more gpu
Some checks failed
build_docker / essential (pull_request) Successful in 1s
build_docker / build_cpu (linux/amd64) (pull_request) Successful in 4m53s
build_docker / build_doctr (linux/arm64) (pull_request) Has been cancelled
build_docker / manifest_easyocr (pull_request) Has been cancelled
build_docker / manifest_doctr (pull_request) Has been cancelled
build_docker / build_easyocr_gpu (linux/amd64) (pull_request) Has been cancelled
build_docker / build_easyocr_gpu (linux/arm64) (pull_request) Has been cancelled
build_docker / build_doctr_gpu (linux/amd64) (pull_request) Has been cancelled
build_docker / build_doctr_gpu (linux/arm64) (pull_request) Has been cancelled
build_docker / manifest_easyocr_gpu (pull_request) Has been cancelled
build_docker / manifest_doctr_gpu (pull_request) Has been cancelled
build_docker / build_gpu (linux/amd64) (pull_request) Has been cancelled
build_docker / build_cpu (linux/arm64) (pull_request) Has been cancelled
build_docker / build_gpu (linux/arm64) (pull_request) Has been cancelled
build_docker / manifest_cpu (pull_request) Has been cancelled
build_docker / manifest_gpu (pull_request) Has been cancelled
build_docker / build_easyocr (linux/amd64) (pull_request) Has been cancelled
build_docker / build_easyocr (linux/arm64) (pull_request) Has been cancelled
build_docker / build_doctr (linux/amd64) (pull_request) Has been cancelled

This commit is contained in:
2026-01-18 06:54:14 +01:00
parent 578689443d
commit b9a64cd5ca
5 changed files with 684 additions and 1 deletions

