Paddle ocr gpu support. #4

Merged
Seryusjj merged 40 commits from gpu_support into main 2026-01-19 17:35:25 +00:00
6 changed files with 3085 additions and 19 deletions
Showing only changes of commit e036581539 - Show all commits

43
src/README.md Normal file
View File

@@ -0,0 +1,43 @@
# Running Notebooks in Background
## Option 1: Papermill (Recommended)
Runs notebooks directly without conversion.
```bash
pip install papermill
nohup papermill <notebook>.ipynb output.ipynb > papermill.log 2>&1 &
```
Monitor:
```bash
tail -f papermill.log
```
## Option 2: Convert to Python Script
```bash
jupyter nbconvert --to script <notebook>.ipynb
nohup python <notebook>.py > output.log 2>&1 &
```
**Note:** `%pip install` magic commands need manual removal before running as `.py`
## Important Notes
- Ray Tune notebooks require the OCR service running first (Docker)
- For Ray workers, imports must be inside trainable functions
## Example: Ray Tune PaddleOCR
```bash
# 1. Start OCR service
cd src/paddle_ocr && docker compose up -d ocr-cpu
# 2. Run notebook with papermill
cd src
nohup papermill paddle_ocr_raytune_rest.ipynb output_raytune.ipynb > papermill.log 2>&1 &
# 3. Monitor
tail -f papermill.log
```

2511
src/output_raytune.ipynb Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -520,6 +520,28 @@ docker load < paddle-ocr-arm64.tar.gz
## Using with Ray Tune
### Multi-Worker Setup for Parallel Trials
Run multiple workers for parallel hyperparameter tuning:
```bash
cd src/paddle_ocr
# Start 2 CPU workers (ports 8001-8002)
sudo docker compose -f docker-compose.workers.yml --profile cpu up -d
# Or for GPU workers (if supported)
sudo docker compose -f docker-compose.workers.yml --profile gpu up -d
# Check workers are healthy
curl http://localhost:8001/health
curl http://localhost:8002/health
```
Then run the notebook with `max_concurrent_trials=2` to use both workers in parallel.
### Single Worker Setup
Update your notebook's `trainable_paddle_ocr` function:
```python

View File

@@ -0,0 +1,90 @@
# docker-compose.workers.yml - Multiple PaddleOCR workers for parallel Ray Tune
#
# Usage:
# GPU (4 workers sharing GPU):
# docker compose -f docker-compose.workers.yml up
#
# CPU (4 workers):
# docker compose -f docker-compose.workers.yml --profile cpu up
#
# Scale workers (e.g., 8 workers):
# NUM_WORKERS=8 docker compose -f docker-compose.workers.yml up
#
# Each worker runs on a separate port: 8001, 8002, 8003, 8004, ...
x-ocr-gpu-common: &ocr-gpu-common
image: seryus.ddns.net/unir/paddle-ocr-gpu:latest
volumes:
- ../dataset:/app/dataset:ro
- paddlex-cache:/root/.paddlex
environment:
- PYTHONUNBUFFERED=1
- CUDA_VISIBLE_DEVICES=0
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: [gpu]
restart: unless-stopped
healthcheck:
test: ["CMD", "python", "-c", "import urllib.request; urllib.request.urlopen('http://localhost:8000/health')"]
interval: 30s
timeout: 10s
retries: 3
start_period: 120s
x-ocr-cpu-common: &ocr-cpu-common
image: paddle-ocr-api:cpu
volumes:
- ../dataset:/app/dataset:ro
- paddlex-cache:/root/.paddlex
environment:
- PYTHONUNBUFFERED=1
restart: unless-stopped
healthcheck:
test: ["CMD", "python", "-c", "import urllib.request; urllib.request.urlopen('http://localhost:8000/health')"]
interval: 30s
timeout: 10s
retries: 3
start_period: 120s
services:
# GPU Workers (gpu profile) - share single GPU
ocr-worker-1:
<<: *ocr-gpu-common
container_name: paddle-ocr-worker-1
ports:
- "8001:8000"
profiles:
- gpu
ocr-worker-2:
<<: *ocr-gpu-common
container_name: paddle-ocr-worker-2
ports:
- "8002:8000"
profiles:
- gpu
# CPU Workers (cpu profile) - for systems without GPU
ocr-cpu-worker-1:
<<: *ocr-cpu-common
container_name: paddle-ocr-cpu-worker-1
ports:
- "8001:8000"
profiles:
- cpu
ocr-cpu-worker-2:
<<: *ocr-cpu-common
container_name: paddle-ocr-cpu-worker-2
ports:
- "8002:8000"
profiles:
- cpu
volumes:
paddlex-cache:
name: paddlex-model-cache

View File

@@ -5,6 +5,7 @@
