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Resumen  

El presente Trabajo Fin de Máster aborda la optimización de sistemas de Reconocimiento 

Óptico de Caracteres (OCR) basados en inteligencia artificial para documentos en español. El 

objetivo principal es identificar la configuración óptima de hiperparámetros que maximice la 

precisión del reconocimiento de texto sin requerir fine-tuning de los modelos base. Se realizó 

un estudio comparativo de tres soluciones OCR de código abierto: EasyOCR, PaddleOCR (PP-

OCRv5) y DocTR, evaluando su rendimiento mediante las métricas estándar CER (Character 

Error Rate) y WER (Word Error Rate) sobre un corpus de 45 páginas de documentos 

académicos en español. Tras identificar PaddleOCR como la solución más prometedora, se 

procedió a una optimización sistemática de hiperparámetros utilizando Ray Tune con el 

algoritmo de búsqueda Optuna, ejecutando 64 configuraciones diferentes con aceleración 

GPU (NVIDIA RTX 3060). Los resultados demuestran que la optimización de hiperparámetros 

logró mejoras significativas: el mejor trial individual alcanzó un CER de 0.79% (precisión del 

99.21%), cumpliendo el objetivo de CER < 2%. Al validar la configuración optimizada sobre el 

dataset completo de 45 páginas, se obtuvo una mejora del 12.8% en CER (de 8.85% a 7.72%). 

El hallazgo más relevante fue que el parámetro `textline_orientation` (clasificación de 

orientación de línea de texto) tiene un impacto crítico en el rendimiento. Adicionalmente, se 

identificó que el umbral de detección (`text_det_thresh`) presenta una correlación negativa 

moderada (-0.52) con el error. Este trabajo demuestra que la optimización de 

hiperparámetros es una alternativa viable al fine-tuning, especialmente útil cuando se dispone 

de modelos preentrenados para el idioma objetivo. La infraestructura dockerizada 

desarrollada permite reproducir los experimentos y facilita la evaluación sistemática de 

configuraciones OCR. 

 

Palabras clave: OCR, Reconocimiento Óptico de Caracteres, PaddleOCR, Optimización de 

Hiperparámetros, Ray Tune, Procesamiento de Documentos, Inteligencia Artificial 
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This Master's Thesis addresses the optimization of Artificial Intelligence-based Optical 

Character Recognition (OCR) systems for Spanish documents. The main objective is to identify 

the optimal hyperparameter configuration that maximizes text recognition accuracy without 

requiring fine-tuning of the base models. A comparative study of three open-source OCR 

solutions was conducted: EasyOCR, PaddleOCR (PP-OCRv5), and DocTR, evaluating their 

performance using standard CER (Character Error Rate) and WER (Word Error Rate) metrics 

on a corpus of 45 pages of academic documents in Spanish. After identifying PaddleOCR as 

the most promising solution, systematic hyperparameter optimization was performed using 

Ray Tune with the Optuna search algorithm, executing 64 different configurations with GPU 

acceleration (NVIDIA RTX 3060). Results demonstrate that hyperparameter optimization 

achieved significant improvements: the best individual trial reached a CER of 0.79% (99.21% 

accuracy), meeting the CER < 2% objective. When validating the optimized configuration on 

the full 45-page dataset, a 12.8% CER improvement was obtained (from 8.85% to 7.72%). The 

most relevant finding was that the `textline_orientation` parameter (text line orientation 

classification) has a critical impact on performance. Additionally, the detection threshold 

(`text_det_thresh`) was found to have a moderate negative correlation (-0.52) with error. This 

work demonstrates that hyperparameter optimization is a viable alternative to fine-tuning, 

especially useful when pre-trained models for the target language are available. The 

dockerized infrastructure developed enables experiment reproducibility and facilitates 

systematic evaluation of OCR configurations. 

 

Keywords: OCR, Optical Character Recognition, PaddleOCR, Hyperparameter Optimization, 

Ray Tune, Document Processing, Artificial Intelligence 
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1. Introducción  

¿Es posible mejorar significativamente un sistema OCR sin reentrenarlo? Esta pregunta, 

aparentemente simple, encierra un desafío práctico que afecta a investigadores, instituciones 

educativas y empresas que necesitan digitalizar documentos pero carecen de los recursos para 

realizar fine-tuning de modelos neuronales. A lo largo de este capítulo se desarrolla la 

motivación del trabajo, se identifica el problema a resolver y se plantean las preguntas de 

investigación que guiarán el desarrollo experimental. 

1.1. Motivación 

El Reconocimiento Óptico de Caracteres (OCR) es una tecnología fundamental en la era de la 

digitalización documental. Su capacidad para convertir imágenes de texto en datos editables 

y procesables ha transformado sectores como la administración pública, el ámbito legal, la 

banca y la educación. Según estimaciones del sector, el mercado global de OCR alcanzó los 

13.4 mil millones de dólares en 2023, con proyecciones de crecimiento continuo impulsado 

por la transformación digital empresarial (Grand View Research, 2023). Sin embargo, a pesar 

de los avances significativos impulsados por el aprendizaje profundo, la implementación 

práctica de sistemas OCR de alta precisión sigue presentando desafíos considerables. 

1.1.1. El contexto de la digitalización documental 

La digitalización de documentos ha pasado de ser una opción a una necesidad estratégica para 

organizaciones de todos los tamaños. Los beneficios son múltiples: reducción del espacio físico 

de almacenamiento, facilidad de búsqueda y recuperación, preservación del patrimonio 

documental, y habilitación de flujos de trabajo automatizados. Sin embargo, la mera 

conversión de papel a imagen digital no aprovecha plenamente estas ventajas; es necesario 

extraer el texto contenido en los documentos para permitir su indexación, análisis y 

procesamiento automatizado. 

El OCR actúa como puente entre el mundo físico del documento impreso y el mundo digital 

del texto procesable. Su precisión determina directamente la calidad de los procesos 

downstream: un error de reconocimiento en un nombre propio puede invalidar una 

búsqueda; un dígito mal reconocido en una factura puede causar discrepancias contables; una 

palabra mal interpretada en un contrato puede alterar su significado legal. 
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1.1.2. Desafíos específicos del español 

El procesamiento de documentos en español presenta particularidades que complican el 

reconocimiento automático de texto. Los caracteres especiales propios del idioma (la letra ñ, 

las vocales acentuadas á, é, í, ó, ú, la diéresis ü, y los signos de puntuación invertidos ¿ y ¡) no 

están presentes en muchos conjuntos de entrenamiento internacionales, lo que puede 

degradar el rendimiento de modelos preentrenados predominantemente en inglés. 