View File

@@ -9,7 +9,6 @@ on:
push:
branches:
- main
- gpu_support
env:
PADDLE_VERSION: "3.0.0"
@@ -24,7 +23,9 @@ jobs:
image_cpu: seryus.ddns.net/unir/paddle-ocr-cpu
image_gpu: seryus.ddns.net/unir/paddle-ocr-gpu
image_easyocr: seryus.ddns.net/unir/easyocr-cpu
image_easyocr_gpu: seryus.ddns.net/unir/easyocr-gpu
image_doctr: seryus.ddns.net/unir/doctr-cpu
image_doctr_gpu: seryus.ddns.net/unir/doctr-gpu
steps:
- name: Output version info
run: |
@@ -315,3 +316,139 @@ jobs:
docker buildx imagetools create -t ${{ needs.essential.outputs.image_doctr }}:${{ needs.essential.outputs.Version }} \
${{ needs.essential.outputs.image_doctr }}:${{ needs.essential.outputs.Version }}-amd64 \
${{ needs.essential.outputs.image_doctr }}:${{ needs.essential.outputs.Version }}-arm64
# EasyOCR GPU image: Matrix build for amd64 and arm64
# PyTorch cu128 has wheels for both architectures
build_easyocr_gpu:
runs-on: ubuntu-latest
needs: essential
strategy:
matrix:
platform:
- linux/amd64
- linux/arm64
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Login to Gitea Registry
uses: docker/login-action@v3
with:
registry: ${{ needs.essential.outputs.repo }}
username: username
password: ${{ secrets.CI_READWRITE }}
- name: Get arch suffix
id: arch
run: |
if [ "${{ matrix.platform }}" = "linux/amd64" ]; then
echo "suffix=amd64" >> $GITHUB_OUTPUT
else
echo "suffix=arm64" >> $GITHUB_OUTPUT
fi
- name: Build and push EasyOCR GPU image (${{ matrix.platform }})
uses: docker/build-push-action@v5
with:
context: src/easyocr_service
file: src/easyocr_service/Dockerfile.gpu
platforms: ${{ matrix.platform }}
push: true
tags: |
${{ needs.essential.outputs.image_easyocr_gpu }}:${{ needs.essential.outputs.Version }}-${{ steps.arch.outputs.suffix }}
${{ needs.essential.outputs.image_easyocr_gpu }}:${{ steps.arch.outputs.suffix }}
# DocTR GPU image: Matrix build for amd64 and arm64
# PyTorch cu128 has wheels for both architectures
build_doctr_gpu:
runs-on: ubuntu-latest
needs: essential
strategy:
matrix:
platform:
- linux/amd64
- linux/arm64
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Login to Gitea Registry
uses: docker/login-action@v3
with:
registry: ${{ needs.essential.outputs.repo }}
username: username
password: ${{ secrets.CI_READWRITE }}
- name: Get arch suffix
id: arch
run: |
if [ "${{ matrix.platform }}" = "linux/amd64" ]; then
echo "suffix=amd64" >> $GITHUB_OUTPUT
else
echo "suffix=arm64" >> $GITHUB_OUTPUT
fi
- name: Build and push DocTR GPU image (${{ matrix.platform }})
uses: docker/build-push-action@v5
with:
context: src/doctr_service
file: src/doctr_service/Dockerfile.gpu
platforms: ${{ matrix.platform }}
push: true
tags: |
${{ needs.essential.outputs.image_doctr_gpu }}:${{ needs.essential.outputs.Version }}-${{ steps.arch.outputs.suffix }}
${{ needs.essential.outputs.image_doctr_gpu }}:${{ steps.arch.outputs.suffix }}
# Create multi-arch manifest for EasyOCR GPU image
manifest_easyocr_gpu:
runs-on: ubuntu-latest
needs: [essential, build_easyocr_gpu]
steps:
- name: Login to Gitea Registry
uses: docker/login-action@v3
with:
registry: ${{ needs.essential.outputs.repo }}
username: username
password: ${{ secrets.CI_READWRITE }}
- name: Create multi-arch manifest (EasyOCR GPU)
run: |
docker buildx imagetools create -t ${{ needs.essential.outputs.image_easyocr_gpu }}:latest \
${{ needs.essential.outputs.image_easyocr_gpu }}:amd64 \
${{ needs.essential.outputs.image_easyocr_gpu }}:arm64
docker buildx imagetools create -t ${{ needs.essential.outputs.image_easyocr_gpu }}:${{ needs.essential.outputs.Version }} \
${{ needs.essential.outputs.image_easyocr_gpu }}:${{ needs.essential.outputs.Version }}-amd64 \
${{ needs.essential.outputs.image_easyocr_gpu }}:${{ needs.essential.outputs.Version }}-arm64
# Create multi-arch manifest for DocTR GPU image
manifest_doctr_gpu:
runs-on: ubuntu-latest
needs: [essential, build_doctr_gpu]
steps:
- name: Login to Gitea Registry
uses: docker/login-action@v3
with:
registry: ${{ needs.essential.outputs.repo }}
username: username
password: ${{ secrets.CI_READWRITE }}
- name: Create multi-arch manifest (DocTR GPU)
run: |
docker buildx imagetools create -t ${{ needs.essential.outputs.image_doctr_gpu }}:latest \
${{ needs.essential.outputs.image_doctr_gpu }}:amd64 \
${{ needs.essential.outputs.image_doctr_gpu }}:arm64
docker buildx imagetools create -t ${{ needs.essential.outputs.image_doctr_gpu }}:${{ needs.essential.outputs.Version }} \
${{ needs.essential.outputs.image_doctr_gpu }}:${{ needs.essential.outputs.Version }}-amd64 \
${{ needs.essential.outputs.image_doctr_gpu }}:${{ needs.essential.outputs.Version }}-arm64

