Paddle ocr, easyicr and doctr gpu support. (#4)
All checks were successful
build_docker / essential (push) Successful in 0s
build_docker / build_cpu (push) Successful in 5m0s
build_docker / build_gpu (push) Successful in 22m55s
build_docker / build_easyocr (push) Successful in 18m47s
build_docker / build_easyocr_gpu (push) Successful in 19m0s
build_docker / build_raytune (push) Successful in 3m27s
build_docker / build_doctr (push) Successful in 19m42s
build_docker / build_doctr_gpu (push) Successful in 14m49s

This commit was merged in pull request #4.
This commit is contained in:
2026-01-19 17:35:24 +00:00
committed by Sergio Jimenez Jimenez
parent 8e2b7a5096
commit c7ed7b2b9c
105 changed files with 8170 additions and 1263 deletions

138
README.md
View File

@@ -18,11 +18,15 @@ Optimizar el rendimiento de PaddleOCR para documentos académicos en español me
## Resultados Principales
**Tabla.** *Comparación de métricas OCR entre configuración baseline y optimizada.*
| Modelo | CER | Precisión Caracteres | WER | Precisión Palabras |
|--------|-----|---------------------|-----|-------------------|
| PaddleOCR (Baseline) | 7.78% | 92.22% | 14.94% | 85.06% |
| **PaddleOCR-HyperAdjust** | **1.49%** | **98.51%** | **7.62%** | **92.38%** |
*Fuente: Elaboración propia.*
**Mejora obtenida:** Reducción del CER en un **80.9%**
### Configuración Óptima Encontrada
@@ -56,6 +60,8 @@ PDF (académico UNIR)
### Experimento de Optimización
**Tabla.** *Parámetros de configuración del experimento Ray Tune.*
| Parámetro | Valor |
|-----------|-------|
| Número de trials | 64 |
@@ -64,6 +70,8 @@ PDF (académico UNIR)
| Trials concurrentes | 2 |
| Tiempo total | ~6 horas (CPU) |
*Fuente: Elaboración propia.*
---
## Estructura del Repositorio
@@ -113,18 +121,50 @@ MastersThesis/
---
## Rendimiento GPU
Se realizó una validación adicional con aceleración GPU para evaluar la viabilidad práctica del enfoque en escenarios de producción.
**Tabla.** *Comparación de rendimiento CPU vs GPU.*
| Métrica | CPU | GPU (RTX 3060) | Aceleración |
|---------|-----|----------------|-------------|
| Tiempo/Página | 69.4s | 0.55s | **126x** |
| Dataset completo (45 páginas) | ~52 min | ~25 seg | **126x** |
*Fuente: Elaboración propia.*
### Recomendación de Modelos
**Tabla.** *Comparación de modelos PaddleOCR en RTX 3060.*
| Modelo | VRAM | Recomendación |
|--------|------|---------------|
| **PP-OCRv5 Mobile** | 0.06 GB | ✓ Recomendado |
| PP-OCRv5 Server | 5.3 GB | ✗ Causa OOM en RTX 3060 |
*Fuente: Elaboración propia.*
**Conclusión:** Para hardware con VRAM limitada (≤6 GB), los modelos Mobile ofrecen el mejor balance entre precisión y recursos. La aceleración GPU hace viable el procesamiento en tiempo real.
---
## Requisitos
**Tabla.** *Dependencias principales del proyecto y versiones utilizadas.*
| Componente | Versión |
|------------|---------|
| Python | 3.11.9 |
| Python | 3.12.3 |
| PaddlePaddle | 3.2.2 |
| PaddleOCR | 3.3.2 |
| Ray | 2.52.1 |
| Optuna | 4.6.0 |
| Optuna | 4.7.0 |
| jiwer | (para métricas CER/WER) |
| PyMuPDF | (para conversión PDF) |
*Fuente: Elaboración propia.*
---
## Uso
@@ -155,7 +195,7 @@ python src/paddle_ocr_tuning.py \
## Fuentes de Datos
- **Dataset**: Instrucciones para la elaboración del TFE (UNIR), 24 páginas
- **Dataset**: 2 documentos UNIR (45 páginas total): Instrucciones TFE (24 pág.) + Plantilla TFE (21 pág.)
- **Resultados Ray Tune (PRINCIPAL)**: `src/raytune_paddle_subproc_results_20251207_192320.csv` - 64 trials de optimización con todas las métricas y configuraciones
---
@@ -234,14 +274,18 @@ python3 apply_content.py
### Archivos de Entrada y Salida
**Tabla.** *Relación de scripts de generación con sus archivos de entrada y salida.*
| Script | Entrada | Salida |
|--------|---------|--------|
| `generate_mermaid_figures.py` | `docs/*.md` (bloques ```mermaid```) | `thesis_output/figures/figura_*.png`, `figures_manifest.json` |
| `apply_content.py` | `instructions/plantilla_individual.htm`, `docs/*.md`, `thesis_output/figures/*.png` | `thesis_output/plantilla_individual.htm` |
*Fuente: Elaboración propia.*
### Contenido Generado Automáticamente
- **30 tablas** con formato APA (Tabla X. *Título* + Fuente: ...)
- **53 tablas** con formato APA (Tabla X. *Título* + Fuente: ...)
- **8 figuras** desde Mermaid (Figura X. *Título* + Fuente: Elaboración propia)
- **25 referencias** en formato APA con sangría francesa
- **Resumen/Abstract** con palabras clave
@@ -252,48 +296,70 @@ python3 apply_content.py
## Trabajo Pendiente para Completar el TFM
### Contexto: Limitaciones de Hardware
### Contexto: Hardware
Este trabajo adoptó la estrategia de **optimización de hiperparámetros** en lugar de **fine-tuning** debido a:
- **Sin GPU dedicada**: Ejecución exclusivamente en CPU
- **Tiempo de inferencia elevado**: ~69 segundos/página en CPU
