8fXpzX/POnIeccmWfpssSmOXjoDq6tBTXyUOHN1/kcbE1a33tC+RKKAe697CluZh42tT6jlHUb/ZHXsmsGAy8rFVfaLh4wyGjK84ckvBrxlnwKi486TbxWKqLnc0ALHUQt6ZeMHN4PNHubOk/Wy00csuLkeWcLDlwEp73VvDiZMbIYzBfZ6FCa8PJYwbGv9+3Zkv41r0rmqcV2ovHUebQpD816GYxsQ2zY9BaRYAnPNP3tdZiM83WiWMeuyOmJwxo7hdZC+uf7mRw+z/dBWivcf17t7bGEzSYMaTSyZj9JT36m+4Tp4zd/dHdfMa8jc2B5cSxA3eb8quag4f3i9142OcYUV/LM6YPjctRb53gFjvLQ8viF+9aFmatf+wED0JdmjqMY1c9T72klZX+zuUGtnbUtUs3Ns9V3BBil4K2hBiO0aeMaz62bdi+M86a0F50qeH4gqNGDQhjBtTfDYwuRxxn2c8eXFs7hDOIkIaJWqivdGkhKLOV0gwpKs9BcFInoB8ifR5poWJaspuWbyrbQsVJkT6RzBUK5v3lgNWZSk+8/Cv9hP+39lwsmlC/FLfaGDHNHJ6fvXNpbAl++xFj4qj89jxMo634XlpwQfilRbLeryTkpAZ1BvvE4qjy3loPW8gJAaH0QRrtxfmaPrgMEuKz6JPI7d/S2Mq3xOmvWi54mHFheJlZN5hqkOAD7gowsK1ezdN8MYVfISzdXPt9A3s1P6ShHuwL7P+0WjPHMgO/nnPp7PDBY8eF8yYNaZ3KrStfYJUL6+kSnrz7aG/nMtN+lMHrS/uad8pyttQVMAsHFzZt+Q7qQBwE2bJ+cfArg/HasZwMfEyt4RMH9K6ra03CRUTz7A+FsHRL87RpnVVSDM5MWZlGDlVmAJY6AVfnTLHEwA9uPf3i4dWxX2/p4DFOJr94aHWcvoxb70xd1Bnhi/MXU78zb+idK7eEO1ZtjlNBNU8KT0tvc2tv005aLqr3OeNkwInl26dPDm+6ZkEMo7RY00JHP9IXzhwewz63zPfESZ0TEtNGbW05eBOcGLBXL1qpaN1Jf/cUUL/iBrty3WPaM0sK3RWYpo99gy4I9JEt3d70EWYqQQI4D5gp3Sea567lwR3N//7mvStiH856cQcjDTZiPtU9sf9/8rgJsdvI3+auDXet3hJecvnccPToAXGWhTSF4N64eGyLNKcy8zpzK/5/a7bElk1+xvZPgZep0LqC7U3NcxiD1mX6ALdVc9/nR2fDaG+5EXhZHvzqkdWxC0+9uJBLD21Jn9FZmp8F1zn78GOdAVjqBJzUaPHltiknE6ZzooXggJJ5TBds2h5HH+PsiUNiOOioQkur1vfvXxGfosSgClpBO4IAwly7fztvv/Dlu5aFv89fF2+n/erh1XEuUwbeMZE/A4x40lJnn9Q5OaSYwuwa9Q68KQ0lzU9cCo8J3fFcRt9YHvBCAObC68rFG8OL9t91erW1RX17GazGzCPlMLdzwjy4q9qYyfhG5uQ9sMzcwh3F+nCb+sdnTg0/e3BQ+O7/VsYBSHT74CllTAlHOTALB3Mit/Xx0J2NYwb72O9nrY3zAdPdiIc1dHUc11of8d2rR80+seUwg0d6V5yOjQu/dixLetxy6p9eq497OXSDiK3YoXM9Rg55e5wBWOokDKK6YMbw8PHblsSWhYvmrA3vO2rsLs9wv2j22viITFoveBJQew7gxfhMwkXzwzCaR9Az1dLpI/uHg4b1iy0kTAdV/FS1r9+7vK4BTiw380v+6Myp8fY0fZtpqSNg08Xj1hWbYsswU/PQj7YzuxEUfxL9q1990Mi6HmBQrF8vlr//Pj8ZpInuCx1s7Snue1nvo4X3NULe06cNDV+7e3lYs70p/HHOmvhI2vQAFuovdYn+vbHLxH67z/1brmWL6buYfaVtC9PcxYOAvSfCJ59J4GfaNOYg5iEx3Am6dfnmuM/zkIzfzlod3nLYmLj8xQ/S2Jsoc45PPKSCeX2pVwz2O3EMcyT3D5MG9d6lCwi17nezVsfjzD5Ht62W3YDlbs9FYfGW5yl07a0JxVXolQeOjNNhttWA3j3C4S2D8rT3GYClTkIApM/jNwmY25rihPevP3hUGNEyRy6tBLSgcszmART1TIBeCy2/PKGJfse0eDKjxDsOHxNmDOlbdvoyWlN//tDqukf4x3lPG5oHedDP8Z1HjIkj+nlyGl0t6O/40v/ODb87Z3p8+EDnBIuG2H+QQETmG9m3V+xO0l376aYZPngiFAPL2tPnkPesiu9tPmEXP4K3q6PFlUFrtPLypCrmvk53RtgX6GtOSxzzl9JntnzZMBCrOQLzHroTnDWxeWaHroZ6OqZ/7zi3N49f5sKUvsF/nrs27nefvn1pfJDGx4+bUPZJjHsaXUE+eMvieHyiLHny4UePHR+PSfRXLt3PePgILcRdIQBTXunij4tJWrHbGjs5DqfcHKePbNeSNMSLhvRoZxoaeJhRV+reotqcBULqRJzY6QoBnsbz35aHTfCHx8wy9y7Hbx6TmgbHdPQpRHesaG75pZWUB0HQrYKBXZ19MObEOGFgn3gb95InzYzTa7EuCzbtCB+7dUnsw9kZWGwmdecpXODRod3x9n8ycVCf1jDPiO/2rArvYU7jnS1zPzNNV3eR5gSmrtCNhsdWp0FXDGS7rOWBBo+fMDg+3rpSnSh+dO7CTdu7fN9u9j9aeU8fNyj86Iwp4ednTYuP6KXlkgdy0PK9L2aK4NHePA59Z8vjpn/9hGkxvA0peYJkV0QA5k5bmq+c/sptQXk3T1PXfCE5sw0zfRTjLVzkpAsYWvi7en3U7gzAUidi0NuLDxgZW19paWHAGyc8WrgYtMPfaZ2N80B28GTD59OqxomMKZhee8ioPRJ8y/d37B2fOpSe9kVL8JwN7Z9TsxRBaEif5sMTwY+TXXdEWTEt29CW293XLWuewqmtGMRFX9LQ0tqU5mXtLmVw9qQhYcKA3s0tvnPWxYslwgiPG2aGEfYb+pNX6xJ04NC+oU/LRREXl40d7Oe+tzQ/BaxH7ArykWPHx3XlSYWME+hUdRQHwY8nqNF/laJ+5YGj4oVFd2m5ZOuncRO0/sZpDttwEcG42ltWbIpFxTGahxC114whfWIrMOjv3dmD2bTnGYClTsSJ5PRxA2PfU1y1ZGO4d/XWcNuKzeGaJRtjqwOjwtszerkUYZpBdWDaqEn1zJXbicdoQje3T9PJaE2FbhWcW9PpdVudQZYW4MNa+sbN3bAtBp7uihMlA11At5F6Hs5RjNfyqN07W6Z/Ys5iQkt3wlR/50xqnhOYvuMxwBZCHBDK/2mJ40l01Uwf0rc1+DMV1uIas5l0NbSuMvA1PWSGVuxO7V9e1wVBIcxpefIY76315LKuiHl8uYhgdZl5od6ZvtjlqDPXLN3YereO+Xjbi32QcRbpUcWPdOChGto3DMBSJ2MgDINgGlr63DJ47CcProqtLty+43edcauRT0gnr+ZW5p01u0zcuHxTp02OznkntcxyW55BZ+XQSsLDQrCU7gx1fDatM7SYcYBiSqYfP7Bqj0xftTew/s3bvHnk+BfuWhbrRT0hOE1TxcMVeC/lwnR73WQMXKueLf3j6Q7B+jBAjFkhuEAEA9pG9Ks+KIyLPJ6IlbrFMONJd5vmiX00LTKzEXTWvM2UAw+PqadOpUZ2XruxsXo95HdMg3h3yxzN+xrHu1PHDop9wHHZwg2xcaGe9WbOBo7DizbuiMdO6mN6gl979+v01ElmgOAOX3e5K6FmBmBpDxykebpbaqVjpoQ/zF4T//6kKUPCAUM7ZxombhfvN6Rva1/KG6o8aYuBLBfPWxdefdW8GL4q4f13r9oc52yltbbaeWX1tqZwxaKNrU/9qtQvdUTfXmFISxcApoirZ0ozyvDZ04e3Tln1y0dWh9/OWlPXCSZN8cRjRrvC07hYF1r9jx7Z/Jhhbn1/4ObFcS7oWuGDbfXhWxa33i7n0a+0Ina3VjucNHZgfGwta/zXeWvDX+euixdE9IXnUde11oiLxlccNDLePaEafPXu5bGe7qz3QqJlOr3OrhM8Hvii2WuaL+6qfDbLecmC9fGikRPvcS2Pne4IHhLDdSd33wmCtS8RH50GjpZTulBVunPPujywdlsc5JoePtEVjB/YO7z0AGaFCXFmkffctCjM31i97Dn+/W3uuvCNe1bEMqLlls/oCPZBZqiZPrhPrNM/emBVvKPRVGd93LSjeeq0rnCMypUBWNoDCIOEXRBiaPWixeBlB47stNY7Zn1ggn0+jxZgBqJxq5yQmAbepZYhWhBffuW82HLGDAuVFFoC+zP/PSu85qr5caBOnJO35fP4w8lk4cbt4QM3LQp3rtocDyK0pqTZLkoN6tOjta8dtwp5sEXzFEbNy7d2W2OYt2HbbicCZgX48LHjwqBePeKjct923cLwmTuWxufbF69j+hxaiOkuwSwXz/j3rPDKK+d12sC8jqLl/3MnTojhjUVi7tUL/jMnBhDWn/XhxMkf/s6J8T8LN4QXXD43DpjiPdyu/vTxE1pvoXc3tLZRX6n+dIFgfmnWiwsDZhipJ9QfMqxfnImEi7/lWxvDy6+YF75738qwYsuO3eoEZUmLK0+Q+9Z9K8J5/3wkvP/mRRUDX3sxhdsrrpwXzv/nI+FnD62O+1vpPrhpx844BWJa5/2H9W0dLNsRBwzrG/vj42/z1sVH++4s2k9pZWfO5LRvUcS0oqfHSP/8weYLS2al2HV5CfVrw7MunRWuX7apta9rV7mb8PpDRsUBfLh2ycbwgsvnxAHHHKuaitaD7cCFyVfuXh6niiQwMyvLp44fHyYP7HjfZ1qiP3DMuPiIeY7zb7h2fpzzma4W5Y5RNCowP/yFD6wKT/3XrPDGa+d3eM52tV/3mUtH6ka4zci8kNymTY/LpAXsxNGdNVXYoy2LBMrLW2aYeMols+LT2o4Y0S+GhDnrt4fLFm2Ij/zs1dAQZ3BYvZX5WNeW/8zYt7dXDJy/aJn3l4n7jxszIJ5oOahzwr96ycY4HzDOmDAovO3wMRWvpvu2TM/G6H8GgL3zhkXhisUbY79Ynlz330UbYjD88xP3iw8qKPacGcPjk58I97SY8v8LH1gZThg9MPbhY6AcYZp5Te9bvTXcv3ZLWLa5MbbynDZuYJe5Rc62evzEweEHj5sS3nLdwjjwi+1Cf0RakGiRSkGGAMXgHqYLY/AkJcIT1b53+pRw4DBGrYduicXmKW9fv2d5HATG7CENLY8DrzdgsV+9+bAxcXszry4XdG+7fkGc25oyoi8xn0W5UW947Dgzb1DPqAlTW1rrOlP/ns0PZKCPNndYpg/uG/d1Bj8yZRdBnQGMTIfGctGVgwsZ+kV39FhAv3+6Cn3vfyvjTAQ8gvmp04bGusRsB1cs3hBefdCo8IGjx7a+h4uN1x48Knzl7mUxEL7u6nnhlw+tjn1ruUih/rF/M7CV/ZU5vvnzqduXhq6C48X3HzclXuQyPRt3v57+r9nh8JH9w9Ej+8cLTo4L9He+ZfmmMHfj9pYpFXuGz544MTxt2rBOOQ7zCRznmY7ys3csjdPcfeCmxXF7nDB6QNifY1TvHrF/Nq9hPnWeqhcf0R5COHfS4Lhc2jcMwFId4rGy5XhZzwMZOLgyryatFIQ9ch3zgpYGvIrvr/D3UpxMCVXvvWlR7FeZntb2q5b3cWwlWjB46F1Hjo0H63fcsLB1nRrKLPdrDh4ZW1K5RU2rxnXLNsU/5fofcuv6E8c3t2xWOqHw86dMGRrectjo8J37Vrb2iy7GU+dKJwBIcxDz4ADCBK2/d6zcEm93zt9YPsDTGj60b89w6tiB4d1Hja0YrIo25157UAa38OkzOG1w3/C5O5fG+ZS5Jc9tZv6UW5dJA3vHx2W/5fDRcRaFek/axS9ry3m++POr1fPisqv34+MjtlvmBKZ1Gzw9jW1f/3o1hP49Q/jk8RPiAy1obaOFl5lC+FMOuxzfwwXI+48at9vjyUvXqfTvtTCryxdOnBiXhYtDBkOVGxDF9x41sn/4+HHjY5/nivtL0f9rFQt15P1Hj4vrTtidvWF7+Po9K3b5femDRViODx4zLvTu2RC+e9+K2JWJi1P+pGNG81zTPcPrDhkR3nfUuHixVk+57FLv2rFnta57fFJete9piBfmF50zIwZzGgE4rvDkPf6Uogy4KPnIMePD6eMHxTELnYHl4CLn3UeOiQPqPn/nsthfmotX/pTD5hjRt2dcjvce1dx6XPt72rJMj/69q09rt681FOyAItW0oqUbAZOoP2+/4fH2Za2TNrsWg3x+/fDqMGFg7/COI8bWNeiC9/FgC26TMRfu2w4fHUNTtddzq59ZJv46d21s9aIlglYpWhc58fMY1imDmlsYL56/PrbsMj8pgTgNUCv+PFpP6K976cL1sVsFB/MNO5pC3x494rrwyNonTx0Sjhk1IHbFqKcsuNVHay8nK0ILtyuZiP7oUf3jvMjVRqSn/rDXLt3U3Nq9ekvs97xt587YAkfA2X9ov7hcnOiYeaHacnGLlz6ktBDRYsat+b11skjly+wg/2kpXwYa0ZeUVnqe5McjtU8eOzCcNWFwbLUsHvBYD1rnv3rPsrC1sRDeeOjo+ES/et7PLXS6XHBS54IpDTYqV6+50KKljdexzPWu+03LN8cLIKZ2IwRQB9saSOJJq1CIF3xcYF65eEOsUyu2NMYHjtDNhz749Hc9bvSAOHMG60L4q1QOtHx+mSfWbW2M/UNPHVf/3Zr4OPItjXE5aD2liwfLxtmVIEkLP8eMcyYNjmVWrZ7zuOhfP7I6zoRC2VbqWlT8HkLsH2evDf9ZtD7M37A93gFh/ZmlhW5XtHwWf2dzF5EQjxW87+YVm8KSTTtiayR9bNmHnj19WJzNhnxGKzqt7GP79w7/d+SYMLjMU+z4TFpiGQzGRei7jxzbelejHtyt+fOcdeGf89fFi4p3HDGmanet9J3cYLt3zZZwyfz1cYYRLpB5bHafHj1iNyrW4dxJQ8LJ4wbG7lR7ov98qo+cH9j+dMfg+EmdovWXY9S4Ab1jSOaYSflybOYYXWl5uDj+8t3L4lzHbIvz6rxQZDt+6e5l8S4ec8NT/7vjmIG9wQAs1SH242qZSodzdVtOjJxUUmtrW9/Hm3rU+b70nh3pO1taG0oPsul19axHPMEUQnN/tvDoZxJY2hMY04mXkJLKMi5fG9aR5SBAsg5pmXqkZWrj5/AZrM++OkGUlm9I5dtA+bZ/ueI2jn9pX32tVe/aW6+Ll63QSWWfloU6lfr3FtfTttattu7j1fZBUI4sR73r2pFjRqpLocK+Xyl4sj+lsit+X0Mbl6kj9SK9vymVfzvqFWE4HluKjgttOb50hlS/m/v17/362N59P0cGYEmSJGWl6wztlCRJkvYCA7AkSZKyYgCWJElSVgzAkiRJyooBWJIkSVkxAEuSJCkrBmBJkiRlxQAsSZKkrBiAJUmSlBUDsCRJkrJiAJYkSVJWDMCSJEnKigFYkiRJWTEAS5IkKSsGYEmSJGXFACxJkqSsGIAlSZKUFQOwJEmSsmIAliRJUlYMwJIkScqKAViSJElZ6bWvF0CSuqudhULYvrMQejY0hF4NITQ0NOzrRZIe8wqFQtixsxC2NRXCToJMQwj9e/UIPdz/WsumEELo06PBY1IVBmBJaueJ5tcPrw6/emRNmDSwd/jCSRPD8L4eUqU9uc+t3tYU/jRnbfjXgvVh3obtYVvTzjCsb89w1MgB4TUHjwqHj+iXdeibvWF7+MDNi8OmHU3h/44cG84cPyjr8qjGo7WkqiecqKEheAjdFSVz5ZKN8UQ8ql/P8J6jxlYMwLQUb9pBW1UIA3vbUrWvxO3QuDNQrdkOtNx3+30z7p4N3XL5tzQ1t1YO6NUj9O5RfR1Y3bkbtodXXjUvXL1kY9j56OpH1y7dFOZt3B7+dO6M2CLM59NCvLWJz28IfXr22Gt1bHPjzrh8+6KOUUZ/m7s2rveZEwbHAKzyDMCSylq4cXv44l3L4sGclpUTxgzc14vU5RRlkCqvKYQ/zF4bvnr3shia/++IseG5M4Z1y9DSnbEd/jFvXfj8nctit5U3HjIqvPzAkd1uO7Ae96zeEn70wKqwYXtTOGrUgPDag0fFLgDdyYPrtoW3X7cgLNvSGM6ZNDh88vgJoW+VkEpL7wdvWRyuXLwxkJVPGTswnD95SLzonL9xe7hy8Yb487RLLtm8I7zluoVh1vpt4bjRA8JXTp4UhvTpuce3DRfEn759aaxjHDdfc9BermP1HJQUGYAllXXvmi3hW/etiC0Z0wf3NQC3EyfCXz60Kty0fHP8968fWR2eMW1o6NOzewWv7q6pEMJvHlkTrl+2Kf77lw+vDi/Yf0To1822Ay2mn7p9abyoQv/Za8IRI/uHsyYMDt3JfxauD/9euCH+fSlh9bAxYfKgPhWD5R2rNoeL562L/yb4/uysaWFE30cDLS37G3fsjK2/uHH55tgS2lgIYda6beHNh46OFwt7EsfK3xbVsf49V4WX7D8i9E8LpS6le10yStonDQnNQyr2HU6As9dvC5cvXB/uWbUl3mbsTnoW3d51YMq+U9zA2IvtELofbvNftWRj67+3NBbCH2ev3Wf7xJbGneH6pRvDFYs3hNVbG3fpmlFNr6JuVewfta5Drlq8MazfsTNesLzx0NEx/LIfpT+DevcM4wb0bt23igelsvuxvfeG4oZ4vnMvfa3awRZgSd2iFfU9Ny6Kg18OH9E/XPHU/cOIft3j8EXgff3Bo2LrECfD1x8yurWVSnsPAevVB42KfbFpDabbANumOyFc/nP++rBya2MY1LtHGNy7Z7zVz2335VsaYwDc2+5YuTmc989HYlepr58yObzx0FF1ve/8KUPCi/cfEZZv2RHOmzI0jO5ffdnvWrUl/n9on57hyJH9a15Enjx2UHjVQSPjhfPJYweG/Yb0DXsa1ekVB44Ka7c1xZb6V3fDOpaT7nEGkZQ1GpXi4KUQ4omWANNdcKJ+4uQh4ayJg2OLF4N9bAHe+yjzM8YPin1Hu+sUUQwa4yKQi6nHjR8Ujh45IHz6jqWxDyytwhfsg77lDDTjArWpZR+t19RBfcKFZ06NLdfsE9UGhvKpizfviH8f3rdnHDRXCwNTv3nq5NDY8vl7YzAaZX/auIHhxDHTu20dy4ldICRpD+MkyAAfRqJ7Qtx3KHu2Qd9uuh3uXb0l3L5yc2xpfOa0YeFZM4bFFlFaGy+avSb2d+0uKH+CKdui1qwojTsLYWtLuO5Xx+vT59MFgdfvzZkYunsdy4kBWJKkLo6W0j/PWRsHeo3t3ys8YeLgcPCwfnGGAzA12JwN28Jj9Q5QalsmUxor1RnsAiGpQ9KgF1qh0sCi1PLB77hdu3Z7U7w9Sj/MIb17xv6LqNZCUn0wTaHi72u1uqT3ESQ27GiKrWb0yR1c53K1B9+Zum1QBvV8fiq7dS1lx9v79myI5Vdr5oJ6yoDPW799Z9jU2BSXjda4ob17to5Yr3cZeW+hZNBRKmPmIl2zjTIuxGUe1rdX6N2BJ+alz6UbDAOidjQ117mhfXq03havVafKLW8938m6rN/eFLbtLMQ63r9njzCkz6Pz1+7p1j7K8R/zm2dBOG3coDhjAtXgmdOGxgFoK7Y0hn/NXx/2P6xv3cuS6gEtrMVdc1I5rdraGNd3QM8e8WET5apdub2w3L5ZukyxfjM7R8t3l76m1mC6Wt9Rum7llqHa53JcWLetKWxpapm/u1eP2NrOR+2tOkbr9dC9WMdyYwCW1CGcHr5174rwp9lrw/FjBoTPnTgx9AzNE9BzYv7FQ6vDnas2xxM4YYXWK07grzxoZDhsRP+KtydvW7k5fOHOZTFYc0Lh1i8Y9POyK+bFMFiME/RnTpgYxlcYCJQm3r92ycZ4u5jPJzRwsunboyGM7t8rHDd6YHjBzOFx0Ey1OUnbimV//82LY0vW50+cGI5pabWrtJyEu0vmrwsXzV4b/rdma1izrTGeUDkJjx3QO4zu16vs6HLK9a2Hj4khs9pnX7ZwfexLeu/qrTHk7CgUYqAbN6B527xg5og40KjWyPkFG3eEt1+/IH7mx48bH04dNyi2VC7YuD1OOUZgm79he+wjygXGfkP6hOfuNzw8a/qwMKxP8yj+tjze9ZYVm8MfZq8JNyzbFKfOoo5RD8b37x1OHDswPHfG8FgH2Z7lPpuyfPeNi+Kcsh8/bkI4rcpDAvhOLtyuW7opDjJjG/KdXIxQM5hTdurgPuGJk4bEdZo88NEZCDoby8I6P7xuWwxVlF+6kHri5KFhdL+lcT5dtikDvwb2rm++W+r+h25eHG5evjk8Z8awWHeaCoVw24rN4ct3LQ+3rtgU15fgx+DTTx4/PswY0jd88c5lcf/BCupPy1Mpfv7QqnDDskdnqEieOnVonHO5uOsCZfv26xfGBze8aOaI8OqDR7a27LK+VyzeGL4dp2Fs3v8fWdfcuj17/fbwwsvn7PLgDOrp2w8fE+tfQt14302L4iA9+uC/96hxNQef8l2LNu0If5m7Ng42ZAAdF6As9vA+vcKBw/qGp00bFp40ZUgY069X2e39wNpt4V03LoxdNj587PjY77xSvWA9+XymTaOOUe4c37jA4x2DqWOD+oRzJw+J/bunDOpjCO5EBmBJHcK5jwE4Vy/dGNZsbwyfOmFCWLhpR3wc51/nrg2bWzomcsLmRMYJ5vaVW2KQYfL7lx0wsmzQumHpphgAS9t5OCFfsmD9bq8n9LzqwFFlAzAnGibe//Ati+NcogThUgtalot5egmAnzhufAzrnXHC4bv/u2hDLKsH122tGIBZTk6ghEoCQAoWsXgKISxredRpJZT76w8ZFXr36Fn25E6AfP9Ni2KoI5SWm2KL+Yp/+uCq8IZDR4d3Hzk2DO5duS8jA5P+s2hDbE1/4czhca7oP85eEz5y65IYWPiGdBlBQHuEqewWbYhz2H7ntMlh+uDaJ3TKZPnWxvDxW5eEXz28OobtckH85hXNy/3s6cPCJ46fEB9PXfrZhKfLFm2I5frcNVsqBmAC8m9nrQnfvGdFfOhEubJauqUxPLRuW7hs4YZw4QOrwldOmRjD8J4IKHw95cqAMwLR6UWhihDORcsf56yNIf2+NVvD8aMH1LUcWxsLsTyYYWFM/17hzYeNjheyb7t+YQxioWjbsa50u+AC7Dez1sSLiVJ8N39K0X33RfuP2OWilZkSLl2wPpYj68QFcfFhgAdbEOhLERgvnr/r/s/bjhk1YJcATIi8dOGG8MDaraF3jx7hnUc03y2ohDpBGX/stiXh4bXbWrtcJEs3N4b7124Nf5+3Ll4MfOr4CeG8KUN2u4Cfu6G5TlBnnjFtSwzA5Wxv2hl+P3tt+MY9y8Pdq7bEi5FSlA0XPewzFz6wMnz55ElxDmSfJNk5DMCSOg0tnHet3BLedO38GCYZsf2CmcPiQZsWVsLv72etiQF2yebG8M4bFoaRfXuFp08butsJ+wmTBscTcnMLcPMTlgg63BJkAFC/kpHgtCgeNLxfmWUqxBP8S/47N9y7Zms8yR4xon94xvSh4aiRA2KrKgHrxmWb4pPCGFH/o/tXhkWbtoefnjm15vRMnYnWsBf/d04sO7ICMxYQHA4Z3i+GoIfWbY39QHkaFidYemw8ecrQ1umvThxTvuWaMvjPwg3hNVfNi0Gf9506dmB46rSh8bMJCIs3bY/9SC9pmVLrc3csDcs27whfPWVSXS2KhDNaBj97x9J42/joUf3jhQTBhPCdgjUh+N8L1oc3XjM//Obs6RUfH52Wm2Xh8beXtIQewtJTpg6NIY9WWKYEo3X00oXrw+JNO8LPHlod69YfzpkeW9B2+bw6t8Nf5q4Lr796fmxF5ALg1HEDwxkTBodDhvWLraEbG3eGu1dtDn+esy4OTCMYvfaq+eHv5+8XjhzZ+Q9bWLR5RwyqiCG0qE7SqknrLa2WG3bsjPWDfsFtjUiUDXXkTdcuiGU6c0jf2NLJ+j64dmu8eOIuCy35PFTi7tXN05JR5hfPXxcvbk8aMzAcNar/Lp/LcpwzaUjV6cDKbRe28eptdM8pxG4SbBNam5nd4elTh4XeRWGaOYU5xlRfu8roJsE+/56bFsWLOY4JZ04YFM6eNCRMGdg77msE/n8vXB/uXLkl3LlqS3jZlXPD786eER4/oUoLb5Xv/Mf89eF1V8+LDQR0vTpp7MD4nYcO7x/LnAt9ypjtydznD67dFl531fzwt/P2q3oHSfUzAEvqNLRYvPzKubEVk4DypZMnxRCXWl4INE+fNiy2enz01iWxDyrTOD1uwqAwoiQIHTK8f/jGqZPj37md+MxLZ8cAPLpf7/CFkybFQF0L30frFSd1wi+txNzmfecRY3Zr3aUF862HjQ7vunFRDMIEri/ctSx89oSJe2USfYI+30f4JcIyZ+2nT5jQOuE/zpowKAbir9y1PHzmjqXxPZwsv3bKpIpdNlLr95uvXRDDLxcQHz5mfLxVznuLy+ClB4yMt4zfct2CGFgJk0ePGhBed8iomq1OP35wVQyDFNV7jhwb3n7EmNhVI30+wY3WWS5Ebl25ObZq/W7WmvC6g0dVDBCs3yduWxL7tuLJU4bEVrCZQ/vusjyvPHBkmL1hW/ja3cvjMt+yYlNYumXHbgG4XnPWb4vb/PnThsWLMC6UBvTatVsFfW9fezD1ZWF8+hdlS1eg754+pVPrC9uPsiJoctv/GdPo/vDo57NMTIk2eWCfMHfj9lh3333U2N32p1roqsIFKeGXcv7aKZPD9CF9YjkTEFdva4zhl2Xg7kByxaINMRg2NRXCM6cPC+8+ckyHW8F5P3cT0tMn2f/vWLUlBmD6Pn/llM57rDHle82SjfHuEOF3/IBecd3ptlH8eGle984jxoa/zVsbH3VMi/gNSzfGANwetBT3CA3hghlDw5sPGxOOGdU/9mMvLjueGMn+wRzoPLmQC6Fv3rs8/OCMqbt0AVH7OAuEpE7DyZOWirMnDg6/P2d6OH3co+EXHNw5yBNCz53U/OhWWmevX7qp7idItQWf+N3/rYituzQYve3wMeETx4/f5YlRCSf6/Yf2Dd87fUpsQeO9tFiWu9W7J9DfkCd64chRzf0ti8Mv4hOvevUI/3fkmHDOpMFxGbn1zS3USgiRn7l9aWx55QKAQE85MCCttAzYVqz7j86YGltaafn62j3L40VELbeu2Bxb+b500qTYv5YLldJlpw/l50+aGFu86BnDSZ1W1kpuXL4p/Pzh1fF29AljBoTvP25K3EalYZwnidFiSWv1D8+YEh8L3NYAWOyFM0eEfz9pZvjpWVPjBdzAMt1A+Ddh6TMnTIjdEPDfxRtiX/fORPlcNGtNLIMZQ/rElsLSfDmmf+/YTxRc7NB9qK3o03v/mq2x7AhYfFcqZ+oF31EcCB8r6CrBxeSqbU3x2PSVkyfFFvXSdWV70wLOo43/cf5+cazAoSN2be1uC/qr/+vJM8PPHz8tzh3MXZZydYwLdbqV0fca3P3hiXvquMdebZa0TzGAjBBCgKrUEtS/Z0N4yQEjYysGAe3apbsPnOkM9GNkEB7hgW4P7zxyTNXBbSnUMKCGW8urtjaFv89bu0fCeTE+/5blm2IrG54zfXgYVWGQDT/jFu1zZgyPt5d5shnlV2k0PgPdaBUEofllB5bvc138+XSLoIWYV81avy1cvXhjzTJglgf63vL0K25Pl9v0fDYBLk3dxcXSwk3l+zTT6vjTB1fHVjmC+/uOGhf7d1eqU2n+1eftNzz84vHT4sVDe00Z3CecMm5Qzblc+R0Dk+iDC7pr0HWms1Dm9KXmQiC0dCUY2W/39WqeDWJYvACJfVnnrI3l16bvCiH2m+YiYlwn9X3vDhgAmI4/500eEu9QVbvbQblwsfWTM6fGVuL2lhMt2afWWcfYLqkvMa3gCzqxjuXMACyp09Dnl9vx1cIv+F3sw9ky7RgtT50dMQkPVy3eGPv0gseuxpHbNd7Hsp05YXBsJWaZGIy2Nx4wMGfD9tiPkuBNC3CtZWQOWIJPoWVwV+yAXQaDdtZsb4rh6JUHjYoXH7U0tPTBpOWTZaJlsxYCefMAvOqfz/efMrb5ZM7sFtzaL4cZOhg4CPp20z+ynrBBeKH1bm8FOL7l0Ja+54ROAkpnittvW1MsN26JN1TsMjAgtrCDWT4qlWsl1A9mLThsRL9swi990ylfWtnZ7156wIiaUwwWP9hmb3SNaq1jI4rqWB13ZFSbAVhSp6FlcuLA+qbqoQ9f6sfLCX57Jz/fmAYwBnXxsdzapJ9xvSd2gvy0ltva9NVjbs49iTVPXQEIcPEkXGNZachOL6GrQrnS4+fXtLRu0aJc7+wAvGbiwN7xggEMgio3Sr0Y5VVtoFPxZ9NlgJeyynSbKYfR+8u3NIc4BlfRX7mrSstGEW1pw+OAa6H1m8FtlPwBw/rFAYWVth919klThrbOznHZovVtunNBqz+3/nOaYYBtxVRv4FhEf/euGv5b61hLtw11nIPgJO0TtJ6khxds37kzjvbuTIQ/RuenGSIG9uoZp1Cq671x9H/P1hDC+0a2hME9gVNuumW/I7XwUB5VTsZz1m8PLXP0xymsyr2S5SbAo7n7QPPP6kEgT7M/cIHCQCQm5u8MtPyn5S0XGOOt//Xb4swSOGJk+/ta7gnpIQtJ8aC0zowmTGvGNGxgYFqti4CnTx0a586lzjKFYOnUY9WwL/btkVebGEGSmVfAhTsXiV21jhVfmBh/O0fX2dqSstJQdFCn5ayzexlwqzDNZUor4/Mum13xoRulWJZ0YiSDtbU/ZVvR6sSDJ7jNzRzFjKqnS0GlifuZQ5SHTHAi5DWVWnY5wdOPGcw//ORLZtU9PRar/Mi6ra0XE53ZQF+8HSp97rItO+L6EckmVHi4yZ6WnupFPbpv9ZY4k8i8DdvjQxyoE2nR6Sfd2Zpa+vLGC5FePcJTp9bum3r4yP6xrzsPVqDf8ENrt8WfqTzmlGbqOBB+6+ketKfqGA9ZYQ5lZlJhPu74BMWiOvZYfcz1vmQAlvSYxNPNUusiAe6e1e2bzYFR2Hvj9jtTPjE47Jqlm8Jf5qwLz5q+Ls7xWxp6Ur/Fv7Q8JOCgYf3igK1yaEHloQ6gVZAZN9qKb+cpZ53V+lsPTvobtu9svVOwN/v0FgdQWmBpUWUaMkJwJ/fSqYq+xGnuY2a+oEtKrdH/LN5ZEwfHeZEJUNSTnPr0ttXmHY/eeUqPQd+b+G7mFaaOxX7be7mO5c4ALOkxjxDLU+faepKjnyrzEdcz53BH8cAFZsa4dumm2MLIgxWYd5SHVdACyrIQwng6Fo+ppfWKlsH3HDU2jKw240HDo30833vU2DbPH0oAPXZU8zy4e1PxDeC9Hd/ohvKD/60Mn7h9SZzZgSJjG9APlwGezKVcfGHCgwp4Il6nDuBcsjG2BKYp8s775yN1vXfD9qbWkvvrvLXhTYeN7tL9p/elfV3HfvzAyvCxW5fE+dOpY3RTOmBo3zBtcN8wpE+PXe6U3Le6+UEc6jwGYEmPSTwdKrVa8n9mNWB6p/bYGy1oK7c2hZ89uCqekgmpnBTfe9Oi8Pk7l8b5RxtCQ+y/S3cOXkOo+fAx4+K0X5XQ/7NPjx5hS2iKr3/W9GExNLfH3mxF5Jv6t2y7Rlrym3bGULg3loHv+cOsNfGpYHQhIfhykcFDHggo5a4Dfnj/qk4NwLQCsgzpUdhc7LRnPmqmwLt9xea6Z9DIDceFdD2YukLsDdQx7uDw0J308I13HTk2PHv68DBhYPk6xgNeDMCdywAs6TGpefL+XnEw1cYdTbFljADTFdGt4ecPrYr9NscN6BW+cOLEcOnCDfHW+6qtjbFFGLQ6MhiPifN5QtkZ4wdXnYqJEMnsAARnphyjS8Sg3t0jCI1qGdhHBmzrlF4dvRDhooPwS9n95Kyp8cEulfrf7ok5oul/nmbvoH83czLX238ddHXhATCsA3cMziAAd/pSdn/MREMIpjc9+xn97/fGnQ66p3z2zqUx/HJhyoNnmIN4b9YxGYAldUu1TwhMycXtRAYEESAXbtoRb2F3RQTTP8xeE1v+eKABTyJ7/swRcWDMQ+u2hqWbG2N/QaYlYx2YGJ9W4lqtepzg4yNyN2wPSzY3xtbjPTmbRWdhvbgNzDrSf/vOdvRdbq87Vm2Oj7nFEycNCU+YUDn87gmEnUsWrIszgfCtLztgZHjtwaPa9BnzN+6I06dR5/+1YH38rLFd9OJvX2LmC/pW86RDHsiycktjfAjKnnbX6i3hgZYWfR4Rfu6kyuFXe05ec55I6p4aHj1YEQTrGSjCgO6Txw6K7+P1VyzeEFtauyICOv17OQVOGtg8Ry7hj6dFPWHikDid1UsPGBnOmzI0PhKVJ57Vc0ub+YR5QAI27WiKFwPdpTWJPssEeNywbGN8mMeeRtks2Li9dU7mo0b1b71FvrekVttCy8wEPL2Pbd2WP9xG55HGafaAq3lS4B7a7lTDVERMZ9id0B3o8JbHGXORcMuKPb9/8PkLN26Prc04amT/eKzS3mcAltTlcfuXmQDAbcN6JoInCJw1cVC8lY6LZq8Jizbt6JIBkP7KBF6WjJH7s9Zvb54HtMyftqLvM7d1eZrdzx9ctVf7OnYEfW+LH5l8+cINda0/F0iLN21v99R1xW9L8xBXwvIQltPDFDoqPrp6TXO/XZw4ZmCYPqT56W5tQV161oxhsS8pq8CcwKk/8Z5oRU35jQGD3UnPHg3hiZOHxAAa94+HVrcG01rbiS5FdC1qzz5ZvAfWesAMn089JJyrcxmAJXV5nMhT/11OPA+v21bpyb+7mDG4b3j29GHx78yJ+snbloRNjTvrmnOY1mJaTTv7AR3l8BAM+gASJOgHfO7FD4fXXD0/fPr2peFr96wIP7h/Vfjlw2vivLD/mLcuXLl4Q3x8NE+oq9aqHR+RO3pgfLQzrl26MXzz3hVxarRCnVOBUQb74qKB1uuX7D8ibnu6QXz6jqWxK0elZeHn9PX+1r0rwtn/eCR2HWm75lb39PAIniRYKRDxfVxMfOTWxXGAUmf565y1cdAbi/DM6UMrzgVdy6ljB4b9WsLzVYs3tM4o0dlGM39uy8Upc9im1vPugi4ITCWISxeuD795ZHXVfZ7f3bpic3jav2aFr9+zvB3f2BC7MKU5h69ZsjEekyrhgv/jty0JF96/qh3fpWq6fmcwSdmLQW7MgNDjvuaWmp88uCqcOm5g64wGnD7ovzeiX69dpvnir0wlduXijfGpcLyPE/T7jh4bDhzar+ztbX5PeOI29H8WbgjfOnVyOKalJXJPYTk+ePT42BeR0eFzNmwPFz6w+wmPxeW8yToSOqYM6hOeOnVoePVBo8LkQTzpbfcV6t+rIXzomHHhthWb4+d/5o4lYfW2xvDWw8Y0v6fCSffeNVvC72atifOU/uLx02Iw3JtYF1qvCe+XLdoQB3a9/Mp54csnTwxHjRywy23jHS39hD9/57J4gUCAbc8jiSm+o0f2D9MH9wkPrN0Wrl2yMXznvhXhjYeO3uUhCYWWx0N/5NYlcXvFrged1BWGOwAY27+5G0N7Z2+grzetmw+uWxFv7/9r/vow87C+nT4bBN009h/aL9y0fFOsYwS6s+m20fJ77tawT3GR1xVnoiDAv/3wMeHN1y2Iy/neGxfF+kQ/fKYmLN7m7D8MVv3GPSvinL3coeDnbVkriuDIEQPixQmt/Tcu2xQv2tgf2VeLv4++6B+/dUm8e0XZ2WLZuQzAkrqFx08cHGYO7RtPCoRTTqznc/uyR0M8idBPlKB23OiBre/hpLHfkD7he6dPjuGJYPmLh1fHlp5Txw2KJ7BxzLHb8thgPvu2lZvD/Wu2hPXbefRvQ1izfc/f1mU5xw7oFV40c0T494L1sWWRViJmIWh+mEUh9q/kEc3pyXQsL6GPYEh5fO/0KfGioDRk8G9upX/1lEnhbdctjA9Y+Ordy8MfZ6+Ns0kcNWpADAGccFdta4yDcygDuh1QxvyuWgvVnkQA+fLJk8ILLp8TpwGjRfa8ix8JZ0wYHGdHYHo4nnTHtmf+ZMqEnHrupKExlLUHcz4zJdVbrl0QW38/dPPicNnCDeH8KUPiNHobG3eGG5ZuCv9csC4OTmSO6dceMip8/Z4V7QrdxS3K1OM0AO9x4wfFx/O2F7XgGdOHhR89sCpux4vmrA2vPnjULiGrMzC39gX7DYu36Gm5ftVV82LLPYM1F7cMwpsxpE/4weOmhD5dsLMr+wd97NmPvve/FWHVtqbw1usWhh8/sCpegEwd3CcGYurfFYs2xKf+7Wx5OMzTpw1r14XPiH49w7uPGhvecM2CuG0+euuS8N9FG8KTpgyNU6JRx25atilcPH99HBtAnXz9waPi3Rt+p85hAJZUh4a6ftve01tDnX1CP33ChPCmaxfEvoa0lKXWMtAaXO7OJSe408cPCn86d0Y80fxn4frYkkNo5E85nKdpXX3+zOHh+KJAvftnd876pQcfvOW6BTH8Mm/rd06bHLt90EWQPzzegP/TfYHZHJjj9ZcPr463t3mE6huvnR8uedLMsqGJEeYX7Dc8jOvfO96yv2n55nhLfN4j28OvHllTdpnISQcN6xtec/Co2CK6p1Qrm/h43xH9wm+eMD28+8aFsSWfgFJu2/E5jOhnyjBa04pb7+r5ruKyevH+I2KYpkWZusb8q/zhE3cWlc9p4weFTx8/IU5l9c17VoSO4MKGdaK7B/XvGdOGdigwUnbHjBoQBxNyy56n2tFtptLdjHbvuw0N4RUHjoxPn/vznOaZJz5757JdXjNuwLCqrb9takFt12urv4u7KZ85YUJszeapbFwk3rJic/yz+2sbYjD+2LHjw7EVHkFe61upY8/fb3jzdGh3LI3HI+aR5k9pHTtl7MB43EvLVnulu95FRldlAJZUFi1oz5sxPGxt2hlbFivhHE1LLK0kTDvGU7LqQesqD2YglPH5fWs8apcTDQ8j4ElcP35wVRwoRIslD3qglebp04aGw0f2r/jeI0f2D789e3rsY8ttcgIBg+I2tfS3ZMYBZmA4dHi/GGzockEArXQ64efMD8vt5UmD+sSW0koOHd4/risOaxl1XowT4DuvXxjDA6PCf3zG1DBtcJ+KJ1emCOPpbHzm+25aFL77v5UxEDPY6a2HjS77PgYSEqz/cf7MeJv64vnrwj2rt8QWpq2NhTif8HCmTRvUJxwxsl943PjB4ZhR/eOJtxK6UDx3BifyxnBahccxly2PEf3Cc2YMj32Mj6iwzUpD8EXnzAiXL94Q+8jyWOsVW5sfG8sy09rIuvHoaOoCNalcGRwwrG94zoxhsUWdcFhtCr23HT4mnDNpSPj1w6vDdUs3xWmyeB+tztQRyv78KUPDkN494gXJs2cMi11H6FrTHly7cVv8KVOGxO179qQhoaNYNp7+94uHVsc6XtrlhzDHerDNzxg/qN2Be1jLXLbnTBwS/javuQsPF2rD+/aK9fkth43erS8z3ZWeu9/wMG/D9nBunAO38uf3bjlWsD+eNGZgPHbUwgUx24S7JOynbNNaLdl0FeJ7mJKQGVNYNlpo+/VqiNMJcsfoadOGxrtMdIkpV8c4blLH6E5xXMsMLGXXqUdDnMubZfv1I6vjHQxmIKGOcUHFPsKUiE+aMiT+e/W2prjP0E3m4CrTOc4Y3Ce+juMad35UWUOhKw6JlrTPcWigvy3/rzXnLAOxCMDMZsB5pt6+ful98fPrfNoYB6ydOwvxxMR7+T4ms6ffZ1u+lxMUJ+kmmlsamltb2vo5lE1zi11DDBiV3pfKkoWn23Lx6/gxj0Tl0cesC904eLpbvctw16rN4XF/fSjefn7lgSPjrWa6hdRablabW/apWwVvIQQTLggLdW2LlinpKM965iVuT90q931p21N21Dlmuajnc9rzvawb5UR9KbRsP2Y+KH5/Wq7m5Wn/U/MYYNXYjv2onjrKJ5Vb5/Sd/K6jc9HGGQt2FsLWxp3xbkXqq15u34h1kO48hdrfTbmztXe0YTlTHW/PuvFeur9w8c/MbmwLLtC5YOixj+tYc7nWPta0dd/KkS3AksriwNn80LDaB1BOCmnkfFu0531xIFiPhjC4ZY7Y9ujREpo4yXS0jOpZ/kfLcnecqBhsxcmaB12cMrZtj60d2Ktnc+v5jp3xM+pp0eDzKb1BvXuG0IHnI/A5zS17DXusbpX7vjQ/cFu153upKwN79wwDe9dTDh0TL6Q6uZ9srTramd/Jd3EBlR5BXuu1fC0P+a79WrZY244VqY63Z90aOnB82Nd1rL37Vo4cVChJ+xAtOrTeghabOrLDLuGZRz1zW5TT3cwhfZ1UX5LqYACWpH2IwMqMD6kvMP1z63liHeGXvqfMRcqt4cF9esRpr7zlKUm1GYAlaR8isDKwhkE79NV8142L4hzAy7bsiP0Xd5Y8CY4+mzyc4pqlG8OL/zs3TulGH8WX7D8yDvSTJNXmIDhJ2se2N+0Mn7htafjy3cviQBhahZntgjl69x/SNwzv1zMOjGKgzMLNO+IMGMxLyvy8dJtgSiXm+e2qDxuQpK7GACxJ+xiHYYIvT177xj3LY7hlNH01fXs0hIOH9wuvP2R0eNH+w2MLsuFXkupjAJakLoLDMQPaeKQs85DyuF36BTOnJ5iGiUfkHjisb+uT7JiD1eArSW1jAJakLijN+0mf33SUJucyZVJH5pqVJBmAJUmSlBlngZAkSVJWDMCSJEnKigFYkiRJWTEAS5IkKSsGYEmSJGXFACxJkqSsGIAlSZKUFQOwJEmSsmIAliRJUlYMwJIkScqKAViSJElZMQBLkiQpKwZgSZIkZcUALEmSpKwYgCVJkpQVA7AkSZKyYgCWJElSVgzAkiRJyooBWJIkSVkxAEuSJCkrBmBJkiRlxQAsSZKkrBiAJUmSlBUDsCRJkrJiAJYkSVJWDMCSJEnKigFYkiRJWTEAS5IkKSsGYEmSJGXFACxJkqSsGIAlSZKUFQOwJEmSsmIAliRJUlYMwJIkScqKAViSJElZMQBLkiQpKwZgSZIkZcUALEmSpKwYgCVJkpQVA7AkSZKyYgCWJElSVgzAkiRJyooBWJIkSVkxAEuSJCkrBmBJkiRlxQAsSZKkrBiAJUmSlBUDsCRJkrJiAJYkSVJWDMCSJEnKigFYkiRJWTEAS5IkKSsGYEmSJGXFACxJkqSsGIAlSZKUFQOwJEmSsmIAliRJUlYMwJIkScqKAViSJElZMQBLkiQpKwZgSZIkZcUALEmSpKwYgCVJkpQVA7AkSZKyYgCWJElSVgzAkiRJyooBWJIkSVkxAEuSJCkrBmBJkiRlxQAsSZKkrBiAJUmSlBUDsCRJkrJiAJYkSVJWDMCSJEnKigFYkiRJWTEAS5IkKSsGYEmSJGXFACxJkqSsGIAlSZKUFQOwJEmSsmIAliRJUlYMwJIkScqKAViSJElZMQBLkiQpKwZgSZIkZcUALEmSpKwYgCVJkpQVA7AkSZKyYgCWJElSVgzAkiRJyooBWJIkSVkxAEuSJCkrBmBJkiRlxQAsSZKkrBiAJUmSlBUDsCRJkrJiAJYkSVJWDMCSJEnKigFYkiRJWTEAS5IkKSsGYEmSJGXFACxJkqSsGIAlSZKUFQOwJEmSsmIAliRJUlYMwJIkScqKAViSJElZMQBLkiQpKwZgSZIkZcUALEmSpKwYgCVJkpQVA7AkSZKyYgCWJElSVgzAkiRJyooBWJIkSVkxAEuSJCkrBmBJkiRlxQAsSZKkrBiAJUmSlBUDsCRJkrJiAJYkSVJWDMCSJEnKigFYkiRJWTEAS5IkKSsGYEmSJGXFACxJkqSsGIAlSZKUFQOwJEmSsmIAliRJUlYMwJIkScqKAViSJElZMQBLkiQpKwZgSZIkZcUALEmSpKwYgCVJkpQVA7AkSZKyYgCWJElSVgzAkiRJyooBWJIkSVkxAEuSJCkrBmBJkiRlxQAsSZKkrBiAJUmSlBUDsCRJkrJiAJYkSVJWDMCSJEnKigFYkiRJWTEAS5IkKSsGYEmSJGXFACxJkqSsGIAlSZKUFQOwJEmSsmIAliRJUlYMwJIkScqKAViSJElZMQBLkiQpKwZgSZIkZcUALEmSpKwYgCVJkpQVA7AkSZKyYgCWJElSVgzAkiRJyooBWJIkSVkxAEuSJCkrBmBJkiRlxQAsSZKkrBiAJUmSlBUDsCRJkrJiAJYkSVJWDMCSJEnKigFYkiRJWTEAS5IkKSsGYEmSJGXFACxJkqSsGIAlSZKUFQOwJEmSsmIAliRJUlYMwJIkScqKAViSJElZMQBLkiQpKwZgSZIkZcUALEmSpKwYgCVJkpQVA7AkSZKyYgCWJElSVgzAkiRJyooBWJIkSVkxAEuSJCkrBmBJkiRlxQAsSZKkrBiAJUmSlBUDsCRJkrJiAJYkSVJWDMCSJEnKigFYkiRJWTEAS5IkKSsGYEmSJGXFACxJkqSsGIAlSZKUFQOwJEmSsmIAliRJUlYMwJIkScqKAViSJElZMQBLkiQpKwZgSZIkZcUALEmSpKwYgCVJkpQVA7AkSZKyYgCWJElSVgzAkiRJyooBWJIkSVkxAEuSJCkrBmBJkiRlxQAsSZKkrBiAJUmSlBUDsCRJkrJiAJYkSVJWDMCSJEnKigFYkiRJWTEAS5IkKSsGYEmSJGXFACxJkqSsGIAlSZKUFQOwJEmSsmIAliRJUlYMwJIkScqKAViSJElZMQBLkiQpKwZgSZIkZcUALEmSpKwYgCVJkpQVA7AkSZKyYgCWJElSVgzAkiRJyooBWJIkSVkxAEuSJCkrBmBJkiRlxQAsSZKkrBiAJUmSlBUDsCRJkrJiAJYkSVJWDMCSJEnKigFYkiRJWTEAS5IkKSsGYEmSJGXFACxJkqSsGIAlSZKUFQOwJEmSsmIAliRJUlYMwJIkScqKAViSJElZMQBLkiQpKwZgSZIkZcUALEmSpKwYgCVJkpQVA7AkSZKyYgCWJElSVgzAkiRJyooBWJIkSVkxAEuSJCkrBmBJkiRlxQAsSZKkrBiAJUmSlBUDsCRJkrJiAJYkSVJWDMCSJEnKigFYkiRJWTEAS5IkKSsGYEmSJGXFACxJkqSsGIAlSZKUFQOwJEmSsmIAliRJUlYMwJIkScqKAViSJElZMQBLkiQpKwZgSZIkZcUALEmSpKwYgCVJkpQVA7AkSZKyYgCWJElSVgzAkiRJyooBWJIkSVkxAEuSJCkrBmBJkiRlxQAsSZKkrBiAJUmSlBUDsCRJkrJiAJYkSVJWDMCSJEnKigFYkiRJWTEAS5IkKSsGYEmSJGXFACxJkqSsGIAlSZKUFQOwJEmSsmIAliRJUlYMwJIkScqKAViSJElZMQBLkiQpKwZgSZIkZcUALEmSpKwYgCVJkpQVA7AkSZKyYgCWJElSVgzAkiRJyooBWJIkSVkxAEuSJCkrBmBJkiRlxQAsSZKkrBiAJUmSlBUDsCRJkrJiAJYkSVJWDMCSJEnKigFYkiRJWTEAS5IkKSsGYEmSJGXFACxJkqSsGIAlSZKUFQOwJEmSsmIAliRJUlYMwJIkScqKAViSJElZMQBLkiQpKwZgSZIkZcUALEmSpKwYgCVJkpQVA7AkSZKyYgCWJElSVgzAkiRJyooBWJIkSVkxAEuSJCkrBmBJkiRlxQAsSZKkrBiAJUmSlBUDsCRJkrJiAJYkSVJWDMCSJEnKigFYkiRJWTEAS5IkKSsGYEmSJGXFACxJkqSsGIAlSZKUFQOwJEmSsmIAliRJUlYMwJIkScqKAViSJElZMQBLkiQpKwZgSZIkZcUALEmSpKwYgCVJkpQVA7AkSZKyYgCWJElSVgzAkiRJyooBWJIkSVkxAEuSJCkrBmBJkiRlxQAsSZKkrBiAJUmSlBUDsCRJkrJiAJYkSVJWDMCSJEnKigFYkiRJWTEAS5IkKSsGYEmSJGXFACxJkqSsGIAlSZKUFQOwJEmSsmIAliRJUlYMwJIkScqKAViSJElZMQBLkiQpKwZgSZIkZcUALEmSpKwYgCVJkpQVA7AkSZKyYgCWJElSVgzAkiRJyooBWJIkSVkxAEuSJCkrBmBJkiRlxQAsSZKkrBiAJUmSlBUDsCRJkrJiAJYkSVJWDMCSJEnKigFYkiRJWTEAS5IkKSsGYEmSJGXFACxJkqSsGIAlSZKUFQOwJEmSsmIAliRJUlYMwJIkScqKAViSJElZMQBLkiQpKwZgSZIkZcUALEmSpKwYgCVJkpQVA7AkSZKyYgCWJElSVgzAkiRJyooBWJIkSVkxAEuSJCkrBmBJkiRlxQAsSZKkrBiAJUmSlBUDsCRJkrJiAJYkSVJWDMCSJEnKigFYkiRJWTEAS5IkKSsGYEmSJGXFACxJkqSsGIAlSZKUFQOwJEmSsmIAliRJUlYMwJIkScqKAViSJElZMQBLkiQpKwZgSZIkZcUALEmSpKwYgCVJkpQVA7AkSZKyYgCWJElSVgzAkiRJyooBWJIkSVkxAEuSJCkrBmBJkiRlxQAsSZKkrBiAJUmSlBUDsCRJkrJiAJYkSVJWDMCSJEnKigFYkiRJWTEAS5IkKSsGYEmSJGXFACxJkqSsGIAlSZKUFQOwJEmSsmIAliRJUlYMwJIkScqKAViSJElZMQBLkiQpKwZgSZIkZcUALEmSpKwYgCVJkpQVA7AkSZKyYgCWJElSVgzAkiRJyooBWJIkSVkxAEuSJCkrBmBJkiRlxQAsSZKkrBiAJUmSlBUDsCRJkrJiAJYkSVJWDMCSJEnKigFYkiRJWTEAS5IkKSsGYEmSJGXFACxJkqSsGIAlSZKUFQOwJEmSsmIAliRJUlYMwJIkScqKAViSJElZMQBLkiQpKwZgSZIkZcUALEmSpKwYgCVJkpQVA7AkSZKyYgCWJElSVgzAkiRJyooBWJIkSVkxAEuSJCkrBmBJkiRlxQAsSZKkrBiAJUmSlBUDsCRJkrJiAJYkSVJWDMCSJEnKigFYkiRJWTEAS5IkKSsGYEmSJGXFACxJkqSsGIAlSZKUFQOwJEmSsmIAliRJUlYMwJIkScqKAViSJElZMQBLkiQpKwZgSZIkZcUALEmSpKwYgCVJkpQVA7AkSZKyYgCWJElSVgzAkiRJyooBWJIkSVkxAEuSJCkrBmBJkiRlxQAsSZKkrBiAJUmSlBUDsCRJkrJiAJYkSVJWDMCSJEnKigFYkiRJWTEAS5IkKSsGYEmSJGXFACxJkqSsGIAlSZKUFQOwJEmSsmIAliRJUlYMwJIkScqKAViSJElZMQBLkiQpKwZgSZIkZcUALEmSpKwYgCVJkpQVA7AkSZKyYgCWJElSVgzAkiRJyooBWJIkSVkxAEuSJCkrBmBJkiRlxQAsSZKkrBiAJUmSlBUDsCRJkrJiAJYkSVJWDMCSJEnKigFYkiRJWTEAS5IkKSsGYEmSJGXFACxJkqSsGIAlSZKUFQOwJEmSsmIAliRJUlYMwJIkScqKAViSJElZMQBLkiQpKwZgSZIkZcUALEmSpJCT/wfvfCREGE2XygAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[2025-10-08 12:29:47,364] [ WARNING] image.py:661 - Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers). Got range [-0.96862745..1.0].\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAakAAAGzCAYAAACVYeimAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXtlJREFUeJztnQm8ldP6x9dp1KBSadJAQpoMSdJFlJJkKPdGVOiiJAohInUvZZahXFOFErkyRCVNhlLqShMpUtFIGpTm9//5Pp//2p/37PY+U+c47zn9vp/PPvvsd1jzu571POt510oJgiBwQgghRAQpkNsJEEIIIZIhISWEECKySEgJIYSILBJSQgghIouElBBCiMgiISWEECKySEgJIYSILBJSQgghIouElBBCiMgiISVEPueRRx5xtWvXdvv378/UfT/99JNLSUlxI0aMyLG0ZTUdDzzwgB37qyFO4vY8//zzrnr16m7Xrl1/eVoOFSSkDgF4uHm45s6d66LAjh077EGfPn16hq5fsmSJXU9nlV1QHhn5pJVGVhR77bXX3Nlnn+3KlCnjihcv7urXr+8GDhzotm/fnvS+cePGudatW7vy5cu7IkWKuCpVqrh//OMfburUqbFriDecjoIFC7oKFSq4yy+/3H377bcZzufWrVvdww8/7O666y5XoIAe9+zmmmuucbt373b/+c9/cjsp+ZZCuZ0AceiBkBowYID936xZswwJKa7n2qOPPjpb0oBwCfPqq6+6yZMnH3D8xBNPTHj/vn37XMeOHd1bb73lzjrrLBOiCKnPPvvM0jp27Fj3ySefuIoVK6YSatddd50NGk455RR32223uUqVKrm1a9ea4GrevLn74osv3Jlnnhm755ZbbnGNGjVye/bscQsWLLCROwJs0aJFdm96vPLKK27v3r3uyiuvzHQZ1ahRw/3555+ucOHCLmr069fP3X333bmdDHfYYYe5Ll26uCeeeML17NkzV7S7fA8LzIr8zfDhw1lEOPjqq6+CKLBx40ZLT//+/TN0/dixY+36adOm5ViaevToYXGkx/bt2+37oYcesuvvuOOOA655//33gwIFCgQXXHBBquOPPvqo3dOrV69g//79B9z36quvBrNnz7b/ySvXkvcww4YNs+MPP/xwhvLVoEGD4Oqrrw7yMitWrLA8045zm0Ttdu7cuXZ8ypQpuZau/Iz0/0PYTFGyZEn3yy+/uEsvvdT+P/LII90dd9xhWkL8fMBjjz3mnnzySRtdFytWzJ1zzjk2mg+DppNIMyIurwERHvEAGoc3Z4Xt/GHQOv7+97/b/+eee25CM9zQoUNd3bp1XdGiRc101qNHD7d58+aDLiPyUq9ePTdv3jwz6aEp3XPPPaZdPProo+744493gwYNOuC+tm3b2uh64sSJ7ssvv7Rj3MO1zA1RlolG3J06dXKnn356mmlCa4Mffvgh3fSvWLHCtK8WLVrEjqGRlS1b1l177bUJTYNoBrSBZHNB69ats3urVq1q5V25cmV3ySWXpDLFJqtP2gBtwbNp0yaLCxMp7a9UqVJmBv3mm2/SzVv8nBThJjPZhtPC3FH//v1drVq1LP3VqlVzd9555wFzSvzu3bu3tdXDDz/cXXzxxe7nn39OmJaGDRtamb733nvppltkHpn7DmEQRq1atXKNGze2jhPz1OOPP+6OPfZY17179wPMYdu2bTMBsHPnTjdkyBB33nnnuYULF6YyaaUHD/2wYcMs/Msuu8y1a9fOjjdo0CDh9QgHTF5PP/20CQhvfvPfdEAIOzpiwly6dKmF/9VXX5np7GBNVb/99pt1nFdccYW7+uqrLa+ff/65+/33392tt97qChVK/Ah17tzZDR8+3I0fP96dccYZdg+dcq9evWx+Kat4YXDEEUeke+3MmTPt+9RTT40dozwo93feecfmUZgT87z77rvWOZPXZLRv394tXrzYTFsInQ0bNpiZdNWqVZk2xf74448WJ4OQY445xq1fv97SxAAIEy8Djoxy4403phLGwCBh1KhRNpcHOI4gbKiLG264wdoQ7ZfB1/fff29p8fzzn/90r7/+upl0Mb8yX9imTZuk8VPGtDeRA+S2Kidyx9zXpUsXOzZw4MBU155yyilBw4YNDzC1FCtWLPj5559jxzFLcbx3796xY+ecc4594iGuGjVqZLu5b8OGDUGRIkWCli1bBvv27Ysdf/bZZ+36V155JTgYcx954djzzz+f6vhTTz1lx8eNG5c0vE2bNtk17dq1s99DhgxJ954w3txHHiivNWvWBBMnTgxq1aoVpKSkBHPmzEk3jH79+lkY27ZtS3V80qRJdvyDDz5IdfzCCy8MatasmdTM9vvvv9tvzJZpkaxuaQO0Bc/OnTtT1ZuPs2jRoqnaZSJzH+Gn1X0tW7YsKF26dHD++ecHe/futWOvvfaamWE/++yzVNdSv4T1xRdf2O/58+fb75tuuinVdR07dkyatxtuuMGeEZH9yNx3iNOtW7cDzEmMcOPBJHjUUUfFfmOWQgP76KOPXG6B5odnFdpJ2HPt+uuvN9PRhx9+eNBxYBKKN42hUQJmoGT4c5jQwt9p3ZMIHC3QPtEqLrjgArdlyxZz7sCZIiNaIJoeprQwaMB4Fr755puxY2iGaEQdOnRIGh5mXjQvTK1cnx1l6+sNrZ70ktYTTjjB/e9//8tyuHhWoi2ibb7xxhsxzRVnFrQnTK6//vpr7EN5wLRp0+zbt2k0+DC0s2QQFyZdnIJE9iIhdQjD/IOfHwo/bIk6oOOOO+6AY8zJZKdbeGZZuXKlfdOphaEjrVmzZuz8wYBgDpvEwoLGC6tExAsyhGZ69yTi/vvvN+GB9x8mRITUwbqSI7gw2zGH4udiMP8xX5WWkEKo4M4+YcIEM3tiiuUdLOapsgLmN0xttC3CRnDSHplHI59ZhUEKc3aUWbly5WLHly1bZqZK4gh/aMeA6RJoN5QxZu8w8e0sjN/gXN592Y+E1CHMwcyNJCLZAxp2xMhroD3E4+fD6EyT4c/VqVPHvhm9A3MgmQGnAuZa0GRHjhxpcyp0wqtXr073Xjpo3M8TCUbmnTiOwAFc6UnjSSedlGaYaBPM3+AEwiDnvvvus/L4+uuv001PfDt46KGHzA0fYcf8z6RJk0wg4wST2RePPcyVoj29+OKL7uSTT051jjApT+JI9LnppptcVmFgh2NNovYiDg4JKZEhGIXGQ2cVnixHC0vkVRev0WR2tJnsejwNAWeJMJgA8Wzz57Obv/3tb/by7ujRo5MKYBxN4KKLLord481PByO0Bw8ebI4rDz74YLrXesFIWcSDYMAzD5MfJi8cA9LSosKgYdx+++3u448/Ng9PyhuHm7TaAdfwPliYt99+2zw2X375ZROaLVu2NIGcVc9M3lHDWxBBetVVVyVMN84rvI9GPPEfrynRbhBo8R6U8e0sDGWc7J06cXBISIkMgecT7uqeOXPmuNmzZ5vnW7gT+O6779zGjRtjx3Anjvd6YsQJGe2MSpQokfB6OhZMcXj+eXML0OlhLkrLG+tgIP10hnRa99577wHnmQvDbRvPSTz7/D2s+sBqEXyH0+tBm6Bc04IyxlRH+OmZ2Zo0aWLfiVYawZzF6hUffPCBzXGhcaUnpJhvQUDGpweTZtiFm2OffvppquteeOGFA4Qzmnx8OTBvFG5nGQUByKodDAZ4PSARnCdstKx4mE/yq4T4Nk27CvPUU08ljZ85tPBL2CL7kAu6yBC8V0IHgJs3HRIPLOYk3jEJT/Lz5j2dc9euXc3GzwoJmG+84wBgEsEMxiie+QDeMeF9JD6JwGxDh8Z8CMKH+Qsmu3Et7tu3r7mg41SAKQzBwXtTOBbgMp5TsNoBJi7SNGvWLBMc5Av3ZoQNo2rMc2H69OljcyJoHUzSIyRYNQJhwyAAAeXdxtOCcDDPUQdoVslgXo4yxcGEuokHofTMM8/Ye0OYwdLTBNCc0ULo7Kk/5raY98F1POy2jvs2DjmUyfnnn28DFUx5zDmFQctkCSkcU+jgMYXiMk66MwtODgyOaI9jxoxJdY7XG/jwHhrlRtoo/6ZNm5rgZGDFcdJ42mmnWXtjhQ7aEe2NtE2ZMsUtX748Ydy8R4eGxvtiIgfIAY9BkUdc0EuUKHHAtfGuvd79F7fjxx9/PKhWrZq5CJ911lnBN998c8D9r7/+urkx4xp+8sknm7tzvAs6zJw501zduS4j7ugvvviihVuwYMED3NFxOa9du3ZQuHDhoGLFikH37t3NXTozJHNBr1u3btJ7cJ+mbJs2bRqUKlUqOOyww+z6AQMGBH/88UfS+95++21zmy9btmxQqFChoHLlykGHDh2C6dOnx65JtuKEp1mzZhbn5s2b08zXE088EZQsWTLYsWPHAedY9YL6JJ5///vfB5yPd/3+9ddfrZwoa9oOLt6NGzcO3nrrrQPK5a677grKly8fFC9ePGjVqlWwfPnyhC7ot99+u+Uf923KcdasWQe8ypARF3T/ukCiT7ht7d6921broJ5ox0cccYS1Q+psy5Ytsev+/PPP4JZbbgnKlStneW3btm2wevXqhG2VvFavXj3hKiLi4EnhT04IP5E/wHuPFy0xofiVCETeAU0AzQQvPLRbkb1gVWBeFs2al7tF9qM5KSHyMaVLlzYTGIOMrHrMieSwqgireMS/byiyD2lSIk2kSQkhchNpUkIIISJLrgmp5557zmy5vBDI8jrpud6K3IE6QtmWFiWEOGSEFK7HvGmO6yvvF/CWO27LflkSIYQQItfmpNCceI/l2Weftd9M6LKvC8v/R2G3TSGEEIfoy7wsj8LLb7yEGX77ndUDeCkymZtn+I12hBovz/EyqRZ0FEKIvAf6EetHssJ/Wosm/+VCinXCeMs7fqM8fvPmdyJYzJJVBYQQQuQvWCyZnZ7z9LJIaF3MYYVfUKxevbplzm+BIIQQIu/AUmlM86S3x9pfLqRYv4t12FjvKwy/WccsEazVxiceBJSElBBC5F3Sm7L5y737WLW6YcOGtmBjeI6J337VZiGEECLXzH2Y7rp06WIrDrMNOas5s0x+/DbdQgghDm1yRUixRQDL6rM1NtsUsDT+xIkTD3CmEEIIcWiTJ9fuY8KNhTNxoNCclBBC5D0y2o9r7T4hhBCRRUJKCCFEZJGQEkIIEVkkpIQQQkQWCSkhhBCRRUJKCCFEZJGQEkIIEVkkpIQQQkQWCSkhhBCRRUJKCCFEZJGQEkIIEVkkpIQQQkQWCSkhhBCRRUJKCCFEZJGQEkIIEVkkpIQQQkQWCSkhhBCRRUJKCCFEZJGQEkIIEVkkpIQQQkQWCSkhhBCRRUJKCCFEZJGQEkIIEVkkpIQQQkQWCSkhhBCRRUJKCCFEZJGQEkIIEVkkpIQQQkQWCSkhhBCRRUJKCCFEZJGQEkIIEVkkpIQQQkQWCSkhhBCRRUJKCCFEZJGQEkIIEVkkpIQQQkQWCSkhhBCHjpB64IEHXEpKSqpP7dq1Y+d37tzpevTo4cqVK+dKlizp2rdv79avX5/dyRBCCJEPyBFNqm7dum7t2rWxz+effx4717t3b/fBBx+4sWPHuhkzZrg1a9a4du3a5UQyhBBC5HEK5UighQq5SpUqHXB8y5Yt7uWXX3ajR4925513nh0bPny4O/HEE92XX37pzjjjjJxIjhBCiDxKjmhSy5Ytc1WqVHE1a9Z0V111lVu1apUdnzdvntuzZ49r0aJF7FpMgdWrV3ezZs1KGt6uXbvc1q1bU32EEELkf7JdSDVu3NiNGDHCTZw40Q0bNsytWLHCnXXWWW7btm1u3bp1rkiRIq5MmTKp7qlYsaKdS8agQYNc6dKlY59q1apld7KFEEIcCua+1q1bx/5v0KCBCa0aNWq4t956yxUrVixLYfbt29fddtttsd9oUhJUQgiR/8lxF3S0puOPP94tX77c5ql2797tNm/enOoavPsSzWF5ihYt6kqVKpXqI4QQIv+T40Lqjz/+cD/88IOrXLmya9iwoStcuLCbMmVK7PzSpUttzqpJkyY5nRQhhBCHurnvjjvucG3btjUTH+7l/fv3dwULFnRXXnmlzSd17drVTHdly5Y1jahnz54moOTZJ4QQIseF1M8//2wC6bfffnNHHnmk+9vf/mbu5fwPTz75pCtQoIC9xIvXXqtWrdzQoUOzOxlCCCHyASlBEAQuj4HjBFoZ711pfkoIIfIeGe3HtXafEEKIyCIhJYQQIrJISAkhhIgsElJCCCEii4SUEEKIyCIhJYQQIrJISAkhhIgsElJCCCEii4SUEEKIyCIhJYQQIrJISAkhhIgsElJCCCEii4SUEEKIyCIhJYQQIrJISAkhhIgsElJCCCEii4SUEEKIyCIhJYQQIrJISAkhhIgsElJCCCEii4SUEEKIyCIhJYQQIrJISAkhhIgsElJCCCEii4SUEEKIyCIhJYQQIrJISAkhhIgsElJCCCEii4SUEEKIyCIhJYQQIrJISAkhhIgsElJCCCEii4SUEEKIyCIhJYQQIrJISAkhhIgsElJCCCEii4SUEEKIyCIhJYQQIv8IqU8//dS1bdvWValSxaWkpLh333031fkgCNz999/vKleu7IoVK+ZatGjhli1bluqaTZs2uauuusqVKlXKlSlTxnXt2tX98ccfB58bIYQQh7aQ2r59uzvppJPcc889l/D8I4884p5++mn3/PPPu9mzZ7sSJUq4Vq1auZ07d8auQUAtXrzYTZ482Y0fP94E3w033HBwORFCCJHvSAlQfbJ6c0qKGzdunLv00kvtN0GhYd1+++3ujjvusGNbtmxxFStWdCNGjHBXXHGF+/bbb12dOnXcV1995U477TS7ZuLEie7CCy90P//8s90fz65du+zj2bp1q6tWrZqFjTYmRF5i//797s8//3RFixZ1BQsWtOcoJ9i9e7d9Fy5cOEfi4HknH+ShSJEiOZYPz549e9zevXstLuJMxI4dO1yhQoVyLM+ZKRcoXrx4lsIgn9RfsWLFEuaDOHw74ppk5RFl6MdLly6dbj9eKDsjXbFihVu3bp2Z+DwkonHjxm7WrFkmpPjGxOcFFHB9gQIFTPO67LLLDgh30KBBbsCAAdmZ1EMe/yC9/fbbNkAoX758hu/l4aBh8XDQ0eZEZ4DmjaZ91FFHuXr16lnHlF/47bff3AMPPOCuvfZad8opp+RYBzN8+HCrn0suucQdccQRWQ6H+l6+fLlbuHChO/fcc13ZsmXt+I8//ujeeOMNd8YZZ7izzz47x+uI9oAF5h//+IerUaNGwnQyOMZyc/HFF7u/AsqAQfY///lPyz9p+OWXX9zjjz9ug/dmzZplKdyZM2da2T7xxBPusMMOS/iMEc9dd91l1isG7QzkFyxY4KZMmWLTJ/zmGT3yyCMtHT/88INbtGiRpZE217p1a3fiiSe6UaNGudWrV8fa4TnnnGP1mVtCPkcdJxBQgOYUht/+HN8VKlRIdZ6RDw3fXxNP3759rVP0HwpUZM9IBuFPB8TIjd/btm2z8t28ebM1ZkCYrVmzxq1fv94aPvV0yy23uDfffNP+9/fyWbVqlV3PQ8I3wpAP9cZImP/53rBhg8WD+Rj27dtncaJN+7gJ16eBb47/9NNPlg6u92ERNvGtXLnSrvFwz++//25p4tuHxQiVMNauXRtLo4fwCItyIDzmT/157v/1119tMMZxfnOO0Tt5pyyIh3T7eLmOtIYhbCwJGzdutDB82kkP94bTw/+klzwSFtcQHtdxP2VIeP4enzc+n3zyiXV2pI/rOUb5ha8nfsIlT77cOccggbogPl9v4bRRbt98841pLMw/08H5siOt5Ifv+LzQfjjufxMmv33d+OOET9yUqbeiIKDIky9T6oJ4KGuvWYwZM8bNnz8/1r78vT4uyowy8O3BayPknXuoR/JBHL7dhOuPtIbv9/Xj2zlhET/lUatWLbuHeCkXwiZP8WF6fB3xrCFM3nrrrZg2TD7ID3Xi64PwPv/881ibZ6DP9EqlSpUsjHfeecfi8v0tz+t3331nfa33GaBtPProo1aWHMOSdfjhh7soka2aVE7BaJCPyF54UOgEfIfTqVOn2AiVcwiiunXruqFDh7qvv/7aRmuMYhmRzZgxw82ZM8ecYphjvO666+whQ23v16+fe+2119zpp5/ubrzxRnvQuObWW291p556qmnGaNQ8LITZo0cPN2/ePLuHhxutDq2bEWrTpk3dcccdZ50PDy0PFp0J6XryySfNfNy5c2dXu3Zt6zD5zSiWkSPh8SEeHnK09DZt2rhXX33VRps8lO3atbMRpTfLfPnll+7ee++1eBjB8lDffffdFsfrr79umifx0GGiDTFiZxD18ccfW15atmxp5mzioGOiE+jYsaPd79swnRvly7dPL3VAuTZo0MANGzYspqHSGVHWN910k3U+5JPyeu+999y0adNi6bz++uvdCSecYHPFdJKk8X//+59pyeT9mWeesTInPdTZyJEjXcOGDW3+mLKlc+IceSpXrpzr1auXpZHwqUe0WeaP+R/tgTQuXbrU6pb03XPPPTbgePDBB2Np+v77790LL7xgdUgHCnPnznU9e/a08i9ZsqRpR1zDaJ4OljhJ/7PPPmsdLR0yZUKe+Z9y4pt6nTRpkqWZdFCGWGQoc/JEe0IYU8ZcS1wPPfSQlQFtlPsuv/xy03aYihg7dqyVL+0OyBOCCiHYv39/d8EFF1gaqVfaE/FQVvDyyy9b+aNposn5gQuChvIg77Qh0k46KDO0aJ4lr30iaHA4o10xaCcsL3wXLlzoevfubW3Um/co//iBHPchGP1UCM80ZcKHQQflQf3R3kkHVi7qDMHNM8Y52k316tVdvhVSVDIwGqAD8PD75JNPjl1DJxOGgqZB+PvFXwsPAg8JHzQrOjseAkZeCC5G4zVr1jSTBp0knTAdGw/4lVdeaZ0gI/Hu3btbZ8zIjYeQhwl4iKZPn+4uuugie8jef/99e9jpGHlI6JxffPFFd95555mnJ8d4sHl4MI3R4eCIw4OK8KE90flilmDUx/3/+c9/LN3Mh/IhfeQFoYG5GYFKR4QARBDxkBIXwi48AGKkS3h0dNxHB4ZJhbzS2dKuGXXSUd955532wH/xxRfWCSAg6MDohOik/WgWMzbCMdF8K+HhNMQzQboIg04xbM5i9Mxggjohj3T0lN/f//53K2s6fAQ44WPuIf/UFx07eNMO9UbaGThgCiSN//rXv0xg0UFR3pQLgwziY7453OGSDkbzH330kR1n8EIdEx+CgM4RrZw8YM6nbTBKpxx9Z3z88cdbp0vH3qVLF4sL05JvK6SBdrdkyRLXoUMHq48JEybYffQTgPD+29/+5qpWrWr5YTD12GOPWXsAymjIkCEmzDCnPvzww1Z31MXo0aOtnyEPDDr4H42J8BmcHH300fYc8E2dIDhoS1iDMKtRN5g86a9oSwg9hCTtmoEY/Rx5JoyBAwda/m6++WYTGAzkrrnmGis3nMVIL2UGlDUDD9o5JjjaHOndv3+/CVMEDHHzrCHwEOwcD0O5UM4IGto0QgvBz8eXHXXD4I92ysDCa3uYFSlnTIMIc+7Jl0LqmGOOsUrnofFCCZWUh5QODJo0aWIVSMfDSA6mTp1qlUFjFrkDnQ4dBZ0Lc4Z0AIzEqUcaMx0HnSkjRuY4eBC4jo8fdPDwMgpDwPBQeFMLdUuHwYcOgdFy/fr1bWTotQkeeh5OHlovNH26vNmNTpZ00TETltc8gLZEB4sQ5WFDuDGaJA2YZ0gn4TN/wv10VnRuCB80PB5O8GYYhBfzYXTedBCERcdBWGeeeaYJSm+qpDOgo+WB5zo6Pzpt2jPXkS7Smwg6y8GDB9u1xENn5008HsqIOLgGgUNHzrU8W5QPHSxlg+ZC3igDOllGykBZ0rFRJ5wjj9QZAoBwGjVqZM8t9/KbeqdzJwwg7WiUfi6S+7geYeDbAcKLb+A49cTonLDCJj86RwQKWgjpQ5BTD17TQkNhwEM6iIc4EbB4FNNPAGWEECJO8o0QpZyJh46a+kHIk0+ENdoJ8ZJ/wqEjP/bYY61cEMbcR10TFmVP2KSbsqKOEYSkhbxTLgwG/IDDa8WUEe0UgUQbpiywGiB4CJM5Qe6lj+Qc6fXOFUDd0U5IF2mnnTKY279/v4VL3dD2SCuaOc9aVmCAwuCBwR0aM2UHCFY0LtoZ6YjKfFSWhBSNiNGShwaFek4joIPCTPDvf//bGigVct9991mFeg9AOgpUZzo7Rg1ULhWLmp1opCn+OmiYNFK+vamJToQOn4eCBxpTEVoDnSWjQR5IOiSgw/LhoMEw2sfEhoYAhI3ZiPAYrfE/nSX1Thh07DzwdMJ0+H70x8ONiQbtBgFJB0Ia0Mz8/KTv5Hz66XTQFOhk6IRpZ3QU3Eee6MiIGwFJfF5IeTCPNW/e3AQInRUdG+YuHnAGWoyuPcTNyJVvTDSMrukEEHB0MH6+IhG8Z4gApnwx36XVOXgvOp4tyom8EgeCmGeNzvCDDz4wLYUyZYTPeTpEBDrmJZ5R71FIpwwIX85h0qVzRENDM0WL9M+8n6egnKhzhCtxUOc8/2jcpI0y8OHHe9jxP+fROBj49OnTxwSUF4aAdkLnjiblhQHh0T7IL/cjXBA81APX4mDgy5dv6o7BC3VNe8UER3tA+GBqJt9oLnT83I+W49NG/dGnUZ6cQzByjvZIfhCupB9tkDbkoa3hsIH2Th4Ih3po3769DcZIe/yzFW4TDHLQ9PkgpGh3pL9QoUIWBmZm+k4EO8+hF7JpPcv+mQiDYKIsEUTgBeVnn31mzxv30d555qIiqDLtgo7ZJpEUR3WnURMcainqKIWIWo56y2jPw0OJYOKBoiCpBDogX3DZ5bookuPNONj+r776auv0qA/qkYeRBxfzDoKEER3mHjo46oqHBRMgDw4jVcwO//3vf808g/mKxs3o86mnnrIwuJ4RIQMVHn7aEOYpOh/MMF7Y8IDisYSWhTmPjooOjN90uAgGNDEeNIQFWh/3ETfaEA80Aoy0kyfuYR4BoUSH5OeLPvzwQ9Pu6UwQeggxb46iw6NT4zidPx0yZkE6OeZPCI9Oh3wzMKNzpsPmf8w3CArSgKZGnunUGb0j8HxHT/ul7DBdUg8IBAQ3HQ/3Y9akXfvODC2GzpJRMGVGukg/+SYsyogX7OlImRvjWu5HKKNhUk4c50MaSCvCiDRRVpha0Vy4n7zyHJJ+BheUNZoMHRumRAaYCHzKkEl7nl/MtHTQCH0cQkgL2gL1zACAeT/vOUZ+/HwnZU3ewo5WnCcc5pvoOPlN/RAmnTPtid8IVN9/IMhIOwMiBjqUCeEST9jTj/RgQqPzpx3QbmkXlCXhUH/UGYMvwiaftBE67PPPP99MvK+88oq1bQQJA23iQOCRH/o7BmakjTZCudC2EVg8LwwYuI/4uBYh67VP4iLPxOsHc9C1a1cTJLQ7TNa0CZ4nTIf8z3E0q7B3LmXG4IsyIE7qjnZFOhng8Dz5ASXHMWMyiCFeQKNi0JLTQiqj/fhBvSeVW0hIHTzhkadvjOH/w7/9qM+PAj080OGRoT8Xvif+ePhefywcfzieROnx6Q6PEpOlO/6eRKNYH46/Hm2JeQQEJoIoUZ7D14fT6f9Pdl2ifCb6HR92OE/J4kgrv2kdz0w46ZVronTGtxt+o5lhRmbODIEcX3cZCT/+fKLyymheE5Go/tIqq4yWSzifico7UZ4yWt5hEj1LidpYfLxpaWHZjYSUEFmADhRNH43Qm2dE9uFdxRm5o5ljJhOHJltz42VeIfI63htKwiln8KN0zE5CZAQJKSFCSDjlPCpjkRkkpPIQ8fZ2IYTICRLNI+cWElJ5DL80UHhVeSGEyC6Yi8ULEc/OKCxcKyGVh/Dusbjvh1eFF0KI7ALtCQ9X3NyjsPKEhFQeggln3tfg/ZH4VQmEECI7QHvi/T6/VFVuIyGVx0Y4vCQYfkNfCCHyMzn/xpYQQgiRRSSkhBBCRBYJKSGEEJFFQkrkOVjUExf8+F1shRD5DzlOiGzB7x/lt61IbwFPj9/WG29F3s9gNfK07uM6Fn9lNXRWvWbvovyA33rc7+uVrPz8KuIIacrZr2Z9MPH6beNZNf2vWFg0uyEPrOLu920iD7n1Eqpfm5B16UgDa9LlxTKNEhJSIlseTLaeYI8dYBsIttpIr7PgPrbaYE8lNpVjuwW2VvD7U8WDMGMLCfYooyNn24isQkfiX4ims8/tlxYRUGyZgKBnr6Vk29awpQMbhrKxoy/ng4HFdNninPJgRfLwjsB5BQQUZYdgYGNONqwMC3T2FGMh2/AOzDkFcTKAYushtkRhOw/tOH6QBHmQLVu2YOOxb5H77N27N2jYsGFQoEABq5f69esHixcvDvbv35/mfZs3bw6efvrp4IgjjrD7Tj311GDChAlJr//yyy+DOnXq2HWvvfZasHPnznTjSMaaNWuCYcOGBYMHDw6WL18e5Dbr1q0LDj/8cCuHVatWJc3X1q1bg0GDBgVFihQJrrjiioOO9+effw6qVKkSlCtXLliwYEGQF/n111+Dk08+OShRokQwffr0WNnx/b///S/o3r178PLLL/9lzwJxVqpUKTjttNOCH3744S+JNz/349KkRLaMHtmQjtE4o0Y0KnZdZYO5ZOY7RrjsrsruzIx00RzYJoNl+5PFgSbFxolsFsdLzcnC9vvjEAfffkfXMGyEiAbHRnZsSsiGg2lBWH5r+UThheMGv4ePTwOaWlpmHx82+B2J09qsEtMWGyWmF78Py++WG19eLH3z5JNPWnj+/TtffmmlN37fozC0Ax9veDfaRGH4eNIrK1/+4Z1/PWzkyG7g7EDsNwv04bMBIZtK8s0KCmnlx6fbx5Es/+F91Pw9fidi7mFjT8qUdxqTaVE+vz5PB7MtTPD/5ejTkVba4+strXKNChJSIlthl1C26Wa3WkxS7HCbTKjReWDmYxtuvuOdIHh4ECLsKEsnw46omMWWL1/uvvjiC9e5c2fb8dmbFbkfE94nn3xiu/j6DeroLBBs7CrMg8wOpQhQtj3HRMRW3a+//rqF0b17d9v5lQ6H+4mfOTAEqhckPMzsaovAZA7EQ1iEzV5Jbdq0sTTOnTvXzrFLKzvUYgLKCUgrO+m+9957ths26WJHZcypQBkRP+bU8FYkdI7suIvZj/xQPiy9xa65lBe7Gcd3eNQd5l2EJTu4Ity86ZY4MUd6Uyr3sgMxYbN7rI+XeNhgcuLEiVbm7GbMzseEw/blCBR23GWdSnYgZgdhLxzYJZl2hkCinqgP2gRtxO/CSxoQFN9//73dR/2xWzMQLqZNBAi75lJu06ZNs12hfRtkx1zCOuuss1KVF4IQcyzbvbO9PLtPUw5+h2LSTXykhfsYTIVhIEab4NmgvHyeuBbzNWFQdxkRFvv377fBFrv5skuyb+/Mg/FMER47D/uwqGN24mZgwu7q5JmdlDExcw37e/3zn/+0AVukhFWQB5G5L1rs2bMnOOqoo6xORo0aFdx9991BSkqKmeZ+++23A67/888/g7feeisoVapU0KhRo2D48OFmLjz++OODMWPGxK5btmxZcO2115o5qnr16sF5550XtGrVKihTpozde+aZZ5ppBbMOH9Jx3333BSeeeKKZw84///ygdevWQc2aNYPTTz89mDZtWvDLL78E/fv3DypWrGjp5YNp5oQTTjDzzKRJk4Jdu3aZ2ebVV1+1OMuXLx9Uq1YtaNOmTdCsWTO7p0aNGkHbtm2DH3/8MZZe/v/b3/5m6SM/xIEZrWrVqsGNN94YrFy5MmkZki5v7iOcZOY+2jx55DryF66Dxx9/3MIg/6eccorVyTnnnGNpKlasmJUv9/7xxx+x8Ldt2xaULl3azpM+wnn77beDQoUKWd7Xr1+fKn7KZeTIkVYnl112WbBo0aJg3759wYcffhi0a9fOjpPfli1bBueee25QsGBBK7vmzZsH33//fSxe2sCFF14YFC5cOGjcuLGVJ2moVauW3Ue9fvXVV8HVV18dHHnkkVY/lD91VKFCBavDTZs2WViYfbkPc/PXX39tcXz66admdvZ1TDoIg7K5/PLLLa/knbzQTmkDlBnthWsox7p16wYjRowwE6tn1qxZQfHixYOjjz46OOOMMyzc2rVrW767du1qcdNuuZ/4MeMCxzHj/utf/wpOOukkO0+aKReuK1myZHDcccdZmXA/ZZoWe/fuDb744gtrj5Q3zwPtoWnTptbuSN9NN90UfPPNN7Eyp6543mgXTZo0sTRjJr3ooousjEkTbQWzb1bN6JlB5j6RKzAyZwHcl19+2S1ZssQNGjTIPfzww7HROKO9lStX2gKWjPhuuummpBvgcZ7RIM4BjH4Z3RIOo1nMO1OnTnWPPvpoTAtiAn3o0KGmbY0cOdLMeFzPCJKRPZ6AjCIZ7VarVs1GlYxm77jjDhvt+9Wf+Z49e7ZNxpOHZ555xkbNaEFoAD///LOZKdFaGEWjDXAPTg0bN240bznivOWWW2wkjlmStDOqzSnQADCbUgbffvut69Spk+vQoUNMy0FTuf322618OH7iiSfGzFWYWNFGSD/fp5xyimkZ3EM5Yrr1kPcZM2bYCL5OnTpWjsT33HPPmQZ75513mvZAXv1In7bw5ptvmvYzc+ZM035IE9ozcVLGN954o2vdurWZ7ihL0s09aKa0AbaaR4Oibjds2OAqVqxoGrLPO1o28fmFl6n7ESNG2If6Y6flUaNG2TlMy9zvtTbqHy2CtoFDDmVI3ZJunErQrH15eQ9MNDzqnjSSVsyl1LE3u3lvQ2/25DdaJg4VhEXb45u00DZxtqB+0LBo648//njS3WqD/7dEUGY8SzxDlB1ljrZPWK+++qo9F+STNs0OuJQN59EYuZa8NWjQwNJAmWJR+PDDD+35nT59uosMQR5EmlR0Nak333zTfvPN77JlywYLFy6MXcvotV+/fjaCZgT3+++/2+g0kSbFaHH79u2m2ezevdtGtEySM7rH4YHRPpPljDoZ+XGeOAm7c+fONnLnXs4RVnh0SpyM2BlNvvvuu6nyw3UXXHCBhY9GMHfuXHOu8B/CfeONNywunD7Wrl1r9y1dutRG62hP99xzj430MzoiPVhNivIZOHCgHe/YsaOVOfXgw0F7OuaYY+z8uHHjrDx8eF7TIG9cj5bz/PPPm2aCluPzR3hoHtQpGgCOLJTVHXfcYZoAmgWOL5SPLyu0AsrXO9WsXr3awtqxY4dpLmi8V155pWkc4TyTvqeeesruo1385z//sXr39ejrHEgv2ivhkyZ/nGueeeYZO46WEg/XoYWRFvJGONTZhg0bLB/16tUzi8Ds2bNjYU6dOtU0PsLkf8o9vu18++23dp62gGMKoBWi+aOxkS/iDOeXcEaPHm3naQe+LhJBWrE+eCsAGhXl7Mv8u+++szZC2nnG5s+fb/fNmzfPnI6477///a89W2Enk/Hjx1t50+7j85UTSJMSuQYjzosuusg0IOamGLkzKmeEzKiZUTdu5vfff7+N8NIKh5H4K6+8YvMVjEb9nAHzP4xSw04GjKxxhsDtl3kk7PTY9xllXnXVVRnespzRJnMchM18BfMu8TZ6NAAgPfEr0jOirl+/vn3npG0/WdiULZoD5e3x714BmlOyl6C5Bldt5q7IA3M6L774orv33nutLihTtEQ0S0bhfi6KuZZFixa5bt26pYoXKEc/XxJfVmhVaG7huRNAA2Yei/k9tAI0b7QL3MvREpm7SaZpZAY0I9rWa6+95pYtWxZzQkDrQFvxvxPRuHHjA/KaCO5HA2Uu6vTTT7eyi19hnHJgnguthnhxikFDK5jg1QjKEm0W0CApj/i2wPPh8+Hbahi0q3Cb8HNSvr6452DfwcsuJKREjsADgLkMIcXDzyT5OeecY2YbHrKuXbta55RWJ86WJAMGDLDJXTreFi1amMmHhwfhgSnId36EQ8eGQMKktHTpUjOvYOLhfyaXMWNce+21GXonyndMCFvMV4nuIU6EQbwHF+kgjZkRUGFPRTr8tAQoHRjXY55KRHovUvsySwvydffdd5uJDnMmTiqUOe+p4Uxx5ZVX2rtHhOXLqmnTpuZsgMkuEWz/QP3FpzWRlya/MSU+8MADrkuXLm7WrFlmepw0aZK1C9oC7SvZO3UZAdPssGHDzBxInSFAGjZsaIICgcxAB9NYMjLzkq5/Yd2302Th+XJIz9Nu3/878TAQoowSgQDFCQKzYkaI6kvHElIiR+ABw96PkOnfv795cDEaRqNixIY9Pa1RKCM5OiU6JDyObr31VuvgvLBg5I0QCne43g2YB5ORIvNBzJHgyUeHi1DD25DO0nfkPOzxnTZxEBfzDoy0GdEn21uHa7PjRWC0At8pkW8/jxfuqPxcxPDhwy0PCOScwAsOPCLxFERD+te//mVlQL0w38N8lO9wEdJoscyt4DVWs2bNhOF6V+uMwvVowmjbxHfFFVe47777zgYb1CmCM70XZX3Hm0iboC0i6HAZx2OPuS+/WgrzbGiNaQmpzEA60QIpyzlz5ljZxgsFvEGxFgADkGRCqkCBAlYvaH/UCZ6kyTYnzK72mZtEU3SKfAEPE5O6ftR611132cgPp4NkWkAYBAQjUMxLdG7eFRjBxSRzuOOhA8c0RaeD5oTgYUSPs4Mf8XvHAC8U6PyYMKbjxyzi3z8iDoQraUUDe+GFF6zzCC/bhOsyLrzEmR0mPYQrE/V8M7KnrDCj+TUK0a7oNP/+979buSCk0fJyCq8l4qpNXjG5UQ7ezZpy8NehnSJESB95wCGCcvZlhXmRiXgETEahvNGacHWnjigX6oN6I2zqKSOdr9fcKD/y4cuSwQntgTrH4YQypb2Q5hUrVtiACjfy7IAyoHx4BYA08HoE7cqngzRgccD8jVMQbTgtJ5uCBQuaNguUDQNAnq9w+yQcnH94hSLPr28Z5EHkOBFdx4mxY8fGJuWZjGUi+f3337dzTMheeumlB0zKMjGNiziuvLim+3unTJkSNGjQwCb1DzvsMHP9ZdK6aNGiMddiPn4SHYcAnCa4luv89RzDaQBnDu88gSNBr169Yo4WXMfnpZdesnPk6fXXXzfHDH+e8HyYfHAW6Nu3bywfOAzgtsxE/zvvvJPpcqRccMjwk9c+H/5DvkkLbsc//fTTARPv3nGCVwDiXf/JN674nMetmvzFO07Er45A+MTD5DvX4OaM04u/10N942iAc0I43eGyIu0333xzLM04DlDnlCHODYkcSXr27GmOFeEyIGwcAnD3ZtUQ7+jhHSfmzJmTyhmAa3w78WHgEIEzDA4hOH0QXjge4vCOHvHOGKxo4R0niDfeuSHsOEF7Jn6fFhxieKUiHF+4TXOc8qXu0nK42f//r1vwSgX3hJ8PHx6/CRNXfZyHALd+7zhB/uPjWLJkSSzfOFVEpR9P4Y/LYzApyCiYEVp2TJ6K7Fm7j8lczGvMJXjtwjsWMPmO+Qx35vhJcjQlTHdMAmPS8fMMjDKZcCZszqPx4EbOfAgvK6KRnXzyyebYAMTD6BGzHtoWruBMPmMOwWRHuryt3y+synwLI1u0FubIevXqZTZ8ruMaRqqMcplT44VQRuKEybp5vNDLPIZfZ4+RMdehyeG8gStxZsuRD3NOU6ZMsdE2o3m0KeJkHoa8UAbeLBW+F/MVaSVtzP95bcefx72Z82hHmLjQdNEmeCGVssDkFW82Ir+sIIKJkfK75pprUr2UG0439Yh2ifu2Tzf34GCAGZA6Q1vxZlYcFqhXtOL4FT/QfKlvrvFlj6ZA3qhvyt3PfRE36cMpBwcP/zKsTxd1S/tDMyMMTL5oH/QdaGxogLQByo9jOPy0bdvW5kLJA/F5EzFtlNcfaHeYG+Pn/3y74kV1THGsJehNxX61EF5MxsGHl6apa9o7mhHpYv1K77CQ3rqXwf+3FZ47wiNcLAKY0zEn0j5p096UTLooB+qYZyjesYeywKyL9olJNafNhBntxyWkRLbgH5qwt5A/Hr4m0aR+fBNMdm/8+bTSkii8+P/9dYnCjk9DRsJM65rMkJk44+9JK/5EdZRemsNpiS+bg0l3fLhp5Se98NJKY6JwEuU/I+0rLPiSlUV69ZCRNp3RdhNkoozSuyYj53OrH5fjhMgWknmUZeThy8jxzDwwGb02vU43o9dkJY0Hm66sxJ2ojtK7Lyv5z45rM1P3aYWVXjiZLev0PCczmtbMxJldYWUmbVFCjhNCCCEii4SUEEKIyCIhJYQQIrJISAkhhIgsElJCCCEii4SUEEKIyCIXdCH+YnjhkjXheKmSF2PDL036nVqj7BKcVTKyLX1eJa33vvweU7zszMvA1D8vgLPslH8R3JOVOg8y8Q5hWpBGXrjnRXFeMI5K+5OQEvkGHlZWUODNe1ZbYHvxKC6uyXp/rO7Aem6s0OHXMWSFBRYgRXCxiGv4pdG8DitMsIIDqxqw0jhrKuYklB0rmbMCPysr0BYys7htViAuVrdggV1W9PCwEsqCBQtsQVhWz6CeqXvW6mNlCLYjQXCzAC0L9WamzoMgsJdh582bZytwsH0Ka1VmBVavYF1Gv0FkTpdXhgnyIFq7TySCtcjYZI6ts1kXjg0WDxbWZ5s4caKtdRbeaO9gYMM51tE79thjbZM6z7Bhw2xtPjYPDG9YmB+gLtjmnLXmWMsxJ6HcWHvuxhtvtPjYIj288WZWw2QrdtYoJC/xdcPaiawnyHp5d955Z6r7WMuP9Q/ZIJPt2du2bWu/WUvygw8+sO3j2SAxvNV7RtmzZ4+tJ8iae6eddtoB6y9mBraN92v30e6j0o9nWu9mvSnWtWJdMiQ+a0aFYW0vr+76D0vgh0HtZRM6lsJglMPeQmntoSNERqEdYbJgJWvWXTtYWDuQPZV69uyZaoPF7DB7xS9Dw/pwPFuMqPOLBuVBo2UNP9ZQZG29nGbq1Km2fh4mVbRT1if0W8tnBcywaD6sQu83RwxDfaE9sTI96xV6uI6VyNGgWO+PDT/pM1lfsn379lbnbHZ42mmnmRaVWVJSUqw8WfeP9RqzqkVFmUzrcyxrjykCtZCl5xOBUGLBRw82zjAIKJbzZ/FIzDMs9c9CjGyoJkR2Q0fBVgwrV640MyDmDEwudB4INQZKLOxZsWLF2OKeLATK1hJsoMg1bLrHQp4sFkqHyyK03OfDx6SDeYk42I4BUwl7CNFx0YlkxOzIArJ0qscff3yqvaQIn+eO9PrtO0gH8xn+OkyGLELrOyk6VcxACGzSRQeNOYh9tliANLxALeEzV0Lny2684OPCTEc+KB/yET+f5NO2atWq2A69xENHHd79lW+2P0HoszNt+H7KjoV8OceWEwwGWNON+5kbyWzHi0mRRWD9NiIsRMwixWyeyB5j8VDXpJ06oxypQ/JDGTFg4DxlyH5P5M/vEk1Z0JYw71G/xEXeEDh+MVnaEKY+IJ+Y9giDQT4LuWKeu/rqq60u4+eBCGPr1q1WF8xhUu8M7KlnypcyJQ3UDWZj0hve4oO6437Klf6WNNP+iZs0U8Z5YX4w00KKjdbS22yNwkq2GRmbibHyNPZpKhPYP4eVhx977LFMrxwtREZgO3g6SR5MhACrarO6NytD82Az8GJkSyeGoKBTYkVorvP7VrHCNh0ZgoywmjVrZsKADmTEiBEWBytx+/2P6EyYC2HQxig32caJHkb8bHbIc8GeQuF9stjPifSywjpCgU4NIUknw4ddcdn1GAGEQEaTwOpBB0knR4eJkGEuhFXUWaWdTtJ3iqwC/tZbb9mzTWfm40JgIGiZO2EFdlYh9x0bnSCrndNp8zyTTgQj6aKMiYv9xOgLyAd5QxjQwXLOz6ewMjdxcT8dKnEyL8dAgG3sKb+09lcKQ5jkg9XwERjsC8VcC7vsDhkyxI7Fr/SOIEHDIV8MVObPn2/pob5YDZw6Zc6HtAIaGpoQZUe9PvjggxYvK8wzl8OAu0OHDjZAIH4Ek6/fgQMHWt0xwGcVdQYH7MEF9913X6ot3NmD65NPPrE5VsKg3hGilAuDCTYDJb0IoMGDB1s9scEo5U+bRaiiwTH4oA3Q1hH4XMf9CFU2Jo3M3FMSciR1FC6NioeCTdIY1fjJYUakFKIXUH4ESQOhYV122WUHhMcoMKyqMzoQIqPQgfAgs5srAyg6ZzorTDOMgDEN8jDToQ8dOtTMMphe6JCZ4Oc8nQZbH/BA01Y57rdKoHN588037T6uoXPjejoWjrMVBB0Z7TwtjYqOkY4FYUeHDnRMhE+nyP10foRBh4Nmh5DwgocOiHjZ/oJOi43vSA/PGulmJM4WJmgVaAoMDn2H/fHHH1s6EU5oQnSi3Ed4lAvmMoQxnSgjfvLOtU8++aRtKYJwZ+t4ypdnlU6Rjh8BQ0eKMH/99dctLgQVafb5Y1sSBg9s5eG1JjRdBC3Cj9E/ZraMaKNoYgx2Ae0CYccGktQ9/RJxkc4wCBO28WAagrojHZdffrmdQ8BSBpQJwoLOn/NoeQgpNBK/9QiDAjRvBAD1hDBq1KiRaT8ICsJiyxKOszUJAxkGQ+SR+mD7EC+kqCcEzqxZs2wKhXDIP2VL+6BsCYt+lnSzPQrmVAYj9K+kGeFKHREXGhttgPTTbrifdv3SSy/FtjaJLAcz8cXtbDQXhk3b3nvvPZuE49yJJ54YNGrUKLYR3oMPPmibwsVz5JFHBkOHDk0YDxt3hTe58x85TogwTDp/99131jZoTxs3brTjODzg/MDxGjVq2OaAXMdmcLTLFStWBM2bN7fzL774ok26+43lvvjii9gmd7Q3Jsi9UwPfo0aNsnNVqlQJJk+ebJPqHN+5c6dNmLPJHefZXG/Tpk2Wnrfffts2YcR5Iuw4Qdw4TlSqVCnmpOHzw+aAM2fOjMXNxniPPfaYnbvkkkuCDRs2xDYpbNeunR2/9dZbg2XLlllauI98sZHk4Ycfbuc///xzu4dP69at7RgT+KNHj7a0kgbKiHzh5MGz7DdzZGJ9wIABttnghRdeaGnjGPcQHxtAvvLKK8GqVatiZYUTA5+PPvooVl+kiXRwPRshcj8fHGDY9JA0sbEkG1GmB/eRJuJo0qRJzMGBOG666SYrW9Ia32+wUWflypVto8DOnTsHX3/9teWFD/VNGyEM6pj0TJo0ycqFc34TTf7v2LGjbWZIXD5/XIejjK8n8kVZEGZ4Y082lMQ5Byi/Vq1a2WaG1113nZWhr3fOLV26NFa2xM9Gj4SPsxDhA9dT94RJ2/BpJT30zzixcA+OFt5ZI6qOE9muSbFpnYcRBRIcSc4ohlFdVujbt6+77bbbUmlS4clJITIKpg60BDQPD6NiP7/ECJ65AzQpRp5hU4j/7UedXIcZDphnGDlypLkZexjHYS4EtBrmqrLqNECcfg4K/OaNwDH/m5EzI21gEz/MS+FRMhqNt0pg1sKMFw4HLYFN/rzWghZDmfEco+WhIQF5wTyHRodGyuZ6XgtCmzruuONsrsSnPVme0FzQ2NA6MdNhevPvEqEJAP97k2taYCpki3vKHTMdecV0yTfOL8xNzZ0717RS5qfioU3Qf5HX+LmacL1TNl6jTq/OuNaXJb/j21QiMBdTd2hnPXv2TDVX5cuWD8fIWyKIAy0PzRJtm7pGW0PTov/01ijKNeqvOuS4MZKCQuXmwUFIofJSCWH8i27J5rGomHjnCyGyAp1u/NyQ70z4pkNM9uDHP8hc54UQAotOO1FnwbwF5hpMWpkFMzlpY57plltusecJEw9x0YkzWMMM6Hep5dniWQJMnIk82jBLIvDojOP3JMKMGW9WIw+YBXlOvcckZjrSBJizwrsAJyuveLzDxqBBg2zOByGD0PNhIWAyCnWBiZM8wyuvvGLzbB7S7XcPxuyIF2X8u1qUNZ/cdiZg7su3wUoJ+sSMCBTyiwmbQROOIJgVCZOypd68N3Ve2PM2x4UUDQ+7PV4wwMiNhkij5KU+wPZMAWJTFSKqxD/Q3rOKjhHHC+azEnUgdPLMy3htLTMwH8SzQRiMgul0vMccwgmtBwcO75VIJ4swJE3dunWzOeFEcH38lu1pEb+LL2nwA0fShQBLJKjSAsHOXBHzIqQZYYUARiNDi2DujDLNCGhiXE9ZsTV6IicV5rXQ1ihTPIlx6siKQMrpjp0BhG9HmzZtsraTWZg/Q3NknhHvQYQyAxnqHe2qd+/eplnlBTItpJDA3pwATL6hSjIq4YPXE15SjABoOExe8iDjpQN4pjCZincRhYi6iWqOmi3PPhE1wu7PjEDDnR8PPB5STEQzEAOEVbjjo32jzXBtVla/QGOiU0RI8dzwQTig2SBkMKmHTYhoR3jWoWUxGMRJhHdxwsKTUTYf8pZoC/mMwLPu48V8xgATT0afd8yBOGNgykP7SwRlg4MAQg5HFvoN0kR6GP0jxDICAo1+hjqgn0HYJTKpUX+U1wMPPBB7T4nBc0Y0k3Cd0snnpKBCKCFQ0DL79etnZmQvuLw2iNcfg/xkZUvfi5kPD1O8MjHJkgfKFE/HjJhP86yQwqaLV4nHzxVh4x02bJiNUihUHhCETsuWLc2VN2yuw00TwYT5j4KjsTz99NPZlSchsg3Mab6D4kVURqSY+HgBHY82hAZtHxMSHl3M3/ByJu2dARxzRGgZvXr1spF8ZkfuXhNCqKBx+LkRPw+F8KOD5zlkXoj5i06dOtlAkkHgf//7X9O0EGh00nRcdGCEgYCId8fOKAgTvM4oC+abeYaJh/k9jvGqCZ05XmR0lIlA86IPoD+g36AcMYviCYenHPN4GYEy5nq0KO/GnUjwcB7PPt9P8S7n3XffnSGBQ1lT12iyeAuSRvo4NFfmzLMTypZyo71MmDDB5gnpR4mLdJNf2gOvKSQTUriWM0Cgjh9//HGb4yIPlBNepPFTLpEmyINoWSSR1rJIeErVrl07tiwSx/GA4hhL0qxfv/6Ae4cMGWIeXniYhpdTwiMKbzS8ofC2wputePHi5i1IuN4T7YUXXjAvrUKFCgWlS5eOXYdH2C233BIsWbIk5kVFWurVq2eeZOvWrYvFxfI2eId179495nX39NNPW1snLLzuWJaHpXTwGHvmmWfMC4yleFiS55dffrF78IT78ssvbVmgsmXL2r2kh3QRft26dS2feHr5eB5++GFLO96K8fz666/B/fffH9SpUyeVNy8eY3iEkb/y5cubFyRlT3rwEnz22WfNw5Lw8WZr06aNeY/5JYo4TtjkkXLiPtJJGGeddVbQq1cvq7N77703Te8+lhcij+QXr7RkSwtxnLp97rnnLK3XX3+9lcHs2bODc889N7jyyitTeVvGg+fk1VdfbeVEGkuUKGHlThsgf7Qhjo0YMSJV+5k6dWpw1FFHWfjxfdbixYuDM88805ZJ+vHHH2PHSReepR06dDBvRcKl/igjyoT2hocneVq0aFFQvXr14Jxzzgl+//13u59y+Oyzz4KLL77YygaPTtJMO6YumzZtah6beLb68sJbkDbOMk3UbVT68RT+uDwGninYsJlgZNJWCKApM1pmPoZRI2YTNA6/8CzmII57Z4R4MzYjY+aN8OyLN9lxL84CmJbQkgjbm6YAkx7tkmu8mQoth2sw1XhvQeA84aFJEJ9PC8fxLsTUw3HiIq2MmtHU0AJ8unyemNPhpVBG+Y8++qiZ3DjHvaQF5wM0KH4TD2knTcQRNmVyLWYkTIPx8zneS86/EBy+z8dD3n08xEF+eTbD1/oyxMJC2fiyI3+YBwmf+ykX0sc3x0gPYSUzy1F3pJ0+Ia3rfLmRTkxppJHypRype8qHMJJ531EO5JNrqSuux+zp5xpJK3nEUcwvcUR8tA3SR7nEr9qBlk1aCItz4bj9ihFbt26NOfR4Uy/59NYpwkBrJQzqz7d5jlNv/n7O+3rxZc313mmI3/gQ+Pad0x5/Ge3HJaREviLZtgXpbWeQke0OMhNGmMzEFz7O/8zhMi9Fp4H3GmYcOn46Zkw5rH7A/A2mN0zm3ssvPrx4N+P4NPnr0st7eufD8WQmjkRr4WV0C4rMblWR6Pr08pdeWtMK42DbXpDGNiCZDd9fk177+ytc0iWkhMjj+MVJWe6IFREY4fq1+ry2hCZw4403micfnnFRft9FiKz049FetEmIQxwmxlnmiAcZMybmJMxTmHzQrvj4RW8loER+REJKiIjihQ7zN8xz8EnrOiHyIxJSQkQcCSFxKBP9zUSEEEIcskhICSGEiCwSUkIIISKLhJQQQojIIiElhBAiskhICSGEiCwSUkIIISKLhJQQQojIIiElhBAiskhICSGEiCwSUkIIISKLhJQQQojIIiElhBAiskhICSGEiCwSUkIIISKLhJQQQojIIiElhBAiskhICSGEiCwSUkIIISKLhJQQQojIIiElhBAiskhICSGEiCwSUkIIISKLhJQQQojIIiElhBAiskhICSGEiCwSUkIIISKLhJQQQojIIiElhBAiskhICSGEiCwSUkIIIfKHkBo0aJBr1KiRO/zww12FChXcpZde6pYuXZrqmp07d7oePXq4cuXKuZIlS7r27du79evXp7pm1apVrk2bNq548eIWTp8+fdzevXuzJ0dCCCEOTSE1Y8YME0Bffvmlmzx5stuzZ49r2bKl2759e+ya3r17uw8++MCNHTvWrl+zZo1r165d7Py+fftMQO3evdvNnDnTjRw50o0YMcLdf//92ZszIYQQeZ/gINiwYUNAEDNmzLDfmzdvDgoXLhyMHTs2ds23335r18yaNct+f/TRR0GBAgWCdevWxa4ZNmxYUKpUqWDXrl0ZinfLli0WJt9CCCHyHhntxw9qTmrLli32XbZsWfueN2+eaVctWrSIXVO7dm1XvXp1N2vWLPvNd/369V3FihVj17Rq1cpt3brVLV68OGE8u3btsvPhjxBCiPxPloXU/v37Xa9evVzTpk1dvXr17Ni6detckSJFXJkyZVJdi0DinL8mLKD8eX8u2VxY6dKlY59q1aplNdlCCCEOBSHF3NSiRYvcmDFjXE7Tt29f09r8Z/Xq1TkepxBCiNynUFZuuvnmm9348ePdp59+6qpWrRo7XqlSJXOI2Lx5cyptCu8+zvlr5syZkyo87/3nr4mnaNGi9hFCCHFokSlNKggCE1Djxo1zU6dOdcccc0yq8w0bNnSFCxd2U6ZMiR3DRR2X8yZNmthvvhcuXOg2bNgQuwZPwVKlSrk6deocfI6EEEIcmpoUJr7Ro0e79957z96V8nNIzBMVK1bMvrt27epuu+02c6ZA8PTs2dME0xlnnGHX4rKOMOrUqZN75JFHLIx+/fpZ2NKWhBBChEnBxc9lkJSUlITHhw8f7q655prYy7y33367e+ONN8wrD8+9oUOHpjLlrVy50nXv3t1Nnz7dlShRwnXp0sUNHjzYFSqUMZmJdx8CkfkpBKEQQoi8RUb78UwJqaggISWEEHmbjPbjWrtPCCFEZJGQEkIIEVkkpIQQQkQWCSkhhBCRRUJKCCFEZJGQEkIIEVkkpIQQQkQWCSkhhBCRRUJKCCFEZJGQEkIIEVkkpIQQQkQWCSkhhBCRRUJKCCFEZJGQEkIIEVkkpIQQQkQWCSkhhBCRRUJKCCFEZJGQEkIIEVkkpIQQQkQWCSkhhBCRRUJKCCFEZJGQEkIIEVkkpIQQQkQWCSkhhBCRRUJKCCFEZJGQEkIIEVkkpIQQQkQWCSkhhBCRRUJKCCFEZJGQEkIIEVkkpIQQQkQWCSkhhBCRRUJKCCFEZJGQEkIIEVkkpIQQQkQWCSkhhBCRRUJKCCFE/hBSgwYNco0aNXKHH364q1Chgrv00kvd0qVLU13TrFkzl5KSkurTrVu3VNesWrXKtWnTxhUvXtzC6dOnj9u7d2/25EgIIUS+oVBmLp4xY4br0aOHCSqEyj333ONatmzplixZ4kqUKBG77vrrr3cDBw6M/UYYefbt22cCqlKlSm7mzJlu7dq1rnPnzq5w4cLuoYceyq58CSGEyAekBEEQZPXmjRs3miaE8Dr77LNjmtTJJ5/snnrqqYT3TJgwwV100UVuzZo1rmLFinbs+eefd3fddZeFV6RIkXTj3bp1qytdurTbsmWLK1WqVFaTL4QQIpfIaD9+UHNSBA5ly5ZNdXzUqFGufPnyrl69eq5v375ux44dsXOzZs1y9evXjwkoaNWqlSV48eLFCePZtWuXnQ9/hBBC5H8yZe4Ls3//fterVy/XtGlTE0aejh07uho1argqVaq4BQsWmIbEvNU777xj59etW5dKQIH/zblkc2EDBgzIalKFEEIcakKKualFixa5zz//PNXxG264IfY/GlPlypVd8+bN3Q8//OCOPfbYLMWFNnbbbbfFfqNJVatWLatJF0IIkUfIkrnv5ptvduPHj3fTpk1zVatWTfPaxo0b2/fy5cvtG4eJ9evXp7rG/+ZcIooWLWo2y/BHCCFE/idTQgofCwTUuHHj3NSpU90xxxyT7j3z58+3bzQqaNKkiVu4cKHbsGFD7JrJkyeb4KlTp07mcyCEECLfUiizJr7Ro0e79957z96V8nNIeGgUK1bMTHqcv/DCC125cuVsTqp3797m+degQQO7Fpd1hFGnTp3cI488YmH069fPwkZjEkIIIbLkgs6LuYkYPny4u+aaa9zq1avd1VdfbXNV27dvt3mjyy67zIRQ2ES3cuVK1717dzd9+nR7v6pLly5u8ODBrlChjMlMuaALIUTeJqP9+EG9J5VbSEgJIUTe5i95T0oIIYTISSSkhBBCRBYJKSGEEJFFQkoIIURkkZASQggRWSSkhBBCRBYJKSGEEJFFQkoIIURkkZASQggRWSSkhBBCRBYJKSGEEJFFQkoIIURkkZASQggRWSSkhBBCRBYJKSGEEJFFQkoIIURkkZASQggRWSSkhBBCRBYJKSGEEJFFQkoIIURkkZASQggRWSSkhBBCRBYJKSGEEJFFQkoIIURkkZASQggRWSSkhBBCRBYJKSGEEJFFQkoIIURkkZASQggRWSSkhBBCRBYJKSGEEJFFQkoIIURkkZASQggRWSSkhBBCRBYJKSGEEJFFQkoIIURkkZASQgiRP4TUsGHDXIMGDVypUqXs06RJEzdhwoTY+Z07d7oePXq4cuXKuZIlS7r27du79evXpwpj1apVrk2bNq548eKuQoUKrk+fPm7v3r3ZlyMhhBCHppCqWrWqGzx4sJs3b56bO3euO++889wll1ziFi9ebOd79+7tPvjgAzd27Fg3Y8YMt2bNGteuXbvY/fv27TMBtXv3bjdz5kw3cuRIN2LECHf//fdnf86EEELkfYKD5IgjjgheeumlYPPmzUHhwoWDsWPHxs59++23AVHMmjXLfn/00UdBgQIFgnXr1sWuGTZsWFCqVKlg165dGY5zy5YtFi7fQggh8h4Z7cezPCeFVjRmzBi3fft2M/uhXe3Zs8e1aNEidk3t2rVd9erV3axZs+w33/Xr13cVK1aMXdOqVSu3devWmDaWiF27dtk14Y8QQoj8T6aF1MKFC22+qWjRoq5bt25u3Lhxrk6dOm7dunWuSJEirkyZMqmuRyBxDvgOCyh/3p9LxqBBg1zp0qVjn2rVqmU22UIIIQ4FIXXCCSe4+fPnu9mzZ7vu3bu7Ll26uCVLlricpG/fvm7Lli2xz+rVq3M0PiGEENGgUGZvQFuqVauW/d+wYUP31VdfuSFDhrgOHTqYQ8TmzZtTaVN491WqVMn+53vOnDmpwvPef/6aRKC18RFCCHFocdDvSe3fv9/mjBBYhQsXdlOmTImdW7p0qbmcM2cFfGMu3LBhQ+yayZMnmzs7JkMhhBAiy5oUZrfWrVubM8S2bdvc6NGj3fTp092kSZNsrqhr167utttuc2XLljXB07NnTxNMZ5xxht3fsmVLE0adOnVyjzzyiM1D9evXz96tkqYkhBDioIQUGlDnzp3d2rVrTSjxYi8C6vzzz7fzTz75pCtQoIC9xIt2hefe0KFDY/cXLFjQjR8/3uayEF4lSpSwOa2BAwdmJhlCCCEOEVLwQ3d5DFzQEZI4UaCxCSGEyJ/9uNbuE0IIEVkkpIQQQkQWCSkhhBCRRUJKCCFEZJGQEkIIEVkkpIQQQkQWCSkhhBCRRUJKCCFEZJGQEkIIEVkkpIQQQkQWCSkhhBCRRUJKCCFEZJGQEkIIEVkkpIQQQkQWCSkhhBCRRUJKCCFEZJGQEkIIEVkkpIQQQkQWCSkhhBCRRUJKCCFEZJGQEkIIEVkkpIQQQkQWCSkhhBCRRUJKCCFEZJGQEkIIEVkkpIQQQkQWCSkhhBCRRUJKCCFEZJGQEkIIEVkkpIQQQkQWCSkhhBCRRUJKCCFEZJGQEkIIEVkkpIQQQkQWCSkhhBCRRUJKCCFEZJGQEkIIkT+E1LBhw1yDBg1cqVKl7NOkSRM3YcKE2PlmzZq5lJSUVJ9u3bqlCmPVqlWuTZs2rnjx4q5ChQquT58+bu/evdmXIyGEEPmGQpm5uGrVqm7w4MHuuOOOc0EQuJEjR7pLLrnEff31165u3bp2zfXXX+8GDhwYuwdh5Nm3b58JqEqVKrmZM2e6tWvXus6dO7vChQu7hx56KDvzJYQQIh+QEiBtDoKyZcu6Rx991HXt2tU0qZNPPtk99dRTCa9F67rooovcmjVrXMWKFe3Y888/7+666y63ceNGV6RIkQzFuXXrVle6dGm3ZcsW0+iEEELkLTLaj2d5TgqtaMyYMW779u1m9vOMGjXKlS9f3tWrV8/17dvX7dixI3Zu1qxZrn79+jEBBa1atbLELl68OGlcu3btsmvCHyGEEPmfTJn7YOHChSaUdu7c6UqWLOnGjRvn6tSpY+c6duzoatSo4apUqeIWLFhgGtLSpUvdO++8Y+fXrVuXSkCB/825ZAwaNMgNGDAgs0kVQghxqAmpE044wc2fP99UtLffftt16dLFzZgxwwTVDTfcELsOjaly5cquefPm7ocffnDHHntslhOJRnbbbbfFfqNJVatWLcvhCSGEyBtk2tzHvFGtWrVcw4YNTcM56aST3JAhQxJe27hxY/tevny5feMwsX79+lTX+N+cS0bRokVjHoX+I4QQIv9z0O9J7d+/3+aMEoHGBWhUgJkQc+GGDRti10yePNmEjjcZCiGEEFky92F2a926tatevbrbtm2bGz16tJs+fbqbNGmSmfT4feGFF7py5crZnFTv3r3d2Wefbe9WQcuWLU0YderUyT3yyCM2D9WvXz/Xo0cP05aEEEKILAspNCDea+L9JlwHET4IqPPPP9+tXr3affLJJ+Z+jscfc0bt27c3IeQpWLCgGz9+vOvevbtpVSVKlLA5rfB7VUIIIUS2vSeVG+g9KSGEyNvk+HtSQgghRE4jISWEECKySEgJIYSILBJSQgghIouElBBCiMgiISWEECKySEgJIYSILBJSQgghIouElBBCiMgiISWEECKySEgJIYSILBJSQgghIouElBBCiMgiISWEECKySEgJIYSILBJSQgghIouElBBCiMgiISWEECKySEgJIYSILBJSQgghIouElBBCiMgiISWEECKySEgJIYSILBJSQgghIkshlwcJgsC+t27dmttJEUIIkQV8/+3783wlpLZt22bf1apVy+2kCCGEOMj+vHTp0knPpwTpibEIsn//frd06VJXp04dt3r1aleqVCmXF0cRCFmlP3dQ+nMXpT932RqB9CN6EFBVqlRxBQoUyF+aFBk66qij7H8KOC82Eo/Sn7so/bmL0n9op790GhqUR44TQgghIouElBBCiMiSZ4VU0aJFXf/+/e07L6L05y5Kf+6i9OcuRfNQ+vOk44QQQohDgzyrSQkhhMj/SEgJIYSILBJSQgghIouElBBCiMgiISWEECKy5Ekh9dxzz7mjjz7aHXbYYa5x48Zuzpw5Loo88MADLiUlJdWndu3asfM7d+50PXr0cOXKlXMlS5Z07du3d+vXr8+19H766aeubdu2tkwJaX333XdTnccR9P7773eVK1d2xYoVcy1atHDLli1Ldc2mTZvcVVddZW+xlylTxnXt2tX98ccfkUj/Nddcc0B9XHDBBZFJ/6BBg1yjRo3c4Ycf7ipUqOAuvfRSW/4rTEbazKpVq1ybNm1c8eLFLZw+ffq4vXv3RiL9zZo1O6AOunXrFon0Dxs2zDVo0CC2CkOTJk3chAkT8kTZZyT9US77NAnyGGPGjAmKFCkSvPLKK8HixYuD66+/PihTpkywfv36IGr0798/qFu3brB27drYZ+PGjbHz3bp1C6pVqxZMmTIlmDt3bnDGGWcEZ555Zq6l96OPPgruvffe4J133uG1hGDcuHGpzg8ePDgoXbp08O677wbffPNNcPHFFwfHHHNM8Oeff8auueCCC4KTTjop+PLLL4PPPvssqFWrVnDllVdGIv1dunSx9IXrY9OmTamuyc30t2rVKhg+fHiwaNGiYP78+cGFF14YVK9ePfjjjz8y3Gb27t0b1KtXL2jRokXw9ddfW5mUL18+6Nu3byTSf84559gzG66DLVu2RCL977//fvDhhx8G33//fbB06dLgnnvuCQoXLmz5iXrZZyT9US77tMhzQur0008PevToEfu9b9++oEqVKsGgQYOCKAopOrxEbN682RrQ2LFjY8e+/fZb61xnzZoV5Dbxnfz+/fuDSpUqBY8++miqPBQtWjR444037PeSJUvsvq+++ip2zYQJE4KUlJTgl19+ydX0eyF1ySWXJL0nSumHDRs2WHpmzJiR4TZDx1KgQIFg3bp1sWuGDRsWlCpVKti1a1eupt93lLfeemvSe6KUfjjiiCOCl156Kc+VfXz682LZe/KUuW/37t1u3rx5ZmYKLzbL71mzZrkogjkM81PNmjXNjIQ6DeRjz549qfKCKbB69eqRzMuKFSvcunXrUqWXxSExt/r08o2J7LTTTotdw/XU0ezZs10UmD59upkxTjjhBNe9e3f322+/xc5FLf1btmyx77Jly2a4zfBdv359V7Fixdg1rVq1slWvFy9enKvp94waNcqVL1/e1atXz/Xt29ft2LEjdi4q6d+3b58bM2aM2759u5nN8lrZ74tLf14q+zy9Cvqvv/5qhR8uROD3d99956IGHfiIESOsQ1y7dq0bMGCAO+uss9yiRYuswy9SpIh1ivF54VzU8GlKVPb+HN8IgDCFChWyTioKeWL+qV27du6YY45xP/zwg7vnnntc69at7eEsWLBgpNLPdjS9evVyTZs2tQ4FMtJm+E5UR/5cbqYfOnbs6GrUqGEDtwULFri77rrL5q3eeeedSKR/4cKF1qkz/8S807hx42xLoPnz5+eJsl+YJP15oezzhZDKa9ABepjQRGjRSN566y1zPBB/LVdccUXsf0aM1Mmxxx5r2lXz5s1dlGCCnsHM559/7vIiydJ/ww03pKoDnHAoewYN1EVuw4ASgYQW+Pbbb7suXbq4GTNmuLzCCUnSj6CKetknI0+Z+1BTGfHGe9Twu1KlSi7qMAo7/vjj3fLlyy29mC83b96cJ/Li05RW2fO9YcOGVOfxDMJjLop5wgRLm6I+opT+m2++2Y0fP95NmzbNVa1aNXY8I22G70R15M/lZvoTwcANwnWQm+lHW6pVq5Zr2LCheSuedNJJbsiQIXmm7IskSX9eKPt8IaSoAAp/ypQpqcwK/A7bXaMKrsyMWhjBkI/ChQunyguqN3NWUcwLJjIaaji92KqZq/Hp5ZuHGPu9Z+rUqVZH/oGIEj///LPNSVEfUUg//h508JhoiJcyD5ORNsM3Jp+wsJ08ebK5JHuzT26lPxGM+iFcB7mV/kRQ97t27Yp82aeX/rxY9jGCPOiCjkfZiBEjzBvrhhtuMBf0sEdKVLj99tuD6dOnBytWrAi++OILc+3EpROvJ+/Siovu1KlTzaW1SZMm9skttm3bZq6nfGgaTzzxhP2/cuXKmAs6Zf3ee+8FCxYsME+5RC7op5xySjB79uzg888/D4477ri/zIU7rfRz7o477jBPLOrjk08+CU499VRL386dOyOR/u7du5uLP20m7Ca8Y8eO2DXptRnvRtyyZUtzA584cWJw5JFH/iVuxOmlf/ny5cHAgQMt3dQB7ahmzZrB2WefHYn033333eaJSNpo3/zGs/Pjjz+OfNmnl/6ol31a5DkhBc8884w1Ft6XwiWdd1qiSIcOHYLKlStbOo866ij7TWPx0LnfdNNN5iZavHjx4LLLLrOHOreYNm2ade7xH1y3vRv6fffdF1SsWNEGCs2bN7f3McL89ttv1qmXLFnSXFevvfZaExC5nX46Sh4+HjpciWvUqGHvjMQPbnIz/YnSzod3jzLTZn766aegdevWQbFixWxQxGBpz549uZ7+VatWWadYtmxZaz+8g9anT59U7+rkZvqvu+46axc8r7QT2rcXUFEv+/TSH/WyTwvtJyWEECKy5Kk5KSGEEIcWElJCCCEii4SUEEKIyCIhJYQQIrJISAkhhIgsElJCCCEii4SUEEKIyCIhJYQQIrJISAkhhIgsElJCCCEii4SUEEIIF1X+D8fqq2WgXvRdAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqEAAAPDCAYAAACD6dK7AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAfGhJREFUeJzt3QW0HdX5sPEJ7u4Ud3eKk+JFihV3LxQoEKBAgeJOi5fiFC1FWrQFSnC3Utzd3X2+9ex/9/0mJ0fvvXmTmzy/te5KcnPOyJ49M++8W6ZfWZZlIUmSJAUaKXJlkiRJEgxCJUmSFM4gVJIkSeEMQiVJkhTOIFSSJEnhDEIlSZIUziBUkiRJ4QxCJUmSFM4gVJIkSeEMQiVJkhTOIFSSJEnhDEIlSZIUziBUkiRJ4QxCJUmSFM4gVJK64aKLLirGGWecrp877rhjaG+SJPUp/cqyLIf2RkhSX/PZZ58V77zzTte/p5566mLMMcccqtskSX2JQagkSZLC2RwvSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkqQhrizL9KPhn8da7TIIVQguSD/++KMXphqUx/fff2+5DEUvvPBCsd9++xUffPBB0Vc8/fTTxTHHHFN8/vnnQ/2c/uGHH5rWX/5v4MCBxR577FF88sknRV/08ccfFwcccEDx5JNPdvzdTz/9tPj9739f/Pe//y36Mo4jx5pj3uwz7777bjrWd999d9i2sU1nnHFGccstt3TrWvrtt98Wf/zjH4ubbrqpaVDNelr95PU3+3x1G8sWyx7e7w2jDO0N0IiBQOukk04qFlhggWK55ZYb2pszzHj22WeLQw89tNh9992LhRZaaGhvzgjp1VdfLc4///xi6623LiaeeOKiL3jmmWeK008/vdhkk02KccYZZ6htx5/+9KfilVdeKQ455JBijDHGqPsZgpJ99923WHvttYtxxx236IsIJC+44IJi0UUXLeacc86OvvvZZ58VF154YTHffPMV88wzT9FXff311ykQn3XWWYttt922GGmkwXNYBKlc5x977LHid7/7Xdi2sV7KuH///sXPfvazjr//3XffFVdeeWXxxRdfFCuuuOJg///NN98Uf/7zn4s33nij6XIoky222KKYY4450oMi28Syay211FLFL37xi666xXn04YcfDva50Ucfvdhuu+2KaaedthheGYQqLAi96KKL0sk8JINQTvz77ruv2HDDDdMJPKwj+3bvvfemG7XU1zz++OPF888/n87vRsHBaaedVkw//fTFTjvtVDdw6QuG92xUOwimHnzwwaZN7Q888EBx3XXXFWeffXafeaBr5/jy/wSJ1es0WfHnnnuuWG211YpRRvm/UGrkkUdO9zjcdtttKbhceeWVB7sX8WCSvfHGG8XRRx9dLL744sVkk002yOd4sKsXxA5PDEI1XLnnnntSM+Waa67ZJ4JQMit33XVXMdFEEw3tTZE6xs2Tm+TYY4/dMHs24YQTps+Rse3Xr1/4Nqp3kMW+4ooritFGG63hw8R7771XHHbYYcX8888/XB1rgsGDDjpokN/RfH/OOeekbgBjjjnmYN+hKX2qqaYqTjnllKbX97IsU5nSJWjJJZcsRjQGoRpqT5v8m6fGUUcdNV3UuGF99dVXKXjkpK690OU+SXyGGx+f4eLAxY4Tnn49/PC5vByWwQkOvsNneWrl/1k3N0/Wn7clf6eK7/H/fK56YeV3rI9l8Xu2p95n2Db2jeWzvfzkdfDneOONl56g65UXy//yyy/Tv1k+21d7cWf7WAf7SfnQT5DPjDXWWGlf690Mcjmy/Nptqt32Vp9rdkz5O01c/JuyrrefrIPPUUZ8p1455uPLPvJ39pFlscy8PexTXg7fZzk5Q9EdebvYf5bDvtduV6Pv5W2lPPLxIAjL21qvLtere/mz7BM/LLPeDa+TsszLzOdJvXpZ/RzbRx2sV8fzdtfD/oEuAyybbGltfeQzLJ9lsO3UFX5H3WVfm5V13lc+V69eVc+LZsupli/bxz6xvHaCqFzf+W4uj2bry+ui3POxbHTuUw75ukH5UIa129VOXcvXn+r+1bsu1J7v9epkXm6977KdNDPzf3y/9lpV7f9OHeLvHO9W16pGZUOdZHv5bqvj2+o63Uq9/W32/62+39PPDU/6ZtuI+qTaE4xBCltuuWVxxx13pP449JFZZpllUr8e+rtx0ax28n777beLvfbaK31m2WWXLVZdddXi8ssvTxei119/PX3/2GOPTX38yIQuv/zyxfbbb58uPnzm8MMPT0+lN998c+r3Qx/M/fffP/3fE088Ufzyl79M36118sknp89Vmxy5CP7rX/9K31liiSVSU8pmm22W9iV33Geb33nnndSPim3mc3RFYBs/+uij9P+sb9111x1kwEO+8f/jH/8o1lprrbTsxRZbrFhllVWKs846K124q+jmsM8++6Smod/85jepTxTf2WabbVKf09pO8KyTz7NN3DQoS7LHDL6oljfHh/6qHA8+s8IKKxRnnnlm0+YhboL0YSK7+89//jP1A1x66aXTvlMO77///iDreO2111LmhCYrPsd2E7TkZr+M/aCLBeX029/+tlh44YXT5/k3n6MP2p577pm2NS9nl112KV5++eWOm1L5PN87+OCDUz2hnCj/zTffvPjPf/7TcnlvvfVW2taHH3447RvZbr5PmeTl06dz5513TuXPD2VLRoUba3X53NjPPffcYqWVVkpZEurPqaeeOlgd4DtvvvlmceSRRxY///nPUxmwTraD1oHaOkA3ELaN8mK57CP/prkxf5Y6zkCPDTbYIB0/lrfRRhul3+UAk/o4YMCAQQar8H3KgMwR25G3hXpBmVS35fbbb0/19KWXXkqfZ//YHs4rutU0K2vOIfaP86T2c5yr1F36quZtrXecKW/qNOcWx4F686tf/Sp162k12IrmWa4NXHdyneO6c8MNN9QdvMN587e//S013+bjznlH02zt8XnxxRdTuVIW/FD+u+2222Dnc6O6xqAgPsc1gb6Z1K+8jZR37f7lc5HrK9vF+vgO+5ebjgnk2CbqY/V71NFLL720WGONNbrqyeqrr576Q+bgPKNrBsflqaeeKnbcccd0XeE7v/71r9N1qZ1mcfaJrh18j7LhvHzkkUfqfpcyv/baa9M1ls+y/9Tn6nVaQ5eZUIWpvUhwUSN4OOqoo9KFbtdddy1mm2224tZbb00BAFkuLjD5YkJzBf1naAaZYIIJikcffTQFjwQ69D8isKI/Ehd6AhWe2sky8kTOuum7RrDKAINNN900dR7nAkpwTMBFgFF7cwcBSfUCyZ9///vf0whQAk+2i+XwOy7S/Dn11FOnmyQ33jyylqYZLv70EyKbQNDETZD1VkcNc3HkYn388cenGwYBMNtIuXCj5iJMQM3TPNgnAmJu2lyYCWYoT8qQCz3bQzmAQIUgj38fccQRxaSTTppuCDSXsp8nnHBCyriwDayf5XLTYH+4AdJ/leOW112L48Qo4D/84Q9pXTwE0DTHd9kebpo8YOTsGTc5BrYwMGu66aZLZXXiiSemQUI33nhjMeWUU6bPsT8PPfRQOq6UHZ8hCBh//PHTOhl9TPlSLpNMMkk6Xmw3QTk3yGbZw3rYfgI1bsoMCuDv/I4BGddff/1gfbeqeOihbhIAEZRTthxnypq6Q3kTzDFIhbrMsSDo5uGEhxaONxkvjgF1hePAdnBsGcnPMaKe1t5E+SzLJridccYZ04AHHrqoQ5TlNNNMkz7HNvEZlrX33nun/pr8ne9zbCk3tpOHCIKD9ddfP9VVgrlrrrkm/Z1m2RlmmCEdO9bJtuSMHg+L1DGOCwOSOK400xLssSwemn7605+mOs3vCQjYRj7HvuXjy+8oa35fD8ee43reeeeloCe3eIByZD0EYPUyjbmucj4RpHDeUk85Zzn32H4ejCmbRi677LIUcHKN4lpCwPWXv/wl1XmuQwxEyihPBrbwGcp09tlnT/WZwJFznz/JBOYHlI033jjVZ34/+eSTp3OcAT+UHw/es8wyS1t1jXMclAPLo1z4zA477FBcffXV6Tqay4sBNWwD3+Ec4rrEucp1mHrPMeb6Rbln1AkCaZqlCd4JdPkc9Y26xXnIOZtbJKgvPMQwCp0HK77Hgyl1niCbY0ZmsxGuKVxzud5TR/gsdXGrrbZK52h1UBLbwbWe+swxOfDAA1P95riR/KDesL0jYvZxmFJKAb788sty/vnnLw8//PCu373zzjvlLLPMUi644ILl008/Xf7444/p999991251VZblSussEL57bffpt+9/fbb6bNXXXVV1+f4k//P/8bZZ59dzj777OWHH344yPpZ5sYbb1yONdZY5VlnnVV+//33g/z/HXfcUU499dTl448/Pti277