View File

@@ -0,0 +1,68 @@
# Dockerfile.gpu - DocTR GPU Dockerfile for amd64/arm64
#
# Build:
# docker build -t doctr-gpu:latest -f Dockerfile.gpu .
#
# Run:
# docker run --gpus all -p 8003:8000 -v ./dataset:/app/dataset doctr-gpu:latest
# CUDA 13.0 for Blackwell (sm_121) and GH200/GB200 support
FROM nvidia/cuda:13.0.2-cudnn-runtime-ubuntu24.04
LABEL maintainer="Sergio Jimenez"
LABEL description="DocTR Tuning REST API - GPU/CUDA version"
WORKDIR /app
# Set environment variables
ENV DEBIAN_FRONTEND=noninteractive
ENV PYTHONUNBUFFERED=1
ENV CUDA_VISIBLE_DEVICES=0
ENV DOCTR_DET_ARCH=db_resnet50
ENV DOCTR_RECO_ARCH=crnn_vgg16_bn
# Install Python 3.12 and system dependencies
RUN apt-get update && apt-get install -y --no-install-recommends \
python3.12 \
python3.12-venv \
python3-pip \
libgl1 \
libglib2.0-0 \
libsm6 \
libxext6 \
libxrender1 \
libgomp1 \
&& rm -rf /var/lib/apt/lists/* \
&& ln -sf /usr/bin/python3.12 /usr/bin/python
# Install PyTorch with CUDA support
# cu128 index has both amd64 and arm64 wheels
RUN python -m pip install --no-cache-dir \
torch torchvision --index-url https://download.pytorch.org/whl/cu128
# Install DocTR and other dependencies
RUN python -m pip install --no-cache-dir \
"python-doctr[torch]>=0.8.0" \
fastapi>=0.104.0 \
"uvicorn[standard]" \
pydantic>=2.0.0 \
jiwer>=3.0.0 \
numpy>=1.24.0 \
pillow>=10.0.0
# Copy application code
COPY doctr_tuning_rest.py .
COPY dataset_manager.py .
# Volume for dataset and model cache
VOLUME ["/app/dataset", "/root/.cache/doctr"]
# Expose API port
EXPOSE 8000
# Health check (longer start period for model download)
HEALTHCHECK --interval=30s --timeout=10s --start-period=180s --retries=3 \
CMD python -c "import urllib.request; urllib.request.urlopen('http://localhost:8000/health')" || exit 1
# Run the API server
CMD ["uvicorn", "doctr_tuning_rest:app", "--host", "0.0.0.0", "--port", "8000"]