La Tabla 1 resume los principales desafíos lingüísticos del OCR en español: 

Tabla 1. Desafíos lingüísticos específicos del OCR en español. 

Desafío Descripción Impacto en OCR 

Caracteres 

especiales 
ñ, á, é, í, ó, ú, ü, ¿, ¡ 

Confusión con caracteres similares 

(n/ñ, a/á) 

Palabras largas 
Español permite compuestos 

largos 

Mayor probabilidad de error por 

carácter 

Abreviaturas Dr., Sra., Ud., etc. 
Puntos internos confunden 

segmentación 

Nombres propios 
Tildes en apellidos (García, 

Martínez) 
Bases de datos sin soporte Unicode 

Fuente: Elaboración propia. 

 

Además de los aspectos lingüísticos, los documentos académicos y administrativos en español 

presentan características tipográficas que complican el reconocimiento: variaciones en 

fuentes entre encabezados, cuerpo y notas al pie; presencia de tablas con bordes y celdas; 

logotipos institucionales; marcas de agua; y elementos gráficos como firmas o sellos. Estos 

elementos generan ruido que puede propagarse en aplicaciones downstream como la 

extracción de entidades nombradas o el análisis semántico. 

1.1.3. La brecha entre investigación y práctica 

Los modelos OCR basados en redes neuronales profundas, como los empleados en 

PaddleOCR, EasyOCR o DocTR, ofrecen un rendimiento impresionante en benchmarks 
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estándar. PaddleOCR, por ejemplo, reporta tasas de precisión superiores al 97% en conjuntos 

de datos como ICDAR 2015 (Du et al., 2020). No obstante, estos resultados en condiciones 

controladas no siempre se trasladan a documentos del mundo real. 

La adaptación de modelos preentrenados a dominios específicos típicamente requiere fine-

tuning con datos etiquetados del dominio objetivo y recursos computacionales significativos. 

El fine-tuning de un modelo de reconocimiento de texto puede requerir decenas de miles de 

imágenes etiquetadas y días de entrenamiento en GPUs de alta capacidad. Esta barrera 

técnica y económica excluye a muchos investigadores y organizaciones de beneficiarse 

plenamente de estas tecnologías. 

La Tabla 2 ilustra los requisitos típicos para diferentes estrategias de mejora de OCR: 

Tabla 2. Comparación de estrategias de mejora de modelos OCR. 

Estrategia Datos requeridos Hardware Tiempo Expertise 

Fine-tuning completo 
>10,000 imágenes 

etiquetadas 

GPU (≥16GB 

VRAM) 

Días-

Semanas 
Alto 

Fine-tuning parcial 
>1,000 imágenes 

etiquetadas 

GPU (≥8GB 

VRAM) 
Horas-Días 

Medio-

Alto 

Transfer learning 
>500 imágenes 

etiquetadas 

GPU (≥8GB 

VRAM) 
Horas Medio 

Optimización de 

hiperparámetros 

<100 imágenes de 

validación 
CPU suficiente Horas 

Bajo-

Medio 

Fuente: Elaboración propia. 

 

1.1.4. La oportunidad: optimización sin fine-tuning 

La presente investigación surge de una necesidad práctica: optimizar un sistema OCR para 

documentos académicos en español sin disponer de recursos GPU para realizar fine-tuning. 

Esta restricción, lejos de ser una limitación excepcional, representa la realidad de muchos 

entornos académicos y empresariales donde el acceso a infraestructura de cómputo avanzada 

es limitado. 
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La hipótesis central de este trabajo es que los modelos OCR preentrenados contienen 

capacidades latentes que pueden activarse mediante la configuración adecuada de sus 

hiperparámetros de inferencia. Parámetros como los umbrales de detección de texto, las 

opciones de preprocesamiento de imagen, y los filtros de confianza de reconocimiento 

pueden tener un impacto significativo en el rendimiento final, y su optimización sistemática 

puede aproximarse a los beneficios del fine-tuning sin sus costes asociados. 

Esta oportunidad se ve reforzada por la disponibilidad de frameworks modernos de 

optimización de hiperparámetros como Ray Tune (Liaw et al., 2018) y algoritmos de búsqueda 

eficientes como Optuna (Akiba et al., 2019), que permiten explorar espacios de configuración 

de manera sistemática y eficiente. 

1.2. Planteamiento del trabajo 

1.2.1. Formulación del problema 

Las observaciones anteriores conducen a formular el problema central de este trabajo: 

¿Es posible mejorar significativamente el rendimiento de modelos OCR preentrenados para 
documentos en español mediante la optimización sistemática de hiperparámetros, sin requerir 
fine-tuning ni recursos GPU? 

Este planteamiento parte de una observación fundamental: los sistemas OCR modernos 

exponen múltiples parámetros configurables que afectan su comportamiento durante la 

inferencia. Estos parámetros incluyen umbrales de detección, opciones de preprocesamiento, 

y filtros de calidad. En la práctica habitual, estos parámetros se dejan en sus valores por 

defecto, asumiendo que fueron optimizados por los desarrolladores del modelo. Sin embargo, 

los valores por defecto representan compromisos generales que pueden no ser óptimos para 

dominios específicos. 

1.2.2. Preguntas de investigación 

Este planteamiento se descompone en las siguientes cuestiones específicas: 

PI1. Selección de modelo base: ¿Cuál de las soluciones OCR de código abierto disponibles 

(EasyOCR, PaddleOCR, DocTR) ofrece el mejor rendimiento base para documentos en 

español? 
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Esta pregunta es fundamental porque la elección del modelo base determinará el punto de 

partida para la optimización. Un modelo con mejor rendimiento inicial puede ofrecer mayor 

margen de mejora o, alternativamente, estar ya cerca de su límite de optimización. 

PI2. Impacto de hiperparámetros: ¿Qué hiperparámetros del pipeline OCR tienen mayor 

influencia en las métricas de error (CER, WER)? 

Identificar los parámetros más influyentes permite focalizar el esfuerzo de optimización y 

proporciona insights sobre el funcionamiento interno del sistema. Parámetros con alta 

correlación con las métricas de error son candidatos prioritarios para ajuste. 

PI3. Optimización automatizada: ¿Puede un proceso de búsqueda automatizada de 

hiperparámetros (mediante Ray Tune/Optuna) encontrar configuraciones que superen 

significativamente los valores por defecto? 

Esta pregunta evalúa la viabilidad práctica de la metodología propuesta. "Significativamente" 

se define operacionalmente como una reducción del CER de al menos 50% respecto al 

baseline, un umbral que representaría una mejora sustancial en la calidad del texto 

reconocido. 

PI4. Viabilidad práctica: ¿Son los tiempos de inferencia y los recursos requeridos compatibles 

con un despliegue en entornos con recursos limitados? 

Una solución técnicamente superior pero impracticable tiene valor limitado. Esta pregunta 

ancla la investigación en consideraciones del mundo real. 

1.2.3. Alcance y delimitación 

Este trabajo se centra específicamente en: 

Tabla 3. Delimitación del alcance del trabajo. 

Aspecto Dentro del alcance Fuera del alcance 

Tipo de 

documento 

Documentos académicos 

digitales (PDF) 
Documentos escaneados, manuscritos 

Idioma Español Otros idiomas 
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Modelos EasyOCR, PaddleOCR, DocTR 
Soluciones comerciales (Google Cloud 

Vision, AWS Textract) 

Método de 

mejora 

Optimización de 

hiperparámetros 
Fine-tuning, aumento de datos 

Hardware Ejecución en CPU Aceleración GPU 

Fuente: Elaboración propia. 

 

1.2.4. Relevancia y beneficiarios 

La relevancia de este problema radica en su aplicabilidad inmediata. Una metodología 

reproducible para optimizar OCR sin fine-tuning beneficiaría a múltiples grupos: 

Investigadores académicos: Quienes procesan grandes volúmenes de documentos para 

análisis de contenido, revisiones sistemáticas de literatura, o estudios bibliométricos. Un OCR 

más preciso reduce el tiempo de corrección manual y mejora la calidad de los análisis 

downstream. 

Instituciones educativas: Universidades y centros de investigación que digitalizan archivos 

históricos, actas administrativas, o materiales docentes. La preservación del patrimonio 

documental requiere transcripciones precisas. 

Pequeñas y medianas empresas: Organizaciones que automatizan flujos documentales 

(facturas, contratos, correspondencia) sin presupuesto para soluciones enterprise o 

infraestructura GPU. 

Desarrolladores de software: Quienes integran OCR en aplicaciones con restricciones de 

recursos, como dispositivos móviles o servidores compartidos, y necesitan maximizar el 

rendimiento sin costes adicionales de hardware. 

1.3. Estructura del trabajo 

El documento sigue una estructura que refleja el proceso investigador. Tras esta introducción, 

el Capítulo 2 sitúa el trabajo en su contexto técnico, revisando las tecnologías OCR basadas en 

aprendizaje profundo —desde las arquitecturas de detección hasta los modelos de 

reconocimiento— y los trabajos previos en optimización de estos sistemas. 
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El Capítulo 3 traduce las preguntas de investigación en objetivos concretos siguiendo la 

metodología SMART, y describe con detalle el enfoque experimental: preparación del dataset, 

métricas de evaluación y configuración del proceso de optimización con Ray Tune y Optuna. 

El núcleo del trabajo se desarrolla en el Capítulo 4, que presenta el estudio comparativo y la 

optimización de hiperparámetros estructurados en tres fases: planteamiento de la 

comparativa con evaluación de EasyOCR, PaddleOCR y DocTR; desarrollo de la optimización 

mediante 64 trials con Ray Tune; y análisis crítico de los resultados obtenidos. 

Finalmente, el Capítulo 5 sintetiza las contribuciones, evalúa el grado de cumplimiento de los 

objetivos y propone líneas de trabajo futuro. Los Anexos proporcionan acceso al repositorio 

de código fuente y datos, así como tablas detalladas de resultados experimentales. 

2. Contexto y estado del arte 

Para comprender el alcance y las decisiones tomadas en este trabajo, es necesario situarlo en 

su contexto tecnológico. El Reconocimiento Óptico de Caracteres ha recorrido un largo camino 

desde los primeros sistemas de plantillas de los años 50 hasta las sofisticadas arquitecturas de 

aprendizaje profundo actuales. A lo largo de este capítulo se revisan los fundamentos técnicos 

del OCR moderno, se analizan las principales soluciones de código abierto y se identifican los 

vacíos en la literatura que motivan la contribución de este trabajo. 

2.1. Contexto del problema 

2.1.1. Definición y Evolución Histórica del OCR 

El Reconocimiento Óptico de Caracteres (OCR) es el proceso de conversión de imágenes de 

texto manuscrito, mecanografiado o impreso en texto codificado digitalmente. Esta 

tecnología permite la digitalización masiva de documentos, facilitando su búsqueda, edición y 

almacenamiento electrónico. La tecnología OCR ha evolucionado significativamente desde sus 

orígenes en la década de 1950, atravesando cuatro generaciones claramente diferenciadas: 

2.1.1.1. Primera Generación (1950-1970): Sistemas basados en plantillas 

Los primeros sistemas OCR surgieron en la década de 1950 con el objetivo de automatizar la 

lectura de documentos bancarios y postales. Estos sistemas utilizaban técnicas de 

correspondencia de plantillas (template matching), donde cada carácter de entrada se 

comparaba píxel a píxel con un conjunto predefinido de plantillas (Mori et al., 1992). 
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Las principales limitaciones de esta generación incluían: 

•     Dependencia de fuentes tipográficas específicas (OCR-A, OCR-B) 

•     Incapacidad para manejar variaciones en tamaño, rotación o estilo 

•     Alto coste computacional para la época 

•     Sensibilidad extrema al ruido y degradación de la imagen 

A pesar de sus limitaciones, estos sistemas sentaron las bases para el desarrollo posterior del 

campo y demostraron la viabilidad comercial del reconocimiento automático de texto. 