import os
import re
import time
import threading
from typing import Optional
from contextlib import asynccontextmanager
@@ -61,6 +62,10 @@ class AppState:
dataset_path: Optional[str] = None
det_model: str = DEFAULT_DET_MODEL
rec_model: str = DEFAULT_REC_MODEL
lock: threading.Lock = None # Protects OCR model from concurrent access
def __init__(self):
self.lock = threading.Lock()
state = AppState()
@@ -281,28 +286,30 @@ def evaluate(request: EvaluateRequest):
time_per_page_list = []
t0 = time.time()
for idx in range(start, end):
img, ref = state.dataset[idx]
arr = np.array(img)
# Lock to prevent concurrent OCR access (model is not thread-safe)
with state.lock:
for idx in range(start, end):
img, ref = state.dataset[idx]
arr = np.array(img)
tp0 = time.time()
out = state.ocr.predict(
arr,
use_doc_orientation_classify=request.use_doc_orientation_classify,
use_doc_unwarping=request.use_doc_unwarping,
use_textline_orientation=request.textline_orientation,
text_det_thresh=request.text_det_thresh,
text_det_box_thresh=request.text_det_box_thresh,
text_det_unclip_ratio=request.text_det_unclip_ratio,
text_rec_score_thresh=request.text_rec_score_thresh,
)
tp0 = time.time()
out = state.ocr.predict(
arr,
use_doc_orientation_classify=request.use_doc_orientation_classify,
use_doc_unwarping=request.use_doc_unwarping,
use_textline_orientation=request.textline_orientation,
text_det_thresh=request.text_det_thresh,
text_det_box_thresh=request.text_det_box_thresh,
text_det_unclip_ratio=request.text_det_unclip_ratio,
text_rec_score_thresh=request.text_rec_score_thresh,
)
pred = assemble_from_paddle_result(out)
time_per_page_list.append(float(time.time() - tp0))
pred = assemble_from_paddle_result(out)
time_per_page_list.append(float(time.time() - tp0))
m = evaluate_text(ref, pred)
cer_list.append(m["CER"])
wer_list.append(m["WER"])
m = evaluate_text(ref, pred)
cer_list.append(m["CER"])
wer_list.append(m["WER"])
return EvaluateResponse(
CER=float(np.mean(cer_list)) if cer_list else 1.0,

View File

@@ -0,0 +1,393 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "header",
"metadata": {},
"source": [
"# PaddleOCR Hyperparameter Optimization via REST API\n",
"\n",
"This notebook runs Ray Tune hyperparameter search calling the PaddleOCR REST API (Docker container).\n",
"\n",
"**Benefits:**\n",
"- No model reload per trial - Model stays loaded in Docker container\n",
"- Faster trials - Skip ~10s model load time per trial\n",
"- Cleaner code - REST API replaces subprocess + CLI arg parsing"
]
},
{
"cell_type": "markdown",
"id": "prereq",
"metadata": {},
"source": [
"## Prerequisites\n",
"\n",
"Start 2 PaddleOCR workers for parallel hyperparameter tuning:\n",
"\n",
"```bash\n",
"cd src/paddle_ocr\n",
"docker compose -f docker-compose.workers.yml up\n",
"```\n",
"\n",
"This starts 2 GPU workers on ports 8001-8002, allowing 2 concurrent trials.\n",
"\n",
"For CPU-only systems:\n",
"```bash\n",
"docker compose -f docker-compose.workers.yml --profile cpu up\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "3ob9fsoilc4",
"metadata": {},
"source": [
"## 0. Dependencies"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "wyr2nsoj7",
"metadata": {},
"outputs": [],
"source": [
"# Install dependencies (run once)\n",
"%pip install -U \"ray[tune]\"\n",
"%pip install optuna\n",
"%pip install requests pandas"
]
},
{
"cell_type": "markdown",
"id": "imports-header",
"metadata": {},
"source": [
"## 1. Imports & Setup"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "imports",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from datetime import datetime\n",
"\n",
"import requests\n",
"import pandas as pd\n",
"\n",
"import ray\n",
"from ray import tune, air\n",
"from ray.tune.search.optuna import OptunaSearch"
]
},
{
"cell_type": "markdown",
"id": "config-header",
"metadata": {},
"source": [
"## 2. API Configuration"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "config",
"metadata": {},