212
src/doctr_service/README.md Normal file
View File

@@ -0,0 +1,212 @@
# DocTR Tuning REST API
REST API service for DocTR (Document Text Recognition) hyperparameter evaluation. Keeps the model loaded in memory for fast repeated evaluations during hyperparameter search.
## Quick Start
### CPU Version
```bash
cd src/doctr_service
# Build
docker build -t doctr-api:cpu .
# Run
docker run -d -p 8003:8000 \
-v $(pwd)/../dataset:/app/dataset:ro \
-v doctr-cache:/root/.cache/doctr \
doctr-api:cpu
# Test
curl http://localhost:8003/health
```
### GPU Version
```bash
# Build GPU image
docker build -f Dockerfile.gpu -t doctr-api:gpu .
# Run with GPU
docker run -d -p 8003:8000 --gpus all \
-v $(pwd)/../dataset:/app/dataset:ro \
-v doctr-cache:/root/.cache/doctr \
doctr-api:gpu
```
## Files
| File | Description |
|------|-------------|
| `doctr_tuning_rest.py` | FastAPI REST service with 9 tunable hyperparameters |
| `dataset_manager.py` | Dataset loader (shared with other services) |
| `Dockerfile` | CPU-only image (amd64 + arm64) |
| `Dockerfile.gpu` | GPU/CUDA image (amd64 + arm64) |
| `requirements.txt` | Python dependencies |
## API Endpoints
### `GET /health`
Check if service is ready.
```json
{
"status": "ok",
"model_loaded": true,
"dataset_loaded": true,
"dataset_size": 24,
"det_arch": "db_resnet50",
"reco_arch": "crnn_vgg16_bn",
"cuda_available": true,
"device": "cuda",
"gpu_name": "NVIDIA GB10"
}
```
### `POST /evaluate`
Run OCR evaluation with given hyperparameters.
**Request (9 tunable parameters):**
```json
{
"pdf_folder": "/app/dataset",
"assume_straight_pages": true,
"straighten_pages": false,
"preserve_aspect_ratio": true,
"symmetric_pad": true,
"disable_page_orientation": false,
"disable_crop_orientation": false,
"resolve_lines": true,
"resolve_blocks": false,
"paragraph_break": 0.035,
"start_page": 5,
"end_page": 10
}
```
**Response:**
```json
{
"CER": 0.0189,
"WER": 0.1023,
"TIME": 52.3,
"PAGES": 5,
"TIME_PER_PAGE": 10.46,
"model_reinitialized": false
}
```
**Note:** `model_reinitialized` indicates if the model was reloaded due to changed processing flags (adds ~2-5s overhead).
## Hyperparameters
### Processing Flags (Require Model Reinitialization)
| Parameter | Default | Description |
|-----------|---------|-------------|
| `assume_straight_pages` | true | Skip rotation handling for straight documents |
| `straighten_pages` | false | Pre-straighten pages before detection |
| `preserve_aspect_ratio` | true | Maintain document proportions during resize |
| `symmetric_pad` | true | Use symmetric padding when preserving aspect ratio |
**Note:** Changing these flags requires model reinitialization (~2-5s).
### Orientation Flags
| Parameter | Default | Description |
|-----------|---------|-------------|
| `disable_page_orientation` | false | Skip page orientation classification |
| `disable_crop_orientation` | false | Skip crop orientation detection |
### Output Grouping
| Parameter | Default | Range | Description |
|-----------|---------|-------|-------------|
| `resolve_lines` | true | bool | Group words into lines |
| `resolve_blocks` | false | bool | Group lines into blocks |
| `paragraph_break` | 0.035 | 0.0-1.0 | Minimum space ratio separating paragraphs |
## Model Architecture
DocTR uses a two-stage pipeline:
1. **Detection** (`det_arch`): Localizes text regions
- Default: `db_resnet50` (DBNet with ResNet-50 backbone)
- Alternatives: `linknet_resnet18`, `db_mobilenet_v3_large`
2. **Recognition** (`reco_arch`): Recognizes characters
- Default: `crnn_vgg16_bn` (CRNN with VGG-16 backbone)
- Alternatives: `sar_resnet31`, `master`, `vitstr_small`
Architecture is set via environment variables (fixed at startup).
## GPU Support
### Platform Support
| Platform | CPU | GPU |
|----------|-----|-----|
| Linux x86_64 (amd64) | ✅ | ✅ PyTorch CUDA |
| Linux ARM64 (GH200/GB200/DGX Spark) | ✅ | ✅ PyTorch CUDA (cu128 index) |
| macOS ARM64 (M1/M2) | ✅ | ❌ |
### PyTorch CUDA on ARM64
Unlike PaddlePaddle, PyTorch provides **official ARM64 CUDA wheels** on the cu128 index:
```bash
pip install torch torchvision --index-url https://download.pytorch.org/whl/cu128
```
This works on both amd64 and arm64 platforms with CUDA support.
### GPU Detection
DocTR automatically uses GPU when available:
```python
import torch
print(torch.cuda.is_available()) # True if GPU available
# DocTR model moves to GPU
model = ocr_predictor(pretrained=True)
if torch.cuda.is_available():
model = model.cuda()
```
The `/health` endpoint shows GPU status:
```json
{
"cuda_available": true,
"device": "cuda",
"gpu_name": "NVIDIA GB10",
"gpu_memory_total": "128.00 GB"
}
```
## Environment Variables
| Variable | Default | Description |
|----------|---------|-------------|
| `DOCTR_DET_ARCH` | `db_resnet50` | Detection architecture |
| `DOCTR_RECO_ARCH` | `crnn_vgg16_bn` | Recognition architecture |
| `CUDA_VISIBLE_DEVICES` | `0` | GPU device selection |
## CI/CD
Built images available from registry:
| Image | Architecture |
|-------|--------------|
| `seryus.ddns.net/unir/doctr-cpu:latest` | amd64, arm64 |
| `seryus.ddns.net/unir/doctr-gpu:latest` | amd64, arm64 |
## Sources
- [DocTR Documentation](https://mindee.github.io/doctr/)
- [DocTR GitHub](https://github.com/mindee/doctr)
- [DocTR Model Usage](https://mindee.github.io/doctr/latest/using_doctr/using_models.html)
- [PyTorch ARM64 CUDA Wheels](https://github.com/pytorch/pytorch/issues/160162)