2.1.1.2. Segunda Generación (1970-1990): Extracción de características 

La segunda generación introdujo técnicas más sofisticadas basadas en la extracción de 

características geométricas y estructurales de los caracteres. En lugar de comparar imágenes 

completas, estos sistemas extraían propiedades como: 

•     Número y posición de trazos 

•     Proporciones geométricas (altura, anchura, relación de aspecto) 

•     Momentos estadísticos de la distribución de píxeles 

•     Características topológicas (bucles, intersecciones, terminaciones) 

Los clasificadores estadísticos, como el análisis discriminante lineal y los k-vecinos más 

cercanos (k-NN), se utilizaban para asignar cada vector de características a una clase de 

carácter (Trier et al., 1996). Esta aproximación permitió mayor robustez frente a variaciones 

tipográficas, aunque seguía requiriendo un diseño manual cuidadoso de las características a 

extraer. 

2.1.1.3. Tercera Generación (1990-2010): Redes neuronales y modelos probabilísticos 

La tercera generación marcó la introducción de técnicas de aprendizaje automático más 

avanzadas. Los Modelos Ocultos de Markov (HMM) se convirtieron en el estándar para el 

reconocimiento de secuencias de caracteres, especialmente en el reconocimiento de escritura 

manuscrita (Plamondon & Srihari, 2000). 

Las Redes Neuronales Artificiales (ANN) también ganaron popularidad en esta época, con 

arquitecturas como el Perceptrón Multicapa (MLP) demostrando capacidades superiores de 

generalización. El trabajo seminal de LeCun et al. (1998) con las redes convolucionales (CNN) 
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para el reconocimiento de dígitos manuscritos (dataset MNIST) estableció los fundamentos 

para la siguiente revolución. 

Las características de esta generación incluían: 

•     Aprendizaje automático de características discriminativas 

•     Modelado probabilístico de secuencias de caracteres 

•     Mayor robustez frente a ruido y degradación 

•     Capacidad de incorporar conocimiento lingüístico mediante modelos de lenguaje 

2.1.1.4. Cuarta Generación (2010-presente): Aprendizaje profundo 

La cuarta y actual generación está dominada por arquitecturas de aprendizaje profundo que 

han superado ampliamente el rendimiento de los métodos tradicionales. Los avances clave 

incluyen: 

Redes Convolucionales Profundas (Deep CNNs): Arquitecturas como VGGNet, ResNet e 

Inception permiten la extracción automática de características jerárquicas a múltiples escalas, 

eliminando la necesidad de diseño manual de características (Krizhevsky et al., 2012). 

Redes Recurrentes (RNN/LSTM): Las redes Long Short-Term Memory (LSTM) permiten 

modelar dependencias a largo plazo en secuencias de caracteres, siendo fundamentales para 

el reconocimiento de texto de longitud variable (Graves et al., 2009). 

Mecanismos de Atención y Transformers: La arquitectura Transformer (Vaswani et al., 2017) 

y sus variantes han revolucionado el procesamiento de secuencias, permitiendo capturar 

relaciones globales sin las limitaciones de las RNN. Modelos como TrOCR (Li et al., 2023) 

representan el estado del arte actual. 

Connectionist Temporal Classification (CTC): La función de pérdida CTC (Graves et al., 2006) 

permite entrenar modelos de reconocimiento de secuencias sin necesidad de alineamiento 

carácter por carácter, simplificando enormemente el proceso de entrenamiento. 

2.1.2. Pipeline Moderno de OCR 

Los sistemas OCR modernos siguen típicamente un pipeline de dos etapas principales, 

precedidas opcionalmente por una fase de preprocesamiento: 

Figura 1. Pipeline de un sistema OCR moderno 
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Fuente: Elaboración propia. 

 

2.1.2.1. Etapa de Preprocesamiento 

Antes de la detección, muchos sistemas aplican técnicas de preprocesamiento para mejorar 

la calidad de la imagen de entrada: 

•     Binarización: Conversión a imagen binaria (blanco/negro) mediante técnicas como Otsu 

o Sauvola 

•     Corrección de inclinación (deskewing): Alineamiento horizontal del texto 

•     Eliminación de ruido: Filtros morfológicos y de suavizado 

•     Normalización de contraste: Mejora de la legibilidad mediante ecualización de 

histograma 

2.1.2.2. Etapa 1: Detección de Texto (Text Detection) 

La detección de texto tiene como objetivo localizar todas las regiones de una imagen que 

contienen texto. Esta tarea es particularmente desafiante debido a la variabilidad en: 

•     Tamaño y orientación del texto 

•     Fondos complejos y oclusiones parciales 

•     Texto curvo o deformado 

•     Múltiples idiomas y scripts en una misma imagen 

Las arquitecturas más utilizadas para detección de texto incluyen: 

EAST (Efficient and Accurate Scene Text Detector): Propuesto por Zhou et al. (2017), EAST es 

un detector de una sola etapa que predice directamente cuadriláteros rotados o polígonos 

que encierran el texto. Su arquitectura FCN (Fully Convolutional Network) permite 

procesamiento eficiente de imágenes de alta resolución. 

CRAFT (Character Region Awareness for Text Detection): Desarrollado por Baek et al. (2019), 

CRAFT detecta regiones de caracteres individuales y las agrupa en palabras mediante el 
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análisis de mapas de afinidad. Esta aproximación bottom-up es especialmente efectiva para 

texto con espaciado irregular. 

DB (Differentiable Binarization): Propuesto por Liao et al. (2020), DB introduce una operación 

de binarización diferenciable que permite entrenar end-to-end un detector de texto basado 

en segmentación. Esta arquitectura es la utilizada por PaddleOCR y destaca por su velocidad 

y precisión. 

Tabla 4. Comparativa de arquitecturas de detección de texto. 

Arquitectura Tipo Salida Fortalezas Limitaciones 

EAST Single-shot 
Cuadriláteros 

rotados 
Rápido, simple 

Dificultad con texto 

curvo 

CRAFT Bottom-up 
Polígonos de 

palabra 

Robusto a 

espaciado 

Mayor coste 

computacional 

DB Segmentación 
Polígonos 

arbitrarios 
Rápido, preciso Sensible a parámetros 

Fuente: Elaboración propia. 

 

2.1.2.3. Etapa 2: Reconocimiento de Texto (Text Recognition) 

Una vez detectadas las regiones de texto, la etapa de reconocimiento transcribe el contenido 

visual a texto digital. Las arquitecturas predominantes son: 

CRNN (Convolutional Recurrent Neural Network): Propuesta por Shi et al. (2016), CRNN 

combina una CNN para extracción de características visuales con una RNN bidireccional 

(típicamente LSTM) para modelado de secuencias, entrenada con pérdida CTC. Esta 

arquitectura estableció el paradigma encoder-decoder que domina el campo. 