LLLuWaa65ZfvPNN+nfLHuhhRYq99hjj67tA3+///77y88++yxt05lnnllON9105ZNPPjnINr/55ptpPfz9iSeeKKeaaqryzjvv7FrOU089VU4zzTTlKaecMsh28vczzjijnHTSScsHHnig6/eHHnpoOeaYY5YnnXRS1zaybJY5ySSTpH3DDz/8UO6///7loosumrahuk033nhjOeWUU5b33ntv+t3nn3+ePscym5V3rQ8++KCca665yjnnnLN89NFHB/nupZdeWk488cTlfffd1/W7d999t/z666+7vs/vKC+25eqrr+76PeU63njjlUsuuWT5xhtvDLIN/J36wTGu/o66wnKoW83ccsst6Rg899xzTbeL/Zl88slTWTXDciabbLJy7rnnLp9//vlBtpVt3GKLLcrVVlut/OSTT7p+z7E577zzUn158cUX0+9effXVcsYZZyyPPfbYrnrAsl566aVy6aWXTnXk9ddf7/r9e++9V3711VeDbDPbQr3+29/+1vU7/s7+Uoeqx4d9zseMOkxZ77DDDl11Km//gw8+mLadz/32t78tl1tuua7zgP048MADUx144YUXBtn3999/v+zfv3+5zjrrdC3zr3/9aznGGGOUAwYMSHUuowymnXba8pxzzmlY3/j95Zdfno4xdab6+4svvricYYYZyldeeaXhccrn/E033TRIOVCXOL8PPvjgrt+//PLL6djkOsnvuQ7kc716DOaYY47y+OOP71oPx4h94Xx69tlnuz5PWXF+sf3PPPPMINc+ji/Ho7pPbMM888xT/uY3v+mqD83qGn/nGlu9RvE79pvv3HPPPV2/o47NNttsqW5V94fyy9vGNXz55Zcv99tvv67lUYemmGKK8oILLkj7U60nLLN6bFje7rvvXo477riprufzld9ff/316VpF/WuEzx1xxBHp+l7dTvaP6+LYY49dHnDAAV2/5/yZddZZy5NPPnmQ6yjnyAYbbJDqYd4GjuNSSy2VrqXtYB0cY+r5F198Ufczp556ajnzzDOncqYM8g/Xd9aXPf744+UEE0xQbrPNNqnO5Z9DDjmkfOihh8rhnc3xClPviZOsB0/QTPuR/5/MBc0mPPXmpiAyZ2SMaFrk6Z+nfD7fad8emprIcjTKjrSD7CtP+GQlqn0O2ZZFFlkkZWB5CqeZkPVV940/ye7NNddcdbeb/SL7SIZnvfXWG2Q7+TvNfXRyJ5NQzSwzbQzZw5wNYtn8jkwHWS5QlmSWaJoiu1Kdu5XMFANI7r///q51kQ3h32TUOilvjikZ4HnnnXeQ/aaplSzKnXfe2fU7MjbVPoX8jiwjmQ6yM1XsGxkTyq+6Dfyd/akeC35Hpo4/ya52otF2TTHFFGn725nJgPIje0lGsrqt7BOZvzy1Up4LEHQfoRmZ1gFQ9mTYyfTnesCyyAySyazWDX7P8apOk5R/R3mSncyolwsuuGDK1FWPD/ucf0fmOneBqGa9KWO6seTMei3qGBk2mtNz+WfUW1ogyKZXt4ftIwtWzYCRteX7bEMjLJtMFttC1rbajYDsGE29ZPDr4bNkdWeeeeaUYa6eC5QD36VJO490rrduzpfqYKvcF5PjQ8a/imNFSw/ry5/nPCGDyzoZVQ7KhUwhWUmOXXV9ZOTXWWedlGWsjq5uVNfyuVQ9fvyOsuX6QgYSZAepE3Q9Ydur+8M6uX41K0POR5riq31HqSdcH1k3XS6q1yq60tASkM9X1kO9o+7SLaMRssjsO1132K68nayDbDTXm+q2cZ3hfKJLUx43kPsIU+5keof03MB0caAc6CKTf+hGxn2sqizLlO2mlSv/0HJHZn54Z3O8hiouDnlwUfV3XMy5gOT+h9z8aQakeY8TlIAr34A6CUIJVno6ap4AlAsZF/NG6+aCyecIJDuZliY313IDrnejpxxoIuRiXW0CZXtqB+Hwf9zYcxcDmuvYJvrE1l7suXFzQaZ5FJQRTZQ0HRJQ0BxHkERw2E55c5Or/RzbQlCQuzbw//xJkEifNoJ7/s72coOs7cvHzaY2AK2WGzd+buZcvNlXAr7cH7hTuc8fTaYcD5pMufGzfY36GNaWPftau63sF9v117/+Nd2ca+sMTam53yz9AglEaqe6YZn1Bqjlfry5LLmBsTyC5rzNBBx0u+Cho9mDGDfEHPB2cn6xTrrMVAPc6nbTbM02UQZ57kPqbe3DDX9nNHa97jFVlA03dYIomlxpOubGz3GjK0Kjc4+yommZB126gtR+jjJkG7j+NJr/NPcppTmcBweOG0Erx439rN33eucED4kEvbkvOkEoD331HlL5N1046DZBOeem9EZ1LW8j28V5QTM/y6YOc37k84IyphzoAtAJ6hTnBkFqvSZ06i7nK+WRz3fUG0iWBxLmQZj1ULbUXQLY2uPFv2uvfzzA5BcFVLtq5G4BXBuara83cK2mWwcPLFW1o+VHH3309IDt6HhpGFHvAswTJRdn5qAjQOIpn36GDK6InH+QiyHra9QvMl+gCaI77YvIjYELIxelekFCHu2fR+x3Uo5sN8sno0eQW4syZYBG/h79q+gvx0Tu9KuiLxl9y8jGdmfUed72HBCx/WTFWC+/m3vuuVPgnbezXXyWfl70B+WGzk2Rcufm2p35HfkOASJ92thm6hwBEUFiTwcz5IEaBA31+joSZBDsI4/KbydrzzYTeBFQUX4sh7Ik6KwGzble1j74NarjnT6w5TJqVO/z7xvNK1rVTvDLNpLZv+SSS1LgTUsED1nc9GlNabSMPLKeMuJcqL1+8Dv6pzfqn5j7mJPBJegmC0dgkQcVtitfR/IxykFRo8CX8stvqWol9+sluGE/CIwJ0qsBaD4WLK/ROhvJI+kbPZhSb/O1qh2tjndOSrS7ndRFPksgWFuPOb4kCLgWDkmcvyQ+2p0ztd8I2D/VIFR9ZsJnLtjcXBmowYATAiMG3tA03dM3SnDBzE1yrbaZDAQ3d56yCXrq4aLHhT9nFjvZR5ZPprLeACBunGToCIw67VLADYibGE2NZJLbmVZkpplmSoM36DLBwAjKnQs4zbmtVLMf4AbCtvPwwO8pP5oRGWTBMeUmzv6T5enklX+UFYPSGGzBiHj2k+UzkToBSafIFLFdvN2L0eYcD7aLY8ngsJ4gmKVu0HxJs2KzqXwIkAgYuJlW3zRUr04ScBM0E9xynMhCsc1kRnMXCxAUUD5kx6qZ9HoZd276lAUDWjrZP+osmc7a459ni+D/e2si89yUS1M0TcNcH8iK0tyaM4X1sN/sI0EKD0HNHijrIWjjvCBoZL2UUZ6onMxfI7VlwufJsOfyyIN+cja8tvzI9tNKVB0c1AgZcOoxD5YMjMytRmSK//3vf3d9Lk911+m1KpdhbrWofTClbKh/jVovOkXdzdfU2rKphwcR9pmR9H1p4vwRjX1CFaa3nvK4+PF0y82DmyRNKxkXwu68iz3fdHM/KbAMbhC5T2VGYMYNnGa42mlOcuaJmxqZPYIpsgX1sjD1tpEyos8dXQ7Yr9rlk31he+hr2ikCBEblMlVQO5mojGCGmyxZHwIomuCaYTtpCquuozo7AX3CQFnTJJpnN8jZKILVTrJJlBXBGhnaHIDmqWO6k7kkUGJb6X/Hjay6XZ2UWz1kXggUa6dNqpWbrikjguzqZ6lf9GerZsMI3MkE0v+NB6NGZcm5Q9aOwLT2vfO5zPiT84tzqXaqrGodr4fAj4cKgvXasuJY8MBIv8g860Fv4JiTDSVrz1Q9TNtFOTRrHaF86ZLAg0r1nG8X5zRN3PTx+8lPftIVzOe5amux7zSH105lxbnEsWNkPjjPyJzV9qME5U75NeuTW0WwSZaW86vabYnlVI8NASh1jT6Uteddnoe0HsqXc5nZMOhGUFtPqI/8nimbegPXHrLT1N3aawv7We2Hy75SpgTinMs9TYBoyDEIVZieXAi4WNMpPU9QzMWeGwgXpup0Odzkc2CabwjtrJcbCTfeiy++uGv6G/pI0vxcm5XjJssNjOwdAUJu4uQmw7RN9O/K3Qe4ITJNCNmsPJE8U4MwDUw9fI8BAmSyyPQSEPE9fgjg6N9EcNudqUXIeNCBn2llmLYpB2ksm2A7D0IC62KACb/P+0dgyXcoq2Yob7pMkJHLTX9kRCgvAvh8UyKrQWBMMzI3ulzmNPs3G6BQi0CR79IvL+8PfceY3ibvT6dBDT9sFzdllsfNjKwo5dITbCvzFNLFgdf65QnVWQfBCNNs5SZ7bvA02VOOlF+ezJ2pfpjuqHr8ObY8SFXLkqwzZV47uIfgmv3I85Lmib+ZyopponIQSh1jGhy+n+sAD0D0zSbwr4djyhQ6DICjLxz1JZ+HBIl0m6DvZm+/755gkGCSukMda+f97mSjwRRDlD3bmYMuzttmGU0eMjlHCXrzNYm6zpRGdDGpRZlSlkxJlD9PRu+4445LGff8Tnkexmgm5hoxcODAroCfoJfrCIPaKL/aPo71EHjyOfq35iZ3+n7SbaWa9eRhgzrJgxHTP+VjRp2j/yl1tR7qH2WYp3WivuVrFWXHtYqHZYLm3sqEUnc5b8jk5n3iuku2szrYDVyjaTHiOkBAno8v3+P+wPViWApOf/jfixtqf4b3+UxtjlcYLkS1gw+qf9Z+toqLJhcaMig8tXPB4wbA77jpZDQT0yeQ5maehPO7q3MfuEYXQ4IhAk6ac8mqEGiyfJbFTaF60WZZBCTMY0iTKsECNwsyAoy0pVk5jwZnefRbZSAKA5m4eRMYcbNvtL/sI/Nn0vRN/0AyVznIIovG/1WbZ5td4GvLm31hGwgkuGFSdgQ9ZCTJbNC3jpsXwSfznxJUcIPkxklWjMCaCbGbYTmshxsagQdlSNmwDG5quZmUjB2jvLkR8/88TPAnzf0EEfXqSj2UD8eMpkfWx02RsqJPYKPuEvXKKa+D8qf7AeVMUMfxZHlkYaozHbS7vFoM9iIIZK5CbpLUC8qbY0AQQjBIHWO9zKFLHWeCc/aTY8eNk7kXGXhTDW4ZfU0wwHLIqFGWLLt2lgJuznyfeU9pSqa8Cfqp48w3mWdB4CGIAWkM/KGOUwdZJudVfvDL+1ldPiP/2U5aKgiY6SrD/hLA0mWCEffNzv1qGbZ77KjH7BcPThy3dvqy8h3mJaUbA4EN5cR+E0CRWaO5nWb+evvJ8ul/y0MnGXiyu5Q7DwMMLqnddn7P9YJzjkCc5RIcggeK/NpTvkeLA+XFCHkeOMmMcnwIIGlW57pSe27UKyuOK/Nncq0iy0ngTwad41ftj8x32QfOb44ZQSfrZH+4rlGejdbFflCGnHv0IedawXdYD+cK53an/eIbydcvkgLMvsFDEoEpLVJ5BonqtnEdI/Dn/GFOUoJ9fsex5Rgz4JLyrR7bToPl3qi/I488cgo22afahzOuZTxIsq/Dq37M0zS0N0LDP4JBAgQuWvmpnyduboIEjvlin5HJormLJ21uyHyf7AQXIC7QBDJc7PluNStAdeYpl2wfWTUGKvDmDy4IZBEIkPKr5eptI8EGU6SQ1eC7DHriYkymhIts9bWLZCl5IidTxE2EoIebdXXQBxdkLu5sN8EnF+Y8dUzus8fE1mQ/qwFTfgMO2RCak/gsN0m+y75Xt59tJvtKNqjaxy+/LYSAjgCq+nu+wzaRPeDCx2fYXzLJrIuAgws1ZcYNkGCU4JMgu9nAAB4OKDMCLY4dx4Ft46bHPpJFrW475UMGhm0hQ5HfhESXAepEnpSb5TLIgn2sHWlKWZEh5Ljx4MBNj2VQz5juijKrTndTi+PId9nefBOgbrINZLUoCwIc9p1ghS4NtfW1irpDvaa+NBr4QOBPvaCOk8HjmHJDZP/Z1lxGrJv6RSsA2VjWzYNPHjxFcJpv8hxXMqlsN9tPBoo3IfE7yp3vZpQ1ZUVwQtkSkFFOHKdqHWfbqOOcAxx3stjUkzxgh0CK4JWbfPV7bAvL57iyDIJWjgl1uNp3kHOV7eOtQ9V6xTJYLw9b1LtWN3Q+z8MmQTvlUm/gXT35bWscV4JklsOxpew4Z3Jf0dz3k2tHnvYpd4vgHOXcpr4RIHK82Mfc7YQsJuc4x4LlkCWmzlHmnBPUkdq+n9QPyoX6wTWCdXJecf2onuPN6lpeDuXBcjg+1OE8eIt9rLZqUGeo7/xwPvGAxDHLfTrZX7oDEKAS0FXLkHOcLhhcKygzAl32l+OX943toc5zLWW/a/vG8gDBtjV7QUCekYDzlQdE6gz7zvZQ7zmPqu+tz28H4zpG9wDKg33mvsHxytdqzgeuFfmhrZXclYLzggC+Xt9qMrSss/ZFCrW++uqrVK7Vabcylks5dtIvu68xCFWIajWrXiBqf9fu5xt9r97nar/f7IZW77vNvtdoXc0+U2+b6n23O/tbezPrybLbXX+jIJRmw063v1GZN9uXZtvbzna3U369sbx2trfT8mm1zc3qb0/Pp96uY+0utx6CGDKwPAzyKtFOBxq1Oo97Ut69UY863a5Wy2lnec3+P/JaVU+nZdpJWbabwWy1zZ0ub0Rlc7xCtNPk3pPPt/O5dptRO/led5fZW8tu9rkhud092a52Plf7uyG5vT2pLz35Xm+WT299ttPPDak61knZ54FwZF3p59ppANrO+npS3kOyHvX2edGb5TAkvj8kP9/byzT4bI8DkyT1Gi687c5tKfUWmrtpJqa5WVLfYXO8pF5D3yr6fdG3sDen4ZFa9c+jb2Kj1+FKGjYZhEqSJCmczfGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHCjxK9Skb777rvi/PPPLz7++OOhvSmSJKkDo4wySrHmmmsWI400UjHddNMVwxuD0OEcQehRRx1VvPDCC0N7UyRJUgdGH330YrbZZkvBqEGo+hwq7o477lh8+OGHQ3tTJElSh/fwmWaaKWVCh0f9yrIsh/ZGSJIkacQyfIbWkiRJGqYZhEqSJCmcQagkSZLCGYRKkiQpnEGoJEmSwhmESpIkKZxBqCRJksIZhEqSJCmcQagkSZLCGYRKkiQpnEGoJEmSwhmESpIkKZxBqCRJksIZhEqSJCmcQagkSZLCjRK/SkndUZZl8emnnxZffPFFMe644xbjjDNO0a9fv6G9WZIkdYuZUKmPBKAPP/xwscoqqxSLLrpoceCBBxbff//90N4sSZK6zUyoRrhgrlZvZxPrraMn62F5n332WbHffvsV9957bzHJJJMUa621VjHKKJ6+UWqPaU+OZW8sp6fYju+++6748MMPi9FGG62YYIIJipFGMicxJMp2wgknHGFaLNj3r7/+uvj444+LscYaqxhvvPFGmH1X93jV0QiDi+MZZ5xRbL311sU222xTHHbYYcWLL77YMGjsSZP5KaecUmy77bbFVlttVRxzzDGpCb0ny7zggguKgQMHppva7373u2LppZf24h6E8r/pppuK1VZbrVh//fWL559/vtvLevrpp4t11lmnWH311YvbbrutGFrIou+zzz7F4osvXvTv3z/Vrd48D0ZklO3ee+/dVba33nrrCFO2XOe47rHvK664YvHEE08M7U3SsK6URhCPP/54Od5443E36PpZdNFFy7fffrvX1vH999+X++yzTznyyCN3rWOMMcYob7rppm4t78cffyyfeeaZctppp03L2njjjcvPP/+817a3023hZ0TDPv/+979P5T/66KOX11xzTbeXdeWVV3bVjaOPProcWqjzM800U1cd3W+//UbIYzskvPXWW+UMM8zQVbYHHHBAy7IdXs6tJ554opxooom69v3ss88e2pukYZyZUI0weEqnmQy5Kfuhhx4qLrvssl7LVJAlO/fcc4sffvghZS1zZoTsaHd88803KWP76quvFvPNN19x5JFHpmauaF999VVx7bXXFpdeemnx0ksvjTCZnVq9nTUfWqj/o48+ete/GeSm3jHqqKMOUrZjjz1208+/+eabxV//+tfiqquuSt1u+jKueew/aKlpte+Snco0QlpooYWKZ599tvjoo4+KCy+8sNhyyy3TiPOe+PHHH4tLLrmkePfdd1OgSFPc9ddf36Mghe9fccUVxcQTT1wcd9xxxTTTTDNUmuGfeeaZYvPNN099veibSmCsvot+igcccEBxzTXXpD7GG2644dDepOGubK+77rpi0kknLTbYYIOmn+f8/s1vflOMMcYY6UFvueWWK/qq6aabLg2avOOOO4oZZpihT++LYhiEaoQ0xxxzFFNPPXVx5ZVXFv/5z3+Ku+66K40874n33nsvZQoJHukTtcgii/Q4CH3kkUdSBpR+rD/72c+GWj9Qsrlkd3N2Vn0b9YjgaL311kt/zz/qOcpxo402SuXbTtl+++236Vzn/MotNX0VGfYdd9yx2GGHHaxTaovN8Roh0Wy02WabpT8JqsiG9uQGkLOWL7zwQmqOYkASmY2e4AK+//77FzfeeGMKQkceeeQeLU/KcoBAnWJUvMFC7xmRy3ZE3nd1j0GoRlg0l88555zp7//6179S83x3ffnll8U555yTMoZkWVdeeeUebx8XcPqW0V/P6XMkScMbm+M1whp//PFTkxnN8R988EFx+eWXpwCy04CPLOjdd99dPPjgg+nfNMVNNNFE3domlsUPTXQ073/yyScpsCUYpV8oyyXL0GmGIc/f9/bbb3cNfmAOv8knn7wrY1tdJp+nj2sePJOb4sHv2ababcgZkHb2j+zzO++8kwZs8W8GMLAt/NluM14uJzLYY445Zte6+T2D0F5//fX0/8yBOcUUU6QMdV/KzORjxp/sX972fGzoz0wZciw4luwjx7LdsuOHh6c8SKn2+LNujjvL7LTOsX0cY/5k25udU9VtYX8+//zztC76aOf62UmdYL1sd3W9/J5z6Y033kjbxLk02WSTNdyv3DzOdYEf6hHbwXe4bjTL8uXjw2C+RmVbez5l/L7eSyhYX6sy5HvMTcoPZcC6qfv0S6XFp93jV932/L28T1w/KA/OJeobZVE9NtV9z4OU2l1vrgecu/Sr50/+Tf96+i1TxyOyq3k7qP/Ux3y9zNcotqfTaxTHprY+5vmf33rrrXS8WC5l2sk1cLgwtIfnS1Huu+++cswxx0xTh2y//fZd0x9NPvnk6XdzzDFH+d5773W83G+++abccMMN0zKmmmqq8oUXXkjLPvLII9PvRhlllPKKK65ougw+/8UXX5S33357uddee6Wpo6aeeuo0pdTYY49dTjjhhGnalzXWWKO8+OKLy88++6ytKV34zOuvv56mA2KZU0wxRTnOOOOknymnnLL86U9/Wh522GHlyy+/PMjyvv322zRtD//Pz1xzzVWONNJIaX9YBsvK/5d/9t9//zRFVSM//PBD+fTTT5cHHnhgucgii6T1jzvuuGlbJp100nLuuecud9111/KRRx5pupzs/fffL1dbbbW0bXkqmK+//rq88MIL0/IpM5ZNOa6yyirlSy+91HKZraZoGm200Xptiqajjjqq6WcfeuihtB8LLLBA+eCDD6bffffdd6keb7fdduUss8xSjj/++GkfqcMckz/+8Y+pDrczJdBZZ52Vym7ZZZdNx7/qjTfeKPv371/OOeec5Y477lh+9dVXbe8jy2Y/559//nLeeectBw4c2PCz7A/7tvvuu5fzzTdfOdlkk3XVT+rZggsumOrVs88+m+pPK88991y59NJLp/X+85//TL/jXDnhhBNS/aK8qHNMecY5+8EHHwy27ezrtddeW6677rrpnJtgggnSOcjUQ7POOmu5+eablzfffHM6Rxrt/xlnnJHKljJ85ZVXBpsea6211uo6b6aZZppUH/r165eWX3teLbHEEuU//vGPuseUbWBaJM7v5ZdfPm0v9Z7t5drxk5/8pFxyySXL4447Lh3TduoF5w9ltcIKK3TVpRdffDHVOcqNY8M6Zp999rTc6jI5bw8++OBUb37xi1+UH330Uctjlsv8lltuSddl1p3rAfsxySSTlLPNNlu50UYblVdddVU6nkMK289Ufvvuu2+50EILDXK9ZJuoVwMGDCj/+9//tnWNYrquFVdcMe3TJZdckn5HPea+w1R+88wzT6pXeT/5N+vmWjU8TNnVDoNQjdBBKBfxLbfcMv2O4ODSSy/t6OTns//5z3+65sbjhs3FqZMglM+ybQRUXIzyHHtsz6ijjpp+qvOOEgitv/766WbWbFv5v3vvvTcFAzmAZDl8v7pMbn4EANykMuYiJaipzqna6oebHYF0PdxkTjrppHRTZH21+5e3jx8u9tzc+E6z/eNCzU2C73Bj4PPMyZiPMevJ6+LPG264oe3jOiwEoVdffXVaH5/l79x8Dz300HLiiSce7FhWy3S55ZbrehBqtk+UGd/hBpuD3OzTTz9NwS//TxDGg0G75wUPZSuvvHL6LoFQ7bLz+j/++ON0vPL+VOsE50yuE+zb9NNPX15wwQXpfG22Hffcc0/aH773pz/9KQVB2267bVpebZ2gnhBwVH3yySflr3/963KsscZKn2Eb2B7KmWXk7xLI8uBTb1v43W677db1uYcffniQ/+d6UTtfcauf2rlG88PlTjvtlB7g8naxvWxnLsPq7wnoH3jggZb1gnXlbefhhO2lLlTPpbxdiy+++CDBOH9fZ511uh7IX3311SY15f/Wxzo222yzruNW3Y9qPcjz9PIg/uSTT/Z6kMa165hjjkkPx83qIz985pRTTkkPvc2246mnnuqq3wcddFA6N/7yl7+k+kw5jlSpX9X6zgPMnXfeOUIEojbHa4RGkxMDlBjVTvPL+eefX/ziF79ITSft4EGOQU00gdFctMUWW3TcnE+zKqNJH3300dSENf/886c+pT/96U/TCH6WR9Myb+1hPkGaw/72t7+l5srTTjutaz7S2u1iblHeXvL444+nzzINz5prrllMO+20qcnsueeeS4OpmBaGKZhoqpxqqqnS92l63HfffdP76vNchry1iaalxRZbrFhhhRUGay5aeOGF65Yb5cqUTscee2z6PlPYrL322sXPf/7zYvrpp09NkLy56p///GeaMoimON4KRXMc25DnHWyGZfCWqqOOOirt21JLLVWsscYa6bvs/3333ZfW21dRR3beeefioosuSvWBtzdtsskmxVxzzZW6I9x5553Fn/70p3Qcb7nlluLXv/51qtM0l3YH/ZB5sxN1kmm5qCPM0tAO6tX999+f/s4MEXRxqUUz5G677ZbqFMeOZki6xiy//PKpDtI8ydulWC8D815++eVip512SvWH6dTaaarks0wXRF9tzvNVV101vcWH8mLWiaeeemqQ+VFpMj366KOL008/vWuGC85npnPjfOC8o5zptkOdeuCBB9L/dzpgcKaZZkrnA91tcM899xQ333xzWg5v5Jp55pkH+Ty/X3fddQf5HXX8oIMOKs4+++xUFkyNxDnJm9RYPuch28uyL7744lQvOJe5zlCmU045ZVvbyjWE6aMoL5rEf/nLXxbzzDNPapZnRhGW093+6pQx/fApQ85PcG3ivF1yySVTPWA/X3nlleL2229PU15xbeAawfWCayF9+nuj2ZquIEyrdfLJJ6f6QXcNypzrMNtE3WAO6BtuuCGVH03oe+65Z7pG7bHHHm29QpnrINcnfqibiy66aKrL/Mkxfuyxx1Ld45jxpqntttsu7TNTXQ3XhnYULA3NTCjIMJHFy5kbsoftPoG+9tpr5Ywzzpi+yxN6brbsJBNKBpJl0PRKU/uHH35Yt+mRpssbb7yx60mdbSWzUQ/rP+SQQ9JTNdkDskL1mg/53aOPPpqahpq9OYr1kBnJWcd2y4fPnXvuuV3lzhM+zbO1Ga2claaZM7/Jh/XRpNpoXdVMKGVHNpqswp577pnKML+FhnIjw8WffTUTSjMtmRKyXqeffnrKVNeWH1kXMtp8nnI477zzGpZdq0woyIDR7JrLlzJsheUee+yxXVme0047bbBtyE22OTtJdwCyhbXNm7mZlmZMsuM5u8Z2NdqvaiaU5VLvaF04/vjju8os1zX2J59n/I6uIrlrDk3R9Voa+DdN1GTBOJbdyYTWIuuf61buQtAKdZnm7ummmy5dZ8g48rva7WH/nn/++dSknzOMtEg0qxc5E8p1gzLM3QRuvfXWrnXw8+WXXw5WDzvJhJKlXmmllboyjuutt17qdpFbkqrblLttLLPMMl2ZWL7bTnN/K5TRqaeemvaX5ZIxvuuuuwYrT/5OJvO6665L5Z5bCehC1ag8q5lQukqwDuokXZ3oTvRjzfKpc2uuuWZXRpRrWTvN/n2ZQajKET0I5U9ulrk5ZJdddmmr/xnfO/nkk7uaVKo3pU6CUC523Khy4NQM23X44Yd3XaToC1bvO1wsl1pqqa6LKhfrZjeeVq8N7G4QSpMhNzC+R1N8O82B119/fde6aNZt1MRfDUJzeeywww4NP99dw0IQyg8BEn0VqQONgh+2jdfE5rKjHnQ3CCUAXHXVVbuarm+77baW+0dQQp/M3GRJX8JaNO0TTPMZ+sDxmWZ1gv3985//nM6xfO42eqCoBqE5GKcLQ6P+m9XyOP/881Mdoszpe9iqnjY7n4Z0EJr7s9PftNW5y//R3zJ39aF/dKPAphqEVpueOfbtnPPtBqEs68QTT+w6F+gj2+r6l5vu6V6Ur6uNukR0gvqXg0qSAY899ljL7eB6nu8la6+9dmqWbxWE8sMxYL85Lxudw08++WTXwxAP5O+++245PHPeF43waM5ZffXV09uI8I9//CM1P7fCyO6//OUvqcmIJqruTiZPU84CCyyQmotbfZ+mLybVpxmRh8gnn3xykJG2GaNTaUYFzVrV0dW1htRk5Wwfb4OhGYtl77rrrsWCCy7YdD38H02yNJvi3nvvTc277aCbwCGHHNJ2V4q+hFkRaKqjC0OjEcL8jubYPO0YTXo0X3YXo7ppHmZ91Ke///3vdetalusjTfjgbTk0ZVZxrpx33nmpKZpuJMyDS5eMZnWC9dOVhG4qoNtGu/tF9xOak9tpLqWJmX2gC0erN5MN7dHLrHvWWWdN5dtqW/g/zjua6UHXhnZfI8wxotmf7i29ub90FTjzzDNTfWLGAc5bRvK32g/2lzpD3aSJnFckUze7i+PNW+7odkA9GzBgQOri0mo76NqxzDLLpH/zdijKtBW2mbJkMv9GsxX069evmGWWWbreNEWzP91ShmcGodL/AjVuWHjttddSv59m7/bm/2677bY0vRMXL15p2d3+d52iH1bu38jNvF5gwEUuB2P0qRoa76SmDxSBC4EHff7oT9ZO/zGCAPqFge0mEG31nnXK44gjjkjT0QyPU5tsv/32qUxalR/9knmgyXWDvsrdlR8IfvKTn6R/0x+OvqnNcN5wzKh/vI2pdnvZHoJI0Fe0Xt/ienjoynPvcmMmwG5VJwhYCG74bjvrIAgC/fV48Gm1/L6Ea0HuW8jxYRqsdtA/ftNNN+3VeYop1+rDJQ9W7fbtzHUyP2hx/eUFId1FOVx99dVpm6gva621Vlv7SkBJ4gKcE0zP16q+8GBNv+ZWfdxHHnnk1CeWfaWvKvej4aku1jIIlf534m+88cZdGUYGTDQL3LhRMSiAP8maMNAmKvhhkEQejMRFqt4Fis8wsAkMwDjxxBNTxiDyYsYcewQLILuQg5l2MDiDGycBLIMXWm03GUAGkgyPAWh+SGrn5pizRaDsehKE5geenJXmZs+giUbHgvOFIBQcv3wjrWIZZJ3AgIx2B4uxnNlnnz1lNBk4Qna9FR4qZ5tttrbrBJlWgniWf8wxx6R1DC83f+oO808iz63bTqDFw8+QaFlgUFOey5SWnU6CXI4R53oOInPmvTsYjJlfUsLAO+YBbReZaMqIJEA7Lzoh48vnW+nXr18633P2/v333y+GZ46Ol/6Hi9ASSyyRRuMyGpSndW7AtTcxbkyMZLz11lvTvxlF3EmA1Y7am1+e3Lj2/5rdJLmB0LWAJ2luqvzJSE6yCN2Z8L5TNFHlQJ6LKpm5dtfJDYqMAYEzwWyrYKDVhOgjEmZCAGXWk6ZKUKZkNBmVT2abkeE0RdYbEU4wQHM8yBLVe2EDD0QEQTnApQm8XexPrj9kQ1vJk363g89x/pOtp4mX85/zmqZfMnW5TIflh5xm1wweSKrnRzvBNZ/PE7P39nZSvvkYdTrCne3KTeYsi+bqat3oBA9FjHDP16hOuq9QjwkUuVblrhy9VVbjjDNOOsd4WOjpOTysMwiV/oenVKZrYoobTnz6e9I3p7Y/GRd0/o9+VWRy+E5vBED5bSP0l3rooYdSUxMXWC5wXIzym1XoC9WqzyoXQy7Up556amoCYoonpp8iU7XSSiulrC/ZQ7IKQ+LGyr7wBE/gAprl6b7Q7rq4wOcAlov88JKRilANEKtv4+kOjhcZdZrOCRwGDhyY6l7uP11dD8eY401gQQBXe05wDKnLufsIdZPzqF1k/XMGjzrR22hdOPzww1O9ZeoypmGimw0ZUvqk0jTNVEgRD3CdyG/eYXuZhonWB853rmG5rHOwNizg2OVgjxabTrKPWe5HnK8z3cF32Y5cp+gbSpeTTvaDOpn/3ptGqpw7PT2Hh3UGodL/cFEj80lTIhdsMqI8KdOkV0Ufy6uuuir9nSCVYK+nuCCS3WGuR+a/Yx05Y9RdeT5JAk/m6GTOOQJcLrZXXnllMe+886abLPMzMgdgb99Y8ysnQcDenX6pZEPJlAwvWc5qMD0sBTLN0NeZAIwglACUhzTqTXX76ReX+3oyCIa6VU81q0Nd7LS7AOvkYZGm+d7GsgmIeFgjG8pAMJrkmfOUOUGPO+64VA7MvUtgGvEKyWbyKy65Xpxxxhkp+MxZvWEZ17X8cMr53c48wLXITOeyZ3kEap3O11p7jWIgJ6927c7DS2/NV1rP8P4AbhAqVTCwhebHQw89ND1hMyn8fvvtN8g7f2mSpC8RN8Ott966WxfRKpZJx3aaz8l+gqZMmgfpd1R9f3a+cDKpMjfxVthuAgJuqv/9739TX1c64hPkcmMl48pk3txg+/fv36vBXvWiTCaJyZc7vVBTxsw8MLQDtpwNz+8m765qX7x6LxkYFlH29K884YQT0k2aB5iNNtqoa/spE/qKMoF4br6nvjZaVkbXkDy4o9OmyiFVJ1gmA5QYUU9rAecKL6PgPCEAJzC97LLL0ssA9tprr65m+miUOd1Udtlll9TlhnpFBpqXA/BQzEsu+Hc+nwnSuJblZvChqRpUkantTpBVPfacm92tC9XvbbXVVqlVq1N0BaI+qnsMQqWKfBPl7Ttkd8gyMKUGb9AAmRveQJIzPr0xdQk3NwJQ+tQR0PImHG7QZGSrwWfGEzs3xnaCUPB9lsv2Etjypg+yo2Rd6dvKjYm3lvCGHfrE9tbNPW87NxmC6t4OciPlYIObJnWgO/2/ctNh/m6uU30BzfEMJOKtXXfffXfx0ksvdbUQsD80xROcM/iCgSaNyqY6yIV+1ExrNiyinvLwR9aTgJuHRKYUIuDj+B955JFdbwIbGg8TZP94mxhToIHrENP/EIQSpNeeZ9Rb+usOC0Eo5ZXLjK5FNGl3ei7kczBn6rt7zapeo6i7XKOG9gPviKZv3hGkIYimvjxPG6+7+/e//93VyZ8mei7mXOR55VpPMyFkKGj+yxlQMqv0lZt77rkbzu3Zk4skTVZkSQh6//Wvf6WbbH4t6O9///te6wTPNtLEnzNiZI77crMSARPllF932p194Ts07+amQ/oX9hV5zlC2m0CapvdcBvTz5BwB502j/aJOMBgpN5syUG5YxzYT1C277LKpNYFzleCU4ImHuGazBQxJDJokI8u6eV0uXWwoe/p4D+sPetSlPGiN6w3Xnk6wz/kc5PjwsN6da2LufpED4uF9KqRh1bBdW6Wh+D55LpY0czF4Ivdj4kbE75hzj6bEnj41s9x8Q+cGwrudh8SI1EYXYN6VTfYTDGqgSbW3MHiAfQLBV18d5ZlvdHlfmJw692nrBBmf/I5syp7y6Wv9pZnvFfSJztODMd0ON3DOG1oRmmUGecDL/0+/63amChpW9p/tZio23kfPvjI9UO4H21vaCYLywzDlT8BJMzIPln0lg5cHTYJ9yKPb28UDQJ6Xk2OSX2LQHUzgn6euIrAdEgPe1JxBqFTnIsnbMMhG5qCD/pT0oaQpkv+nj2O+IfcEN2GyhCA7UDvquJ7q1Cs9Rf83mqDAoIZGTfzVQRjtXqhp3so3G/qg5jlD+yJuVrn5mS4MBJOdHAM+ywCXnPGmaZusYF/LBjO5fH5gYbolAgL6iNLcy4MZMy40M+OMM3ZlSinHTrNgQxvnAcF47lbQG9ncnBmmjrQ7GJHzKX+X61RfCUDBtjLPJ4E8rQJ0DaIetYMyos5wTQZvF6odONoJpmWi330OQtt9O5t6j0Go1CA4Y9Q4F0xGdjOgh8npCdTov0Q/sd5o9qq+co+AtFWGjYs2TYDMudkbqnNJ0m+00cTUZAvyzZJR/O0EYDTFM5qYciJrdNZZZ/V4xP/Qwv7nY072hnlX6ZvbbuaKOsR3+G6eCqydV0kOSzj+OdPJ8bzmmmtSEHb77ben/6dloFXfPh60mCIs1yPmH232KtBhEedonjYnZ8d7q79xO3PiojpQklknWr3djT68+QFoaON6Rx9WsregKwcP+O3sN+XOQErqDsthXtf8pqvunte8iYxlcT6z7L6SnR9eGIRKdXBRYq7DnO2kGT4PAmDgRU+evqsI/MgOgTnraNpsdDEmW8BoXfpxNnv3M99nkBODSKpTkNRD5pMpd1o1ERM80DcOZMDamcqEMiRoIVsB+q0xqKudrAfbTMBWHYAwNLEvBKEM7AJl+9vf/jYNXmsVAFBWzLBw8803d9UfArG+lL3K6LpB3We/GKTDgCT6hFI31l133Zb7RPC0zTbbpCw5AcVJJ52UgpB25kLMwTw/vV0nCKoZhNjqAYvtZA5RHtzYVwYC9UaGmQCfZZNhbqcscvaOc4m5LRudU+wLfdh56KE1Z1hBAMrrQClDzg/OJbK7zcqeIJ36xswglBFlQL/8nmD9zIKQs/Nc53Nmv90pslpdA9ScQajUAAEZb0sB2QYuOPTX5MLXnTnp6iGrRLYwvx2DEa409XJTyc3uOUNC/036f3GjbPYqPb7DEz3917jhkzkloOPCnZfJ8slicfEnQ8LFmCCiUSaLbE2e+5EmKwJytjdPsE8WgWxL7cWYJucDDjgglRvlt9tuu6URxby6sbqPeTlkSlkONwMyFIzazxNCDwvTd3EMCKA4JmTGCbKZf5UbEeXB7/nh75QJg7/IqP/5z39Ov6dPJO+4pzz6IkYi58wRffmYf5bjRt3gp53Ami4a1AMewMjoU6eZjYKHsNo6QZnxIMW6CFgJ3vfee+9ez54yHzCDAnlAoO5xvlW3hX3Mc3Ief/zx6d/0E87dE3qChzTqFsgucz7mc5X9pPmZcsrnFmXMdnIsQCsND3f5gbO6vQxe4mGagUzDUp3jesc0VwsttFD6Nw/fdHHi4Y7zPU/dxH5wHLjm0ZJAn3mCVh56mEaPV9T29GGOZTDTAC03POCwXayLblL16iPdkagvzJbAPMxsk31Ju69vtQdJgcja8LTO1EU5EOLtMYsttlivZbFyho2gjteAcrOlWZObLXPP0WRLhoCLM4N7+DdBMAFOnjC/3jJpouImxM2J7Cn9xuiHmEf2EkjSr4pgkIsrffl23333hl0MchMy20GgOGDAgPT2HCZpZrQ02VSWTaai9mZHoMY0VIcccki6gfAnARxZJIIymjTZJjJqvPWFMiAgYbvIvA0rbwyhXJdffvkUUO66664piGe/77zzzvTAQoYwv/2FIIb3SfPqUm5QfJcpsphUnOmO+mIWtNpCQDaKB7P82k0eYHKmvBXqGPNwUkbMu0ndoO4RZFInCMqoQ9QzAgH6jlJfc39lyrq3M08EIDwQsi5mjiAzxnnOtlD3qY8EcrQwEOxxfvF2pd4YEEQQxIModYP9pSz5Nw877DfnGXPs/u53v+v6Dhl5WkTy3K1MI0fXBs4XHhgJWukmwfymPBAtueSSaYQ/U0sNK2hlIpDjIYRy5eGbB2euVQsssEAKzLkuEPDRn5rzjWsBb6ljP/hsb5xHLIOHXeoyD5nUM8qa85z6yHlN3aYc+QwZZWZNyQ8GPIgMK9eoPqmURhD3339/OeaYY3L3KnfYYYfyxx9/bPmdzz77rFxmmWXSd0YZZZTy/PPPb+t7fOaoo47q+t6VV17Z9LPPP/98uc4665RjjDFG+k7tz0gjjVRON9105SmnnFJ+8skn5VZbbZV+379///Krr74abJmvvfZauemmm5bjjz9+2a9fv7rL5GecccYpN9tss/Lll19uuV9ffvlluccee3SVYe3PyiuvXH799dd1v/vtt9+WV111VbnIIouUo446asPtyfs6wQQTlD//+c/LgQMHNtyul156qZxiiinSdzbccMO0jgg//PBD+cgjj5Trr79+Od544zUtX/ZlqqmmKvfcc890TNqpO9k111xTjjbaaGk5J598ctvf5bO53l133XV1P8OyBgwY0FUHHnrooba3i3qw/PLLd+3jpJNOWj711FNtfz+vn+WcddZZ5eyzz562tVmdGHnkkdN6Nthgg/LRRx9tWBb33HNP2h++s++++7ZdZtSd008/vZxlllmabgv/N++886a6/P333zfct9133z19ftxxx011pVVZvPLKK+Vyyy2X9rNeHTrmmGMG2Rf+/vHHH6d9nHDCCRtuL/+38847l2+++Wa6dlFXKccXXnih4bYceOCB6buc53fddVdb5Vctx3XXXTd9n3pPnW+172zLlltu2fJaNfroo5dLL710efPNN5ffffdd2du++eab8tJLLy3nn3/+ltcojhNlu8Yaa6QyalTPnn766XLiiSdO39lmm20a1pla//73v7vuBUcccURH142+xkyoRhhkN8gYkEUkm9Nux3Xmz6Q/I03LZCjaffpmIm6yKjSdN5tGhOXRL5RmNd6vTl87muR4Is99RsnArbXWWl19l3iDDchg1ntjExkaso2MSGcaGaY0YfolsldkduiHRlMYzUnMM0gWqNV+kS0i+8N+0W+KjCUZYjITZC7IaDSanodtZJvJxpChIYNI1pPMAplCyogsIv28yBgyepYR6Wxro+1iHtJf/epXKVNM9ri3uki0k8kjE8XUXWRFmC6H8iXrSfmSrWbb2Bf2I8+d2elrHskI0dRH5o2BHO3is2TOKLtmr5RdddVVUzcCumCQjWsX9YCmUDJEHH9mkqBpuhOUA8ecJnCOHfUhtwTkZnmyoYxeJltOXSUzSTk2e0MO5wp1gv2iybpd1E/OVc5vtoU6Sl9KtoUsF2VEBptjufLKK6csXbNjyXlFhpJ60GrGC5bDZ2jq561G9B2mLpFlY/8p39q+j3yHFgRaFRicw1vcyCSSVWZ7+R51j/+jmwTnBuc59YLzLDf/18PofzKyNPdzDnaC9dD9hGwsxyLPB9ps35lVgazjzjvvnPq3MkiJc5qWHK4nXHfZB1qHyOiSlRwSLQmsi7lwyWxyHaYecP0kY08WlPpK9pZ6n69RbHuzayef555DeZK5bXcw62yzzZbqMX2V85zVw6t+RKJDeyOkCNW+PZ0EBLlvUh7J3un30O768ne46OXvctPlJln9fu6fxEW/1XJzH1B+8n7wPZbZnRH+ed25vxTLyNvX7j7yk/tQ5kmn2Sb2tZOyyuXVTjkMKfXKl31gX3qyXd2pP518r7v1uvpd/uyNsq+t97le5TrRad3q9Bxvti3o9Hj25JqR6xLyedrq+3l7c1/Zeud3u9vU3XpX/T7bkb/bab3K+1F7rep0WT1R7Y86NK5RZQ+PQV9iECpJkqRwjo6XJElSOINQSZIkhTMIlSRJUjiDUEmSJIUzCJUkSVI4g1BJkiSFMwiVJElSOINQSZIkhTMIlSRJUjiDUEmSJIUzCJUkSVI4g1BJkiSFMwiVJElSOINQSZIkhTMIlSRJUjiDUEmSJIUzCJUkSVI4g1BJkiSFMwiVJElSOINQSZIkhTMIlSRJUrhR4lcpScOOH3/8sfj222+LkUceuRhllFGKfv36De1NkoZ7ZVkW3333XfH111+nc5Bzb8wxx0zn4Yiu/F/ZUC6jjz76cH1NMgiVNEJf7C+88MLi4osvLqaaaqriuOOOKyaaaKKhvVnScH3OffDBB8Xll19e/Otf/ypeeeWVFIhOOOGExfzzz19sv/32xbzzzjtcB16tvPDCC8V+++1XfP7558WAAQOK5ZZbbrgtD4NQaQS46GN4vYj1BJmGgQMHppvhxBNPXOyzzz4Ng1A+y00B44wzTjHSSPZmGho4Dl988UX6k+PQlzNn+dzsq+cn2//VV1+lloSxxx67GHXUUVt+/qWXXiq23HLL4q677krHsOruu+9OQenf//73lBnl8wSo33zzTcqSkhUcEerYSy+9VFxzzTVp3/v375+C0OGVV1FpOPbaa68Vu+66a7HtttsW995779DenD6Lm+Ff//rXYoUVViiWX3754rLLLhskgFAMypyb80orrZSOw3nnndcnjwPb/OijjxY777xzCsj++Mc/pmCur3n66aeLtdZaq1h22WWLfffdNwWLzRBUkeG744470r8XW2yx4uCDDy5OPvnkYs899ywWWmih9HCXg9M333yz2HjjjYtlllmm2HHHHYtPP/005Nhcf/31qY4R/J155pl9so71FWZCpeHY448/Xpx22mnpoj7ddNOli746R6aHZvsHHngg/fuSSy4p1llnnWK00UYb2ps2Qvn+++9T14n8QMUx2WSTTYoxxhij6Evo73fooYcWV155Zfo3Wb755psvBdZ9yY033ljcdNNN6