View File

@@ -0,0 +1,67 @@
# Dockerfile.gpu - EasyOCR GPU Dockerfile for amd64/arm64
#
# Build:
# docker build -t easyocr-gpu:latest -f Dockerfile.gpu .
#
# Run:
# docker run --gpus all -p 8002:8000 -v ./dataset:/app/dataset easyocr-gpu:latest
# CUDA 13.0 for Blackwell (sm_121) and GH200/GB200 support
FROM nvidia/cuda:13.0.2-cudnn-runtime-ubuntu24.04
LABEL maintainer="Sergio Jimenez"
LABEL description="EasyOCR Tuning REST API - GPU/CUDA version"
WORKDIR /app
# Set environment variables
ENV DEBIAN_FRONTEND=noninteractive
ENV PYTHONUNBUFFERED=1
ENV CUDA_VISIBLE_DEVICES=0
ENV EASYOCR_LANGUAGES=es,en
# Install Python 3.12 and system dependencies
RUN apt-get update && apt-get install -y --no-install-recommends \
python3.12 \
python3.12-venv \
python3-pip \
libgl1 \
libglib2.0-0 \
libsm6 \
libxext6 \
libxrender1 \
libgomp1 \
&& rm -rf /var/lib/apt/lists/* \
&& ln -sf /usr/bin/python3.12 /usr/bin/python
# Install PyTorch with CUDA support
# cu128 index has both amd64 and arm64 wheels
RUN python -m pip install --no-cache-dir \
torch torchvision --index-url https://download.pytorch.org/whl/cu128
# Install EasyOCR and other dependencies
RUN python -m pip install --no-cache-dir \
easyocr>=1.7.0 \
fastapi>=0.104.0 \
"uvicorn[standard]" \
pydantic>=2.0.0 \
jiwer>=3.0.0 \
numpy>=1.24.0 \
pillow>=10.0.0
# Copy application code
COPY easyocr_tuning_rest.py .
COPY dataset_manager.py .
# Volume for dataset and model cache
VOLUME ["/app/dataset", "/root/.EasyOCR"]
# Expose API port
EXPOSE 8000
# Health check
HEALTHCHECK --interval=30s --timeout=10s --start-period=120s --retries=3 \
CMD python -c "import urllib.request; urllib.request.urlopen('http://localhost:8000/health')" || exit 1
# Run the API server
CMD ["uvicorn", "easyocr_tuning_rest:app", "--host", "0.0.0.0", "--port", "8000"]