"outputs": [],
"source": [
"# PaddleOCR REST API endpoints - 2 workers for parallel trials\n",
"# Start workers with: cd src/paddle_ocr && docker compose -f docker-compose.workers.yml up\n",
"WORKER_PORTS = [8001, 8002]\n",
"WORKER_URLS = [f\"http://localhost:{port}\" for port in WORKER_PORTS]\n",
"\n",
"# Output folder for results\n",
"OUTPUT_FOLDER = \"results\"\n",
"os.makedirs(OUTPUT_FOLDER, exist_ok=True)\n",
"\n",
"# Number of concurrent trials = number of workers\n",
"NUM_WORKERS = len(WORKER_URLS)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "health-check",
"metadata": {},
"outputs": [],
"source": [
"# Verify all workers are running\n",
"healthy_workers = []\n",
"for url in WORKER_URLS:\n",
" try:\n",
" health = requests.get(f\"{url}/health\", timeout=10).json()\n",
" if health['status'] == 'ok' and health['model_loaded']:\n",
" healthy_workers.append(url)\n",
" print(f\"✓ {url}: {health['status']} (GPU: {health.get('gpu_name', 'N/A')})\")\n",
" else:\n",
" print(f\"✗ {url}: not ready yet\")\n",
" except requests.exceptions.ConnectionError:\n",
" print(f\"✗ {url}: not reachable\")\n",
"\n",
"if not healthy_workers:\n",
" raise RuntimeError(\n",
" \"No healthy workers found. Start them with:\\n\"\n",
" \" cd src/paddle_ocr && docker compose -f docker-compose.workers.yml up\"\n",
" )\n",
"\n",
"print(f\"\\n{len(healthy_workers)}/{len(WORKER_URLS)} workers ready for parallel tuning\")"
]
},
{
"cell_type": "markdown",
"id": "search-space-header",
"metadata": {},
"source": [
"## 3. Search Space"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "search-space",
"metadata": {},
"outputs": [],
"source": [
"search_space = {\n",
" # Whether to use document image orientation classification\n",
" \"use_doc_orientation_classify\": tune.choice([True, False]),\n",
" # Whether to use text image unwarping\n",
" \"use_doc_unwarping\": tune.choice([True, False]),\n",
" # Whether to use text line orientation classification\n",
" \"textline_orientation\": tune.choice([True, False]),\n",
" # Detection pixel threshold (pixels > threshold are considered text)\n",
" \"text_det_thresh\": tune.uniform(0.0, 0.7),\n",
" # Detection box threshold (average score within border)\n",
" \"text_det_box_thresh\": tune.uniform(0.0, 0.7),\n",
" # Text detection expansion coefficient\n",
" \"text_det_unclip_ratio\": tune.choice([0.0]),\n",
" # Text recognition threshold (filter low confidence results)\n",
" \"text_rec_score_thresh\": tune.uniform(0.0, 0.7),\n",
"}"
]
},
{
"cell_type": "markdown",
"id": "trainable-header",
"metadata": {},
"source": [
"## 4. Trainable Function"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "trainable",
"metadata": {},
"outputs": [],
"source": [
"def trainable_paddle_ocr(config):\n",
" \"\"\"Call PaddleOCR REST API with the given hyperparameter config.\n",
" \n",
" Uses trial index to deterministically assign a worker (round-robin),\n",
" ensuring only 1 request per container at a time.\n",
" \"\"\"\n",
" import requests # Must be inside function for Ray workers\n",
" from ray import train\n",
"\n",
" # Worker URLs - round-robin assignment based on trial index\n",
" WORKER_PORTS = [8001, 8002]\n",
" NUM_WORKERS = len(WORKER_PORTS)\n",
" \n",
" # Get trial context for deterministic worker assignment\n",
" context = train.get_context()\n",
" trial_id = context.get_trial_id() if context else \"0\"\n",
" # Extract numeric part from trial ID (e.g., \"trainable_paddle_ocr_abc123_00001\" -> 1)\n",
" try:\n",
" trial_num = int(trial_id.split(\"_\")[-1])\n",
" except (ValueError, IndexError):\n",
" trial_num = hash(trial_id)\n",
" \n",
" worker_idx = trial_num % NUM_WORKERS\n",
" api_url = f\"http://localhost:{WORKER_PORTS[worker_idx]}\"\n",
"\n",
" payload = {\n",
" \"pdf_folder\": \"/app/dataset\",\n",
" \"use_doc_orientation_classify\": config.get(\"use_doc_orientation_classify\", False),\n",
" \"use_doc_unwarping\": config.get(\"use_doc_unwarping\", False),\n",