La arquitectura CRNN consta de tres componentes: 

1.   Capas convolucionales: Extraen características visuales de la imagen de entrada 

2.   Capas recurrentes: Modelan las dependencias secuenciales entre características 

3.   Capa de transcripción: Convierte las predicciones de la RNN en secuencias de 

caracteres mediante CTC 
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SVTR (Scene-Text Visual Transformer Recognition): Desarrollado por Du et al. (2022), SVTR 

aplica la arquitectura Transformer al reconocimiento de texto, utilizando parches de imagen 

como tokens de entrada. Esta aproximación elimina la necesidad de RNN y permite capturar 

dependencias globales de manera más eficiente. 

Arquitecturas con Atención: Los modelos encoder-decoder con mecanismos de atención 

(Bahdanau et al., 2015) permiten al decodificador "enfocarse" en diferentes partes de la 

imagen mientras genera cada carácter. Esto es especialmente útil para texto largo o con 

layouts complejos. 

TrOCR (Transformer-based OCR): Propuesto por Li et al. (2023), TrOCR utiliza un Vision 

Transformer (ViT) como encoder y un Transformer de lenguaje como decoder, logrando 

resultados estado del arte en múltiples benchmarks. 

Tabla 5. Comparativa de arquitecturas de reconocimiento de texto. 

Arquitectura Encoder Decoder Pérdida Características 

CRNN CNN BiLSTM CTC Rápido, robusto 

SVTR ViT Linear CTC Sin recurrencia 

Attention-based CNN LSTM+Attn Cross-entropy Flexible longitud 

TrOCR ViT Transformer Cross-entropy Estado del arte 

Fuente: Elaboración propia. 

 

2.1.3. Métricas de Evaluación 

La evaluación rigurosa de sistemas OCR requiere métricas estandarizadas que permitan 

comparaciones objetivas. Las métricas fundamentales se basan en la distancia de edición de 

Levenshtein. 

2.1.3.1. Distancia de Levenshtein 

La distancia de Levenshtein (Levenshtein, 1966) entre dos cadenas es el número mínimo de 

operaciones de edición (inserción, eliminación, sustitución) necesarias para transformar una 

cadena en otra. Formalmente, para dos cadenas a y b: 



Sergio Jiménez Jiménez 
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español 

13 

𝑑(𝑎, 𝑏) = 𝑚𝑖𝑛(inserciones + eliminaciones + sustituciones) 

Esta métrica es fundamental para calcular tanto CER como WER. 

2.1.3.2. Character Error Rate (CER) 

El CER mide el error a nivel de carácter y se calcula como: 

𝐶𝐸𝑅 =
𝑆 + 𝐷 + 𝐼

𝑁
 

Donde: 

•     S = número de sustituciones de caracteres 

•     D = número de eliminaciones de caracteres 

•     I = número de inserciones de caracteres 

•     N = número total de caracteres en el texto de referencia 

Un CER del 1% indica que, en promedio, 1 de cada 100 caracteres contiene un error. Para 

aplicaciones críticas como: 

•     Documentos financieros: Se requiere CER < 0.1% 

•     Documentos médicos: Se requiere CER < 0.5% 

•     Documentos académicos: CER < 2% es aceptable 

•     Búsqueda y archivo: CER < 5% puede ser suficiente 

2.1.3.3. Word Error Rate (WER) 

El WER mide el error a nivel de palabra, utilizando la misma fórmula pero considerando 

palabras como unidades: 

𝑊𝐸𝑅 =
𝑆𝑤 + 𝐷𝑤 + 𝐼𝑤

𝑁𝑤
 

El WER es generalmente mayor que el CER, ya que un solo error de carácter puede invalidar 

una palabra completa. La relación típica es WER ≈ 2-3 × CER para texto en español. 

2.1.3.4. Otras Métricas Complementarias 

Precision y Recall a nivel de palabra: Útiles cuando se evalúa la capacidad del sistema para 

detectar palabras específicas. 
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Bag-of-Words Accuracy: Mide la proporción de palabras correctamente reconocidas 

independientemente de su orden. 

BLEU Score: Adaptado de traducción automática, mide la similitud entre el texto predicho y la 

referencia considerando n-gramas. 

2.1.4. Particularidades del OCR para el Idioma Español 

El español, como lengua romance, presenta características específicas que impactan el 

rendimiento de los sistemas OCR: 

2.1.4.1. Características Ortográficas 

Caracteres especiales: El español incluye caracteres no presentes en el alfabeto inglés básico: 

•     La letra eñe (ñ, Ñ) 

•     Vocales acentuadas (á, é, í, ó, ú, Á, É, Í, Ó, Ú) 

•     Diéresis sobre u (ü, Ü) 

•     Signos de puntuación invertidos (¿, ¡) 

Estos caracteres requieren que los modelos OCR incluyan dichos símbolos en su vocabulario 

de salida y que el entrenamiento incluya suficientes ejemplos de cada uno. 

Diacríticos y acentos: Los acentos gráficos del español son elementos pequeños que pueden 

confundirse fácilmente con ruido, artefactos de imagen o signos de puntuación. La distinción 

entre vocales acentuadas y no acentuadas es crucial para el significado (e.g., "él" vs "el", "más" 

vs "mas"). 

2.1.4.2. Características Lingüísticas 

Longitud de palabras: Las palabras en español tienden a ser más largas que en inglés debido 

a la morfología flexiva rica (conjugaciones verbales, géneros, plurales). Esto puede aumentar 

la probabilidad de error acumulativo. 

Vocabulario: El español tiene un vocabulario amplio con muchas variantes morfológicas de 

cada raíz. Los modelos de lenguaje utilizados para post-corrección deben contemplar esta 

diversidad. 

2.1.4.3. Recursos y Datasets 
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Los recursos disponibles para OCR en español son significativamente menores que para inglés 

o chino: 

•     Menor cantidad de datasets etiquetados de gran escala 

•     Menos modelos preentrenados específicos para español 

•     Documentación y tutoriales predominantemente en inglés 

Esta escasez de recursos específicos para español motiva la necesidad de técnicas de 

adaptación como la optimización de hiperparámetros explorada en este trabajo. 