View File

@@ -0,0 +1,199 @@
# EasyOCR Tuning REST API
REST API service for EasyOCR hyperparameter evaluation. Keeps the model loaded in memory for fast repeated evaluations during hyperparameter search.
## Quick Start
### CPU Version
```bash
cd src/easyocr_service
# Build
docker build -t easyocr-api:cpu .
# Run
docker run -d -p 8002:8000 \
-v $(pwd)/../dataset:/app/dataset:ro \
-v easyocr-cache:/root/.EasyOCR \
easyocr-api:cpu
# Test
curl http://localhost:8002/health
```
### GPU Version
```bash
# Build GPU image
docker build -f Dockerfile.gpu -t easyocr-api:gpu .
# Run with GPU
docker run -d -p 8002:8000 --gpus all \
-v $(pwd)/../dataset:/app/dataset:ro \
-v easyocr-cache:/root/.EasyOCR \
easyocr-api:gpu
```
## Files
| File | Description |
|------|-------------|
| `easyocr_tuning_rest.py` | FastAPI REST service with 14 tunable hyperparameters |
| `dataset_manager.py` | Dataset loader (shared with other services) |
| `Dockerfile` | CPU-only image (amd64 + arm64) |
| `Dockerfile.gpu` | GPU/CUDA image (amd64 + arm64) |
| `requirements.txt` | Python dependencies |
## API Endpoints
### `GET /health`
Check if service is ready.
```json
{
"status": "ok",
"model_loaded": true,
"dataset_loaded": true,
"dataset_size": 24,
"languages": ["es", "en"],
"cuda_available": true,
"device": "cuda",
"gpu_name": "NVIDIA GB10"
}
```
### `POST /evaluate`
Run OCR evaluation with given hyperparameters.
**Request (14 tunable parameters):**
```json
{
"pdf_folder": "/app/dataset",
"text_threshold": 0.7,
"low_text": 0.4,
"link_threshold": 0.4,
"slope_ths": 0.1,
"ycenter_ths": 0.5,
"height_ths": 0.5,
"width_ths": 0.5,
"add_margin": 0.1,
"contrast_ths": 0.1,
"adjust_contrast": 0.5,
"decoder": "greedy",
"beamWidth": 5,
"min_size": 10,
"rotation_info": null,
"start_page": 5,
"end_page": 10
}
```
**Response:**
```json
{"CER": 0.0234, "WER": 0.1156, "TIME": 45.2, "PAGES": 5, "TIME_PER_PAGE": 9.04}
```
## Hyperparameters
### Detection (CRAFT Algorithm)
| Parameter | Default | Range | Description |
|-----------|---------|-------|-------------|
| `text_threshold` | 0.7 | 0.0-1.0 | Text confidence threshold |
| `low_text` | 0.4 | 0.0-1.0 | Text lower-bound score |
| `link_threshold` | 0.4 | 0.0-1.0 | Link confidence threshold |
### Bounding Box Merging
| Parameter | Default | Range | Description |
|-----------|---------|-------|-------------|
| `slope_ths` | 0.1 | 0.0-1.0 | Max slope for merging |
| `ycenter_ths` | 0.5 | 0.0-2.0 | Max vertical shift |
| `height_ths` | 0.5 | 0.0-2.0 | Max height variance |
| `width_ths` | 0.5 | 0.0-2.0 | Max horizontal distance |
| `add_margin` | 0.1 | 0.0-1.0 | Bounding box extension |
### Contrast
| Parameter | Default | Range | Description |
|-----------|---------|-------|-------------|
| `contrast_ths` | 0.1 | 0.0-1.0 | Contrast threshold for dual-pass |
| `adjust_contrast` | 0.5 | 0.0-1.0 | Target contrast level |
### Decoder
| Parameter | Default | Options | Description |
|-----------|---------|---------|-------------|
| `decoder` | "greedy" | greedy, beamsearch, wordbeamsearch | Decoding method |
| `beamWidth` | 5 | 1-20 | Beam width (for beam search) |
### Other
| Parameter | Default | Description |
|-----------|---------|-------------|
| `min_size` | 10 | Minimum text box pixels |
| `rotation_info` | null | Rotation angles to try: [90, 180, 270] |
## GPU Support
### Platform Support
| Platform | CPU | GPU |
|----------|-----|-----|
| Linux x86_64 (amd64) | ✅ | ✅ PyTorch CUDA |
| Linux ARM64 (GH200/GB200/DGX Spark) | ✅ | ✅ PyTorch CUDA (cu128 index) |
| macOS ARM64 (M1/M2) | ✅ | ❌ |
### PyTorch CUDA on ARM64
Unlike PaddlePaddle, PyTorch provides **official ARM64 CUDA wheels** on the cu128 index:
```bash
pip install torch torchvision --index-url https://download.pytorch.org/whl/cu128
```
This works on both amd64 and arm64 platforms with CUDA support.
### GPU Detection
EasyOCR automatically uses GPU when PyTorch CUDA is available:
```python
import torch
print(torch.cuda.is_available()) # True if GPU available
```
The `/health` endpoint shows GPU status:
```json
{
"cuda_available": true,
"device": "cuda",
"gpu_name": "NVIDIA GB10",
"gpu_memory_total": "128.00 GB"
}
```
## Environment Variables
| Variable | Default | Description |
|----------|---------|-------------|
| `EASYOCR_LANGUAGES` | `es,en` | Comma-separated language codes |
| `CUDA_VISIBLE_DEVICES` | `0` | GPU device selection |
## CI/CD
Built images available from registry:
| Image | Architecture |
|-------|--------------|
| `seryus.ddns.net/unir/easyocr-cpu:latest` | amd64, arm64 |
| `seryus.ddns.net/unir/easyocr-gpu:latest` | amd64, arm64 |
## Sources
- [EasyOCR Documentation](https://www.jaided.ai/easyocr/documentation/)
- [EasyOCR GitHub](https://github.com/JaidedAI/EasyOCR)
- [PyTorch ARM64 CUDA Wheels](https://github.com/pytorch/pytorch/issues/160162)