e/vvPNOeuCddtpp636WQO7hhx8urrvuuvRvgrwLLrggtUBktDTwkzOq99xzT3Httdem4/7iiy8Wu+yyS7HAAgsM0X364YcfiksvvXSQOrbFFlukY6TeZyZUGo5Vn+CH9tM863/++eeLm2++ufjPf/4zWFPcsK7aJMdNsi82n/Z1lPnwcBxobs3ZQJAFveKKK4baOcH677zzzuKWW25J/TXbvVbQZJ5xXFo1W992220pyKRZ/de//nUKQDl++Wfcccctppxyyq5jWh0oSIa0ur6oOuZgxSHLTKiksGzi3nvvXVx11VXF3HPPXdx6662DZEGGZWQ8f/WrX6UggZshf4+4IWpQBAd0LaG/HhmrHXbYoc9lo3NzL8Ee/Sjpc0gWkX7J/EkQFu2hhx4qfv7znxdffvll6hpAxrEdq666aspEv/vuu8Uqq6xSTDbZZE33+5FHHkl/H2+88dIgpFbB3ZJLLllstdVWaaDOEkssUcw000zFkMb5vc022xSffPJJylhT36L6oo6IvIpKCsFNiOAhZ14IIvoKbpbcpHNzKYGP2ZF4lPnPfvazYqmllkr1qS8eh2rWc+mll07B2FFHHVW8+uqr6cFsww03DN8n+mrmKYEIRNs1/fTTF+eee246lzkWzQbrcbzefvvt9PcJJpigGGussVouf5JJJilOPfXU1BxP1jtigBBlz3Gh61JfrWN9ic3xktQGbkRkRIb3efuGdZQ9gUFfPQ6PPfZYGpREwMagnl/+8pcpM0ig9be//S0Fg30F5U9wSJ/cVrNFsH+0hqDd+UBZPi0OLD9yhHpfr2N9iUGoJEkByDQyGIkWgUknnTTNtjDnnHMWCy64YPp/+mXSX3R43ffc59XATpnN8ZK6BiKQhckd8fONgv/j5vHRRx+lmycZCTI3DCJodUNpNTCq0QCIVjep/L3PPvss/bDdZGTYpna2qztYJ9mcTgYrVMuOZk7+TXaF8ms12radMuCHaWsog9wkOv7443c1dba7jXyXP6v7lcuY5mO2n30nI8Wk4j0ZEJSXS3nQ747sGMtju+kj2Wq7G21vO+tkXygvphLiexwD1ptHYw/p4OjDDz/sGh1Of0dmrOB8WnvttYvbb7+9eO+994obbrihmHXWWdvellwPcpN19fjxO/qesr/UCY5duxnFeudm7Tbl+s3xqFeGrQY4tVpH7b7V24Zmy+V7H3/8caprfI/6RVcAsrZDqo7RtYF6nesY5wzrjKpjfY1BqKR0IznxxBPTJNELL7xwccwxx6SbFTdtRswylQpNiAQjXJSnmGKKNFCADvy83aTRjY0pjejvRqDBOpiiBW+99Vax6aabDjaohJsk6240OCNPjs0Nm6ZLlseNmws+wR0DI8gqMbcgN/neHFDw4IMPpjkO2Qb2iXJqhM9wI2IACtv51FNPpbLLk19PPvnkXSOD6/VH23333RtO/J2XzdQ49C184oknUqBBIE5QxbFh3ykDprNpNYCKycF32223FMgedNBBaf1sJ79nOiT2gb9zDAnwZ5xxxmL99ddPzcjcXDsJlljG/fffn+ZZve+++1I94KbNceKNVYssskha9k9/+tOGTaFMO7bXXnulZbG9zCHZbJ2UOxlGgjvqMOvkYYpAhIcBAsGVV145rZfphYZUkMC2MBk7g2w4X5jiiz9zf+PDDjss1WWOKYNhqCftoO5TLznX1l133XQsCaD49/HHH5/qLftLsM2AQNYz88wzF0ceeWQakMR2vf/++13dAJh7lfKqYht/8YtfpPO92uxO2f7mN79J9YP6xtuOqkHwv//97zQHKNtDnXruuefS/zHd0gYbbDBI3aS+U++rx5NzncGMzKbBlE7MRdqqPrOe119/PWWcOeasi/OF7eJFFAT47Mtqq62WzsN6x5vzlXlLqZv7779/6ofcqF6wnwS6TL7P+rgm0feVWQByHaNesf3sM/XNQLSilDTcuu6668qRRhqJR/TyoIMOavi5b775plxzzTXT5+aYY47yq6++Kl988cVygw02KMcYY4z0e3769evX9Xd+JptssvKMM84ov/vuu7rL/cMf/jDYd5r9jD766OXtt99ed1k//vhj+eSTT5Zrr732INtU72fssccut9lmm/LNN99M32vk+++/L7fccsv0nYknnrh85plnGn72ggsuSGXJ/lx44YUNP8f6Hn/88XKFFVYoRxlllEHKrp2yWGCBBcrPPvus7rJ/+OGH8u677y6XWWaZctRRR226nAknnLDcb7/9yo8//rhpGdx1113lOOOMk77Dsfz222/Liy66qJxpppm6trd229mvFVdcsXz++eebLrtaJm+99Va5/fbbl+OOO27T7WZbNttss/KVV16pu+yrrrqqa99PPfXUhuv8+uuvy3POOSeV52ijjdZ0nezbbLPNls6XdvanO6hr7Bfrm2aaacrXXnut6/8oc+p13v977rmn7e348MMPy3nnnTd9l3OYOnLJJZeUk08+ed19pcw++OCDcvbZZ2/7vORntdVWS2Va9cILL3StZ5NNNhnkOsD2/+53v+toHYcccsggy3/vvffSceH/fvazn5Vffvll07KgHDk3Z5lllqbn2sgjj5zK7Oqrr07Hpda1117bVWdOOOGEhseC6+b5559fLrjggm3VMbaLdXKMmrnxxhu7rnFHH330EKuTwwIzoZLqTqWy0047pQwEGRSe4FdfffU0WpW3mPD2IKaUYWoWMgZk9WhSrH3CX3HFFdN0RmRZyIYwufUbb7yRMmpkI2qbpMmEzjHHHHW3iSzWZpttljJ/ZBjI6jCwg2wfzWxsC9kIMne8Keqcc85J6zr//PObTh3T2+jTR1aIAShsJ1k9sr55v5555pmUpSGbm7s/kInL2V9G5dabfJ0yoMzJNpHp4Xt8do011khlQVaZ3zMX4z//+c+U3Tr66KNTVuakk07qaupu1ZRIhoxsNFkoJlBntDZvsiHDRPaSTBnZJTKxvMWGib0bveo0L5tt4M1AfId/kxkiE7XoooumTBEZQCYm5//JVDJBON/h/eL8f3dQxtRh9omsImXFm30oK+o0mSrqFNl/6hTHhbJlcnRGrPc2jg2tCuBNPGSsM44lmeWrr746bRfTmFE2nWSZq3WEOThp+idrTZaV/WX/yIryd84/PsP5Dc4TvscxJsNfu/9sB3W01XRYtc3rXDOoh5z7/PC2K/7NeU69rS6PMqBOtLvsWjS9n3766enVuzS/0/2A402/W7KPZM7JolPHOO6cn0z/xIsn+EyzTGcjHC+ub5wrnF+c62Ry55lnntRKQAaaMqaO/fe//02ZYKYV43vNWlJGKEM7CpY0bGVCyaDxxM7fF1poofLWW29NGYaMp/IvvviiPPTQQ7syUmSb3n///abbQnZ1pZVWSp8ny/bOO++0tQ+sj4zmYostlr5LxmHAgAF1s5xkGJ566qmUtcnZu913371hpra3M6GU03bbbZeWx2fJxpLNqW4nf//000/LAw44IJUfy9t0000HyzLVlsETTzxRzjjjjGnZ4403XsqQkAWrLQP29d577y0XWWSR9FnWcfLJJzfMvpAJJXPMZ+eff/5UvmOOOWa59957l2+//fZg2852cLxzRvSUU05pmqmhbu2www5dx2OVVVYpn3766cG2h+2m/PnsWGONlephvePRbib0sMMOS/u13nrrpez6559/Pth28u/XX389fSZnzrbeeuuG9aW7WM9ZZ52V6gRl9ve//32wbWE7pp122rQNc845Z8pWtoM6MM8886TvzTfffKklg31ZddVVy2effbarnKmbnHP1sok33XRTaoVgGUceeWTbmbfaTGj1OlGL9S688MJd20mGvpVqJrR///4NM6Fs780335zqDJ9lm8gG136ez3300UflueeeW84888zpswcffPBg+1vNhP7xj39sWB7HHHNMqmPrrLNOuk7SglGvjnGt2mijjbrq2Oabb960rG4cgTKhBqHScKw7QWj+ofmLJvlGF0ACUW50OdChmanZxbK7QSg30f333z/tBz977rlnWlYjbMMbb7yRmshY10QTTVQ+8sgjIUEoATDLyTda9rFemeRAdOWVV+7qPkDg2AgBKjf5HIQT+DULlFj+Y489lpp9+Q43XMqkVRCam4NPOumkVCcabTtBS27CX3zxxVNdaGTgwIFdyycIIdhqVE/4PeulfNdaa60UhHQ3CH3ppZfKO++8M5Vds3rJ/1HPp5tuurTM6aefvu262S6CoXysZ5111rrL53jy0JKDe86nToPQ/EPAxvFuN3jp60EowR/XKz7HAxT1p1mTN/vHub7++uuXl19+ebeDULqM3HHHHel61KqOvfzyy10PkZyXdE9pZEQKQp2iSdJgaLo8++yz02TUjZqpaEqneZxmNJqVaV4eEmj+Z2AUTYU0pQ4YMKDpu8LZXpq2GaDBtjF4gmbAIf1KRB7qaa5mkAJoXmUannrlx+9oImYwDH+n+bBR+bFcmvLyqGomzKdpu9kADZY511xzFVtvvXX6O83nNNO3atJkMNAhhxySmhgbTdLN7xiUlqcVevbZZ1P3h0ZNpExmTrMky6OplAFIjepUnp9xo402SoOievJGLepuHpzWrFmb/6O5ln0CzcU0T/cWypwyom6Apl+6tdTKg5XYf8qNrgh5NoZO/OQnP0lvPaq+/nJ4R9nSnQN0G6Acm81bSrnMMsssqavOmmuu2e1yolsJL07getSqjk0zzTRp0B8YSNjonBnRGIRKGgR9mU444YSmASj4P/qt5SmRGFHa2++nZ3kDBw7sumDTt5IRra2wbfS747Msg7543bmhd4pRwvR94wZIf8pW28gckXyWbXz55Zcblh99yAhuGUHMCOV23jaTRzTzWQLwm2++ueV3GF1NP8pGI/OrDyCLL754+jtBPv0466GfLscPs802Wzom7dzwKRPWERVEsR4ecMADFdvdmzh+jNAmWKEfc6Pgnj6FBEdgZHmnwTAB7O9+97s0Y8WIEoBStylf+v7yYLb55ps3fUjN8vRJUa/frdYxrkW8olUGoZJqkKEjm9LOTYxBIzmrk+d87O0bzB133JH+JCjp379/2zdXBsuQqQCvRGQKoiGJAJIbYc5qtcqO5M9l3JjqBaGUaZ4yh8xguwNW+MzUU0+dsrF4/vnn03Q+zfDg0c672HP2kGCRY0P2sB4eTBh0BAIsHnCGVXnbOn11ZSvUu3/84x/p2BJgMiCl0fGjzjKQCAzMygO52sXgN7Lrrd5eNDzhWDHVVD4/yNAPqwF4rmMc096sY32Zo+MldRtZhDzqmmCpt7ONBE0EMvkCzrpyc3crbE8eWc2IY77Xk+bdVrjxMeo3Z9MIvrjZNLsh0kyeg4x684aC7SZLijyCvt0yICjOx4fR0ozibSdL1A7KNm9vvRsq+8Vo4Bz4DokR5z2RJ0Kv90DQmxl9AiRGZSOPVG+GTOmf/vSn1IWBOWbp8tLufLdkvXtzbty+gLqX3zJFk3d+6BqW61jt70dkBqGSuo0gJGddyCD19oWVoDY39dKPiixPu81nuYkbNJEP6XdyUxY0wRPkEfwx5U2z7SVIzn1VuTk1ynByk2XfQd9CprFpN9PFfjM5OvI0Wb2lul+NllsNxBu9gGBIy2+/oW8xwSD9a6kXZCir2WceCHob66VvJ4E4mXz6H7bqq0hTOs229HNkYn+mVuJ3qo/jSMCeH1R76yGrO3WMa1WuYwTGtXUsX4/0/xmEShpmcQHPmTSCNuZz7A6yIxFNwTQ50xzIm3GYG5C5U+mXWRt4EHjy//RlA29xYRBNPex3DqC52XKD6w6a5lu9KrQ3cePNXSAIsiP7eGYEBsyNeeqpp6Y+ljRxD+kBalX0LWXOVtAUzzHIDxTNyo039BCAkvGmjjDv5LDaxDy0cU7kY0pXoqFRx5hX+ZRTTkn9rglEI+tYX2cQKqlPYJDRoYce2vbrDDMCQPrKRUxYTxM1AyMIQnlHORNT052AJlZGhROMMdiEidT/8Ic/pCCN4Oy3v/1t3RHTtRjIxGdbDRyqxXqZcL6dAU29Kd+Mh0YARfBOs/bhhx+eMrLUAyaIJ+Cn2ZZm8Wo2l+CeQLW3EEzeeuutXYPqyLSussoqbX2XupOzZ/Qn3WWXXVo244+oqgFfdD3j4fCMM85IM0rwwEEd4zrFILx6dYyHaPr56v8zCJU0zOICngMu+rrRFN3dZt2IGxTBDm8UAtvNjYnRyscdd1zqL8o2kN0iG0aQQdDK//NWokZYTr6R8Xmmn2n29qNmIm/SrCsHvWS06Y/aqo9sb2E9vNWLd42zXoJP3kFO2fEwUK+LBMFEbwahZMguu+yyriw2/ZKffvrpjpdD4EI2t92ZBUY0PMTllgbKOAp17Iorrkj1ii4zBJ+8PY6p2ahj9R4UuTYYhA7KIFTSMItggQwm/au4wZAh4gI/rGZkuMk88MAD6YbEKzN5TSnTQzEoiNkDwA2TUdA0v++8886p6bVZP1dusgSwZE1ZTn4NZV+QB4LlV3dGya8sJQClGwZzla600koN+2MOieCYzCevkQVZ6G233XaQwU+t8GpJXkPJPpA5p54YhA6OB7M8owPThVFeERl/zsWjjjoqBaBsw1lnnZUGnjU6xg5Eqs8gVNIwi5sLTVt5Enjevz377LMXwyL6rjIIhQwYA1CY05R3yNNHjAFFDIzh/3JzHdNgNZoQvoomPZr2mGaKZRFgtdN0P7SxX3nKJ5rGH3744bB1MyKdKamw4oorpgniI6ctIuC44YYb0rGiHOiiQdeMTuecpd8w9YZ+pWTVq++b1/8h4KSvLa0QdH2gnKh3QxoPCQwaA1lqJsnv5CFD/2fEmUxM0lCXAwGCsXZGanNR5+1NeT5KsorDaqd/sjA528dNkW2mSY65SgmCCES22mqrYtVVVy1mmmmmlm/yqWZCF1lkkfR3si5k1/pKVoVR3vllBvfee28qoyGNsuFhJQ9oY6BYO8FBb5Ypx4nsJcsk600WlmPdyQ91iOxnDkjbeeNVd1XLp7fn+h3SaBVg4BYI+mmJGNLnB8unb3eeF3iBBRYIm/R+eGMQKikEQVluJqtOq9IMN2NeU8mNHGQaCTCGxSCMgDP3A7v22mtTJi7PB1j706k11lgjBaME7rxqcEhPvN9b6DpBUzTIBrc7+Tr7yU2+u/POVtfRaoL+/JIBRqP3hvyaVUZMg6m3Zpxxxo6XQ12iDyvBDeXBnKFDapoxzsv8gNjX3uRDAM2AL7afcvrLX/6SmuTbOU48FNHC0p1zstM6xmfyq1v1/xmESgrBTTU3J9I/MgdprZA15HWS4DsHH3xw2wMQyJry2d6cH7MR+m3mjBfZGP7Ou9sZ0c+7vP/85z8XF154YRqswohnsroMOqGfa7Psbn6d47LLLpv+zTuyTzzxxJY3vox9pwyGRuDOnI1Mtk4gRQB12GGHDTJBfy1+z7aedNJJqYkzN3d2iixinrSdEeqN3k7D+ih/BoddcMEFRW+56qqr0oMCARLTdHU6m0HGe8lnmGGG9HfeHDak5pmk33UuL+pkzvD1FTyo0sUFPOhwnjU75/k/HjoY6Mi52d0HrDwnKVnqZg/V1IUDDzww9U3WoAxCJYUgmKJZmT/JcJ1zzjldwVGe7Jnm7NpsDxmOAQMGpJsMnyPTseOOO6abZZ4IuvaHoINMFBd+blA5KzUkEXDsv//+aTomgi4CBgYq/f73v0/bzzbTJM9IeIJqboBLL710CjQOOOCApu+OJ1PFspnvlH0+8sgji3322Sd9J78koPaH4Iqm+9133z0NmMhTBUXiWJPFXWaZZdK/mch7iy22SEF67bGjGZhMEUEr+0b/1+682pB10gSf+wUyXRZzOLKs6vqob08++WR6UCDo7a3BSWTXyISD40X96+5y6fvLw0xuar7++uuHyMMEA8jyO+vpT0tQVa1XBFisf1hsgchB9G677Zb6H/NwxqwIDOriYbd6zNkn+tgec8wx6Tzlga47mVCOJ28AyxluAtoTTjghlVPt+piijUFpTMnGvx1cNig7MUgKQ99ILty8xYdsEYEBfSQJ4AgWCELISOU+kOCiPfPMM6c5H+lTSf+4iy66KGU8Fl988fRZshJ8jpsO2TNupFz8CXLJ8ET0RcxvBWJAEtvGusnIMbCIG2P+ycEXwTaBIk23BGf0IeTGScBWe6Pi3+wrNzJutkzxRDaUKWIYZU/QRcDDcvk/gisGAtEETtMkwUw73R+GBEYOH3/88Sn45tgQGBMUs580VTN6nQCH45/nV+XBgyCdOT27G5QQ+O+6664pq8fDCBOJU9f4P8qCdTHgh+ZnfkegQLDaTlNuI5Q/gQ2vKwUPGQxA6y6OO5lUMmicK3RH2X777Xt99Df9dtdbb7103lBvKQvqMQ9+dItgkBUtEowAzyPRhyWUE9vLw+aZZ56ZRq7z8EW59e/fP2WTOd94cB04cGCabYOAkGNDMNqdwJDAfa+99ip22mmnVGeYK5RlU28ZfMjxoi5Qdjxccw5y7E477bTQqaSGdQahknqkkws4QdkRRxyRpiZiNOt1112XfjJurvWaplkHNxMCNQIK5nNkFCzN2vzUQyDDTYbgh2BnSMuTkxP4cJMhACFwJkBmn/gh+8afBKMEXo899lgKqG+//fY0hyQ3NF73WS9wYX822mijFOiSOWXuSLKbl156afqph+CeQG677bZr2i8xH8MhkaXJrzNlG7lpk2UjSGDkNz+1n6W8eNggiCCAbbStzbaXsiLrTJbr2GOPTXWNIJQfvpMzX5QPQTx1knURIPQEx5cHAwIetoEAsidBG9tKn1pmhOChghHZPGAsvPDCg32uJ/j+NttskwaPcT4ReDLFVVU78/MOySxfq2Vz7WCbeRjjOPIwRlDNTy36V9O95aCDDupqnel0vRxfZr/gAZepmrge0cWGn9o6xuBK6hjbxoOm/j+DUGk4RhMbGQ6CHoKiRrhQkiXiJkrWsd1XXHIxJ5NAX08yda3e28zFmaZomkrPPvvsdIPgZsGNmt/xiksClkbfZRQqfSrJMPDedTIfDFQis8VNIU9nxBuSyLTRlzJnSevhO0zhQ0BI4MdNohFG4DJQhJtLHo1bRbaDLCU3cP6fLAyBX6N1k50hmOD4EJwxWTrZWwagsJx63+M40VeS7xHM0exLFpUmRrIx9D2kb+p0002XRqZzoyWIabZfjN7nmHAzbfTq0HrmmmuuVB7UmUbHrDYQ5SGCQJAsONtNFpKgnG0m68aDxuqrr57qAsemXhnwOdZL8z31oRHq1B577JGmziHQJwPLNFd8j/pN+bAc6j31hkCVf/MA0d1pwKgbnD8sk3KlbvUU20b3BFoIOP61U00RfBHsUu85x3Pfzk5xDDgnaa3g3KLvLtcNBgVy7Hi4qu3byv8xOTutE83mYc3Hg2sFWUKCsnbe8c5LGTgmPKzRraFV31oyunR/YZt4WQHZbraN6wPXKo4J5w7XGR5MG71Klgc3zgnOqdqAv4rtoVw4zvRDzXWM7HuuYxwbsqP8m2sd+0OLDW8/a4SsM59ju7mGDc/6lcNqJw9JPcbpnZt/uWA2e+InGCCDQ3/GRgFAPQQhrCMvv5PvcZHNWSNuSvy0+322l5sEN8o8CIFt73Q5uT8iN3h+Gn0vN6GjXlnSDMhckCyDEexkLdvdBoJpgmYCoC233DItq9WUL7nPWS6D3N+M73FzbWcO0rwcjh/fb/c77ZRHs+9xvGiupNxz3SSYamc5ndTpjH1jfQQHfI8yIsCpfr87y212PrSqT53IdZRl1du26jnY0/lQ80hu6hXllo9NvX3Jx5KfVuvO/STzNabdabPYhu7sG99lH/J+5GtM9Q1LvV3HWBd1jL83qmO5NaTZcsteqot9gZlQaTiWb1rt4MLcnSxKvtl253v1mlvbxfZyke/uKyyrZdTOfvO5Rk2r3FQYvZznhVxiiSU6unEw1yHb0MkodpZPGfLdnrxBqZM6Uvu97jQ150C5u8e+O9tLXWlVTt0th946H3pSR3tznawrP8i1eyzbmSMzP6B2co3Jdbw7+5ZfG9ud/rPdrWOtrke5vIbE+vsqR8dLUg/lqaDAzaOTmyZBJ1NP5dd60hTnm1ckjQgMQiWphwga88ANBiiQFW3nzU4EoPRFZK5Cmt/IDjLx9vDc/CZJmUGoJPUQQSODLmj6o88bA43o15nnPa2dyzP3h2VUPCNsGe1Pc94mm2zScpCPJA0vHJgkSb2AgSOMzCWrycAOsqOMWGZSa2YpYPQxv+P/GNGf5zJlwAz9xDbYYIM04TXzD5oJlTQiMAiVpF6Q30F+ySWXpDfwEGASmDbDwB6mA2JUPW8KYuCMAaikEYVBqCT1Ii6pzLnJZPLMU8hbi3gFZX6lH032zKvKfJfMy8lk2WRJDT4ljWgMQiVpCKnOwZkvtQSb9P+kCd7AU9KIzCBUkiRJ4RwdL0mSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSQpnECpJkqRwBqGSJEkKZxAqSZKkcAahkiRJCmcQKkmSpHAGoZIkSSqi/T/lez7gNoxqnAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqEAAAPDCAYAAACD6dK7AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAhAtJREFUeJzt3QWUHUX6sPEOFtzdggd31+DuiztBFpfgi7suzuKyuC/uBHdfnITg7hYs9Hee+m/dr+fm6kiN5PmdMyeZO7e7q6uru98u6155nueZJEmSlNBIKTcmSZIkwSBUkiRJyRmESpIkKTmDUEmSJCVnECpJkqTkDEIlSZKUnEGoJEmSkjMIlSRJUnIGoZIkSUrOIFSS1LTpppsuO+200zo7GZK6sV6+tlNSav369cvmnXdeg5hu7Msvv8zGGmusbMwxx+zspEjqpkbp7ARIkrqfSSaZpLOTIKmbszle6sG1jbvvvnu23377ZRNOOGE2+eSTZ4cffnjNZZ599tlsxRVXzCaeeOJsvPHGy5ZZZpnshRdeqLnMX3/9lR155JHZ1FNPnfXu3TvUcN59991Vv7/11ltnDz/8cHb66adnvXr1Cj/vvfdexe9+++232ZZbbplNMMEEocZt1VVXzd55552a6fnuu++y7bbbLgRJ4447brbccstlL7/8cs1lPvzww2zDDTfMxh9//JBXa6+9dtU0Ra+++mpIz9hjj51NNtlk2RZbbJF99dVXNZd57LHHsqWWWiobY4wxsmmmmSYcn59//rnmMrfccks2//zzZ6OPPno2wwwzZEcccUT2559/1lzmwgsvzGabbbawzKyzzpqdc845dY/hcccdl00//fQhbfPMM092ww03tLk5PkU6JHVjNMdL6nmWWWaZfNxxx80PP/zw/O23384vu+yyvFevXvm9995bdZkHHnggv/zyy/M33ngjf/311/P+/fvnk002Wf7DDz9UXeaf//xn2M7VV1+dv/nmm/l+++2XjzrqqGGblXz33Xf5Yostlm+//fb5p59+Gn7+/PPPit9da6218tlmmy1/5JFH8pdeeilfeeWV85lmmin//fffq6ZnhRVWyNdcc8382WefDWkYMGBAPtFEE+Vff/11xe+zLrax7bbb5q+88krY70033TTv27dv/ttvv1Vc5ttvv80nmWSS/MADDwx59cILL+Qrrrhivuyyy1ZN16BBg/KxxhorP/XUU0O6Hn/88Xy++ebLt95666rLsN/k7aWXXpoPHjw4HLvpppsuHNNqrrjiinyKKabIb7zxxvzdd98N/0444YRhHdUcffTR+ayzzprffffdYTuXXHJJ3rt37/yhhx6qukyfPn3CvnR2OiR1XwahUg8OQpdccskWny200EL5/vvv3/A6hg0blo8zzjj5bbfdVvU7U045ZX7MMccMt52dd965Ztr22GOPmtsmUOM5mWAt+uqrr/Ixxhgjv+666you8+ijj4ag7ddff23x+Ywzzpifd955FZch6Cbg/Ouvv0qfEXyynXvuuafiMkcddVS+0kortfjsww8/DOl96623Ki5DQL/DDjsMl96RRhopHzp0aMVlll9++fzYY48dLr0Ed9Wwr1ddddVw6SXwr4S8GnPMMfMnnnhiuPRusskmrQ5CU6VDUvdln1CpB5t77rlb/D7FFFNkX3zxRdXvf/7559nBBx+cPfTQQ+F7w4YNy3755Zfsgw8+qPj9H374Ifvkk0+yJZZYosXn/F6vCbyeN954IxtllFGyRRZZpPTZRBNNlPXt2zf8rRK2+dNPP4XvFQ0dOjQbPHhw1WUGDRqUjTPOOC0+//XXX2suM3DgwNAUX45lZplllorLvPLKK9mVV15Z+oyKAJqghwwZEpqtKy3z+OOPZ8ccc0zpM44JaeO4lA8Kommf7ffv3z/bfvvtS5/TfE/3ikrYd9ZFN4yi33//PZtvvvmy1ugq6ZDUtRmESj3YqKOO2uJ3+l8S9FSz1VZbZV9//XXor9mnT5/Qx3OxxRYLgUB3QABKoE0QXY7+ntWWWWCBBVoEh/UG37DMmmuumZ1wwgnD/Y3tV1tmxx13DP1Ay0077bRVl6EP6HrrrTfc3+hnWen7uOCCC1oE7xh55JGrbgN33HFHNtVUU7X4G8e/NbpKOiR1bQahkkqodWPwyGqrrVYasFNrsA0Df6accsqwHIOYiutZeOGFqy432mijhRq9WqgZpObs6aefzhZffPHwGQHyW2+9lc0+++wVl2EAz2effRZqUBk40wiWufbaa7NJJ5007E+jy9x4441hG2yr0WVef/31bKaZZmro+3EZ9rfRZRggxfF49913s80226yhZchLgjxqu4vHsC26SjokdW0GoZJKZp555uzyyy/PFlxwwdDUvu+++4ZRyrXwncMOOyybccYZw8j4Sy65JHvppZcq1ixGBG8El4xAp0mbEekjjTTScGlhlDrNueedd15oLj/ggANCLRmfV7LCCiuEmtt11lknO/HEE0OzON0FqF1bd911w36VI0g66aSTwjrjKP/3338/u+mmm8LMAvxebpdddgm1fJtssklp9gGak6+55powIrxSbd/++++fLbrootmuu+4aRu8zxyZB6X333ZedddZZFffn0EMPzdZYY41QU/q3v/0t5BFN9IzMP/rooysuQ80pta00e6+yyirZb7/9lj333HNhpoG99957uO+Tr/vss0+21157hVryJZdcMvv+++/DgwRBObXjrdFV0iGpC+vsTqmSOkalwT9rr712vtVWW1VdhlHeCy64YD766KPnM888c3799dfXHYDC4CVGa0811VRhVPw888yT33XXXTXTxuCdRRddNAz+4TI0ZMiQit/75ptv8i222CIfb7zxwncZHV9t1H3ESP7ddtstDJgiPdNMM02+2Wab5R988EHVZRihv+WWW+YTTzxxGI09wwwzhNH733//fdVlSMe6666bjz/++CFtjOrec889WwxwKvfMM8+EUfRjjz12GCk/99xzDzeoqxwjxRdffPGwDQZdLbzwwvn5559fc5krr7wyn3feefPRRhstn2CCCfKll146v+mmm6p+nzSfdtppYYAWecbIf/L64YcfrrpMvXKRKh2Sui/fmCRJkqTknKxekiRJyRmESpIkKTmDUEmSJCVnECpJkqTkDEIlSZKUnEGoJEmSkjMIlSRJUnIGoZIkSUrOIFSSJEnJGYRKkiQpOYNQSZIkJWcQKkmSpOQMQiVJkpScQagkSZKSMwiVJElScgahkiRJSs4gVJIkSckZhEqSJCk5g1BJkiQlZxAqSZKk5AxCJUmSlJxBqCRJkpIzCJUkSVJyBqGSJElKziBUkiRJyRmESpIkKTmDUEmSJCVnECpJkqTkDEIlSZKUnEGoJEmSkjMIlSRJUnIGoZIkSUrOIFSSJEnJGYRKkiQpOYNQSZIkJWcQKkmSpOQMQiVJkpScQagkSZKSMwiVJElScgahkiRJSs4gVJIkSckZhEqSJCk5g1BJkiQlZxAqSZKk5AxCJUmSlJxBqCRJkpIzCJUkSVJyBqGSJElKziBUkiRJyRmESpIkKTmDUEmSJCVnECpJkqTkDEIlSZKUnEGoJEmSkjMIlSRJUnIGoZIkSUrOIFSSJEnJGYRKkiQpOYNQSZIkJWcQKkmSpOQMQiVJkpScQagkSZKSMwiVJElScgahkiRJSs4gVJIkSckZhEqSJCk5g1BJkiQlZxAqSZKk5AxCJUmSlJxBqCRJkpIzCJUkSVJyBqGSJElKziBUkiRJyRmESpIkKTmDUEmSJCVnECpJkqTkDEIlSZKUnEGoJEmSkjMIlSRJUnIGoZIkSUrOIFSSJEnJGYRKkiQpOYNQSZIkJWcQKkmSpOQMQiVJkpScQagkSZKSMwiVJElScgahkiRJSs4gVJIkSckZhEqSJCk5g1BJkiQlZxAqSZKk5AxCJUmSlJxBqCRJkpIzCJUkSVJyBqGSJElKziBUkiRJyRmESpIkKTmDUEmSJCVnECpJkqTkDEIlSZKUnEGoJEmSkjMIlSRJUnIGoZIkSUrOIFSSJEnJGYRKkiQpOYNQSZIkJWcQKkmSpOQMQiVJkpScQagkSZKSMwiVJElScgahkiRJSs4gVJIkSckZhEqSJCk5g1BJkiQlZxAqSZKk5AxCJUmSlJxBqCRJkpIzCJUkSVJyBqGSJElKziBUkiRJyRmESpIkKTmDUEmSJCVnECpJkqTkDEIlSZKUnEGoJEmSkjMIlSRJUnIGoZIkSUrOIFSSJEnJGYRKkiQpOYNQSZIkJWcQKkmSpOQMQiVJkpScQagkSZKSMwiVJElScgahkiRJSs4gVJIkSckZhEqSJCk5g1BJkiQlZxAqSZKk5AxCJUmSlJxBqCRJkpIzCJUkSVJyBqGSJElKziBUkiRJyRmESpIkKTmDUEmSJCVnECpJkqTkDEIlSZKUnEGoJEmSkjMIlSRJUnIGoZIkSUrOIFSSJEnJGYRKkiQpOYNQSZIkJWcQKkmSpOQMQiVJkpScQagkSZKSMwiVJElScgahkiRJSs4gVJIkSckZhEqSJCk5g1BJkiQlZxAqSZKk5AxCJUmSlJxBqCRJkpIzCJUkSVJyBqGSJElKziBUkiRJyRmESpIkKTmDUEmSJCVnECpJkqTkDEIlSZKUnEGoJEmSkjMIlSRJUnIGoZIkSUrOIFSSJEnJGYRKkiQpOYNQSZIkJWcQKkmSpOQMQiVJkpScQagkSZKSMwiVJElScgahkiRJSs4gVJIkSckZhEqSJCk5g1BJkiQlZxAqSZKk5AxCJUmSlJxBqCRJkpIzCJUkSVJyBqGSJElKziBUkiRJyRmESpIkKTmDUEmSJCVnECpJkqTkDEIlSZKUnEGoJEmSkjMIlSRJUnIGoZIkSUrOIFSSJEnJGYRKkiQpOYNQSZIkJWcQKkmSpOQMQiVJkpScQagkSZKSMwiVJElScgahkiRJSs4gVJIkSckZhEqSJCk5g1BJkiQlZxAqSZKk5AxCJUmSlJxBqCRJkpIzCJUkSVJyBqGSJElKziBUkiRJyRmESpIkKTmDUEmSJCVnECpJkqTkDEIlSZKUnEGoJEmSkjMIlSRJUnIGoZIkSUrOIFSSJEnJGYRKkiQpOYNQSZIkJWcQKkmSpOQMQiVJkpScQagkSZKSMwiVJElScgahkiRJSs4gVJIkSckZhEqSJCk5g1BJkiQlZxAqSZKk5AxCJUmSlJxBqCRJkpIzCJUkSVJyBqGSJElKziBUkiRJyRmESpIkKTmDUEmSJCVnECpJkqTkDEIlSZKUnEGoJEmSkjMIlSRJUnIGoZIkSUrOIFSSJEnJGYRKkjpcnufhRz2fx1qNMghVElyQ/vrrLy9MZciPP//803zpRIMHD84OOuig7Ouvv866izfffDM78cQTs59++qnTz+lhw4bVLL/8beDAgdnee++dff/991l39N1332WHHHJI9vrrrze97A8//JAddthh2X//+9+sO+M4cqw55rW+88UXX4Rj/cQTTyRLG2k6//zzswcffLBV19Lff/89O/XUU7P77ruvZlDNdur9xO3X+n4xjXmddff0e8MonZ0AjRgItM4444xsvvnmy5ZbbrnOTk6X8fbbb2dHHXVUttdee2ULLLBAZydnhPTBBx9kl112WbbttttmE000UdYdvPXWW9m5556bbbbZZtnYY4/daen417/+lb3//vvZkUcemY0++ugVv0NQcuCBB2brrrtuNs4442TdEYHk5Zdfni288MLZ7LPP3tSyP/74Y3bFFVdk88wzTzbXXHNl3dWvv/4aAvFZZpkl22677bKRRhq+Dosglev8K6+8kv3jH/9Ilja2Sx7369cvW3bZZZte/o8//shuuumm7Oeff85WXHHF4f7+22+/Zeedd1728ccf11wPebLVVltls802W3hQJE2su9ySSy6ZrbXWWqWyxXn0zTffDPe93r17Z9tvv3027bTTZj2VQaiSBaFXXnllOJk7MgjlxH/66aezjTfeOJzAXR21b0899VS4UUvdzauvvpoNGjQonN/VgoNzzjknm2666bKdd965YuDSHfT02qhGEEw999xzNZvan3322eyOO+7ILrroom7zQNfI8eXvBInF6zS14u+88062+uqrZ6OM8n+h1MgjjxzucXj44YdDcLnyyisPdy/iwST6+OOPsxNOOCFbbLHFskknnbTF93iwqxTE9iQGoepRnnzyydBMufbaa3eLIJSalccffzybcMIJOzspUtO4eXKTHGussarWnk0wwQThe9TY9urVK3ka1T6oxb7xxhuz0UYbrerDxJdffpkdffTR2bzzztujjjXB4OGHH97iM5rvL7744tANYIwxxhhuGZrSp5xyyuyss86qeX3P8zzkKV2CllhiiWxEYxCqTnva5HeeGkcdddRwUeOGNXTo0BA8clKXX+hinyS+w42P73Bx4GLHCU+/Hn74XlwP6+AEB8vwXZ5a+Tvb5ubJ9mNa4jJFLMff+V7xwspnbI918TnpqfQd0sa+sX7Sy0/cBv+OO+644Qm6Un6x/l9++SX8zvpJX/nFnfSxDfaT/KGfIN8Zc8wxw75WuhnEfGT95WkqT3u979U6pvyfJi5+J68r7Sfb4HvkEctUysd4fNlH/s8+si7WGdPDPsX1sDzriTUUrRHTxf6zHva9PF3VlotpJT/i8SAIi2mtVJYrlb34XfaJH9ZZ6YbXTF7GdcbzpFK5LH6P9FEGK5XxmO5K2D/QZYB1U1taXh75DutnHaSdssJnlF32tVZex33le5XKVfG8qLWeYv6SPvaJ9TUSRMXyzrIxP2ptL26LfI/Hstq5Tz7E6wb5Qx6Wp6uRshavP8X9q3RdKD/fK5XJuN5Ky5JOmpn5G8uXX6uK/d8pQ/yf413vWlUtbyiTpJdl6x3fetfpeirtb62/11u+rd/rSbpn24i6pfITjEEKW2+9dfboo4+G/jj0kVl66aVDvx76u3HRLHby/uyzz7J99903fGeZZZbJVlttteyGG24IF6KPPvooLH/SSSeFPn7UhC6//PLZDjvsEC4+fOeYY44JT6X3339/6PdDH8yDDz44/O21117L/va3v4Vly5155pnhe8UmRy6C99xzT1hm8cUXD00pW2yxRdiX2HGfNH/++eehHxVp5nt0RSCN3377bfg721t//fVbDHiIN/5bbrklW2eddcK6F1100WyVVVbJLrzwwnDhLqKbwwEHHBCahvbYY4/QJ4pl+vfvH/qclneCZ5t8nzRx0yAvqT1m8EUxvzk+9FflePCdFVZYIbvgggtqNg9xE6QPE7W7d999d+gHuNRSS4V9Jx+++uqrFtv48MMPQ80JTVZ8j3QTtMRmv4j9oIsF+bT//vtnCy64YPg+v/M9+qDts88+Ia1xPbvttlv23nvvNd2UyvdZ7ogjjgjlhHwi/7fccsvs5Zdfrru+Tz/9NKT1hRdeCPtGbTfLkydx/fTp3HXXXUP+80PeUqPCjbW4fm7sl1xySbbSSiuFWhLKz9lnnz1cGWCZTz75JDvuuOOyVVddNeQB2yQdtA6UlwG6gZA28ov1so/8TnNj/C5lnIEeG220UTh+rG+TTTYJn8UAk/I4YMCAFoNVWJ48oOaIdMS0UC7Ik2JaHnnkkVBOhwwZEr7P/pEeziu61dTKa84h9o/zpPx7nKuUXfqqxrRWOs7kN2Wac4vjQLn5+9//Hrr11BtsRfMs1wauO7HMcd256667Kg7e4by5/vrrQ/NtPO6cdzTNlh+fd999N+QrecEP+b/nnnsOdz5XK2sMCuJ7XBPom0n5imkkv8v3L56LXF9JF9tjGfYvNh0TyJEmymNxOcroNddck6255pqlcrLGGmuE/pAxOI/omsFxeeONN7KddtopXFdYZpdddgnXpUaaxdknunawHHnDefniiy9WXJY8v/3228M1lu+y/5Tn4nVancuaUCVTfpHgokbwcPzxx4cL3e6775717ds3e+ihh0IAQC0XF5h4MaG5gv4zNIOMP/742UsvvRSCRwId+h8RWNEfiQs9gQpP7dQy8kTOtum7RrDKAIPNN988dB7nAkpwTMBFgFF+cwcBSfECyb//+c9/wghQAk/SxXr4jIs0/0411VThJsmNN46spWmGiz/9hKhNIGjiJsh2i6OGuThysT7llFPCDYMAmDSSL9youQgTUPM0D/aJgJibNhdmghnykzzkQk96yAcQqBDk8fuxxx6bTTLJJOGGQHMp+3naaaeFGhfSwPZZLzcN9ocbIP1XOW5x2+U4TowC/uc//xm2xUMATXMsS3q4afKAEWvPuMkxsIWBWX369Al5dfrpp4dBQvfee282xRRThO+xP88//3w4ruQd3yEIGG+88cI2GX1M/pIvE088cThepJugnBtkrdrDSkg/gRo3ZQYF8H8+Y0DGnXfeOVzfrSIeeiibBEAE5eQtx5m8puyQ3wRzDFKhLHMsCLp5OOGhheNNjRfHgLLCcSAdHFtG8nOMKKflN1G+y7oJbmeYYYYw4IGHLsoQeTnNNNOE75EmvsO69ttvv9Bfk/+zPMeWfCOdPEQQHGy44YahrBLM3XbbbeH/NMtOP/304dixTdISa/R4WKSMcVwYkMRxpZmWYI918dC0yCKLhDLN5wQEpJHvsW/x+PIZec3nlXDsOa6XXnppCHpiiwfIR7ZDAFappjGWVc4nghTOW8op5yznHunnwZi8qea6664LASfXKK4lBFz//ve/Q5nnOsRApIj8ZGAL3yFPZ5111lCeCRw59/mXmsD4gLLpppuG8sznk002WTjHGfBD/vHgPfPMMzdU1jjHQT6wPvKF7+y4447ZrbfeGq6jMb8YUEMaWIZziOsS5yrXYco9x5jrF/keUSYIpGmWJngn0OV7lDfKFuch52xskaC88BDDKHQerFiOB1PKPEE2x4yazWq4pnDN5XpPGeG7lMVtttkmnKPFQUmkg2s95Zljcuihh4byzXGj8oNyQ3pHxNrHLiWXEvjll1/yeeedNz/mmGNKn33++ef5zDPPnM8///z5m2++mf/111/h8z/++CPfZptt8hVWWCH//fffw2efffZZ+O7NN99c+h7/8vf4Oy666KJ81llnzb/55psW22edm266aT7mmGPmF154Yf7nn3+2+Pujjz6aTzXVVPmrr746XNp32223fO21185/++238DvrXmCBBfK99967lD7w/2eeeSb/8ccfQ5ouuOCCvE+fPvnrr7/eIs2ffPJJ2A7/f+211/Ipp5wyf+yxx0rreeONN/JpppkmP+uss1qkk/+ff/75+SSTTJI/++yzpc+POuqofIwxxsjPOOOMUhpZN+uceOKJw75h2LBh+cEHH5wvvPDCIQ3FNN177735FFNMkT/11FPhs59++il8j3XWyu9yX3/9dT7HHHPks88+e/7SSy+1WPaaa67JJ5poovzpp58uffbFF1/kv/76a2l5PiO/SMutt95a+px8HXfccfMlllgi//jjj1ukgf9TPjjGxc8oK6yHslXLgw8+GI7BO++8UzNd7M9kk00W8qoW1jPppJPmc845Zz5o0KAWaSWNW221Vb766qvn33//felzjs2ll14aysu7774bPvvggw/yGWaYIT/ppJNK5YB1DRkyJF9qqaVCGfnoo49Kn3/55Zf50KFDW6SZtFCur7/++tJn/J/9pQwVjw/7HI8ZZZi83nHHHUtlKqb/ueeeC2nne/vvv3++3HLLlc4D9uPQQw8NZWDw4MEt9v2rr77K+/Xrl6+33nqldV577bX56KOPng8YMCCUuYg8mHbaafOLL764annj8xtuuCEcY8pM8fOrrroqn3766fP333+/6nGK5/x9993XIh8oS5zfRxxxROnz9957LxybWCb5nOtAPNeLx2C22WbLTznllNJ2OEbsC+fT22+/Xfo+ecX5RfrfeuutFtc+ji/Ho7hPpGGuuebK99hjj1J5qFXW+D/X2OI1is/Yb5Z58sknS59Rxvr27RvKVnF/yL+YNq7hyy+/fH7QQQeV1kcZmnzyyfPLL7887E+xnLDO4rFhfXvttVc+zjjjhLIez1c+v/POO8O1ivJXDd879thjw/W9mE72j+viWGONlR9yyCGlzzl/ZplllvzMM89scR3lHNloo41COYxp4DguueSS4VraCLbBMaac//zzzxW/c/bZZ+czzTRTyGfyIP5wfWd70auvvpqPP/74ef/+/UOZiz9HHnlk/vzzz+c9nc3xSqbSEye1HjxBM+1H/Ds1FzSb8NQbm4KoOaPGiKZFnv55yuf7zfbtoamJWo5qtSONoPaVJ3xqJYp9DknLQgstFGpgeQqnmZDtFfeNf6ndm2OOOSqmm/2i9pEang022KBFOvk/zX10cqcmoVizzLQx1B7G2iDWzWfUdFDLBfKSmiWapqhdKc7dSs0UA0ieeeaZ0raoDeF3atSayW+OKTXAc889d4v9pqmVWpTHHnus9Bk1NsU+hXxGLSM1HdTOFLFv1JiQf8U08H/2p3gs+IyaOv6ldrUZ1dI1+eSTh/Q3MpMB+UftJTWSxbSyT9T8xamV4lyAoPsIzci0DoC8p4admv5YDlgXNYPUZBbLBp9zvIrTJMXPyE9qJyPK5fzzzx9q6orHh32On1FzHbtAFGu9yWO6scSa9XKUMWrYaE6P+R9RbmmBoDa9mB7SRy1YsQaMWluWJw3VsG5qskgLtbbFbgTUjtHUSw1+JXyXWt2ZZpop1DAXzwXygWVp0o4jnSttm/OlONgq9sXk+FDjX8SxoqWH7cXvc55Qg8s2GVUO8oWaQmolOXbF7VEjv95664VaxuLo6mplLZ5LxePHZ+Qt1xdqIEHtIGWCriekvbg/bJPrV6085HykKb7Yd5RywvWRbdPlonitoisNLQHxfGU7lDvKLt0yqqEWmX2n6w7piulkG9RGc70ppo3rDOcTXZriuIHYR5h8p6a3o+cGposD+UAXmfhDNzLuY0V5nofablq54g8td9TM93Q2x6tTcXGIg4uKn3Ex5wIS+x9y86cZkOY9TlACrngDaiYIJVhp66h5AlAuZFzMq22bCybfI5BsZlqa2FzLDbjSjZ58oImQi3WxCZT0lA/C4W/c2GMXA5rrSBN9Yssv9ty4uSDTPAryiCZKmg4JKGiOI0giOGwkv7nJlX+PtBAUxK4N/J1/CRLp00Zwz/9JLzfI8r583GzKA9BivnHj52bOxZt9JeCL/YGbFfv80WTK8aDJlBs/6avWx7A879nX8rSyX6Tr2muvDTfn8jJDU2rsN0u/QAKR8qluWGelAWqxH2/MS25grI+gOaaZgINuFzx01HoQ44YYA95mzi+2SZeZYoBbTDfN1qSJPIhzH1Juyx9u+D+jsSt1jykib7ipE0TR5ErTMTd+jhtdEaqde+QVTcs86NIVpPx75CFp4PpTbf7T2KeU5nAeHDhuBK0cN/azfN8rnRM8JBL0xr7oBKE89FV6SOV3unDQbYJ8jk3p1cpaTCPp4rygmZ91U4Y5P+J5QR6TD3QBaAZlinODILVSEzpll/OV/IjnOyoNJIsDCeMgzErIW8ouAWz58eL38usfDzDxRQHFrhqxWwDXhlrbaw9cq+nWwQNLUflo+d69e4cHbEfHS11EpQswT5RcnJmDjgCJp3z6GTK4IuX8g1wM2V61fpHxAk0Q3WxfRG4MXBi5KFUKEuJo/zhiv5l8JN2snxo9gtxy5CkDNOJy9K+ivxwTudOvir5k9C2jNrY1o85j2mNARPqpFWO7fDbnnHOGwDums1F8l35e9Aflhs5NkXzn5tqa+R1ZhgCRPm2kmTJHQESQ2NbBDHGgBkFDpb6OBBkE+4ij8huptSfNBF4EVOQf6yEvCTqLQXMsl+UPftXKeLMPbDGPqpX7+Hm1eUWLGgl+SSM1+1dffXUIvGmJ4CGLmz6tKdXWEUfWk0ecC+XXDz6jf3q1/omxjzk1uATd1MIRWMRBhY2K15F4jGJQVC3wJf/iW6rqif16CW7YDwJjgvRiABqPBeurts1q4kj6ag+mlNt4rWpEveMdKyUaTSdlke8SCJaXY44vFQRcCzsS5y8VH43OmdprBOyfahCqbjPhMxdsbq4M1GDACYERA29omm7rGyW4YMYmuXpppgaCmztP2QQ9lXDR48Ifaxab2UfWT01lpQFA3DipoSMwarZLATcgbmI0NVKT3Mi0IjPOOGMYvEGXCQZGkO9cwGnOradY+wFuIKSdhwc+J/9oRmSQBceUmzj7Ty1PM6/8I68YlMZgC0bEs5+sn4nUCUiaRU0R6eLtXow253iQLo4lg8PagmCWskHzJc2KtabyIUAiYOBmWnzTUKUyScBN0Exwy3GiFoo0UzMau1iAoID8oXasWJNeqcadmz55wYCWZvaPMktNZ/nxj7NF8Pf2msg8NuXSFE3TMNcHakVpbo01hZWw3+wjQQoPQbUeKCshaOO8IGhku+RRnKicmr9qyvOE71PDHvMjDvqJteHl+UdtP61ExcFB1VADTjnmwZKBkbHViJriBx54oPS9ONVds9eqmIex1aL8wZS8ofxVa71oFmU3XlPL86YSHkTYZ0bSd6eJ80c09glVMu31lMfFj6dbbh7cJGlaibgQtuZd7PGmG/tJgXVwg4h9KiMCM27gNMOVT3MSa564qVGzRzBFbUGlWphKaSSP6HNHlwP2q3z91L6QHvqaNosAgVG5TBXUSE1URDDDTZZaHwIomuBqIZ00hRW3UZydgD5hIK9pEo2zG8TaKILVZmqTyCuCNWpoYwAap45pTc0lgRJppf8dN7JiuprJt0qoeSFQLJ82qVxsuiaPCLKL36V80Z+tWBtG4E5NIP3feDCqlpecO9TaEZiWv3c+5hn/cn5xLpVPlVUs45UQ+PFQQbBenlccCx4Y6RcZZz1oDxxzakOptWeqHqbtIh9qtY6Qv3RJ4EGleM43inOaJm76+E099dSlYD7OVVuOfac5vHwqK84ljh0j88F5Rs1ZeT9KkO/kX60+uUUEm9TScn4Vuy2xnuKxIQClrNGHsvy8i/OQVkL+ci4zGwbdCMrLCeWRz5myqT1w7aF2mrJbfm1hP4v9cNlX8pRAnHO5rRUg6jgGoUqmLRcCLtZ0So8TFHOx5wbChak4XQ43+RiYxhtCI9vlRsKN96qrripNf0MfSZqfy2vluMlyA6P2jgAhNnFyk2HaJvp3xe4D3BCZJoTarDiRPFODMA1MJSzHAAFqsqjpJSBiOX4I4OjfRHDbmqlFqPGgAz/TyjBtUwzSWDfBdhyEBLbFABM+j/tHYMky5FUt5DddJqiRi01/1IiQXwTw8aZErQaBMc3I3OhintPsX2uAQjkCRZalX17cH/qOMb1N3J9mgxp+SBc3ZdbHzYxaUfKlLUgr8xTSxYHX+sUJ1dkGwQjTbMUme27wNNmTj+RfnMydqX6Y7qh4/Dm2PEgV85JaZ/K8fHAPwTX7EecljRN/M5UV00TFIJQyxjQ4LB/LAA9A9M0m8K+EY8oUOgyAoy8c5SWehwSJdJug72Z7v++eYJBgkrJDGWvk/e7URoMphsh70hmDLs7bWjWaPGRyjhL0xmsSZZ0pjehiUo48JS+Zkih+nxq9k08+OdS4x3fK8zBGMzHXiIEDB5YCfoJeriMMaiP/yvs4VkLgyffo3xqb3On7SbeVYq0nDxuUSR6MmP4pHjPKHP1PKauVUP7IwzitE+UtXqvIO65VPCwTNLdXTShll/OGmty4T1x3qe0sDnYD12hajLgOEJDH48ty3B+4XnSl4HTY/17cUP7T0+cztTleyXAhKh98UPy3/LtFXDS50FCDwlM7FzxuAHzGTSeimZg+gTQ38yQc310d+8BVuxgSDBFw0pxLrQqBJutnXdwUihdt1kVAwjyGNKkSLHCzoEaAkbY0K8fR4KyPfqsMRGEgEzdvAiNu9tX2l31k/kyavukfSM1VDLKoReNvxebZWhf48vxmX0gDgQQ3TPKOoIcaSWo26FvHzYvgk/lPCSq4QXLjpFaMwJoJsWthPWyHGxqBB3lI3rAObmqxmZQaO0Z5cyPm7zxM8C/N/QQRlcpKJeQPx4ymR7bHTZG8ok9gte4SlfIpboP8p/sB+UxQx/FkfdTCFGc6aHR95RjsRRDIXIXcJCkX5DfHgCCEYJAyxnaZQ5cyzgTn7CfHjhsncy8y8KYY3DL6mmCA9VCjRl6y7vJZCrg5szzzntKUTH4T9FPGmW8yzoLAQxAD0hj4QxmnDLJOzqv44Bf3s7h+Rv6TTloqCJjpKsP+EsDSZYIR97XO/WIeNnrsKMfsFw9OHLdG+rKyDPOS0o2BwIZ8Yr8JoKhZo7mdZv5K+8n66X/LQyc18NTuku88DDC4pDztfM71gnOOQJz1EhyCB4r42lOWo8WB/GKEPA+c1IxyfAggaVbnulJ+blTKK44r82dyraKWk8CfGnSOX7E/MsuyD5zfHDOCTrbJ/nBdIz+rbYv9IA859+hDzrWCZdgO5wrndrP94quJ1y8qBZh9g4ckAlNapOIMEsW0cR0j8Of8YU5Sgn0+49hyjBlwSf4Wj22zwXJ7lN+RRx45BJvsU/nDGdcyHiTZ156qF/M0dXYi1PMRDBIgcNGKT/08cXMTJHCMF/uImiyau3jS5obM8tROcAHiAk0gw8WeZYu1AhRnnnKp7aNWjYEKvPmDCwK1CARI8dVyldJIsMEUKdRqsCyDnrgYU1PCRbb42kVqKXkip6aImwhBDzfr4qAPLshc3Ek3wScX5jh1TOyzx8TW1H4WA6b4BhxqQ2hO4rvcJFmWfS+mnzRT+0ptULGPX3xbCAEdAVTxc5YhTdQecOHjO+wvNclsi4CDCzV5xg2QYJTgkyC71sAAHg7IMwItjh3HgbRx02MfqUUtpp38oQaGtFBDEd+ERJcBykSclJv1MsiCfSwfaUpeUUPIcePBgZse66CcMd0VeVac7qYcx5FlSW+8CVA2SQO1WuQFAQ77TrBCl4by8lpE2aFcU16qDXwg8KdcUMapweOYckNk/0lrzCO2TfmiFYDaWLbNg08cPEVwGm/yHFdqUkk36acGijch8Rn5zrIReU1eEZyQtwRk5BPHqVjGSRtlnHOA404tNuUkDtghkCJ45SZfXI60sH6OK+sgaOWYUIaLfQc5V0kfbx0qlivWwXZ52KLc1buh830eNgnayZdKA+8qiW9b47gSJLMeji15xzkT+4rGvp9cO+K0T7FbBOco5zbljQCR48U+xm4n1GJyjnMsWA+1xJQ58pxzgjJS3veT8kG+UD64RrBNziuuH8VzvFZZi+shP1gPx4cyHAdvsY/FVg3KDOWdH84nHpA4ZrFPJ/tLdwACVAK6Yh5yjtMFg2sFeUagy/5y/OK+kR7KPNdS9ru8bywPEKSt1gsC4owEnK88IFJm2HfSQ7nnPCq+tz6+HYzrGN0DyA/2mfsGxyteqzkfuFbEh7Z6YlcKzgsC+Ep9q6mhZZvlL1IoN3To0JCvxWm3ItZLPjbTL7u7MQhVEsViVrxAlH/W6PerLVfpe+XL17qhVVq21nLVtlXrO5XSVGnZ1uxv+c2sLetudPvVglCaDZtNf7U8r7UvtdLbSLobyb/2WF8j6W02f+qluVb5bev51N5lrNH1VkIQQw0sD4O8SrTZgUb1zuO25Hd7lKNm01VvPY2sr9bfU16rKmk2T5vJy0ZrMOuludn1jahsjlcSjTS5t+X7jXyv0WbUZpZr7Trba921vteR6W5Luhr5XvlnHZnetpSXtizXnvnTXt9t9nsdVcaayfs4EI5aV/q5NhuANrK9tuR3R5aj9j4v2jMfOmL5jvx+e6/T4LMxDkyS1G648DY6t6XUXmjuppmY5mZJ3YfN8ZLaDX2r6PdF38L2nIZHqtc/j76J1V6HK6lrMgiVJElScjbHS5IkKTmDUEmSJCVnECpJkqTkDEIlSZKUnEGoJEmSkjMIlSRJUnIGoZIkSUrOIFSSJEnJGYRKkiQpOYNQSZIkJTdK+k0qpT/++CO77LLLsu+++66zkyJJkpowyiijZGuvvXY20kgjZX369Ml6GoPQHo4g9Pjjj88GDx7c2UmRJElN6N27d9a3b98QjBqEqtuh4O60007ZN99809lJkSRJTd7DZ5xxxlAT2hP1yvM87+xESJIkacTSM0NrSZIkdWkGoZIkSUrOIFSSJEnJGYRKkiQpOYNQSZIkJWcQKkmSpOQMQiVJkpScQagkSZKSMwiVJElScgahkiRJSs4gVJIkSckZhEqSJCk5g1BJkiQlZxAqSZKk5AxCJUmSlNwo6TcpqTXyPM9++OGH7Oeff87GGWecbOyxx8569erV2cmSJKlVrAmVukkA+sILL2SrrLJKtvDCC2eHHnpo9ueff3Z2siRJajVrQjXCBXPl2rs2sdI22rId1vfjjz9mBx10UPbUU09lE088cbbOOutko4zi6ZtK+TFty7Fsj/W0Fen4448/sm+++SYbbbTRsvHHHz8baSTrJDoibyeYYIIRpsWCff/111+z7777LhtzzDGzcccdd4TZd7WOVx2NMLg4nn/++dm2226b9e/fPzv66KOzd999t2rQ2JYm87POOivbbrvtsm222SY78cQTQxN6W9Z5+eWXZwMHDgw3tX/84x/ZUkst5cU9EfL/vvvuy1ZfffVsww03zAYNGtTqdb355pvZeuutl62xxhrZww8/nHUWatEPOOCAbLHFFsv69esXylZ7ngcjMvJ2v/32K+XtQw89NMLkLdc5rnvs+4orrpi99tprnZ0kdXW5NIJ49dVX83HHHZe7Qeln4YUXzj/77LN228aff/6ZH3DAAfnII49c2sboo4+e33fffa1a319//ZW/9dZb+bTTThvWtemmm+Y//fRTu6W32bTwM6Jhnw877LCQ/717985vu+22Vq/rpptuKpWNE044Ie8slPkZZ5yxVEYPOuigEfLYdoRPP/00n3766Ut5e8ghh9TN255ybr322mv5hBNOWNr3iy66qLOTpC7OmlCNMHhKp5kMsSn7+eefz6677rp2q6mgluySSy7Jhg0bFmotY80ItaOt8dtvv4Ua2w8++CCbZ555suOOOy40c6U2dOjQ7Pbbb8+uueaabMiQISNMzU659q417yyU/969e5d+Z5Cb2seoo47aIm/HGmusmt//5JNPsmuvvTa7+eabQ7eb7oxrHvsPWmrq7btkpzKNkBZYYIHs7bffzr799tvsiiuuyLbeeusw4rwt/vrrr+zqq6/OvvjiixAo0hR35513tilIYfkbb7wxm2iiibKTTz45m2aaaTqlGf6tt97Kttxyy9DXi76pBMbqvuineMghh2S33XZb6GO88cYbd3aSelze3nHHHdkkk0ySbbTRRjW/z/m9xx57ZKOPPnp40FtuueWy7qpPnz5h0OSjjz6aTT/99N16X5SGQahGSLPNNls21VRTZTfddFP28ssvZ48//ngYed4WX375ZagpJHikT9RCCy3U5iD0xRdfDDWg9GNddtllO60fKLW51O7G2ll1b5QjgqMNNtgg/D/+qO3Ix0022STkbyN5+/vvv4dznfMrttR0V9Sw77TTTtmOO+5omVJDbI7XCIlmoy222CL8S1BFbWhbbgCx1nLw4MGhOYoBSdRstAUX8IMPPji79957QxA68sgjt2l9UhQDBMoUo+INFtrPiJy3I/K+q3UMQjXCorl89tlnD/+/5557QvN8a/3yyy/ZxRdfHGoMqWVdeeWV25w+LuD0LaO/ntPnSJJ6GpvjNcIab7zxQpMZzfFff/11dsMNN4QAstmAj1rQJ554InvuuefC7zTFTTjhhK1KE+vihyY6mve///77ENgSjNIvlPVSy9BsDUOcv++zzz4rDX5gDr/JJpusVGNbXCffp49rHDwTm+LB56SpPA2xBqSR/aP2+fPPPw8DtvidAQykhX8bbcaL+UQN9hhjjFHaNp8zCO2jjz4Kf2cOzMknnzzUUHenmpl4zPiX/Ytpj8eG/szkIceCY8k+ciwbzTt+eHiKg5TKjz/b5rizzmbLHOnjGPMvaa91ThXTwv789NNPYVv00Y7ls5kywXZJd3G7fM659PHHH4c0cS5NOumkVfcrNo9zXeCHckQ6WIbrRq1avnh8GMxXLW/Lz6eIzyu9hILt1ctDlmNuUn7IA7ZN2adfKi0+jR6/YtrjcnGfuH6QH5xLlDfyonhsivseByk1ut1YDjh36VfPv/xO/3r6LVPGU9SuxnRQ/imP8XoZr1Gkp9lrFMemvDzG+Z8//fTTcLxYL3nazDWwR+js4flSKk8//XQ+xhhjhKlDdthhh9L0R5NNNln4bLbZZsu//PLLptf722+/5RtvvHFYx5RTTpkPHjw4rPu4444Ln40yyij5jTfeWHMdfP/nn3/OH3nkkXzfffcNU0dNNdVUYUqpscYaK59gggnCtC9rrrlmftVVV+U//vhjQ1O68J2PPvooTAfEOieffPJ87LHHDj9TTDFFvsgii+RHH310/t5777VY3++//x6m7eHv/Mwxxxz5SCONFPaHdbCu+Lf4c/DBB4cpqqoZNmxY/uabb+aHHnpovtBCC4XtjzPOOCEtk0wyST7nnHPmu+++e/7iiy/WXE/01Vdf5auvvnpIW5wK5tdff82vuOKKsH7yjHWTj6ussko+ZMiQuuusN0XTaKON1m5TNB1//PE1v/v888+H/Zhvvvny5557Lnz2xx9/hHK8/fbb5zPPPHM+3njjhX2kDHNMTj311FCGG5kS6MILLwx5t8wyy4TjX/Txxx/n/fr1y2efffZ8p512yocOHdrwPrJu9nPeeefN55577nzgwIFVv8v+sG977bVXPs888+STTjppqXxSzuaff/5Qrt5+++1Qfup555138qWWWips9+677w6fca6cdtppoXyRX5Q5pjzjnP3666+HSzv7evvtt+frr79+OOfGH3/8cA4y9dAss8ySb7nllvn9998fzpFq+3/++eeHvCUP33///eGmx1pnnXVK580000wTykOvXr3C+svPq8UXXzy/5ZZbKh5T0sC0SJzfyy+/fEgv5Z70cu2Yeuqp8yWWWCI/+eSTwzFtpFxw/pBXK6ywQqksvfvuu6HMkW8cG7Yx66yzhvUW18l5e8QRR4Rys9Zaa+Xffvtt3WMW8/zBBx8M12W2HcsB+zHxxBPnffv2zTfZZJP85ptvDsezo5B+pvI78MAD8wUWWKDF9ZI0Ua4GDBiQ//e//23oGsV0XSuuuGLYp6uvvjp8RjnmvsNUfnPNNVcoV3E/+Z1tc63qCVN2NcIgVCN0EMpFfOuttw6fERxcc801TZ38fPfll18uzY3HDZuLUzNBKN8lbQRUXIziHHukZ9RRRw0/xXlHCYQ23HDDcDOrlVb+9tRTT4VgIAaQrIfli+vk5kcAwE0qYi5SgprinKr1frjZEUhXwk3mjDPOCDdFtle+fzF9/HCx5+bGMrX2jws1NwmW4cbA95mTMR5jthO3xb933XVXw8e1KwSht956a9ge3+X/3HyPOuqofKKJJhruWBbzdLnllis9CNXaJ/KMZbjBxiA3+uGHH0Lwy98JwngwaPS84KFs5ZVXDssSCJWvO27/u+++C8cr7k+xTHDOxDLBvk033XT55ZdfHs7XWul48sknw/6w3L/+9a8QBG233XZhfeVlgnJCwFH0/fff57vssks+5phjhu+QBtJDPrOOuCyBLA8+ldLCZ3vuuWfpey+88EKLv3O9KJ+vuN5P+Vyj8eFy5513Dg9wMV2kl3TGPCx+TkD/7LPP1i0XbCumnYcT0ktZKJ5LMV2LLbZYi2Cc/6+33nqlB/IPPvigRkn5v+2xjS222KJ03Ir7USwHcZ5eHsRff/31dg/SuHadeOKJ4eG4Vnnkh++cddZZ4aG3VjreeOONUvk+/PDDw7nx73//O5Rn8nGkQvkqlnceYB577LERIhC1OV4jNJqcGKDEqHaaXy677LJsrbXWCk0njeBBjkFNNIHRXLTVVls13ZxPsyqjSV966aXQhDXvvPOGPqWLLLJIGMHP+mha5q09zCdIc9j1118fmivPOeec0nyk5eliblHeXvLqq6+G7zINz9prr51NO+20ocnsnXfeCYOpmBaGKZhoqpxyyinD8jQ9HnjggeF99XEuQ97aRNPSoosumq2wwgrDNRctuOCCFfONfGVKp5NOOikszxQ26667brbqqqtm0003XWiC5M1Vd999d5gyiKY43gpFcxxpiPMO1sI6eEvV8ccfH/ZtySWXzNZcc82wLPv/9NNPh+12V5SRXXfdNbvyyitDeeDtTZtttlk2xxxzhO4Ijz32WPavf/0rHMcHH3ww22WXXUKZprm0NeiHzJudKJNMy0UZYZaGRlCunnnmmfB/Zoigi0s5miH33HPPUKY4djRD0jVm+eWXD2WQ5kneLsV2GZj33nvvZTvvvHMoP0yn1khTJd9luiD6anOer7baauEtPuQXs0688cYbLeZHpcn0hBNOyM4999zSDBecz0znxvnAeUc+022HMvXss8+Gvzc7YHDGGWcM5wPdbfDkk09m999/f1gPb+SaaaaZWnyfz9dff/0Wn1HGDz/88Oyiiy4KecHUSJyTvEmN9XMekl7WfdVVV4VywbnMdYY8nWKKKRpKK9cQpo8iv2gS/9vf/pbNNddcoVmeGUVYT2v7q5PH9MMnDzk/wbWJ83aJJZYI5YD9fP/997NHHnkkTHnFtYFrBNcLroX06W+PZmu6gjCt1plnnhnKB901yHOuw6SJssEc0HfddVfIP5rQ99lnn3CN2nvvvRt6hTLXQa5P/FA2F1544VCW+Zdj/Morr4SyxzHjTVPbb7992GemuurROjsKljqzJhTUMFGLF2tuqD1s9An0ww8/zGeYYYawLE/osdmymZpQaiBZB02vNLV/8803FZseabq89957S0/qpJWajUrY/pFHHhmeqqk9oFaoUvMhn7300kuhaajWm6PYDjUjsdax0fzhe5dcckkp33nCp3m2vEYr1krTzBnf5MP2aFKttq1iTSh5R200tQr77LNPyMP4FhryjRou/u2uNaE001JTQq3XueeeG2qqy/OPWhdqtPk++XDppZdWzbt6NaGgBoxm15i/5GE9rPekk04q1fKcc845w6UhNtnG2km6A1BbWN68GZtpacakdjzWrpGuavtVrAllvZQ7WhdOOeWUUp7Fssb+xPOMz+gqErvm0BRdqaWB32miphaMY9mamtBy1PrHshW7ENRDWaa5u0+fPuE6Q40jn5Wnh/0bNGhQaNKPNYy0SNQqF7EmlOsGeRi7CTz00EOlbfDzyy+/DFcOm6kJpZZ6pZVWKtU4brDBBqHbRWxJKqYpdttYeumlSzWxLNtIc3895NHZZ58d9pf1UmP8+OOPD5ef/J+azDvuuCPke2wloAtVtfws1oTSVYJtUCbp6kR3or/K1k+ZW3vttUs1olzLGmn2784MQpWP6EEo/3KzjM0hu+22W0P9z1juzDPPLDWpFG9KzQShXOy4UcXAqRbSdcwxx5QuUvQFq7QMF8sll1yydFHlYl3rxlPvtYGtDUJpMuQGxnI0xTfSHHjnnXeWtkWzbrUm/mIQGvNjxx13rPr91uoKQSg/BEj0VaQMVAt+SBuviY15RzlobRBKALjaaquVmq4ffvjhuvtHUEKfzNhkSV/CcjTtE0zzHfrA8Z1aZYL9Pe+888I5Fs/dag8UxSA0BuN0YajWf7OYH5dddlkoQ+Q5fQ/rldNa51NHB6GxPzv9Teudu/yN/paxqw/9o6sFNsUgtNj0zLFv5JxvNAhlXaeffnrpXKCPbL3rX2y6p3tRvK5W6xLRDMpfDCqpDHjllVfqpoPrebyXrLvuuqFZvl4Qyg/HgP3mvKx2Dr/++uulhyEeyL/44ou8J3PeF43waM5ZY401wtuIcMstt4Tm53oY2f3vf/87NBnRRNXayeRpyplvvvlCc3G95Wn6YlJ9mhF5iHz99ddbjLSNGJ1KMypo1iqOri7XUZOVkz7eBkMzFuvefffds/nnn7/mdvgbTbI0m+Kpp54KzbuNoJvAkUce2XBXiu6EWRFoqqMLQ7URwnxGc2ycdowmPZovW4tR3TQPsz3K03/+85+KZS2K5ZEmfPC2HJoyizhXLr300tAUTTcS5sGlS0atMsH26UpCNxXQbaPR/aL7Cc3JjTSX0sTMPtCFo96byTp79DLbnmWWWUL+1ksLf+O8o5kedG1o9DXCHCOa/ene0p77S1eBCy64IJQnZhzgvGUkf739YH8pM5RNmsh5RTJls7U43rzljm4HlLMBAwaELi710kHXjqWXXjr8ztuhyNN6SDN5yWT+1WYr6NWrVzbzzDOX3jRFsz/dUnoyg1Dpf4EaNyx8+OGHod9PrXd787eHH344TO/ExYtXWra2/12z6IcV+zdyM68UGHCRi8EYfao6453U9IEicCHwoM8f/cka6T9GEEC/MJBuAtF671knP4499tgwHU1PnNpkhx12CHlSL//ol8wDTSwb9FVurfhAMPXUU4ff6Q9H39RaOG84ZpQ/3sZUnl7SQxAJ+opW6ltcCQ9dce5dbswE2PXKBAELwQ3LNrINgiDQX48Hn3rr7064FsS+hRwfpsFqBP3jN99883adp5h8LT5c8mDVaN/OWCbjgxbXX14Q0lrkw6233hrSRHlZZ511GtpXAkoqLsA5wfR89coLD9b0a67Xx33kkUcOfWLZV/qqcj/qSWWxnEGo9L8Tf9NNNy3VMDJgolbgxo2KQQH8S60JA21SBT8MkoiDkbhIVbpA8R0GNoEBGKeffnqoMUh5MWOOPYIFULsQg5lGMDiDGycBLIMX6qWbGkAGkvTEADQ+JDVyc4y1RSDv2hKExgeeWCvNzZ5BE9WOBecLQSg4fvFGWsQ6qHUCAzIaHSzGemadddZQo8nAEWrX6+Ghsm/fvg2XCWpaCeJZ/4knnhi20VNu/pQd5p9EnFu3kUCLh5+OaFlgUFOcy5SWnWaCXI4R53oMImPNe2swGDO+pISBd8wD2ihqoskjKgEaedEJNb58v55evXqF8z3W3n/11VdZT+boeOl/uAgtvvjiYTQuo0F5WucGXH4T48bESMaHHnoo/M4o4mYCrEaU3/zi5Mblf6t1k+QGQtcCnqS5qfIvIzmpRWjNhPfNookqBvJcVKmZa3Sb3KCoMSBwJpitFwzUmxB9RMJMCCDP2tJUCfKUGk1G5VOzzchwmiIrjQgnGKA5HtQSVXphAw9EBEExwKUJvFHsTyw/1IbWEyf9bgTf4/yntp4mXs5/zmuafqmpi3nalR9yal0zeCApnh+NBNd8P07M3t7pJH/jMWp2hDvpik3mrIvm6mLZaAYPRYxwj9eoZrqvUI4JFLlWxa4c7ZVXY489djjHeFho6znc1RmESv/DUyrTNTHFDSc+/T3pm1Pen4wLOn+jXxU1OSzTHgFQfNsI/aWef/750NTEBZYLHBej+GYV+kLV67PKxZAL9dlnnx2agJjiiemnqKlaaaWVQq0vtYfUKnTEjZV94QmewAU0y9N9odFtcYGPASwX+Z5SI5VCMUAsvo2nNThe1KjTdE7gMHDgwFD2Yv/p4nY4xhxvAgsCuPJzgmNIWY7dRyibnEeNotY/1uBRJtobrQvHHHNMKLdMXcY0THSzoYaUPqk0TTMVUooHuGbEN++QXqZhovWB851rWMzrGKx1BRy7GOzRYtNM7WMU+xHH60xrsCzpiGWKvqF0OWlmPyiT8f/taaTCudPWc7irMwiV/oeLGjWfNCVywaZGlCdlmvSK6GN58803h/8TpBLstRUXRGp3mOuR+e/YRqwxaq04nySBJ3N0MuccAS4X25tuuimbe+65w02W+RmZA7C9b6zxlZMgYG9Nv1RqQ6kp6Sm1nMVguisFMrXQ15kAjCCUAJSHNMpNMf30i4t9PRkEQ9mqpFirQ1lstrsA2+Rhkab59sa6CYh4WKM2lIFgNMkz5ylzgp588skhH5h7l8A0xSska4mvuOR6cf7554fgM9bqdWVc1+LDKed3I/MAl6NmOuY96yNQa3a+1vJrFAM5ebVrax5e2mu+0kp6+gO4QahUwMAWmh+POuqo8ITNpPAHHXRQi3f+0iRJXyJuhttuu22rLqJFrJOO7TSfU/sJmjJpHqTfUfH92fHCyaTK3MTrId0EBNxU//vf/4a+rnTEJ8jlxkqNK5N5c4Pt169fuwZ7xYsyNUlMvtzshZo8ZuaBzg7YYm14fDd5axX74lV6yUBXRN7Tv/K0004LN2keYDbZZJNS+skT+ooygXhsvqe8VltXRNeQOLij2abKjioTrJMBSoyop7WAc4WXUXCeEIATmF533XXhZQD77rtvqZk+NfKcbiq77bZb6HJDuaIGmpcD8FDMSy74PZ7PBGlcy2IzeGcqBlXU1LYmyCoee87N1paF4nLbbLNNaNVqFl2BKI9qHYNQqSDeRHn7DrU71DIwpQZv0AA1N7yBJNb4tMfUJdzcCEDpU0dAy5twuEFTI1sMPiOe2LkxNhKEguVZL+klsOVNH9SOUutK31ZuTLy1hDfs0Ce2vW7uMe3cZAiq2zvITSkGG9w0KQOt6f8Vmw7jsrFMdQc0xzOQiLd2PfHEE9mQIUNKLQTsD03xBOcMvmCgSbW8KQ5yoR8105p1RZRTHv6o9STg5iGRKYUI+Dj+xx13XOlNYJ3xMEHtH28TYwo0cB1i+h+CUIL08vOMckt/3a4QhJJfMc/oWkSTdrPnQjwHY019a69ZxWsUZZdrVGc/8I5ouucdQepANPXFedp43d0DDzxQ6uRPEz0Xcy7yvHKtrTUh1FDQ/BdrQKlZpa/cnHPOWXVuz7ZcJGmyopaEoPeee+4JN9n4WtDDDjus3TrBk0aa+GONGDXH3blZiYCJfIqvO23NvrAMzbux6ZD+hd1FnDOUdBNI0/Qe84B+npwj4Lyptl+UCQYjxWZTBsp1daSZoG6ZZZYJrQmcqwSnBE88xNWaLaAjMWiSGlm2zety6WJD3tPHu6s/6FGW4qA1rjdce5rBPsdzkOPDw3prromx+0UMiHv6VEhdVdcurVInvk+eiyXNXAyeiP2YuBHxGXPu0ZTY1qdm1htv6NxAeLdzR4xIrXYB5l3Z1H6CQQ00qbYXBg+wTyD46q6jPOONLu4Lk1PHPm3NoMYnviObvCd/ult/aeZ7BX2i4/RgTLfDDZzzhlaEWjWDPODFv9PvupGpgrrK/pNupmLjffTsK9MDxX6w7aWRICg+DJP/BJw0I/Ng2V1q8OKgSbAPcXR7o3gAiPNyckziSwxagwn849RVBLYdMeBNtRmEShUukrwNg9rIGHTQn5I+lDRF8nf6OMYbcltwE6aWENQOlI86rqQ49Upb0f+NJigwqKFaE39xEEajF2qat+LNhj6occ7Q7oibVWx+pgsDwWQzx4DvMsAl1njTtE2tYHerDWZy+fjAwnRLBAT0EaW5lwczZlyoZYYZZijVlJKPzdaCdTbOA4Lx2K2gPWpzY80wZaTRwYicT3FZrlPdJQAFaWWeTwJ5WgXoGkQ5agR5RJnhmgzeLlQ+cLQZTMtEv/sYhDb6dja1H4NQqUpwxqhxLpiM7GZAD5PTE6jRf4l+Yu3R7FV85R4Bab0aNi7aNAEy52Z7KM4lSb/RahNTU1sQb5aM4m8kAKMpntHE5BO1RhdeeGGbR/x3FvY/HnNqb5h3lb65jdZcUYZYhmXjVGCNvEqyK+H4x5pOjudtt90WgrBHHnkk/J2WgXp9+3jQYoqwWI6Yf7TWq0C7Is7ROG1OrB1vr/7GjcyJi+JASWadqPd2N/rwxgegzsb1jj6s1N6Crhw84Dey3+Q7AykpO6yHeV3jm65ae17zJjLWxfnMurtL7XxPYRAqVcBFibkOY20nzfBxEAADL9ry9F1E4EftEJizjqbNahdjagsYrUs/zlrvfmZ5BjkxiKQ4BUkl1Hwy5U69JmKCB/rGgRqwRqYyIQ8JWqitAP3WGNTVSK0HaSZgKw5A6EzsC0EoA7tA3u6///5h8Fq9AIC8YoaF+++/v1R+CMS6U+1VRNcNyj77xSAdBiTRJ5Sysf7669fdJ4Kn/v37h1pyAoozzjgjBCGNzIUYg3l+2rtMEFQzCLHeAxbpZA5RHtzYVwYCtUcNMwE+66aGuZG8iLV3nEvMbVntnGJf6MPOQw+tOV0FASivAyUPOT84l6jdrZX3BOmUN2YGIY/IA/rltwXbZxaEWDvPdT7W7Dc6RVa9a4BqMwiVqiAg420poLaBCw79NbnwtWZOukqoVaK2ML4dgxGuNPVyU4nN7rGGhP6b9P/iRlnrVXoswxM9/de44VNzSkDHhTuuk/VTi8XFnxoSLsYEEdVqsqitiXM/0mRFQE564wT71CJQ21J+MabJ+ZBDDgn5Rv7tueeeYUQxr24s7mNcDzWlrIebATUUjNqPE0J3hem7OAYEUBwTasYJspl/lRsR+cHn/PB/8oTBX9Son3feeeFz+kTyjnvyoztiJHKsOaIvH/PPctwoG/w0EljTRYNywAMYNfqUaWaj4CGsvEyQZzxIsS0CVoL3/fbbr91rT5kPmEGBPCBQ9jjfimlhH+OcnKecckr4nX7CsXtCW/CQRtkCtcucj/FcZT9pfiaf4rlFHpNOjgVopeHhLj5wFtPL4CUephnI1JXKHNc7prlaYIEFwu88fNPFiYc7zvc4dRP7wXHgmkdLAn3mCVp56GEaPV5R29aHOdbBTAO03PCAQ7rYFt2kKpVHuiNRXpgtgXmYSZN9SVuve7UHSQlRa8PTOlMXxUCIt8csuuii7VaLFWvYCOp4DSg3W5o1udky9xxNttQQcHFmcA+/EwQT4MQJ8yutkyYqbkLcnKg9pd8Y/RDjyF4CSfpVEQxycaUv31577VW1i0FsQiYdBIoDBgwIb89hkmZGS1ObyrqpqSi/2RGoMQ3VkUceGW4g/EsARy0SQRlNmqSJGjXe+kIeEJCQLmreusobQ8jX5ZdfPgSUu+++ewji2e/HHnssPLBQQxjf/kIQw/ukeXUpNyiWZYosJhVnuqPuWAtabCGgNooHs/jaTR5gYk15PZQx5uEkj5h3k7JB2SPIpEwQlFGGKGcEAvQdpbzG/srkdXvXPBGA8EDItpg5gpoxznPSQtmnPBLI0cJAsMf5xduV2mNAEEEQD6KUDfaXvOR3HnbYb84z5tj9xz/+UVqGGnlaROLcrUwjR9cGzhceGAla6SbB/KY8EC2xxBJhhD9TS3UVtDIRyPEQQr7y8M2DM9eq+eabLwTmXBcI+OhPzfnGtYC31LEffLc9ziPWwcMuZZmHTMoZec15TnnkvKZsk498hxplZk2JDwY8iHSVa1S3lEsjiGeeeSYfY4wxuHvlO+64Y/7XX3/VXebHH3/Ml1566bDMKKOMkl922WUNLcd3jj/++NJyN910U83vDho0KF9vvfXy0UcfPSxT/jPSSCPlffr0yc8666z8+++/z7fZZpvweb9+/fKhQ4cOt84PP/ww33zzzfPxxhsv79WrV8V18jP22GPnW2yxRf7ee+/V3a9ffvkl33vvvUt5WP6z8sor57/++mvFZX///ff85ptvzhdaaKF81FFHrZqeuK/jjz9+vuqqq+YDBw6smq4hQ4bkk08+eVhm4403DttIYdiwYfmLL76Yb7jhhvm4445bM3/ZlymnnDLfZ599wjFppOxEt912Wz7aaKOF9Zx55pkNL8t3Y7m74447Kn6HdQ0YMKBUBp5//vmG00U5WH755Uv7OMkkk+RvvPFGw8vH7bOeCy+8MJ911llDWmuViZFHHjlsZ6ONNspfeumlqnnx5JNPhv1hmQMPPLDhPKPsnHvuufnMM89cMy38be655w5l+c8//6y6b3vttVf4/jjjjBPKSr28eP/99/Plllsu7GelMnTiiSe22Bf+/91334V9nGCCCaqml7/tuuuu+SeffBKuXZRV8nHw4MFV03LooYeGZTnPH3/88Ybyr5iP66+/flieck+Zr7fvpGXrrbeue63q3bt3vtRSS+X3339//scff+Tt7bfffsuvueaafN555617jeI4kbdrrrlmyKNq5ezNN9/MJ5poorBM//79q5aZcg888EDpXnDsscc2dd3obqwJ1QiD2g1qDKhFpDan0Y7rzJ9Jf0aalqmhaPTpm4m4qVWh6bzWNCKsj36hNKvxfnX62tEkxxN57DNKDdw666xT6rvEG2xADWalNzZRQ0NtIyPSmUaGKU2YfonaK2p26IdGUxjNScwzSC1Qvf2itojaH/aLflPUWFJDTM0ENRfUaFSbnoc0kmZqY6ihoQaRWk9qFqgpJI+oRaSfFzWGjJ5lRDpprZYu5iH9+9//HmqKqT1ury4SjdTkURPF1F3UijBdDvlLrSf5S201aWNf2I84d2azr3mkRoimPmreGMjRKL5LzRl5V+uVsquttlroRkAXDGrjGkU5oCmUGiKOPzNJ0DTdDPKBY04TOMeO8hBbAmKzPLWhjF6mtpyySs0k+VjrDTmcK5QJ9osm60ZRPjlXOb9JC2WUvpSkhVou8ogabI7lyiuvHGrpah1LzitqKCkH9Wa8YD18h6Z+3mpE32HKErVs7D/5W973kWVoQaBVgcE5vMWNmkRqlUkvy1H2+BvdJDg3OM8pF5xnsfm/Ekb/UyNLcz/nYDPYDt1PqI3lWMT5QGvtO7MqUOu46667hv6tDFLinKYlh+sJ1132gdYhanSpleyIlgS2xVy41GxyHaYccP2kxp5aUMortbeU+3iNIu21rp18n3sO+UnNbaODWfv27RvKMX2V45zVPVUvItHOToSUQrFvTzMBQeybFEeyN7scGt1eXIaLXlyWmy43yeLysX8SF/166419QPmJ+8FyrLM1I/zjtmN/KdYR09foPvIT+1DGSadJE/vaTF7F/GokHzpKpfxlH9iXtqSrNeWnmeVaW66Ly/Jve+R9ebmP5SqWiWbLVrPneK20oNnj2ZZrRixLiOdpveVjemNf2Urnd6Npam25Ky5POuKyzZaruB/l16pm19UWxf6onXGNytt4DLoTg1BJkiQl5+h4SZIkJWcQKkmSpOQMQiVJkpScQagkSZKSMwiVJElScgahkiRJSs4gVJIkSckZhEqSJCk5g1BJkiQlZxAqSZKk5AxCJUmSlJxBqCRJkpIzCJUkSVJyBqGSJElKziBUkiRJyRmESpIkKTmDUEmSJCVnECpJkqTkDEIlSZKUnEGoJEmSkjMIlSRJUnKjpN+kJHUdf/31V/b7779nI488cjbKKKNkvXr16uwkST1enufZH3/8kf3666/hHOTcG2OMMcJ5OKLL/5c35Evv3r179DXJIFTSCH2xv+KKK7Krrroqm3LKKbOTTz45m3DCCTs7WVKPPue+/vrr7IYbbsjuueee7P333w+B6AQTTJDNO++82Q477JDNPffcPTrwqmfw4MHZQQcdlP3000/ZgAEDsuWWW67H5odBqDQCXPTRUy9ibUFNw8CBA8PNcKKJJsoOOOCAqkEo3+WmgLHHHjsbaSR7M3UGjsPPP/8c/uU4dOeas3hudtfzk/QPHTo0tCSMNdZY2aijjlr3+0OGDMm23nrr7PHHHw/HsOiJJ54IQel//vOfUDPK9wlQf/vtt1BLSq3giFDGhgwZkt12221h3/v16xeC0J7Kq6jUg3344YfZ7rvvnm233XbZU0891dnJ6ba4GV577bXZCiuskC2//PLZdddd1yKAUBrkOTfnlVZaKRyHSy+9tFseB9L80ksvZbvuumsIyE499dQQzHU3b775ZrbOOutkyyyzTHbggQeGYLEWgipq+B599NHw+6KLLpodccQR2Zlnnpnts88+2QILLBAe7mJw+sknn2SbbrpptvTSS2c77bRT9sMPPyQ5NnfeeWcoYwR/F1xwQbcsY92FNaFSD/bqq69m55xzTrio9+nTJ1z01Txqemi2f/bZZ8PvV199dbbeeutlo402WmcnbYTy559/hq4T8YGKY7LZZptlo48+etad0N/vqKOOym666abwO7V888wzTwisu5N77703u++++8L/P//88/DAO+2001b8LoHcCy+8kN1xxx3hd4K8yy+/PLRARLQ08BNrVJ988sns9ttvD8f93XffzXbbbbdsvvnm69B9GjZsWHbNNde0KGNbbbVVOEZqf9aESj1Y8Qm+s5/m2f6gQYOy+++/P3v55ZeHa4rr6opNctwku2PzaXdHnveE40Bza6wNBLWgN954Y6edE2z/scceyx588MHQX7PRawVN5hHHpV6z9cMPPxyCTJrVd9lllxCAcvzizzjjjJNNMcUUpWNaHChIDWlxe6nKmIMVO5Y1oZKS1Sbut99+2c0335zNOeec2UMPPdSiFqQro8bz73//ewgSuBny/xQ3RLVEcEDXEvrrUWO14447drva6NjcS7BHP0r6HFKLSL9k/iUIS+3555/PVl111eyXX34JXQOocWzEaqutFmqiv/jii2yVVVbJJp100pr7/eKLL4b/jzvuuGEQUr3gbokllsi22WabMFBn8cUXz2acccaso3F+9+/fP/v+++9DjTXlLVVf1BGRV1FJSXATIniINS8EEd0FN0tu0rG5lMDH2pH0yPNll102W3LJJUN56o7HoVjrudRSS4Vg7Pjjj88++OCD8GC28cYbJ98n+mrGKYEIRBs13XTTZZdcckk4lzkWtQbrcbw+++yz8P/xxx8/G3PMMeuuf+KJJ87OPvvs0BxPrXeKAULkPceFrkvdtYx1JzbHS1IDuBFRI9LT5+3r6sh7AoPuehxeeeWVMCiJgI1BPX/7299CzSCB1vXXXx+Cwe6C/Cc4pE9uvdki2D9aQ9DofKCsnxYH1p9yhHp3L2PdiUGoJEkJUNPIYCRaBCaZZJIw28Lss8+ezT///OHv9Mukv2hP3ffY59XATpHN8ZJKAxGohYkd8eONgr9x8/j222/DzZMaCWpuGERQ74ZSb2BUtQEQ9W5Scbkff/wx/JBuamRIUyPpag22SW1OM4MVinlHMye/U7tC/tUbbdtIHvDDtDXkQWwSHW+88UpNnY2mkWX5t7hfMY9pPib97Ds1Ukwq3pYBQXG95Af97qgdY32kmz6S9dJdLb2NbJN9Ib+YSojlOAZsN47G7ujg6JtvvimNDqe/IzNWcD6tu+662SOPPJJ9+eWX2V133ZXNMsssDaclloPYZF08fnxG31P2lzLBsWu0RrHSuVmepli+OR6V8rDeAKd62yjft0ppqLVelvvuu+9CWWM5yhddAai17agyRtcGynUsY5wzbDNVGetuDEIlhRvJ6aefHiaJXnDBBbMTTzwx3Ky4aTNilqlUaEIkGOGiPPnkk4eBAnTg5+0m1W5sTGlEfzcCDbbBFC349NNPs80333y4QSXcJNl2tcEZcXJsbtg0XbI+btxc8AnuGBhBrRJzC3KTb88BBc8991yY45A0sE/kUzV8hxsRA1BI5xtvvBHyLk5+Pdlkk5VGBlfqj7bXXntVnfg7rpupcehb+Nprr4VAg0CcoIpjw76TB0xnU28AFZOD77nnniGQPfzww8P2SSefMx0S+8D/OYYE+DPMMEO24YYbhmZkbq7NBEus45lnngnzrD799NOhHHDT5jjxxqqFFloorHuRRRap2hTKtGP77rtvWBfpZQ7JWtsk36lhJLijDLNNHqYIRHgYIBBceeWVw3aZXqijggTSwmTsDLLhfGGKL/6N/Y2PPvroUJY5pgyGoZw0grJPueRcW3/99cOxJIDi91NOOSWUW/aXYJsBgWxnpplmyo477rgwIIl0ffXVV6VuAMy9Sn4Vkca11lornO/FZnfydo899gjlg/LG246KQfADDzwQ5gAlPZSpd955J/yN6ZY22mijFmWT8k65Lx5PznUGMzKbBlM6MRdpvfLMdj766KNQ48wxZ1ucL6SLF1EQ4LMvq6++ejgPKx1vzlfmLaVsHnzwwaEfcrVywX4S6DL5PtvjmkTfV2YBiGWMckX62WfKm4FoQS6px7rjjjvykUYaiUf0/PDDD6/6vd9++y1fe+21w/dmm222fOjQofm7776bb7TRRvnoo48ePuenV69epf/zM+mkk+bnn39+/scff1Rc7z//+c/hlqn107t37/yRRx6puK6//vorf/311/N11123RZoq/Yw11lh5//79808++SQsV82ff/6Zb7311mGZiSaaKH/rrbeqfvfyyy8Pecn+XHHFFVW/x/ZeffXVfIUVVshHGWWUFnnXSF7MN998+Y8//lhx3cOGDcufeOKJfOmll85HHXXUmuuZYIIJ8oMOOij/7rvvaubB448/no899thhGY7l77//nl955ZX5jDPOWEpvedrZrxVXXDEfNGhQzXUX8+TTTz/Nd9hhh3ycccapmW7SssUWW+Tvv/9+xXXffPPNpX0/++yzq27z119/zS+++OKQn6ONNlrNbbJvffv2DedLI/vTGpQ19ovtTTPNNPmHH35Y+ht5TrmO+//kk082nI5vvvkmn3vuucOynMOUkauvvjqfbLLJKu4refb111/ns846a8PnJT+rr756yNOiwYMHl7az2WabtbgOkP5//OMfTW3jyCOPbLH+L7/8MhwX/rbsssvmv/zyS828IB85N2eeeeaa59rII48c8uzWW28Nx6Xc7bffXiozp512WtVjwXXzsssuy+eff/6GyhjpYpsco1ruvffe0jXuhBNO6LAy2RVYEyqp4lQqO++8c6iBoAaFJ/g11lgjjFblLSa8PYgpZZiahRoDavVoUix/wl9xxRXDdEbUslAbwuTWH3/8cahRozaivEmamtDZZputYpqoxdpiiy1CzR81DNTqMLCD2j6a2UgLtRHU3PGmqIsvvjhs67LLLqs5dUx7o08ftUIMQCGd1OpR6xv366233gq1NNTmxu4P1MTF2l9G5VaafJ08IM+pbaKmh+X47pprrhnyglplPmcuxrvvvjvUbp1wwgmhVuaMM84oNXXXa0qkhozaaGqhmECd0dq8yYYaJmovqSmjdomaWN5iw8Te1V51GtdNGngzEMvwOzVD1EQtvPDCoaaIGkAmJufv1FQyQTjL8H5x/t4a5DFlmH2iVpG84s0+5BVlmpoqyhS1/5Qpjgt5y+TojFhvbxwbWhXAm3iosY44ltQs33rrrSFdTGNG3jRTy1wsI8zBSdM/tdbUsrK/7B+1ovyf84/vcH6D84TlOMbU8JfvP+mgjNabDqu8eZ1rBuWQc58f3nbF75znlNvi+sgDykSj6y5H0/u5554bXr1L8zvdDzje9Lul9pGac2rRKWMcd85Ppn/ixRN8p1ZNZzUcL65vnCucX5zr1OTONddcoZWAGmjymDL23//+N9QEM60Yy9VqSRmhdHYULKlr1YRSg8YTO/9fYIEF8oceeijUMEQ8lf/888/5UUcdVaqRorbpq6++qpkWaldXWmml8H1q2T7//POG9oHtUaO56KKLhmWpcRgwYEDFWk5qGN54441QaxNr7/baa6+qNbXtXRNKPm2//fZhfXyX2lhqc4rp5P8//PBDfsghh4T8Y32bb775cLVM5Xnw2muv5TPMMENY97jjjhtqSKgFK88D9vWpp57KF1poofBdtnHmmWdWrX2hJpSaY74777zzhvwdY4wx8v322y//7LPPhks76eB4xxrRs846q2ZNDWVrxx13LB2PVVZZJX/zzTeHSw/pJv/57phjjhnKYaXj0WhN6NFHHx32a4MNNgi16z/99NNw6eT3jz76KHwn1pxtu+22VctLa7GdCy+8MJQJ8uw///nPcGkhHdNOO21Iw+yzzx5qKxtBGZhrrrnCcvPMM09oyWBfVltttfztt98u5TNlk3OuUm3ifffdF1ohWMdxxx3XcM1beU1o8TpRju0uuOCCpXRSQ19PsSa0X79+VWtCSe/9998fygzfJU3UBpd/n+99++23+SWXXJLPNNNM4btHHHHEcPtbrAk99dRTq+bHiSeeGMrYeuutF66TtGBUKmNcqzbZZJNSGdtyyy1r5tW9I1BNqEGo1IO1JgiNPzR/0SRf7QJIIMqNLgY6NDPVuli2NgjlJnrwwQeH/eBnn332CeuqhjR8/PHHoYmMbU044YT5iy++mCQIJQBmPfFGyz5WypMYiK688sql7gMEjtUQoHKTj0E4gV+tQIn1v/LKK6HZl2W44ZIn9YLQ2Bx8xhlnhDJRLe0ELbEJf7HFFgtloZqBAweW1k8QQrBVrZzwOdslf9dZZ50QhLQ2CB0yZEj+2GOPhbyrVS75G+W8T58+YZ3TTTddw2WzUQRD8VjPMsssFdfP8eShJQb3nE/NBqHxh4CN491o8NLdg1CCP65XfI8HKMpPrSZv9o9zfcMNN8xvuOGGVgehdBl59NFHw/WoXhl77733Sg+RnJd0T6lmRApCnaJJ0nBourzooovCZNTVmqloSqd5nGY0mpVpXu4INP8zMIqmQppSBwwYUPNd4aSXpm0GaJA2Bk/QDNjRr0TkoZ7magYpgOZVpuGplH98RhMxg2H4P82H1fKP9dKUF0dVM2E+Tdu1BmiwzjnmmCPbdtttw/9pPqeZvl6TJoOBjjzyyNDEWG2Sbj5jUFqcVujtt98O3R+qNZEymTnNkqyPplIGIFUrU3F+xk022SQMimrLG7Uou3FwWq1mbf5Gcy37BJqLaZ5uL+Q5eUTZAE2/dGspFwcrsf/kG10R4mwMzZh66qnDW4+Kr7/s6chbunOAbgPkY615S8mXmWeeOXTVWXvttVudT3Qr4cUJXI/qlbFpppkmDPoDAwmrnTMjGoNQSS3Ql+m0006rGYCCv9FvLU6JxIjS9n4/PesbOHBg6YJN30pGtNZD2uh3x3dZB33xWnNDbxajhOn7xg2Q/pT10sgckXyXNL733ntV848+ZAS3jCBmhHIjb5uJI5r5LgH4/fffX3cZRlfTj7LayPziA8hiiy0W/k+QTz/OSuiny/FD3759wzFp5IZPnrCNVEEU2+EBBzxQke72xPFjhDbBCv2YqwX39CkkOAIjy5sNhglg//GPf4QZK0aUAJSyTf7S95cHsy233LLmQ2oUp09K9frdYhnjWsQrWmUQKqkMNXTUpjRyE2PQSKzViXM+tvcN5tFHHw3/EpT069ev4Zsrg2WoqQCvRGQKoo5EAMmNMNZq1asdid+LuDFVCkLJ0zhlDjWDjQ5Y4TtTTTVVqI3FoEGDwnQ+tfDg0ci72GPtIcEix4baw0p4MGHQEQiweMDpqmLamn11ZT2Uu1tuuSUcWwJMBqRUO36UWQYSgYFZcSBXoxj8Ru16vbcX9SQcK6aaiucHNfRdNQCPZYxj2p5lrDtzdLykVqMWIY66Jlhq79pGgiYCmXgBZ1uxubse0hNHVjPimOXa0rxbDzc+Rv3G2jSCL242tW6INJPHIKPSvKEg3dSSIo6gbzQPCIrj8WG0NKN4G6klagR5G9Nb6YbKfjEaOAa+HTHivC3iROiVHgjas0afAIlR2Ygj1WuhpvRf//pX6MLAHLN0eWl0vltqvdtzbtzugLIX3zJFk3d86OrKZaz88xGZQaikViMIibUu1CC194WVoDY29dKPilqeRpvPYhM3aCLv6Hdykxc0wRPkEfwx5U2t9BIkx76q3Jyq1XByk2XfQd9CprFptKaL/WZydMRpstpLcb+qrbcYiFd7AUFHi2+/oW8xwSD9aykX1FAWa595IGhvbJe+nQTi1OTT/7BeX0Wa0mm2pZ8jE/sztRKfqTKOIwF7fFBtr4es1pQxrlWxjBEYl5exeD3S/2cQKqnL4gIea9II2pjPsTWoHUnRFEyTM82BvBmHuQGZO5V+meWBB4Enf6cvG3iLC4NoKmG/YwDNzZYbXGvQNF/vVaHtiRtv7AJBkJ2yj2dEYMDcmGeffXboY0kTd0cPUCuibylztoKmeI5BfKColW+8oYcAlBpvygjzTnbVJubOxjkRjyldiTqjjDGv8llnnRX6XROIpixj3Z1BqKRugUFGRx11VMOvM4wIAOkrl2LCepqoGRhBEMo7ypmYmu4ENLEyKpxgjMEmTKT+z3/+MwRpBGf7779/xRHT5RjIxHfrDRwqx3aZcL6RAU3tKd6MOyOAIninWfuYY44JNbKUAyaIJ+Cn2ZZm8WJtLsE9gWp7IZh86KGHSoPqqGldZZVVGlqWshNrz+hPuttuu9Vtxh9RFQO+1OWMh8Pzzz8/zCjBAwdljOsUg/AqlTEeounnq//PIFRSl8UFPAZc9HWjKbq1zbopblAEO7xRCKSbGxOjlU8++eTQX5Q0ULtFbRhBBkErf+etRNWwnngj4/tMP1Pr7Ue1pLxJs60Y9FKjTX/Uen1k2wvb4a1evGuc7RJ88g5y8o6HgUpdJAgm2jMIpYbsuuuuK9Vi0y/5zTffbHo9BC7U5jY6s8CIhoe42NJAHqdCGbvxxhtDuaLLDMEnb49jajbKWKUHRa4NBqEtGYRK6rIIFqjBpH8VNxhqiLjAd9UaGW4yzz77bLgh8cpMXlPK9FAMCmL2AHDDZBQ0ze+77rpraHqt1c+VmywBLLWmrCe+hrI7iAPB4qs7U4mvLCUApRsGc5WutNJKVftjdkRwTM0nr5EFtdDbbbddi8FP9fBqSV5DyT5Qc045MQgdHg9mcUYHpgsjv1LU+HMuHn/88SEAJQ0XXnhhGHhW7Rg7EKkyg1BJXRY3F5q24iTwvH971llnzboi+q4yCIUaMAagMKcp75CnjxgDihgYw99icx3TYFWbEL6IJj2a9phminURYDXSdN/Z2K845RNN4y+88EKybTMinSmpsOKKK4YJ4lNOW0TAcdddd4VjRT7QRYOuGc3OOUu/YcoN/UqpVS++b17/h4CTvra0QtD1gXyi3HU0HhIYNAZqqZkkv5mHDP2fEWcyMUmdLgYCBGONjNTmos7bm+J8lNQqdtVO/9TCxNo+boqkmSY55iolCCIQ2WabbbLVVlstm3HGGeu+yadYE7rQQguF/1PrQu1ad6lVYZR3fJnBU089FfKoo5E3PKzEAW0MFGskOGjPPOU4UXvJOqn1phaWY93MD2WI2s8YkDbyxqvWKuZPe8/129FoFWDgFgj6aYno6POD9dO3O84LPN988yWb9L6nMQiVlARBWWwmK06rUgs3Y15TyY0c1DQSYHTFIIyAM/YDu/3220NNXJwPsPynWWuuuWYIRgncedVgR0+8317oOkFTNKgNbnTydfaTm3xr550tbqPeBP3xJQOMRm8P8TWrjJgGU2/NMMMMTa+HskQfVoIb8oM5QztqmjHOy/iA2N3e5EMAzYAv0k8+/fvf/w5N8o0cJx6KaGFpzTnZbBnjO/HVrfr/DEIlJcFNNTYn0j8yBmn1UGvI6yTBMkcccUTDAxCoNeW77Tk/ZjX024w1XtTG8H/e3c6Ift7lfd5552VXXHFFGKzCiGdqdRl0Qj/XWrW78XWOyyyzTPidd2SffvrpdW98EftOHnRG4M6cjUy2TiBFAHX00Ue3mKC/HJ+T1jPOOCM0ccbmzmZRixgnbWeEerW307A98p/BYZdffnnWXm6++ebwoECAxDRdzc5mEPFe8umnnz78nzeHddQ8k/S7jvlFmYw1fN0FD6p0cQEPOpxntc55/sZDBwMdOTdb+4AV5ySllrrWQzVl4dBDDw19k9WSQaikJAimaFbmX2q4Lr744lJwFCd7pjm7vLaHGo4BAwaEmwzfo6Zjp512CjfLOBF0+Q9BBzVRXPi5QcVaqY5EwHHwwQeH6ZgIuggYGKh02GGHhfSTZprkGQlPUM0NcKmllgqBxiGHHFLz3fHUVLFu5jtln4877rjsgAMOCMvElwSU/xBc0XS/1157hQETcaqglDjW1OIuvfTS4Xcm8t5qq61CkF5+7GgGpqaIoJV9o/9ra15tyDZpgo/9ApkuizkcWVdxe5S3119/PTwoEPS21+AkateoCQfHi/LX2vXS95eHmdjUfOedd3bIwwQDyOI76+lPS1BVLFcEWGy/K7ZAxCB6zz33DP2PeThjVgQGdfGwWzzm7BN9bE888cRwnvJA15qaUI4nbwCLNdwEtKeddlrIp/LtMUUbg9KYko3fHVzWkp0YJCVD30gu3LzFh9oiAgP6SBLAESwQhFAjFftAgov2TDPNFOZ8pE8l/eOuvPLKUOOx2GKLhe9SK8H3uOlQe8aNlIs/QS41PCn6Isa3AjEgibSxbWrkGFjEjTH+xOCLYJtAkaZbgjP6EHLjJGArv1HxO/vKjYybLVM8URvKFDGMsifoIuBhvfyN4IqBQDSB0zRJMNNI94eOwMjhU045JQTfHBsCY4Ji9pOmakavE+Bw/OP8qjx4EKQzp2drgxIC/9133z3U6vEwwkTilDX+Rl6wLQb80PzMZwQKBKuNNOVWQ/4T2PC6UvCQwQC01uK4U5NKDRrnCt1Rdthhh3Yf/U2/3Q022CCcN5Rb8oJyzIMf3SIYZEWLBCPA40j0roR8Ir08bF5wwQVh5DoPX+Rbv379Qm0y5xsPrgMHDgyzbRAQcmwIRlsTGBK477vvvtnOO+8cygxzhbJuyi2DDzlelAXyjodrzkGO3TnnnJN0KqmuziBUUps0cwEnKDv22GPD1ESMZr3jjjvCT8TNtVLTNNvgZkKgRkDBfI6MgqVZm59KCGS4yRD8EOx0tDg5OYEPNxkCEAJnAmT2iR9q3/iXYJTA65VXXgkB9SOPPBLmkOSGxus+KwUu7M8mm2wSAl1qTpk7ktrNa665JvxUQnBPILf99tvX7JcYj2FH1NLE15mSRm7a1LIRJDDym5/y75JfPGwQRBDAVktrrfSSV9Q6U8t10kknhbJGEMoPy8SaL/KHIJ4yybYIENqC48uDAQEPaSCAbEvQRlrpU8uMEDxUMCKbB4wFF1xwuO+1Bcv3798/DB7jfCLwZIqrokbm5+3IWr566+baQZp5GOM48jBGUM1POfpX073l8MMPL7XONLtdji+zX/CAy1RNXI/oYsNPeRljcCVljLTxoKn/zyBU6sFoYqOGg6CHoKgaLpTUEnETpdax0VdccjGnJoG+ntTU1XtvMxdnmqJpKr3ooovCDYKbBTdqPuMVlwQs1ZZlFCp9Kqlh4L3r1HwwUImaLW4KcToj3pBETRt9KWMtaSUswxQ+BIQEftwkqmEELgNFuLnE0bhF1HZQS8kNnL9TC0PgV23b1M4QTHB8CM6YLJ3aWwagsJ5Ky3Gc6CvJcgRzNPtSi0oTI7Ux9D2kb2qfPn3CyHRutAQxtfaL0fscE26m1V4dWskcc8wR8oMyU+2YlQeiPEQQCFILTrqphSQoJ83UuvGgscYaa4SywLGplAd8j+3SfE95qIYytffee4epcwj0qYFlmiuWo3yTP6yHck+5IVDldx4gWjsNGGWD84d1kq+UrbYibXRPoIWA418+1RTBF8Eu5Z5zPPbtbBbHgHOS1grOLfruct1gUCDHjoer8r6t/I3J2WmdqDUPazweXCuoJSQoa+Qd77yUgWPCwxrdGur1raVGl+4vpImXFVDbTdq4PnCt4phw7nCd4cG02qtkeXDjnOCcKg/4i0gP+cJxph9qLGPUvscyxrGhdpTfudaxP7TY8Pazaqh15nukm2tYT9Yr76qdPCS1Gad3bP7lglnriZ9ggBoc+jNWCwAqIQhhG3H9zSzHRTbWGnFT4qfR5UkvNwlulHEQAmlvdj2xPyI3eH6qLReb0FEpL2kGZC5I1sEIdmotG00DwTRBMwHQ1ltvHdZVb8qX2Ocs5kHsb8Zy3FwbmYM0rofjx/KNLtNIftRajuNFcyX5HssmwVQj62mmTEfsG9sjOGA58ogAp7h8a9Zb63yoV56aEcso66qUtuI52Nb5UONIbsoV+RaPTaV9iceSn3rbjv0k4zWm0WmzSENr9o1l2Ye4H/EaU3zDUnuXMbZFGeP/1cpYbA2ptd68ncpid2BNqNSDxZtWI7gwt6YWJd5sW7NcpebWRpFeLvKtfYVlMY8a2W++V61plZsKo5fjvJCLL754UzcO5jokDc2MYmf95CHLtuUNSs2UkfLlWtPUHAPl1h771qSXslIvn1qbD+11PrSljLbnNtlWfJBr9Fg2MkdmfEBt5hoTy3hr9i2+NrY1/WdbW8bqXY9ifnXE9rsrR8dLUhvFqaDAzaOZmyZBJ1NPxdd60hTnm1ckjQgMQiWpjQga48ANBihQK9rIm50IQOmLyFyFNL9RO8jE2z25+U2SIoNQSWojgkYGXdD0R583BhrRrzPOe1o+l2fsD8uoeEbYMtqf5rzNNtus7iAfSeopHJgkSe2AgSOMzKVWk4Ed1I4yYplJrZmlgNHHfMbfGNEf5zJlwAz9xDbaaKMw4TXzD1oTKmlEYBAqSe0gvoP86quvDm/gIcAkMK2FgT1MB8Soet4UxMAZA1BJIwqDUElqR1xSmXOTyeSZp5C3FvEKyvhKP5rsmVeV+S6Zl5PJsqklNfiUNKIxCJWkDlKcgzNeagk26f9JE7yBp6QRmUGoJEmSknN0vCRJkpIzCJUkSVJyBqGSJElKziBUkiRJyRmESpIkKTmDUEmSJCVnECpJkqTkDEIlSZKUnEGoJEmSkjMIlSRJUnIGoZIkSUrOIFSSJEnJGYRKkiQpOYNQSZIkJWcQKkmSpOQMQiVJkpScQagkSZKSMwiVJElScgahkiRJSs4gVJIkSckZhEqSJCk5g1BJkiQlZxAqSZKk5AxCJUmSlJxBqCRJkpIzCJUkSVJyBqGSJElKziBUkiRJyRmESpIkKTmDUEmSJCVnECpJkqTkDEIlSZKUnEGoJEmSkjMIlSRJUnIGoZIkSUrOIFSSJEnJGYRKkiQpOYNQSZIkJWcQKkmSpOQMQiVJkpScQagkSZKSMwiVJElScgahkiRJSs4gVJIkSckZhEqSJCk5g1BJkiQlZxAqSZKk5AxCJUmSlJxBqCRJkpIzCJUkSVJyBqGSJElKziBUkiRJyRmESpIkKTmDUEmSJCVnECpJkqTkDEIlSZKUnEGoJEmSkjMIlSRJUnIGoZIkSUrOIFSSJEnJGYRKkiQpOYNQSZIkJWcQKkmSpOQMQiVJkpScQagkSZKSMwiVJElScgahkiRJSs4gVJIkSckZhEqSJCk5g1BJkiQlZxAqSZKk5AxCJUmSlJxBqCRJkpIzCJUkSVJyBqGSJElKziBUkiRJyRmESpIkKTmDUEmSJCVnECpJkqTkDEIlSZKUnEGoJEmSkjMIlSRJUnIGoZIkSUrOIFSSJEnJGYRKkiQpOYNQSZIkJWcQKkmSpOQMQiVJkpScQagkSZKSMwiVJElScgahkiRJSs4gVJIkSckZhEqSJCk5g1BJkiQlZxAqSZKk5AxCJUmSlJxBqCRJkpIzCJUkSVJyBqGSJElKziBUkiRJyRmESpIkKTmDUEmSJCVnECpJkqTkDEIlSZKUnEGoJEmSkjMIlSRJUnIGoZIkSUrOIFSSJEnJGYRKkiQpOYNQSZIkJWcQKkmSpOQMQiVJkpScQagkSZKSMwiVJElScgahkiRJSs4gVJIkSckZhEqSJCk5g1BJkiQlZxAqSZKk5AxCJUmSlJxBqCRJkpIzCJUkSVJyBqGSJElKziBUkiRJyRmESpIkKTmDUEmSJCVnECpJkqTkDEIlSZKUnEGoJEmSkjMIlSRJUnIGoZIkSUrOIFSSJEnJGYRKkiQpOYNQSZIkJWcQKkmSpOQMQiVJkpScQagkSZKSMwiVJElScgahkiRJSs4gVJIkSckZhEqSJCk5g1BJkiQlZxAqSZKk5AxCJUmSlJxBqCRJkpIzCJUkSVJyBqGSJElKziBUkiRJyRmESpIkKTmDUEmSJCVnECpJkqTkDEIlSZKUnEGoJEmSkjMIlSRJUnIGoZIkSUrOIFSSJEnJGYRKkiQpOYNQSZIkJWcQKkmSpOQMQiVJkpScQagkSZKSMwiVJElScgahkiRJSs4gVJIkSckZhEqSJCk5g1BJkiQlZxAqSZKk5AxCJUmSlJxBqCRJkpIzCJUkSVJyBqGSJElKziBUkiRJyRmESpIkKTmDUEmSJCVnECpJkqTkDEIlSZKUnEGoJEmSkjMIlSRJUnIGoZIkSUrOIFSSJEnJGYRKkiQpOYNQSZIkJWcQKkmSpOQMQiVJkpScQagkSZKSMwiVJElScgahkiRJSs4gVJIkSckZhEqSJCk5g1BJkiQlZxAqSZKk5AxCJUmSlJxBqCRJkpIzCJUkSVJyBqGSJElKziBUkiRJyRmESpIkKTmDUEmSJCVnECpJkqTkDEIlSZKUnEGoJEmSkjMIlSRJUnIGoZIkSUrOIFSSJEnJGYRKkiQpOYNQSZIkJWcQKkmSpOQMQiVJkpScQagkSZKSMwiVJElScgahkiRJSs4gVJIkSckZhEqSJCk5g1BJkiQlZxAqSZKk5AxCJUmSlJxBqCRJkpIzCJUkSVJyBqGSJElKziBUkiRJyRmESpIkKTmDUEmSJCVnECpJkqTkDEIlSZKUnEGoJEmSkjMIlSRJUnIGoZIkSUrOIFSSJEnJGYRKkiQpOYNQSZIkJWcQKkmSpOQMQiVJkpScQagkSZKSMwiVJElScgahkiRJSs4gVJIkSckZhEqSJCk5g1BJkiQlZxAqSZKk5AxCJUmSlJxBqCRJkpIzCJUkSVJyBqGSJElKziBUkiRJyRmESpIkKTmDUEmSJCVnECpJkqTkDEIlSZKUnEGoJEmSkjMIlSRJUnIGoZIkSUrOIFSSJEnJGYRKkiQpOYNQSZIkJWcQKkmSpOQMQiVJkpScQagkSZKSMwiVJElScgahkiRJSs4gVJIkSckZhEqSJCk5g1BJkiQlZxAqSZKk5AxCJUmSlJxBqCRJkpIzCJUkSVJyBqGSJElKziBUkiRJyRmESpIkKTmDUEmSJCVnECpJkqTkDEIlSZKUnEGoJEmSkjMIlSRJUnIGoZIkSUrOIFSSJEnJGYRKkiQpOYNQSZIkJWcQKkmSpOQMQiVJkpScQagkSZKSMwiVJElScgahkiRJSs4gVJIkSckZhEqSJCk5g1BJkiQlZxAqSZKk5AxCJUmSlJxBqCRJkpIzCJUkSVJyBqGSJElKziBUkiRJyRmESpIkKTmDUEmSJCVnECpJkqTkDEIlSZKUnEGoJEmSkjMIlSRJUnIGoZIkSUrOIFSSJEnJGYRKkiQpOYNQSZIkJWcQKkmSpOQMQiVJkpScQagkSZKSMwiVJElScgahkiRJSs4gVJIkSckZhEqSJCk5g1BJkiQlZxAqSZKk5AxCJUmSlJxBqCRJkpIzCJUkSVJyBqGSJElKziBUkiRJyRmESpIkKTmDUEmSJCVnECpJkqTkDEIlSZKUnEGoJEmSkjMIlSRJUnIGoZIkSUrOIFSSJEnJGYRKkiQpOYNQSZIkJWcQKkmSpOQMQiVJkpScQagkSZKSMwiVJElScgahkiRJSs4gVJIkSckZhEqSJCk5g1BJkiQlZxAqSZKk5AxCJUmSlJxBqCRJkpIzCJUkSVJyBqGSJElKziBUkiRJyRmESpIkKTmDUEmSJCVnECpJkqTkDEIlSZKUnEGoJEmSkjMIlSRJUnIGoZIkSUrOIFSSJEnJGYRKkiQpOYNQSZIkJWcQKkmSpOQMQiVJkpScQagkSZKSMwiVJElScgahkiRJSs4gVJIkSckZhEqSJCk5g1BJkiQlZxAqSZKk5AxCJUmSlJxBqCRJkpIzCJUkSVJyBqGSJElKziBUkiRJyRmESpIkKTmDUEmSJCVnECpJkqTkDEIlSZKUnEGoJEmSkjMIlSRJUnIGoZIkSUrOIFSSJEnJGYRKkiQpOYNQSZIkJWcQKkmSpOQMQiVJkpScQagkSZKSMwiVJElScgahkiRJSs4gVJIkSckZhEqSJCk5g1BJkiQlZxAqSZKk5AxCJUmSlJxBqCRJkpIzCJUkSVJyBqGSJElKziBUkiRJyRmESpIkKTmDUEmSJCVnECpJkqTkDEIlSZKUnEGoJEmSkjMIlSRJUnIGoZIkSUrOIFSSJEnJGYRKkiQpOYNQSZIkJWcQKkmSpOQMQiVJkpScQagkSZKSMwiVJElScgahkiRJSs4gVJIkSckZhEqSJCk5g1BJkiQlZxAqSZKk5AxCJUmSlJxBqCRJkpIzCJUkSVJyBqGSJElKziBUkiRJyRmESpIkKTmDUEmSJCVnECpJkqTkDEIlSZKUnEGoJEmSkjMIlSRJUnIGoZIkSUrOIFSSJEnJGYRKkiQpOYNQSZIkJWcQKkmSpOQMQiVJkpScQagkSZKSMwiVJElScgahkiRJSs4gVJIkSckZhEqSJCk5g1BJkiQlZxAqSZKk5AxCJUmSlJxBqCRJkpIzCJUkSVJyBqGSJElKziBUkiRJyRmESpIkKTmDUEmSJCVnECpJkqTkDEIlSZKUnEGoJEmSkjMIlSRJUnIGoZIkSUrOIFSSJEnJGYRKkiQpOYNQSZIkJWcQKkmSpOQMQiVJkpScQagkSZKSMwiVJElScgahkiRJSs4gVJIkSckZhEqSJCk5g1BJkiQlZxAqSZKk5AxCJUmSlJxBqCRJkpIzCJUkSVJyBqGSJElKziBUkiRJyRmESpIkKTmDUEmSJCVnECpJkqTkDEIlSZKUnEGoJEmSkjMIlSRJUnIGoZIkSUrOIFSSJEnJGYRKkiQpOYNQSZIkJWcQKkmSpOQMQiVJkpScQagkSZKSMwiVJElScgahkiRJSs4gVJIkSckZhEqSJCk5g1BJkiQlZxAqSZKk5AxCJUmSlJxBqCRJkpIzCJUkSVJyBqGSJElKziBUkiRJyRmESpIkKTmDUEmSJCVnECpJkqTkDEIlSZKUnEGoJEmSkjMIlSRJUnIGoZIkSUrOIFSSJEnJGYRKkiQpOYNQSZIkJWcQKkmSpOQMQiVJkpScQagkSZKSMwiVJElScgahkiRJSs4gVJIkSckZhEqSJCk5g1BJkiQlZxAqSZKk5AxCJUmSlJxBqCRJkpIzCJUkSVJyBqGSJElKziBUkiRJyRmESpIkKTmDUEmSJCVnECpJkqTkDEIlSZKUnEGoJEmSkjMIlSRJUnIGoZIkSUrOIFSSJEnJGYRKkiQpOYNQSZIkJWcQKkmSpOQMQiVJkpScQagkSZKSMwiVJElScgahkiRJSs4gVJIkSckZhEqSJCk5g1BJkiQlZxAqSZKk5AxCJUmSlJxBqCRJkpIzCJUkSVJyBqGSJElKziBUkiRJyRmESpIkKTmDUEmSJCVnECpJkqTkDEIlSZKUnEGoJEmSkjMIlSRJUnIGoZIkSUrOIFSSJEnJGYRKkiQpOYNQSZIkZan9P2xdC153W0O/AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "def ocr_trocr(img):\n", + " img_gray = img.convert('L')\n", + " img_bin = ImageOps.autocontrast(img_gray, cutoff=1) # boost faint text\n", + " img_proc = img_bin.convert('RGB')\n", + "\n", + " # TrOCR expects a list of images\n", + " pixel_values = trocr_processor(images=[img_proc], return_tensors=\"pt\").pixel_values\n", + " \n", + " # Generate text\n", + " generated_ids = trocr_model.generate(pixel_values)\n", + " \n", + " plt.imshow(pixel_values[0].permute(1,2,0).cpu().numpy())\n", + " plt.title(\"Input to TrOCR (visualized)\")\n", + " plt.show()\n", + " # Decode\n", + " res = trocr_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]\n", + " \n", + " # Show image with OCR text as title\n", + " plt.figure(figsize=(10, 12))\n", + " plt.imshow(img_proc)\n", + " plt.axis('off')\n", + " plt.title(res, fontsize=10)\n", + " plt.show()\n", + " return res\n", + "\n", + "def ocr_paddle(img):\n", + " img_gray = img.convert('L')\n", + " img_bin = ImageOps.autocontrast(img_gray, cutoff=1) # boost faint text\n", + " img_proc = img_bin.convert('RGB')\n", + " result = paddleocr_model.predict(np.array(img_proc))\n", + " res = ' '.join([line[1][0] for page in result for line in page])\n", + "\n", + " # Show the processed image\n", + " plt.figure(figsize=(10, 12))\n", + " plt.imshow(img_proc)\n", + " plt.axis('off')\n", + " plt.title(res, fontsize=10)\n", + " plt.show()\n", + " return res\n", + "\n", + "\n", + "results = []\n", + "\n", + "for pdf_file in os.listdir(PDF_FOLDER):\n", + " if not pdf_file.lower().endswith('.pdf'):\n", + " continue\n", + " pdf_path = os.path.join(PDF_FOLDER, pdf_file)\n", + " images = pdf_to_images(pdf_path)\n", + " \n", + " for i, img in enumerate(images):\n", + " if i != 0:\n", + " break\n", + " page_num = i+1\n", + " ref = pdf_extract_text(pdf_path, page_num=page_num)\n", + " \n", + " # EasyOCR\n", + " easy_text = ocr_easyocr(img)\n", + " results.append({'PDF': pdf_file, 'Page': page_num, 'Model': 'EasyOCR', 'Prediction': easy_text, **evaluate_text(ref, easy_text)})\n", + " \n", + " # TrOCR\n", + " trocr_text = ocr_trocr(img)\n", + " results.append({'PDF': pdf_file, 'Page': page_num, 'Model': 'TrOCR', 'Prediction': trocr_text, **evaluate_text(ref, trocr_text)})\n", + " \n", + " # PaddleOCR\n", + " paddle_text = ocr_paddle(img)\n", + " results.append({'PDF': pdf_file, 'Page': page_num, 'Model': 'PaddleOCR', 'Prediction': paddle_text, **evaluate_text(ref, paddle_text)})" + ] + }, + { + "cell_type": "markdown", + "id": "0db6dc74", + "metadata": {}, + "source": [ + "## 4 Save and Analyze Results" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "da3155e3", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Benchmark results saved!\n", + " WER CER\n", + "Model \n", + "EasyOCR 0.000000 0.000000\n", + "PaddleOCR 1.153846 0.782178\n", + "TrOCR 1.000000 1.000000\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAIVCAYAAADConfoAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAARsVJREFUeJzt3Qd8VFX6//EnlISiEJQmCIQqoDRhQZoSRSMgFkQQlC6CgrSfdKUoAi6CqERwQWBxlaIi6qKwgKBSBGkuKL0vGopIgAAJJPN/Pcf/jJlkEpKQzJ2TfN6v15XcO3cmZyYZ851zn3NOkMvlcgkAAABgoVxONwAAAADIKMIsAAAArEWYBQAAgLUIswAAALAWYRYAAADWIswCAADAWoRZAAAAWIswCwAAAGsRZgEAAGAtwiwAZKK5c+dKUFCQbN68WWzQtWtXueGGG67rMZ5//nm5//77M61NuD533XWXDBkyxOlmAH5DmAUs9u6775rg1KBBgxTP0dv79u2bpse7cuWKvP322/K3v/1NbrzxRhNy9Gs9prf5Eh8fL3PmzJFmzZrJTTfdJCEhIRIWFibdunXzCnTukOfe8uTJI6VLlzZh6vjx42lq35gxY7weI1euXHLLLbfIQw89JD/88EOaHgOZ69ChQzJr1iwZMWKE2T958qT52fTv3z/ZuXpMbxs9enSy2zp37ix58+aVixcvmn39vUj8s0685cuXz3O/NWvWeN2WO3duKV68uLRt21Z27dqVrueydOlS8/tesGBB83v1+OOPyy+//JLu1+TEiRPy4osvStWqVaVAgQLm8erWrSvjxo2Ts2fPes7T90xKz1Hvm9H3ztChQyUyMlKioqLS3XbARnmcbgCAjPvwww9NcNy0aZPs379fKlWqlOHHiomJkVatWsm3335rwqH+odSwuGzZMhNCFi9ebP7Y6x9mt0uXLkmbNm3MOXfffbcJNBpoDx8+LIsWLZJ//vOfcvToUbn11ls993nllVekfPnycvnyZRNA9Q/12rVrZefOnV4hJTXTp083QTshIUGOHTsmM2fONN9fX4fatWtn+DVA+r311lvm5xkeHm72NUhWrlzZ/EyTWrdunQli+q+v2+rUqWPCn5t+MNKgnJQG1qT69etngqh+6Prvf/8rM2bMMEFXf69Klix5zefx448/yiOPPCK33367/P3vf5dz587Jv//9b3O8evXqaXot3I/TsmVLuXDhgjz99NMmxCr9YDdx4kT57rvv5D//+Y/nfH1vTJgwIdnjFC5cONmxtL539HkUKlTIfNjV+wDZnguAlQ4ePOjSt/DixYtdxYoVc40ZM8bneXpOnz59rvl4zz77rDn3nXfeSXbbtGnTzG29e/f2Oq6Pq8fffPPNZPe5evWqa9KkSa5jx46Z/Tlz5phzf/zxR6/zhg4dao4vXLjwmm0cPXq0OffUqVNex3fu3GmOjxgxwuW0lJ5noLlw4YL5t0uXLq6CBQtm6DHi4uJcRYsWdb300ktex7t16+bKnTu36/z5817fL0+ePK6OHTu6brjhBvP74fbrr7+a12zgwIGeY2lt1+rVq819P/74Y6/j06dPN8dff/31ND2XIUOGuIKCglxRUVFexy9fvuxKqz/++MNVunRpV4kSJVy7du1Kdrs+9quvvurZv+eee1y33377NR83I++dvn37usqVK+dKSEhIc/sBW1FmAFjcK1ukSBHTm6qXVHU/o/73v//J+++/L/fee6/PkoQ+ffqYnjftJdNz3fd57733TK3kgAEDfPae6aXWxL2yvjRt2tT8e+DAgQy3393zpr1+icXGxppL2tpjrb18ZcqUMbWEetxXKcaSJUvkjjvuMOdqD532OCell3V79OghpUqVMudpT9lzzz0ncXFxyb73oEGDpFixYqY3+7HHHpNTp055naO96toLrj2I9erVk/z580uNGjXMvtLecN3XXjft4du2bZvX/bUHUnvQK1SoYM7R16F79+7y+++/+yzP0EvmHTt2NL83TZo0SfH13L59u2m3XgbXHsaUaK/g6dOnpXnz5l7H9bG1/CRx6cfGjRvl6tWr5ndCH1O/h5u7pza1NqVXen+v9CqEL/ozTit9P+jvx5QpU7zKBNxKlCghL730kvjjOer78siRI16vM5BdEWYBS2l41Uv8wcHB0qFDB9m3b5+5xJkRX3/9tQkfWreYEr1Nw4g74Ol9dL9Tp05yPbQkQWnASqszZ86YEKX1mRrwevbsacJcu3btPOdoCcLDDz8sb7zxhrRu3VreeecdefTRR+XNN9+U9u3b+wxmOpDpySefNJeZ9VKu1kwmDoa//vqr1K9fXxYsWGAeQ2uJ9flraYa71tPthRdekJ9++smEaQ27X375pc8PCloeogFT26iXm//44w/ztf58Bw4caC5Vjx071gQWfX76vNxWrFghBw8eNPXJ+vy07do2vcz9Z6e8tyeeeMK0c/z48eY180V/h/RDjV7y159xaoPD1q9fb0KynpuYO5QmLjXQwFqlShVzrn7ASVxqkFqY1Z9z0k1LADL790p/jvoBTF9zX69dWnzxxRfmA4l+uEwrfd/5eo5a9nM9z9Fd3uCrpAPIdpzuGgaQfps3bzaXF1esWGH29VLirbfe6urfv3+GygwGDBhgztu2bVuK52zdutWcM2jQILOvl4SvdR9fl0pXrlxpygS0/OCTTz4xJRIhISGecoS0lBkk3UJDQ13Lli3zOveDDz5w5cqVy/X99997HZ8xY4a5z7p16zzHdD84ONi1f/9+z7GffvopWdlF586dzWP6KiFwX851P8/mzZt7XeLV10svvZ89e9ZzTC8D67nr16/3HFu+fLk5lj9/fteRI0c8x9977z1zXC+ru128eDFZO+bPn2/O++6775K9bh06dEh2fuLL+WvXrnUVKlTI1apVqzRdXn/66addN998s8/bihcv7rrvvvs8+xEREab8QLVr1871xBNPeG6rV6+eq3Llysna5etnrZs+VtIyg9mzZ5vfKy1Z0N+FSpUqmbKBTZs2udJiyZIlrgIFCpifkft3PL2KFCniqlWrVprP1zKDlJ5jr169rvu9o7/Tzz33XIaeC2ATBoABFtJeO71k6R50o71j2lP4r3/9SyZPnuxzgExqzp8/b/7VGQxS4r7N3Svm/je1+/iS9JK0XmrXdl+rHCGxTz/91Axw0Ryql3V1QJj2ourAmkaNGplzPv74Y6lWrZq53Ks9XW7a66hWr17tOdfdrooVK3r2a9asab6H9nwq7RHVMgTtNdWSgKT0Z5DYs88+63VMLwlrr7Be+tXHdtPBRQ0bNvTsu2em0HaWLVs22XFtj17+V9oL6KY9yXr5XqdlUlu3bvVchnbr3bt3iq+pvh763B544AHTu6s9/teivdYp9Xw2btzY9Bxrz6O+DlpyoL3k7ttef/1187X2FOulcF89/Nrbrj3aSRUtWjTZMS2vSEzLJD744AMzKOxadHCW9npreYA+b/3Z6e+1lme4RUREmLZ+//33KT6OvifS+37Q338dwJiUr/dDet87+rNJ/LsPZFeEWcAyGg40bGiQ1WmREocdDbKrVq0ygSQ93H+A3aE2LYFXg9617uOLThmkl5ujo6Nl9uzZZnR3euoSlc5ckDjQ6GVdHUGvl/a3bNlijmnZhU7NpKHGFy1RSCxxcEwcBvSyv9J6Vw0rWlObFkkfzx363I+X0nnuUexa3+vreOL7a7mFliDo70PS56Ovb1Ja3+uLBmGtvdZL0zoLRdLa49SkdEleSwY+++wzE1R1yi1tj4ZYpR8itGRDL5Pr77CWq/gqMdAPZUkDXEpGjRplwrsGev2++pqkVAeblNax6u+P1oa7p9Z6+eWXzWuuZQfq559/NmUcqdH3RHrfD1pPndbnmN73jv5skn7IArIjwixgmW+++UZ+++0388daN1+9tukNs9qD6R5QlNLUVnqbck9T5B7gsmPHjnRNh6U1p+6eTa1h1RCjNaN79uzJ8OT9ej8N859//rmpNdSAoD2pOnhKe9t8SRoWU+rNzmj9ZFofL6Xz0nJ/7U3UutXBgwebn4F