2.2. Estado del arte 

2.2.1. Soluciones OCR de Código Abierto 

En los últimos años han surgido varias soluciones OCR de código abierto que democratizan el 

acceso a esta tecnología. A continuación se analizan en detalle las tres principales alternativas 

evaluadas en este trabajo. 

2.2.1.1. EasyOCR 

EasyOCR es una biblioteca de OCR desarrollada por Jaided AI (2020) con el objetivo de 

proporcionar una solución de fácil uso que soporte múltiples idiomas. Actualmente soporta 

más de 80 idiomas, incluyendo español. 

Arquitectura técnica: 

•     Detector: CRAFT (Character Region Awareness for Text Detection) 

•     Reconocedor: CRNN con backbone ResNet/VGG + BiLSTM + CTC 

•     Modelos preentrenados: Disponibles para descarga automática 

Características principales: 

•     API simple de una línea para casos de uso básicos 

•     Soporte para GPU (CUDA) y CPU 

•     Reconocimiento de múltiples idiomas en una misma imagen 

•     Bajo consumo de memoria comparado con otras soluciones 

Limitaciones identificadas: 

•     Opciones de configuración limitadas (pocos hiperparámetros ajustables) 

•     Menor precisión en documentos con layouts complejos 
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•     Actualizaciones menos frecuentes que otras alternativas 

•     Documentación menos exhaustiva 

Caso de uso ideal: Prototipado rápido, aplicaciones con restricciones de memoria, proyectos 

que requieren soporte multilingüe inmediato. 

2.2.1.2. PaddleOCR 

PaddleOCR es el sistema OCR desarrollado por Baidu como parte del ecosistema PaddlePaddle 

(2024). Representa una de las soluciones más completas y activamente mantenidas en el 

ecosistema de código abierto. La versión PP-OCRv5, utilizada en este trabajo, incorpora los 

últimos avances en el campo. 

Arquitectura técnica: 

El pipeline de PaddleOCR consta de tres módulos principales: 

1.   Detector de texto (DB - Differentiable Binarization): 

- Backbone: ResNet18/ResNet50 - Neck: FPN (Feature Pyramid Network) - Head: 

Segmentación con binarización diferenciable - Salida: Polígonos que encierran regiones de 

texto 

1.   Clasificador de orientación: 

- Determina si el texto está rotado 0° o 180° - Permite corrección automática de texto invertido 

- Opcional pero recomendado para documentos escaneados 

1.   Reconocedor de texto (SVTR): 

- Encoder: Vision Transformer modificado - Decoder: CTC o Attention-based - Vocabulario: 

Configurable por idioma 

Hiperparámetros configurables: 

PaddleOCR expone numerosos hiperparámetros que permiten ajustar el comportamiento del 

sistema. Los más relevantes para este trabajo son: 

Tabla 6. Hiperparámetros de detección de PaddleOCR. 

Parámetro Descripción Rango Defecto 
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text_det_thresh 
Umbral de probabilidad para píxeles de 

texto 
[0.0, 1.0] 0.3 

text_det_box_thresh 
Umbral de confianza para cajas 

detectadas 
[0.0, 1.0] 0.6 

text_det_unclip_ratio Factor de expansión de cajas detectadas [0.0, 3.0] 1.5 

text_det_limit_side_len Tamaño máximo del lado de imagen 
[320, 

2560] 
960 

Fuente: Elaboración propia. 

 

Tabla 7. Hiperparámetros de reconocimiento de PaddleOCR. 

Parámetro Descripción Rango Defecto 

text_rec_score_thresh Umbral de confianza para resultados [0.0, 1.0] 0.5 

use_textline_orientation 
Activar clasificación de orientación de 

línea 

{True, 

False} 
False 

rec_batch_size Tamaño de batch para reconocimiento [1, 64] 6 

Fuente: Elaboración propia. 

 

Tabla 8. Hiperparámetros de preprocesamiento de PaddleOCR. 

Parámetro Descripción Impacto 

use_doc_orientation_classify 
Clasificación de orientación del 

documento 

Alto para documentos 

escaneados 

use_doc_unwarping 
Corrección de 

deformación/curvatura 

Alto para fotos de 

documentos 

use_angle_cls Clasificador de ángulo 0°/180° 
Medio para 

documentos rotados 

Fuente: Elaboración propia. 
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Fortalezas de PaddleOCR: 

•     Alta precisión en múltiples benchmarks 

•     Pipeline altamente configurable 

•     Modelos optimizados para servidor (mayor precisión) y móvil (mayor velocidad) 

•     Documentación exhaustiva (aunque principalmente en chino) 

•     Comunidad activa y actualizaciones frecuentes 

•     Soporte para entrenamiento personalizado (fine-tuning) 

Limitaciones: 

•     Dependencia del framework PaddlePaddle (menos popular que PyTorch/TensorFlow) 

•     Curva de aprendizaje más pronunciada 

•     Documentación en inglés menos completa que en chino 

2.2.1.3. DocTR 

DocTR (Document Text Recognition) es una biblioteca desarrollada por Mindee (2021), 

empresa especializada en procesamiento inteligente de documentos. Está orientada a la 

comunidad de investigación y ofrece una API limpia basada en TensorFlow/PyTorch. 

Arquitectura técnica: 

•     Detectores disponibles: DB (db_resnet50), LinkNet (linknet_resnet18) 

•     Reconocedores disponibles: CRNN (crnn_vgg16_bn), SAR (sar_resnet31), ViTSTR 

(vitstr_small) 

•     Framework: TensorFlow 2.x o PyTorch 

Características principales: 

•     API Pythonic bien diseñada 

•     Salida estructurada con información de confianza y geometría 

•     Integración nativa con Hugging Face Hub 

•     Documentación orientada a investigación 

Limitaciones identificadas: 

•     Menor rendimiento en español comparado con PaddleOCR según pruebas preliminares 
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•     Comunidad más pequeña 

•     Menos opciones de modelos preentrenados para idiomas no ingleses 

2.2.1.4. Comparativa Detallada de Soluciones 

Tabla 9. Comparativa técnica de soluciones OCR de código abierto. 