- **Fine-tuning inviable**: Entrenar modelos de deep learning sin GPU requeriría tiempos prohibitivos
Este trabajo adoptó la estrategia de **optimización de hiperparámetros** en lugar de **fine-tuning** debido a que el fine-tuning de modelos OCR requiere datasets etiquetados extensos y tiempos de entrenamiento prohibitivos.
**Hardware utilizado:**
- **Optimización (CPU)**: Los 64 trials de Ray Tune se ejecutaron en CPU (~69s/página)
- **Validación (GPU)**: Se validó con RTX 3060 logrando 126x de aceleración (0.55s/página)
La optimización de hiperparámetros demostró ser una **alternativa efectiva** al fine-tuning, logrando una reducción del 80.9% en el CER sin reentrenar el modelo.
### Tareas Completadas
- [x] **Estructura docs/ según plantilla UNIR**: Todos los capítulos siguen numeración exacta (1.1, 1.2, etc.)
- [x] **Añadir diagramas Mermaid**: 7 diagramas añadidos (pipeline OCR, arquitectura Ray Tune, gráficos de comparación)
- [x] **Generar documento TFM unificado**: Script `apply_content.py` genera documento completo desde docs/
- [x] **Convertir Mermaid a PNG**: Script `generate_mermaid_figures.py` genera figuras automáticamente
### Tareas Pendientes
#### 1. Validación del Enfoque (Prioridad Alta)
- [ ] **Validación cruzada en otros documentos**: Evaluar la configuración óptima en otros tipos de documentos en español (facturas, formularios, contratos) para verificar generalización
- [ ] **Ampliar el dataset**: El dataset actual tiene solo 24 páginas. Construir un corpus más amplio y diverso (mínimo 100 páginas)
- [ ] **Validación del ground truth**: Revisar manualmente el texto de referencia extraído automáticamente para asegurar su exactitud
#### 2. Experimentación Adicional (Prioridad Media)
- [ ] **Explorar `text_det_unclip_ratio`**: Este parámetro quedó fijado en 0.0. Incluirlo en el espacio de búsqueda podría mejorar resultados
- [ ] **Comparativa con fine-tuning** (si se obtiene acceso a GPU): Cuantificar la brecha de rendimiento entre optimización de hiperparámetros y fine-tuning real
- [ ] **Evaluación con GPU**: Medir tiempos de inferencia con aceleración GPU para escenarios de producción
#### 3. Documentación y Presentación (Prioridad Alta)
#### Obligatorias para Entrega
- [ ] **Revisión final del documento**: Abrir en Word, actualizar índices (Ctrl+A → F9), ajustar figuras, guardar como .docx
- [ ] **Crear presentación**: Preparar slides para la defensa del TFM
- [ ] **Revisión final del documento**: Verificar formato, índices y contenido en Word
#### 4. Extensiones Futuras (Opcional)
- [ ] **Herramienta de configuración automática**: Desarrollar una herramienta que determine automáticamente la configuración óptima para un nuevo tipo de documento
- [ ] **Benchmark público para español**: Publicar un benchmark de OCR para documentos en español que facilite comparación de soluciones
- [ ] **Optimización multi-objetivo**: Considerar CER, WER y tiempo de inferencia simultáneamente
#### Opcionales (Mejoras Futuras)
- [ ] **Validación cruzada**: Evaluar configuración en otros documentos (facturas, formularios)
- [ ] **Explorar `text_det_unclip_ratio`**: Parámetro fijado en 0.0, podría mejorar resultados
- [ ] **Comparativa con fine-tuning**: Cuantificar brecha vs fine-tuning real
- [ ] **Herramienta de configuración automática**: Auto-detectar configuración óptima por documento
- [ ] **Benchmark público para español**: Facilitar comparación de soluciones OCR
### Recomendación de Próximos Pasos
#### Completadas
- [x] **Estructura docs/ según plantilla UNIR**
- [x] **Diagramas Mermaid**: 8 figuras generadas
- [x] **Documento TFM unificado**: Script `apply_content.py`
- [x] **Evaluación con GPU**: RTX 3060 - 126x más rápido (0.55s/página)
1. **Inmediato**: Abrir documento generado en Word, actualizar índices (Ctrl+A, F9), guardar como .docx
2. **Corto plazo**: Validar en 2-3 tipos de documentos adicionales para demostrar generalización
3. **Para la defensa**: Crear presentación con visualizaciones de resultados
### Dataset
El dataset contiene **45 páginas** de 2 documentos UNIR:
- `src/dataset/0/`: Instrucciones TFE (24 páginas)
- `src/dataset/1/`: Plantilla TFE (21 páginas)
#### Formato Hugging Face
El dataset está disponible en formato Hugging Face en `src/dataset_hf/`:
```
src/dataset_hf/
├── README.md # Dataset card
├── metadata.jsonl # Metadata (image_path, text, doc_id, page_num)
└── data/ # 45 imágenes PNG
```
#### Generar/Regenerar Dataset
```bash
# Convertir de formato original a HF
source .venv/bin/activate
python src/dataset_formatting/convert_to_hf_dataset.py
# Upload a Gitea packages (requiere GITEA_TOKEN)
./src/dataset_formatting/upload-dataset.sh $GITEA_TOKEN
```
#### Descargar Dataset
```bash
# Desde Gitea packages
curl -O https://seryus.ddns.net/api/packages/unir/generic/ocr-dataset-spanish/1.0.0/dataset-1.0.0.tar.gz
tar -xzf dataset-1.0.0.tar.gz -C src/dataset_hf/
```
---