7urIHH3zQq7bWLXFPbmIaiLTOVl8/rYnWQWlpcfPNNycL577qZrW3U6dsc//OaFt1Ci69zf2B7HoHf+nP2h0K9fdKe1G1LlgfN+nPOil9DbWeOHG41UCrA/j0w5vOOatXAJ566qlUH0efn4Z3HQyYlp7t9Erve0fntPXViw1kNwwAAyyjYVXn8tTL6Ek3HQimvVI6/2t6tGjRwoQnvSybknnz5pkeOw1Kie+jlzkzSu+vg560l27atGlyPbR3T7lH32vJgPZc3nfffSbkJN1uu+22dD2+9vBqz5vO6RkINERqL/ywYcNM76zOlqAj2HVmg/TS3jv9vdLXSkOdezaFa9Hwpu3w1Qt85513egKrDkLSUgp3L6H+Hunlfz2um/4+a49jZtI5XbXH+bXXXrvmudouna846fy5+mGhV69eZmCghsekA92S0jINfe9pGUxWu9Z7R8O3hmr3B1UgOyPMAhbRP5Q6XZP2nOml9aSbjpbXy5w6qjo9tOdKR8SvXLnS1J8mpRPQa4+wTknlrs/T+2jPl9ap6kj6pLRnUMse3FN5pUTrP7XHaerUqSZ8ZISGVu1d06mpNBgpDSL6B91XPaK+jmkZLZ6YXrLWQKM1nL6Wqs1oD25GuXtuk35ffR0zQnsS9XdLQ6aGMl2A4lo0oOr3d5d2JKaBVXvL3YE1cX2y0n29TK61tO7yg8ykH2a0jloXFrjWSlj64UY/GOisFIl/3joVnfY+68If+rO/Fq1J1l7c//u//5O9e/cmu11LQXQVsMyS2nvH/TNJ+roD2RFlBoBFNKRqWNUpp3zRwT/ag6i9bL6mn0qNDk7avXu36YXSS83uHtjly5eby8/33HOPCaeJ6b5OGaWrL7lDttaG6h9/7SnWx7tWnaHSy+TaI6jBI7VBSm6ffPKJuayqQUp7pnSOXO0h1NDt7v3TAUVa/6mPp4ObNDBpvbG2SY/r8/I1kCs1OqWVhnd9LXSQkPZ6acmHPlftgQwNDRV/0V5irR3WacR01Std3lTblriOOr20DEFXvdLBZ9rzruEutRphvcytYU8/BLkH1iW9XV97lTSwashyr3yVUomB9ran1POvPdGJV6NL6fdKf9Ya9rSnNiV6mz5XLc/RD2zaA6vBU1ew098ZfQ20HluPJx68l5T+7uuVES3Z0FKKxCuA6YC8+fPnew32U9qrndJz1Ptn9L2jg++0HvtavclAtuD0dAoA0q5169aufPnyuWJiYlI8p2vXrq68efO6Tp8+na4VwFRsbKxZzatu3bpmuiadqujOO+90TZ061az25Iuu5DRr1ixX06ZNXYULFzbfW6ec0mmYEk/bldrKWPHx8a6KFSuaLfHKUGmZmkvb2bBhQ9eiRYuSna9t1hWgdJUlncJIp07S5zZ27FhXdHS057yUXiN9HjpFVGI6XZZO0eWeFqlChQrmvvrapfY83VNIJZ5aSx9fp8FKyld7Dh06ZI7rqmpu//vf/1yPPfaYmZpMX3ud7sq9mpa+VtdaOS2llbb0d6d69equkiVLuvbt2+dKTb9+/cw0WL64pxnTlb+S/s7+/vvvZuosvX3jxo0+25XStFW66euR2gpgbs2aNTPTjSWeEs2Xw4cPm++pq3fp73DZsmXNz0BfY536Sqca0+nvjh8/7roW/RnoVGxVqlQx71d9H+nv3Wuvveb1e5fa1FyJ/zyn972jx2655ZZkK7MB2VWQ/sfpQA0AsJNOFaa1s7rAgtbcwnk6hZwODNOrJlr2AGR3hFkAwHXRFc50JTO9tA3naSmDTlOmJShATkCYBQAAgLWYzQAAAADWIswCAADAWoRZAAAAWIswCwAAAGs5umiCrv4yadIks1KJTjyuk02ntsqKTsquqxPp2texsbFy++23y5gxYyQiIiLN31NXJdJJ1nW9bffk6gAAAAgcOj+BLhJUqlQpsyJfwIZZXU6yVq1a0r17d2nTpk2awq+uPa6r8OhKO3PmzDHLLm7cuDHNq5xokNVlOAEAABDYjh075llGPeCn5tJe0mv1zPqivbO6bOeoUaPSdL4uHahBWF8cXQ4SAAAAgeXcuXOm8/Hs2bNSuHDhwO2ZvV5aMqBd0DfddFOa7+MuLdAgS5gFAAAIXGkpCbU6zL7xxhty4cIFadeuXYrnaG2tbomTPgAAALIHa2cz+Oijj2Ts2LGyaNEiKV68eIrnTZgwwXRPuzfqZQEAALIPK8PsggUL5JlnnjFBtnnz5qmeO3z4cFMn6960VhYAAADZg3VlBvPnzzezH2igbdWq1TXPDwkJMRsAAEBmi4+PlytXrjjdDCsFBwdfc9qtgA+zWu+6f/9+z/6hQ4fMHLI6oKts2bKmV/X48eMyb948T2lBly5d5K233pIGDRpIVFSUOZ4/f/5rjnQDAADILDoZlOYQHW2PjNEgW758eRNqr4ejU3OtWbNGwsPDkx3XwDp37lzp2rWrHD582JynmjVrJt9++22K56eFDgDT4KslB8xmAAAAMkIXe9Igq+N2ChQowEJM6eRexCpv3rymAzPp65eevBYw88z6C2EWAABcb2nB3r17TZC9+eabnW6OtTSLaaCtVKmSCbUZzWtWDgADAABwirtGVntkkXHu8gL9cHA9CLMAAAAZQGlBYLx+hFkAAABYizALAAAAa1k3zywAAECgChu21K/f7/DEa8+57zZjxgwZPHiw/PHHH5InTx7PNKlFihSRxo0be2aPSjzjlE6het9998mRI0d8rrI6bNgwM/OUTrHlpo9Xo0YNGTdunDRt2lSyGj2zAAAAOUB4eLgJr5s3b/Yc+/7776VkyZKyceNGuXz5suf46tWrzZRZFStWNPuvvPKKmY4s8fbCCy94Pf7KlSvN8e+++05KlSolDz30kJw4cSLLnxdhFgAAIAe47bbb5JZbbknWA/vII4+YntUffvghxbUAbrzxRhN6E28FCxb0enydpkyP33HHHTJixAgzvZaG5KxGmAUAAMghwsPDTa+rm36ti1Ldc889nuOXLl0yIdTXwlZpofd3r956vat7pQU1swByLH/XtgVK3RyAnCs8PFwGDBggV69eNaFz27ZtJsjq3LlaU6s2bNggsbGxXmF26NCh8tJLL3k91tdff+1VE9uoUSOzRO3FixfNcr9169Y19bZZjTALAACQQzRr1kxiYmLkxx9/NAPBqlSpIsWKFTOBtlu3bqZuVksMKlSoYGpm3XTgWNeuXb0eq3Tp0l77CxculKpVq8rOnTtlyJAhMnfu3GQre2UFwiwAAEAOUalSJbn11ltNSYGGWQ2xSgdslSlTRtavX29uu/fee73uV7RoUXPf1Oj9K1eubDbt+X3sscdMsA0JCcnS50TNLAAAQA4SHh5uel91055at7vvvtuUDmzatCnD9bJubdu2NdN/vfvuu5LVCLMAAAA5SHh4uKxdu1a2b9/u6ZlV+vV7770ncXFxycLs+fPnJSoqymvT2QpSW6q2X79+MnHiRFNDm5UoMwAAAMhBgzHDw8PN4C+tby1RooRXmNXQ6p7CK7FRo0aZLbFevXp5Bo350qVLFxk5cqRMmzbN1NBmFcIsAABADhIWFmZmG0iqXLlyPo/rCl8ZebwCBQrImTNnJKtRZgAAAABrEWYBAABgLcIsAAAArEWYBQAAgLUIswAAALAWYRYAAADWIswCAADAWoRZAAAAWIswCwAAAGsRZgEAAGAtlrMFAADILGMK+/n7Raf7LlFRUfLaa6/J0qVL5fjx41K8eHGpXbu2DBgwQO677z6zPO2RI0eS3W/ChAkybNgws7xt+fLlPceLFCkiNWrUkHHjxknTpk3F3wizAAAAOcThw4elcePGEhoaKpMmTTIh9MqVK7J8+XLp06eP7N6925z3yiuvSM+ePb3ue+ONN3rtr1y5Um6//XY5ffq0CccPPfSQ7N27V0qUKOHX50SYBQAAyCGef/55CQoKkk2bNknBggU9xzWUdu/e3Su4lixZMtXHuvnmm805uo0YMUIWLFggGzdulIcfflj8iZpZAACAHODMmTOybNky0wObOMi6aW9tRly6dEnmzZtnvg4ODhZ/I8wCAADkAPv37xeXyyVVq1a95rlDhw6VG264wWv7/vvvvc5p1KiROa7B+I033pC6deuamlt/o8wAAAAgB3C5XGk+d/DgwdK1a1evY6VLl/baX7hwoQnGO3fulCFDhsjcuXMlb9684m+EWQAAgBygcuXKpl7WPcgrNUWLFpVKlSqlek6ZMmXMY+p29epVeeyxx0ywDQkJEX+izAAAACAHuOmmmyQiIkIiIyMlJiYm2e1nz57N8GO3bdtW8uTJI++++674G2EWAAAgh4iMjJT4+HipX7++fPrpp7Jv3z7ZtWuXvP3229KwYUPPeefPnzfz0Sbezp07l+Ljao9vv379ZOLEiXLx4kXxJ8oMAAAAHFzEwJ8qVKggW7duNfPC/t///Z/89ttvUqxYMTN4a/r06Z7zRo0aZbbEevXqJTNmzEjxsbt06SIjR46UadOmmRpafyHMAgAA5CC33HKLCZy6pbSwQmp0hTBfg8kKFChgpv/yN8oMAAAAYC3CLAAAAKxFmAUAAIC1CLMAAACwFmEWAAAgi1fUQta9foRZAACAdHAv2erv+VSzm7i4OPNv7ty5r+txmJoLAAAgHTR8hYaGysmTJz1TUumiAUi7hIQEOXXqlHntdOWw60GYBQAASKeSJUuaf92BFumXK1cuKVu27HV/ECDMAgAApJMGMF18oHjx4nLlyhWnm2Ol4OBgE2ivF2EWAADgOkoOrrfmE9eHAWAAAACwFmEWAAAA1iLMAgAAwFqEWQAAAFiLMAsAAABrEWYBAABgLcIsAAAArOVomP3uu++kdevWUqpUKTP58JIlS655nzVr1sidd94pISEhUqlSJZk7d65f2goAAIDA42iYjYmJkVq1aklkZGSazj906JC0atVKwsPDZfv27TJgwAB55plnZPny5VneVgAAAAQeR1cAa9GihdnSasaMGVK+fHmZPHmy2a9WrZqsXbtW3nzzTYmIiMjClgIAACAQWVUzu2HDBmnevLnXMQ2xejwlsbGxcu7cOa8NAAAA2YOjPbPpFRUVJSVKlPA6pvsaUC9duiT58+dPdp8JEybI2LFj/dhKAACyr7BhSyU7OZyvo2QrY6Ilp7GqZzYjhg8fLtHR0Z7t2LFjTjcJAAAAObFntmTJknLixAmvY7pfqFAhn72ySmc90A0AAADZj1U9sw0bNpRVq1Z5HVuxYoU5DgAAgJzH0TB74cIFM8WWbu6pt/Tro0ePekoEOnfu7Dm/d+/ecvDgQRkyZIjs3r1b3n33XVm0aJEMHDjQsecAAACAHBpmN2/eLHXq1DGbGjRokPl61KhRZv+3337zBFul03ItXbrU9Mbq/LQ6RdesWbOYlgsAACCHcrRmtlmzZuJyuVK83dfqXnqfbdu2ZXHLAAAAYAOramYBAACAxAizAAAAsBZhFgAAANYizAIAAMBahFkAAABYizALAAAAaxFmAQAAYC3CLAAAAKxFmAUAAIC1CLMAAACwFmEWAAAA1iLMAgAAwFqEWQAAAFiLMAsAAABrEWYBAABgLcIsAAAArEWYBQAAgLUIswAAALAWYRYAAADWIswCAADAWoRZAAAAWIswCwAAAGsRZgEAAGAtwiwAAACsRZgFAACAtQizAAAAsBZhFgAAANYizAIAAMBahFkAAABYizALAAAAaxFmAQAAYC3CLAAAAKxFmAUAAIC1CLMAAACwFmEWAAAA1iLMAgAAwFqEWQAAAFiLMAsAAABrEWYBAABgLcIsAAAArEWYBQAAgLUIswAAALAWYRYAAADWIswCAADAWoRZAAAAWIswCwAAAGsRZgEAAGAtwiwAAACsRZgFAACAtQizAAAAsBZhFgAAANYizAIAAMBahFkAAABYy/EwGxkZKWFhYZIvXz5p0KCBbNq0KdXzp06dKrfddpvkz59fypQpIwMHDpTLly/7rb0AAAAIHI6G2YULF8qgQYNk9OjRsnXrVqlVq5ZERETIyZMnfZ7/0UcfybBhw8z5u3btkvfff988xogRI/zedgAAAOTwMDtlyhTp2bOndOvWTapXry4zZsyQAgUKyOzZs32ev379emncuLF07NjR9OY+8MAD0qFDh2v25gIAACB7cizMxsXFyZYtW6R58+Z/NSZXLrO/YcMGn/dp1KiRuY87vB48eFC++uoradmyZYrfJzY2Vs6dO+e1AQAAIHvI49Q3Pn36tMTHx0uJEiW8juv+7t27fd5He2T1fk2aNBGXyyVXr16V3r17p1pmMGHCBBk7dmymtx8AAADOc3wAWHqsWbNGxo8fL++++66psV28eLEsXbpUXn311RTvM3z4cImOjvZsx44d82ubAQAAkA17ZosWLSq5c+eWEydOeB3X/ZIlS/q8z8svvyydOnWSZ555xuzXqFFDYmJi5Nlnn5WRI0eaMoWkQkJCzAYAAIDsx7Ge2eDgYKlbt66sWrXKcywhIcHsN2zY0Od9Ll68mCywaiBWWnYAAACAnMWxnlml03J16dJF6tWrJ/Xr1zdzyGpPq85uoDp37iylS5c2da+qdevWZgaEOnXqmDlp9+/fb3pr9bg71AIAACDncDTMtm/fXk6dOiWjRo2SqKgoqV27tixbtswzKOzo0aNePbEvvfSSBAUFmX+PHz8uxYoVM0H2tddec/BZAEAAGFNYspUx0U63AIAlglw57Pq8Ts1VuHBhMxisUKFCTjcHgIPChi2V7OJwvo6SrRBmA1Z2et8o3jv25zWrZjMAAAAAEiPMAgAAwFqEWQAAAFiLMAsAAABrEWYBAABgLcIsAAAArEWYBQAAgLUIswAAALAWYRYAAADWIswCAADAWoRZAAAAWIswCwAAAGsRZgEAAGAtwiwAAACsRZgFAACAtQizAAAAsBZhFgAAANYizAIAAMBahFkAAABYizALAAAAaxFmAQAAkLPC7IEDB+Sll16SDh06yMmTJ82xr7/+Wn7++efMbh8AAACQeWH222+/lRo1asjGjRtl8eLFcuHCBXP8p59+ktGjR6f34QAAAAD/hdlhw4bJuHHjZMWKFRIcHOw5fu+998oPP/yQ8ZYAAAAAWR1md+zYIY899liy48WLF5fTp0+n9+EAAAAA/4XZ0NBQ+e2335Id37Ztm5QuXTrjLQEAAACyOsw++eSTMnToUImKipKgoCBJSEiQdevWyYsvviidO3dO78MBAAAA/guz48ePl6pVq0qZMmXM4K/q1avL3XffLY0aNTIzHAAAAAD+kie9d9BBXzNnzpRRo0aZ+lkNtHXq1JHKlStnTQsBAACAzOqZfeWVV+TixYumZ7Zly5bSrl07E2QvXbpkbgMAAAACNsyOHTvWM7dsYhpw9TYAAAAgYMOsy+UyA7+S0kUTbrrppsxqFwAAAJB5NbNFihQxIVa3KlWqeAXa+Ph401vbu3fvtD4cAAAA4L8wO3XqVNMr2717d1NOULhwYa9BYWFhYdKwYcPrbxEAAACQ2WG2S5cu5t/y5cubabjy5s2b1rsCAAAAgTE11z333OP5+vLlyxIXF+d1e6FChTKnZQAAAEBmDwDTWQv69u0rxYsXl4IFC5pa2sQbAAAAELBhdvDgwfLNN9/I9OnTJSQkRGbNmmVqaEuVKiXz5s3LmlYCAAAAmVFm8OWXX5rQ2qxZM+nWrZs0bdpUKlWqJOXKlZMPP/xQnnrqqfQ+JAAAAOCfntkzZ85IhQoVPPWxuq+aNGki3333XcZaAQAAAPgjzGqQPXTokPm6atWqsmjRIk+PbWhoaEbaAAAAAPgnzGppga72pYYNGyaRkZGSL18+GThwoKmnBQAAAAK2ZlZDq1vz5s1l9+7dsmXLFlM3W7NmzcxuHwAAAJB5YTYpHfilm/rkk0+kbdu21/uQAAAAQOaXGVy9elV27twpe/fu9Tr++eefS61atZjJAAAAAIEZZjXEaimBhtZq1apJmzZt5MSJE2ZFsO7du0uLFi3kwIEDWdtaAAAAICNlBkOHDjVhdtq0aTJ//nyz7dq1S3r06CHLli2T/Pnzp/WhAAAAAP+G2R9//FH+85//SO3atc1CCRpmR4wYIZ06dcqclgAAAABZVWZw+vRps2StKly4sBQsWFDuuuuu9H4/AAAAwP89s0FBQXL+/Hkzp6zL5TL7ly5dknPnznmdp6uCAQAAAAEVZjXAVqlSxWu/Tp06XvsacOPj4zO/lQAAAMD1hNnVq1en9VQAAAAgsMKsTsGVFXQ53EmTJklUVJSZ9uudd96R+vXrp3j+2bNnZeTIkbJ48WI5c+aMWbBh6tSp0rJlyyxpHwAAALLxCmDXY+HChTJo0CCZMWOGNGjQwITSiIgI2bNnjxQvXjzZ+XFxcXL//feb23S1sdKlS8uRI0ckNDTUkfYDAAAgB4fZKVOmSM+ePaVbt25mX0Pt0qVLZfbs2TJs2LBk5+tx7Y1dv3695M2b1xwLCwvze7sBAABg4XK2mUl7Wbds2SLNmzf/qzG5cpn9DRs2+LzPF198IQ0bNpQ+ffpIiRIl5I477pDx48enOugsNjbWzLiQeAMAAED24FiY1XlrNYRqKE1M97V+1peDBw+a8gK931dffSUvv/yyTJ48WcaNG5fi95kwYYKZF9e9lSlTJtOfCwAAACwIs1euXJE8efLIzp07xQkJCQmmXvYf//iH1K1bV9q3b28Gg2l5QkqGDx8u0dHRnu3YsWN+bTMAAAACpGZW61TLli2bKXPJFi1aVHLnzi0nTpzwOq77JUuW9HmfW265xbRB7+dWrVo105OrZQvBwcHJ7hMSEmI2AAAAZD/pLjPQntARI0aYgVjXQ4On9q6uWrXKq+dV97Uu1pfGjRvL/v37zXlue/fuNSHXV5AFAABA9pbu2QymTZtmAmWpUqXMHK8FCxb0un3r1q1pfiydlqtLly5Sr149M7esTs0VExPjmd2gc+fOZvotrXtVzz33nPn+/fv3lxdeeEH27dtnBoD169cvvU8DAAAAOTHMPvroo5n2zbXm9dSpUzJq1ChTKlC7dm1ZtmyZZ1DY0aNHzQwHbjp4a/ny5TJw4ECpWbOmCboabIcOHZppbQIAAIA9glwul0tyEJ2aS2c10MFghQoVcro5ABwUNmypZBeH83WUbGVMtNMtQA543yjeO/bntQwvmqBzxO7atct8ffvtt0udOnUy+lAAAABAhqQ7zJ48eVKefPJJWbNmjWcZ2bNnz0p4eLgsWLBAihUrlrGWAAAAAFk9m4EOvDp//rz8/PPPZkYD3XTeWe0OZiAWAAAAArpnVgdorVy50szv6la9enWJjIyUBx54ILPbBwAAAGRez6zO8aoLFySlxxLP/woAAAAEXJi99957zXRYv/76q+fY8ePHzXRZ9913X2a3DwAAAMi8MKuLFmh9bFhYmFSsWNFs5cuXN8feeeed9D4cAAAA4L+aWV24QFf50rrZ3bt3m2NaP9u8efOMtwIAAADI6jB75coVyZ8/v2zfvl3uv/9+swEAAABWlBnoIK+yZctKfHx81rUIAAAAyKqa2ZEjR8qIESPM/LIAAACAVTWzOgBs//79UqpUKSlXrpwULFjQ63atpwUAAAACMsw++uijWdMSAAAAICvD7NWrVyUoKEi6d+8ut956a3q/FwAAAOBczWyePHlk0qRJJtQCAAAAVq4A9u2332ZNawAAAICsrJlt0aKFDBs2THbs2CF169ZNNgDs4YcfTu9DAgAAAP4Js88//7z5d8qUKclu03pa5qAFAABAwIbZhISErGkJAAAAkNU1swAAAIB1YbZly5YSHR3t2Z84caKcPXvWs//7779L9erVM7+FAAAAwPWG2eXLl0tsbKxnf/z48V5L2up0XXv27EnrwwEAAAD+C7MulyvVfQAAAMDfqJkFAABA9g+zOu2WbkmPAQAAAAE/NZeWFXTt2lVCQkLM/uXLl6V3796eRRMS19MCAAAAARVmu3Tp4rX/9NNPJzunc+fOmdMqAAAAIDPD7Jw5c9J6KgAAAOAXDAADAACAtQizAAAAsBZhFgAAANYizAIAAMBahFkAAABYizALAAAAaxFmAQAAYC3CLAAAAKxFmAUAAIC1CLMAAACwFmEWAAAA1iLMAgAAwFqEWQAAAFiLMAsAAABrEWYBAABgLcIsAAAArEWYBQAAgLUIswAAALAWYRYAAADWIswCAADAWoRZAAAAWIswCwAAAGsRZgEAAGAtwiwAAACsRZgFAACAtQIizEZGRkpYWJjky5dPGjRoIJs2bUrT/RYsWCBBQUHy6KOPZnkbAQAAEHgcD7MLFy6UQYMGyejRo2Xr1q1Sq1YtiYiIkJMnT6Z6v8OHD8uLL74oTZs29VtbAQAAEFgcD7NTpkyRnj17Srdu3aR69eoyY8YMKVCggMyePTvF+8THx8tTTz0lY8eOlQoVKvi1vQAAAAgcjobZuLg42bJlizRv3vyvBuXKZfY3bNiQ4v1eeeUVKV68uPTo0eOa3yM2NlbOnTvntQEAACB7cDTMnj592vSylihRwuu47kdFRfm8z9q1a+X999+XmTNnpul7TJgwQQoXLuzZypQpkyltBwAAgPMcLzNIj/Pnz0unTp1MkC1atGia7jN8+HCJjo72bMeOHcvydgIAAMA/8oiDNJDmzp1bTpw44XVc90uWLJns/AMHDpiBX61bt/YcS0hIMP/myZNH9uzZIxUrVvS6T0hIiNkAAACQ/TjaMxscHCx169aVVatWeYVT3W/YsGGy86tWrSo7duyQ7du3e7aHH35YwsPDzdeUEAAAAOQsjvbMKp2Wq0uXLlKvXj2pX7++TJ06VWJiYszsBqpz585SunRpU/uq89DecccdXvcPDQ01/yY9DgAAgOzP8TDbvn17OXXqlIwaNcoM+qpdu7YsW7bMMyjs6NGjZoYDAAAAIODCrOrbt6/ZfFmzZk2q9507d24WtQoAAACBji5PAAAAWIswCwAAAGsRZgEAAGAtwiwAAACsRZgFAACAtQizAAAAsBZhFgAAANYizAIAAMBahFkAAABYizALAAAAaxFmAQAAYC3CLAAAAKxFmAUAAIC1CLMAAACwFmEWAAAA1iLMAgAAwFqEWQAAAFiLMAsAAABrEWYBAABgLcIsAAAArEWYBQAAgLUIswAAALAWYRYAAADWIswCAADAWoRZAAAAWIswCwAAAGsRZgEAAGAtwiwAAACsRZgFAACAtQizAAAAsBZhFgAAANYizAIAAMBahFkAAABYizALAAAAaxFmAQAAYC3CLAAAAKxFmAUAAIC1CLMAAACwFmEWAAAA1iLMAgAAwFqEWQAAAFiLMAsAAABrEWYBAABgLcIsAAAArEWYBQAAgLUIswAAALAWYRYAAADWIswCAADAWoRZAAAAWIswCwAAAGsRZgEAAGAtwiwAAACsFRBhNjIyUsLCwiRfvnzSoEED2bRpU4rnzpw5U5o2bSpFihQxW/PmzVM9HwAAANmX42F24cKFMmjQIBk9erRs3bpVatWqJREREXLy5Emf569Zs0Y6dOggq1evlg0bNkiZMmXkgQcekOPHj/u97QAAAMjhYXbKlCnSs2dP6datm1SvXl1mzJghBQoUkNmzZ/s8/8MPP5Tnn39eateuLVWrVpVZs2ZJQkKCrFq1yu9tBwAAQA4Os3FxcbJlyxZTKuBpUK5cZl97XdPi4sWLcuXKFbnpppt83h4bGyvnzp3z2gAAAJA9OBpmT58+LfHx8VKiRAmv47ofFRWVpscYOnSolCpVyisQJzZhwgQpXLiwZ9OyBAAAAGQPjpcZXI+JEyfKggUL5LPPPjODx3wZPny4REdHe7Zjx475vZ0AAADIGnnEQUWLFpXcuXPLiRMnvI7rfsmSJVO97xtvvGHC7MqVK6VmzZopnhcSEmI2AAAAZD+O9swGBwdL3bp1vQZvuQdzNWzYMMX7/f3vf5dXX31Vli1bJvXq1fNTawEAABBoHO2ZVTotV5cuXUworV+/vkydOlViYmLM7Aaqc+fOUrp0aVP7ql5//XUZNWqUfPTRR2ZuWndt7Q033GA2AAAA5ByOh9n27dvLqVOnTEDVYKpTbmmPq3tQ2NGjR80MB27Tp083syC0bdvW63F0ntoxY8b4vf0AAADIwWFW9e3b12wpLZKQ2OHDh/3UKgAAAAQ6q2czAAAAQM5GmAUAAIC1CLMAAACwFmEWAAAA1iLMAgAAwFqEWQAAAFiLMAsAAABrEWYBAABgLcIsAAAArEWYBQAAgLUIswAAALAWYRYAAADWIswCAADAWoRZAAAAWIswCwAAAGsRZgEAAGAtwiwAAACsRZgFAACAtQizAAAAsBZhFgAAANYizAIAAMBahFkAAABYizALAAAAaxFmAQAAYC3CLAAAAKxFmAUAAIC1CLMAAACwFmEWAAAA1iLMAgAAwFqEWQAAAFiLMAsAAABrEWYBAABgLcIsAAAArEWYBQAAgLUIswAAALAWYRYAAADWIswCAADAWoRZAAAAWIswCwAAAGsRZgEAAGAtwiwAAACsRZgFAACAtQizAAAAsBZhFgAAANYizAIAAMBahFkAAABYizALAAAAaxFmAQAAYC3CLAAAAKxFmAUAAIC1CLMAAACwFmEWAAAA1iLMAgAAwFoBEWYjIyMlLCxM8uXLJw0aNJBNmzalev7HH38sVatWNefXqFFDvvrqK7+1FQAAAIHD8TC7cOFCGTRokIwePVq2bt0qtWrVkoiICDl58qTP89evXy8dOnSQHj16yLZt2+TRRx81286dO/3edgAAAOTwMDtlyhTp2bOndOvWTapXry4zZsyQAgUKyOzZs32e/9Zbb8mDDz4ogwcPlmrVqsmrr74qd955p0ybNs3vbQcAAICz8jj5zePi4mTLli0yfPhwz7FcuXJJ8+bNZcOGDT7vo8e1Jzcx7cldsmSJz/NjY2PN5hYdHW3+PXfuXCY9CwC2Soi9KNnFuSCXZCv8PzpgZaf3jeK9E5jcOc3lcgV2mD19+rTEx8dLiRIlvI7r/u7du33eJyoqyuf5etyXCRMmyNixY5MdL1OmzHW1HQACSWHJZiZmu2eEAJXtftMmZq9ndP78eSlcuHDghll/0F7fxD25CQkJcubMGbn55pslKCjI0bbB9ycx/aBx7NgxKVSokNPNAazA+wbIGN47gUt7ZDXIlipV6prnOhpmixYtKrlz55YTJ054Hdf9kiVL+ryPHk/P+SEhIWZLLDQ09Lrbjqyl/1PhfyxA+vC+ATKG905gulaPbEAMAAsODpa6devKqlWrvHpOdb9hw4Y+76PHE5+vVqxYkeL5AAAAyL4cLzPQEoAuXbpIvXr1pH79+jJ16lSJiYkxsxuozp07S+nSpU3tq+rfv7/cc889MnnyZGnVqpUsWLBANm/eLP/4xz8cfiYAAADIcWG2ffv2curUKRk1apQZxFW7dm1ZtmyZZ5DX0aNHzQwHbo0aNZKPPvpIXnrpJRkxYoRUrlzZzGRwxx13OPgskFm0JETnHE5aGgIgZbxvgIzhvZM9BLnSMucBAAAAEIAcXzQBAAAAyCjCLAAAAKxFmAUAAIC1CLMAAACwFmEWAAAA1iLMAgCAHG3x4sVSs2ZNp5uBDCLMIqB98sknTjcBsNLx48edbgIQUN577z1p27atdOzYUTZu3GiOffPNN1KnTh3p1KmTNG7c2OkmIoMIs3DU1atXZefOnbJ3716v459//rnUqlVLnnrqKcfaBthIF5954YUXzIIyAP40ceJE8744fPiwfPHFF3LvvffK+PHjzd8YXbzpf//7n0yfPt3pZiKDCLNwjIbYSpUqmdBarVo1adOmjZw4ccIsV9y9e3dp0aKFHDhwwOlmAgHnjz/+kA4dOkjRokWlVKlS8vbbb0tCQoJZSbFChQry448/ypw5c5xuJhAw9P0wc+ZM2bx5s3z99ddy6dIlWb9+vezfv1+GDRsmRYoUcbqJuA6sAAbHtGrVSmJjY2XAgAEyf/58s912223So0cP6dOnj+TPn9/pJgIBqVevXmbZ7yeeeEKWL18uv/zyi0RERJilv3Wp77vuusvpJgIBRf+e6BXAMmXKmH1dvlbDbN26dZ1uGjIBYRaOKV68uPznP/+R2rVrS3R0tPlk/M9//tPULgFIWdmyZWXu3LnmUqleNtXeWO1d0sumAJLTD3p65a9YsWJm/8Ybb5T//ve/Ur58eaebhkyQJzMeBMiI06dPm0ukqnDhwlKwYEF6lIA0+PXXX01pjgoLC5N8+fLJ008/7XSzgID28ssvS4ECBczXcXFxMm7cOPO3J7EpU6Y41DpcD8IsHBMUFCTnz583f4j1AoHuax3TuXPnvM4rVKiQY20EApG+X/Lk+et/37lz56YsB0jF3XffLXv27PHsN2rUSA4ePOh1jv4Ngp0oM4Cjl30S/8/DHWiT7sfHxzvUQiBw3zt33HGHJ9Dq5dKqVatKcHCw13lbt251qIUA4D/0zMIxq1evdroJgJVGjx7ttf/II4841hbAFnrV74YbbjAfBhPTmUAuXLjAVUCL0TMLAACytc8++0yGDh0q27dv99TNusXExMidd94pb7zxhrRu3dqxNiLjmGcWjg5iefHFF5PVyCqd3WDw4MFm9CkAb5cvXzYTv2vNeVL6ftLbdNo7AH/SBRGGDBmSLMgqHXysQXfatGmOtA3XjzALx+ioUf3D6+vSjo4w1T/UjCwFfC/L+dZbb5nphZLS95MuoqATxAP4a5GeZs2apTpAbMeOHX5tEzIPYRaO0UnfO3funOLtetu///1vv7YJsMGHH35oFhtJid42b948v7YJCPRV83T59JRcuXLFnAM7EWbhmEOHDpnJ31Ny6623mgnhAXjbt2+fWQY6JTVr1jTnABDPfMy6lG1K9LZy5cr5tU3IPIRZOEbnxUwtrOptzJ0JJKc9TKdOnUrxdr0ttV4oIKdp06aNjBw50uc4jKioKLMM9OOPP+5I23D9mJoLjmnQoIF88MEHplbJF71MWr9+fb+3Cwh0t99+u6xcuTLFdeV1mWg9B8CfdLnnzz//XCpXrmxWy7vtttvM8d27d5uynTJlyphzYCfCLByjMxncf//9ZrCXzlxQokQJc1w/Of/97383a8/rH2UA3rp37y6DBg0ygfWhhx7yuu3LL7+U1157jcGTQCI6WHLdunUyfPhwWbhwoac+NjQ01IRbfc/4GlAJOzDPLBwfld2/f39TfK+jsHXFL52WK2/evPLmm2/Kc88953QTgYCkf4A/+ugjs/JX4l6mvXv3Srt27WT+/PlONxEISBp7Tp8+bf4tVqwYy9hmA4RZOO748eOyaNEi2b9/v/mfS5UqVaRt27ZmABiAlOn7RgOtDvZyv3c6duxowiwA33T5Z/3Qp/SDYI0aNZxuEq4TYRYAAGR7mzZtkh49esgvv/xiPvwp7ZXVcp33339f/va3vzndRGQQYRaO+/jjj80lUfcnZXfvkvbOAkj9qsann37q1cuko7ZLly7tdNOAgKIBVgcdV6tWTQYOHGj+dR/XkrY9e/bIDz/8INWrV3e6qcgAwiwck5CQIB06dDBhVgOs1v6pXbt2mZKDJ554woRc6pmA5N59910zCCwuLs6zip6uqBccHGwGfz3//PNONxEIGFp6o9PV6Ye/pH9TNAbph0Adq6GlO7AP88zCMbocp04vpOvI68CVJUuWmE0/IX/22WeyYsUKcw4Ab0uXLpV+/fpJ3759Te/s2bNnzaZfa4jVQZVfffWV080EAsbq1atlxIgRPjtH9JjepufATvTMwjG6SpEuu6nTDPmiNUwaZrVYH8BfdI35Jk2ayLhx43zerhPAr127VtasWeP3tgGBKF++fGagpM4n68uxY8fMHLSXL1/2e9tw/eiZhWP0fyzNmzdP8Xa9jSU5geS2bt0qnTp1SvF2vU3PAfAnXapWB4ClZOPGjSxnazHCLByjS9XqpdGUaP2ffpoG4C0+Pt7U96VEb9NzAPzpySefNDXmO3fuTHbbjh07zCI+7du3d6RtuH6EWTimYcOGMn369BRvj4yMNOcA8KZTCenSnCnR2nOWswX+oit/6dzltWvXlhYtWphgq7MaPPjgg1KnTh0pVaqUqZuFnVjOFo4ZOXKkqf37/fffzadinc1AS7h1NoPJkyebP9YU5APJ9enTx6yOFxISIs8++6zkyfPn/8p1tLauqqc1szrbAYA/6VU+/Xui03DpLDnffvutOa4z6WjtuQZbfT/BTgwAg6N01gL9Y3zmzBmv40WKFDF/lB9//HHH2gYEMv0AqFNw6XryFStWNB8EDx48KBcuXDAzHegfbQB/0dKbdevWmRW/9G8Msg/CLBx38eJFWb58uWewl35SfuCBB6RAgQJONw0IaDrJu/YyJX7vaG3gXXfd5XTTgIDtodWrf+XLl3e6KchEhFk4TnuTKlSo4HQzAADZXL169eT111+X++67z+mmIBMxAAyOq1SpkoSHh8u//vUv5vgD0un777+Xp59+Who1amQWTVAffPCBmWcWgDetj9USnX//+9/y22+/mVlzEm+wE2EWjtP5MHUBBR1dWrJkSenVq1eq8wEC+JMuzRkREWGmudP3UWxsrDkeHR0t48ePd7p5QMB45ZVXJCYmRlq2bCk//fSTPPzww2Z2A62d1S00NJQ6WotRZoCAoSOxdWnbuXPnyrJly0z9n64OphPAFytWzOnmAQFHpxTSUdidO3c2A8H0j7SW7Gzbts1MPxQVFeV0E4GAkDt3btMTq/Wyqbnnnnv81iZkHsIsAo72Lum0QjovYFxcnAQHB0u7du1MndMtt9zidPOAgKGDJH/55RcJCwvzCrNah169enXKdoD/L1euXObDXfHixZ1uCrIAZQYIGJs3b5bnn3/eBFadckjrmg4cOCArVqyQX3/9VR555BGnmwgEFC3L2b9/f7LjWi/LoErAW1BQkNNNQBZh0QQ4ToPrnDlzZM+ePaaead68eeZf/SStdAoVLT3Q3icAf+nZs6f0799fZs+ebf5Q64e+DRs2mA+CL7/8stPNAwKKlq5dK9AmnfMcdiDMwnG6pK3Wxnbt2jXFMgK9NPT+++/7vW1AIBs2bJgkJCSYaYZ0vua7777brGKkYfaFF15wunlAQBk7dqwULlzY6WYgC1AzCwCW09pyLTfQ1b+0VvaGG25wuklAQKFmNnujZhaO05kLEs+JGRkZKbVr15aOHTvKH3/84WjbABvoIEkNsfXr1yfIAj5QL5u90TMLx+k62TpTgdbJ7tixQ/72t7+ZOWdXr14tVatWNfW0AP7Upk2bNJ+7ePHiLG0LYAt6ZrM3ambhuEOHDpleJfck8A899JCZ8F0ngdeAC+Av1PwB6ae15ci+CLMIiEukOnhFrVy50kwAr2666SaWFwSS4EoFAHgjzMJxTZo0MWUFjRs3NsvYLly40Bzfu3evWW4QAAAgJYRZOG7atGlmsYRPPvnETNNVunRpc/zrr7+WBx980OnmAQG3hG1aB7NoqQ4AZHcMAAMAy+bKdNPlanXpZ605b9iwoTn2ww8/yM8//2w+IE6YMMHBlgKAfxBmEVD0j7POmZlYoUKFHGsPEMieeeYZs9DIq6++6nV89OjRcuzYMbMyGABkd4RZOC4mJkaGDh0qixYtkt9//z3Z7fHx8Y60C7BhZoPNmzdL5cqVvY7v27dP6tWrJ9HR0Y61DQD8hUUT4LghQ4bIN998Y+pldSnOWbNmmUuppUqVknnz5jndPCBg5c+fX9atW5fsuB7Lly+fI20CAH9jABgc9+WXX5rQ2qxZM+nWrZs0bdpUKlWqJOXKlZMPP/xQnnrqKaebCASkAQMGyHPPPWcGeunqX2rjxo2mvODll192unkA4BeUGcBxuvzmL7/8ImXLljVTcemqRfqHWRdT0NXBdL15AL5pec5bb70lu3btMvvVqlWT/v37S7t27ZxuGgD4BT2zcFyFChVMcNUwq8vX6h9nDbPaYxsaGup084CApqGV4AogJ6NnFo578803JXfu3NKvXz+zAljr1q1Ffy2vXLkikydPNpdSAQAAfCHMIuAcOXJEtmzZYupma9as6XRzgIBSpEiRNC+acObMmSxvDwA4jTIDOKZly5Yyf/58M72QmjhxovTu3dsM/NJNp+nSyeC1nhbAn6ZOner5Wt8j48aNk4iICM+iCRs2bJDly5czAAxAjkHPLByjpQW//fabFC9e3LM4wvbt200NrTpx4oSZnot5ZgHfHn/8cQkPD5e+ffsmWyJaS3aWLFniWNsAwF+YZxaOSfo5is9VQPpoD+yDDz6Y7Lge0zALADkBYRYALHXzzTfL559/nuy4HtPbACAnoGYWjtFBLEkHsqR1YAsAMSvlPfPMM7JmzRpp0KCBZ9GEZcuWycyZM51uHgD4BWEWjtGygq5du5olbNXly5fNALCCBQua/djYWIdbCAQ2ff/oIglvv/22WWxE6f7atWs94RYAsjsGgMExunRtWsyZMyfL2wIAAOxEmAWAbECvbMTFxXkd0xlCACC7YwAYAFjq4sWLZlound5Oy3N0QYXEGwDkBIRZALDU4MGD5ZtvvpHp06eb2vNZs2aZQWE6P/O8efOcbh4A+AVlBgBgqbJly5rQ2qxZM1NSsHXrVrMM9AcffGBW1/vqq6+cbiIAZDl6ZgHAUmfOnPGsmKdhVvdVkyZN5LvvvnO4dQDgH4RZALCUBtlDhw6Zr6tWrSqLFi0yX3/55ZcSGhrqcOsAwD8oMwAAS7355puSO3du6devn1m+tnXr1mb+5itXrsiUKVOkf//+TjcRALIciyYAgGUSEhJk0qRJ8sUXX5jpuH799VcZPXq07N69W7Zs2WLqZmvWrOl0MwHAL+iZBQDLvPrqqzJmzBhp3ry55M+fX5YvXy4dOnSQ2bNnO900APA7wiwAWKZy5cry4osvSq9evcy+lhi0atVKLl26JLlyMRQCQM5CmAUAy+icsvv375cyZcp4juXLl88cu/XWWx1tGwD4Gx/hAcAyV69eNeE1sbx585qBXwCQ0zAADAAsoxfUunbtanpo3S5fviy9e/c2y9q6LV682KEWAoD/EGYBwDJdunRJduzpp592pC0A4DRqZgEAAGAtamYBAABgLcIsAAAArEWYBQAAgLUIswCQTa1Zs0aCgoLk7Nmzab5PWFiYTJ06NUvbBQCZiTALAA7R6bU0bOqUWkn16dPH3KbnAABSRpgFAAfpKl4LFiwwS9EmnjP2o48+krJlyzraNgCwAWEWABx05513mkCbeIED/VqDbJ06dTzHYmNjpV+/flK8eHGz+leTJk3kxx9/9Hqsr776SqpUqSL58+eX8PBwOXz4cLLvt3btWmnatKk5R7+vPmZMTEwWP0sAyDqEWQBwWPfu3WXOnDme/dmzZ0u3bt28zhkyZIh8+umn8s9//lO2bt0qlSpVkoiICDlz5oy5/dixY9KmTRtp3bq1bN++XZ555hkZNmyY12McOHBAHnzwQXn88cflv//9ryxcuNCE2759+/rpmQJA5iPMAoDDdPUuDZVHjhwx27p167xW9NKe0+nTp8ukSZOkRYsWUr16dZk5c6bpXX3//ffNOXp7xYoVZfLkyXLbbbfJU089lazedsKECeb4gAEDpHLlytKoUSN5++23Zd68eaa0AQBsxHK2AOCwYsWKSatWrWTu3LmiizLq10WLFvXqUb1y5Yo0btzYcyxv3rxSv3592bVrl9nXfxs0aOD1uA0bNvTa/+mnn0yP7Icffug5pt8vISFBDh06JNWqVcvCZwkAWYMwCwABUmrgvtwfGRmZJd/jwoUL0qtXL1MnmxSDzQDYijALAAFAa1nj4uLMdFxaC5uYlg8EBweb8oNy5cqZY9pTqwPAtGRAaa/qF1984XW/H374Idlgs19++cXU2wJAdkHNLAAEgNy5c5tSAQ2b+nViBQsWlOeee04GDx4sy5YtM+f07NlTLl68KD169DDn6Fy1+/btM+fs2bPHTO2lZQuJDR06VNavX296gHWQmJ7/+eefMwAMgNUIswAQIAoVKmQ2XyZOnGhmIejUqZPpYd2/f78sX75cihQp4ikT0NkOlixZIrVq1ZIZM2bI+PHjvR6jZs2a8u2338revXvN9Fw69deoUaOkVKlSfnl+AJAVglxa/Q8AAABYiJ5ZAAAAWIswCwAAAGsRZgEAAGAtwiwAAACsRZgFAACAtQizAAAAsBZhFgAAANYizAIAAMBahFkAAABYizALAAAAaxFmAQAAYC3CLAAAAMRW/w+W9Gd+kfiJyQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "df_results = pd.DataFrame(results)\n", + "df_results.to_csv(os.path.join(OUTPUT_FOLDER, 'ai_ocr_benchmark_results.csv'), index=False)\n", + "print('Benchmark results saved!')\n", + "\n", + "# Summary by model\n", + "summary = df_results.groupby('Model')[['WER', 'CER']].mean()\n", + "print(summary)\n", + "\n", + "# Plot\n", + "summary.plot(kind='bar', figsize=(8,5), title='AI OCR Benchmark (WER & CER)')\n", + "plt.ylabel('Error Rate')\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python", + "version": "3.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}