" \"textline_orientation\": config.get(\"textline_orientation\", True),\n",
" \"text_det_thresh\": config.get(\"text_det_thresh\", 0.0),\n",
" \"text_det_box_thresh\": config.get(\"text_det_box_thresh\", 0.0),\n",
" \"text_det_unclip_ratio\": config.get(\"text_det_unclip_ratio\", 1.5),\n",
" \"text_rec_score_thresh\": config.get(\"text_rec_score_thresh\", 0.0),\n",
" \"start_page\": 5,\n",
" \"end_page\": 10,\n",
" }\n",
"\n",
" try:\n",
" response = requests.post(f\"{api_url}/evaluate\", json=payload, timeout=None) # No timeout\n",
" response.raise_for_status()\n",
" metrics = response.json()\n",
" metrics[\"worker\"] = api_url\n",
" train.report(metrics)\n",
" except Exception as e:\n",
" train.report({\n",
" \"CER\": 1.0,\n",
" \"WER\": 1.0,\n",
" \"TIME\": 0.0,\n",
" \"PAGES\": 0,\n",
" \"TIME_PER_PAGE\": 0,\n",
" \"worker\": api_url,\n",
" \"ERROR\": str(e)[:500]\n",
" })"
]
},
{
"cell_type": "markdown",
"id": "tuner-header",
"metadata": {},
"source": [
"## 5. Run Tuner"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ray-init",
"metadata": {},
"outputs": [],
"source": [
"ray.init(ignore_reinit_error=True)\n",
"print(f\"Ray Tune ready (version: {ray.__version__})\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "tuner",
"metadata": {},
"outputs": [],
"source": [
"tuner = tune.Tuner(\n",
" trainable_paddle_ocr,\n",
" tune_config=tune.TuneConfig(\n",
" metric=\"CER\",\n",
" mode=\"min\",\n",
" search_alg=OptunaSearch(),\n",
" num_samples=64,\n",
" max_concurrent_trials=NUM_WORKERS, # Run trials in parallel across workers\n",
" ),\n",
" run_config=air.RunConfig(verbose=2, log_to_file=False),\n",
" param_space=search_space,\n",
")\n",
"\n",
"results = tuner.fit()"
]
},
{
"cell_type": "markdown",
"id": "analysis-header",
"metadata": {},
"source": [
"## 6. Results Analysis"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "results-df",
"metadata": {},
"outputs": [],
"source": [
"df = results.get_dataframe()\n",
"df.describe()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "save-results",
"metadata": {},
"outputs": [],
"source": [
"# Save results to CSV\n",
"timestamp = datetime.now().strftime(\"%Y%m%d_%H%M%S\")\n",
"filename = f\"raytune_paddle_rest_results_{timestamp}.csv\"\n",
"filepath = os.path.join(OUTPUT_FOLDER, filename)\n",
"\n",
"df.to_csv(filepath, index=False)\n",
"print(f\"Results saved: {filepath}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "best-config",
"metadata": {},
"outputs": [],
"source": [
"# Best configuration\n",
"best = df.loc[df[\"CER\"].idxmin()]\n",
"\n",
"print(f\"Best CER: {best['CER']:.6f}\")\n",
"print(f\"Best WER: {best['WER']:.6f}\")\n",
"print(f\"\\nOptimal Configuration:\")\n",
"print(f\" textline_orientation: {best['config/textline_orientation']}\")\n",
"print(f\" use_doc_orientation_classify: {best['config/use_doc_orientation_classify']}\")\n",
"print(f\" use_doc_unwarping: {best['config/use_doc_unwarping']}\")\n",
"print(f\" text_det_thresh: {best['config/text_det_thresh']:.4f}\")\n",
"print(f\" text_det_box_thresh: {best['config/text_det_box_thresh']:.4f}\")\n",
"print(f\" text_det_unclip_ratio: {best['config/text_det_unclip_ratio']}\")\n",
"print(f\" text_rec_score_thresh: {best['config/text_rec_score_thresh']:.4f}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "correlation",
"metadata": {},
"outputs": [],
"source": [
"# Correlation analysis\n",
"param_cols = [\n",
" \"config/text_det_thresh\",\n",
" \"config/text_det_box_thresh\",\n",
" \"config/text_det_unclip_ratio\",\n",
" \"config/text_rec_score_thresh\",\n",
"]\n",
"\n",
"corr_cer = df[param_cols + [\"CER\"]].corr()[\"CER\"].sort_values(ascending=False)\n",
"corr_wer = df[param_cols + [\"WER\"]].corr()[\"WER\"].sort_values(ascending=False)\n",
"\n",
"print(\"Correlation with CER:\")\n",
"print(corr_cer)\n",
"print(\"\\nCorrelation with WER:\")\n",
"print(corr_wer)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}