Aspecto EasyOCR PaddleOCR DocTR 

Framework PyTorch PaddlePaddle TF/PyTorch 

Detector CRAFT DB DB/LinkNet 

Reconocedor CRNN SVTR/CRNN CRNN/SAR/ViTSTR 

Idiomas 80+ 80+ 9 

Configurabilidad Baja Alta Media 

Documentación Media Alta (CN) Alta (EN) 

Actividad Media Alta Media 

Licencia Apache 2.0 Apache 2.0 Apache 2.0 

Fuente: Elaboración propia. 

 

Tabla 10. Comparativa de facilidad de uso. 

Aspecto EasyOCR PaddleOCR DocTR 

Instalación pip install pip install pip install 

Líneas para OCR básico 3 5 6 

GPU requerida Opcional Opcional Opcional 

Memoria mínima 2 GB 4 GB 4 GB 

Fuente: Elaboración propia. 
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2.2.2. Optimización de Hiperparámetros 

2.2.2.1. Fundamentos Teóricos 

La optimización de hiperparámetros (HPO, Hyperparameter Optimization) es el proceso de 

encontrar la configuración óptima de los parámetros que controlan el proceso de aprendizaje 

o inferencia de un modelo, pero que no se aprenden directamente de los datos (Feurer & 

Hutter, 2019). 

A diferencia de los parámetros del modelo (como los pesos de una red neuronal), los 

hiperparámetros se establecen antes del entrenamiento e incluyen: 

•     Tasa de aprendizaje, tamaño de batch, número de épocas 

•     Arquitectura del modelo (número de capas, unidades por capa) 

•     Parámetros de regularización (dropout, weight decay) 

•     Umbrales de decisión en tiempo de inferencia (relevante para este trabajo) 

El problema de HPO puede formalizarse como: 

𝜆∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜆∈𝛬ℒ(𝑀𝜆, 𝐷𝑣𝑎𝑙) 

Donde: 

•     𝜆 es un vector de hiperparámetros 

•     𝛬 es el espacio de búsqueda 

•     𝑀𝜆 es el modelo configurado con 𝜆 

•     ℒ es la función de pérdida 

•     𝐷𝑣𝑎𝑙  es el conjunto de validación 

2.2.2.2. Métodos de Optimización 

Grid Search (Búsqueda en rejilla): 

El método más simple consiste en evaluar todas las combinaciones posibles de valores 

discretizados de los hiperparámetros. Para 𝑘hiperparámetros con 𝑛valores cada uno, requiere 

𝑛𝑘evaluaciones.  

Ventajas: 

•     Exhaustivo y reproducible 

•     Fácil de paralelizar 

•     Garantiza encontrar el óptimo dentro de la rejilla 
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Desventajas: 

•     Coste exponencial con el número de hiperparámetros 

•     Ineficiente si algunos hiperparámetros son más importantes que otros 

•     No aprovecha información de evaluaciones previas 

Random Search (Búsqueda aleatoria): 

Propuesto por Bergstra & Bengio (2012), Random Search muestrea configuraciones 

aleatoriamente del espacio de búsqueda. Sorprendentemente, supera a Grid Search en 

muchos escenarios prácticos. 

La intuición es que, cuando solo algunos hiperparámetros son importantes, Random Search 

explora más valores de estos parámetros críticos mientras Grid Search desperdicia 

evaluaciones variando parámetros irrelevantes. 

Optimización Bayesiana: 

La optimización bayesiana modela la función objetivo mediante un modelo probabilístico 

sustituto (surrogate model) y utiliza una función de adquisición para decidir qué configuración 

evaluar a continuación (Bergstra et al., 2011). 

El proceso iterativo es: 

1.   Ajustar el modelo sustituto a las observaciones actuales 

2.   Optimizar la función de adquisición para seleccionar el siguiente punto 

3.   Evaluar la función objetivo en el punto seleccionado 

4.   Actualizar las observaciones y repetir 

Los modelos sustitutos más comunes son: 

•     Procesos Gaussianos (GP): Proporcionan incertidumbre bien calibrada pero escalan 

pobremente 

•     Random Forests: Manejan bien espacios de alta dimensión y variables categóricas 

•     Tree-structured Parzen Estimator (TPE): Modela densidades en lugar de la función 

objetivo 

2.2.2.3. Tree-structured Parzen Estimator (TPE) 

TPE, propuesto por Bergstra et al. (2011) e implementado en Optuna, es particularmente 

efectivo para HPO. En lugar de modelar 𝑝(𝑦|𝜆)directamente, TPE modela:  
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𝑝(𝜆|𝑦) = {
𝑙(𝜆) si 𝑦 < 𝑦∗

𝑔(𝜆) si 𝑦 ≥ 𝑦∗
 

Donde 𝑦∗es un umbral (típicamente el percentil 15-25 de las observaciones), 𝑙(𝜆)es la 

densidad de hiperparámetros con buen rendimiento, y 𝑔(𝜆)es la densidad de hiperparámetros 

con mal rendimiento.  

La función de adquisición Expected Improvement se aproxima como: 

𝐸𝐼(𝜆) ∝
𝑙(𝜆)

𝑔(𝜆)
 

Configuraciones con alta probabilidad bajo 𝑙y baja probabilidad bajo 𝑔tienen mayor Expected 

Improvement.  

Ventajas de TPE: 

•     Maneja naturalmente espacios condicionales (hiperparámetros que dependen de 

otros) 

•     Eficiente para espacios de alta dimensión 

•     No requiere derivadas de la función objetivo 

•     Implementación eficiente en Optuna 

2.2.2.4. Ray Tune 

Ray Tune (Liaw et al., 2018) es un framework de optimización de hiperparámetros escalable 

construido sobre Ray, un sistema de computación distribuida. Sus características principales 

incluyen: 

Escalabilidad: 

•     Ejecución paralela de múltiples trials 

•     Distribución automática en clusters 

•     Soporte para recursos heterogéneos (CPU/GPU) 

Flexibilidad: 

•     Integración con múltiples algoritmos de búsqueda (Optuna, HyperOpt, Ax, etc.) 

•     Schedulers avanzados (ASHA, PBT, BOHB) 

•     Checkpointing y recuperación de fallos 

Early Stopping: 

•     ASHA (Asynchronous Successive Halving Algorithm): Termina trials poco prometedores 
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•     PBT (Population-Based Training): Evoluciona hiperparámetros durante el 

entrenamiento 

Integración con Optuna: 

La combinación de Ray Tune con OptunaSearch permite: 

1.   Utilizar TPE como algoritmo de búsqueda 

2.   Paralelizar la evaluación de trials 

3.   Beneficiarse de la infraestructura de Ray para distribución 

4.   Acceder a las visualizaciones de Optuna 

Figura 2. Ciclo de optimización con Ray Tune y Optuna 

 

Fuente: Elaboración propia. 

 

2.2.2.5. HPO en Sistemas OCR 

La aplicación de HPO a sistemas OCR ha sido explorada en varios contextos: 

Optimización de preprocesamiento: 

Liang et al. (2005) propusieron optimizar parámetros de binarización adaptativa para mejorar 

el OCR de documentos degradados. Los parámetros optimizados incluían tamaño de ventana, 

factor de corrección y umbral local. 

Optimización de arquitectura: 

Breuel (2013) exploró la selección automática de arquitecturas de red para reconocimiento 

de texto manuscrito, optimizando número de capas, unidades y tipo de activación. 

Optimización de post-procesamiento: 

Schulz & Kuhn (2017) optimizaron parámetros de modelos de lenguaje para corrección de 

errores OCR, incluyendo pesos de interpolación entre modelos de caracteres y palabras. 

Vacío en la literatura: 
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A pesar de estos trabajos, existe un vacío significativo respecto a la optimización sistemática 

de hiperparámetros de inferencia en pipelines OCR modernos como PaddleOCR. La mayoría 

de trabajos se centran en: 

•     Entrenamiento de modelos (fine-tuning) 

•     Preprocesamiento de imagen 

•     Post-procesamiento lingüístico 

La optimización de umbrales de detección y reconocimiento en tiempo de inferencia ha 

recibido poca atención, especialmente para idiomas diferentes del inglés y chino. 

2.2.3. Datasets y Benchmarks para Español 

2.2.3.1. Datasets Públicos 

Los principales recursos para evaluación de OCR en español incluyen: 

FUNSD-ES: Versión en español del Form Understanding in Noisy Scanned Documents dataset. 

Contiene formularios escaneados con anotaciones de texto y estructura. 

MLT (ICDAR Multi-Language Text): Dataset multilingüe de las competiciones ICDAR que 

incluye muestras en español. Las ediciones 2017 y 2019 contienen texto en escenas naturales. 

XFUND: Dataset de comprensión de formularios en múltiples idiomas, incluyendo español, 

con anotaciones de entidades y relaciones. 

Tabla 11. Datasets públicos con contenido en español. 

Dataset Tipo Idiomas Tamaño Uso principal 

FUNSD-ES Formularios ES ~200 docs Document understanding 

MLT 2019 Escenas Multi (incl. ES) 10K imgs Text detection 

XFUND Formularios 7 (incl. ES) 1.4K docs Information extraction 

Fuente: Elaboración propia. 

 

2.2.3.2. Limitaciones de Recursos para Español 

Comparado con inglés y chino, el español cuenta con: 
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•     Menor cantidad de datasets etiquetados de gran escala 

•     Menos benchmarks estandarizados 

•     Menor representación en competiciones internacionales (ICDAR) 

•     Pocos modelos preentrenados específicos 

Esta escasez de recursos específicos para español motivó la creación de un dataset propio 

basado en documentos académicos de UNIR para este trabajo. 

2.2.3.3. Trabajos Previos en OCR para Español 

Los trabajos previos en OCR para español se han centrado principalmente en: 

Digitalización de archivos históricos: Múltiples proyectos han abordado el reconocimiento de 

manuscritos coloniales y documentos históricos en español, utilizando técnicas de HTR 

(Handwritten Text Recognition) adaptadas (Romero et al., 2013). 

Procesamiento de documentos de identidad: Sistemas OCR especializados para DNI, 

pasaportes y documentos oficiales españoles y latinoamericanos (Bulatov et al., 2020). 

Reconocimiento de texto en escenas: Participaciones en competiciones ICDAR para detección 

y reconocimiento de texto en español en imágenes naturales. 

Tabla 12. Trabajos previos relevantes en OCR para español. 

Trabajo Enfoque Contribución 

Romero et al. (2013) HTR histórico Modelos HMM para manuscritos 

Bulatov et al. (2020) Documentos ID Pipeline especializado 

Fischer et al. (2012) Multilingual Transferencia entre idiomas 

Fuente: Elaboración propia. 

 

La optimización de hiperparámetros para documentos académicos en español representa una 

contribución original de este trabajo, abordando un nicho no explorado en la literatura. 

2.3. Conclusiones del capítulo 

La revisión del estado del arte revela un panorama en el que las herramientas técnicas están 

maduras, pero su aplicación óptima para dominios específicos permanece poco explorada. Los 
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sistemas OCR modernos —PaddleOCR, EasyOCR, DocTR— ofrecen arquitecturas sofisticadas 

basadas en aprendizaje profundo que alcanzan resultados impresionantes en benchmarks 

estándar. Sin embargo, estos resultados no siempre se trasladan a documentos del mundo 

real, especialmente en idiomas con menos recursos como el español. 

La evolución desde los sistemas de plantillas de los años 50 hasta los Transformers actuales 

ha sido espectacular, pero ha generado sistemas con decenas de hiperparámetros 

configurables cuyos valores por defecto representan compromisos generales, no 

configuraciones óptimas para dominios específicos. La literatura abunda en trabajos sobre 

entrenamiento y fine-tuning de modelos OCR, pero dedica poca atención a la optimización 

sistemática de los parámetros de inferencia —umbrales de detección, opciones de 

preprocesamiento, filtros de confianza— que pueden marcar la diferencia entre un sistema 

usable y uno que requiere corrección manual extensiva. 

Este vacío, combinado con las particularidades del español (acentos, eñes, signos invertidos) 

y la escasez de recursos específicos para este idioma, define el espacio de contribución del 

presente trabajo. Frameworks como Ray Tune y Optuna proporcionan las herramientas para 

abordar esta optimización de manera sistemática; PaddleOCR, con su pipeline altamente 

configurable, ofrece el sustrato técnico adecuado. El siguiente capítulo traduce esta 

oportunidad en objetivos concretos y una metodología experimental rigurosa. 

3. Objetivos concretos y metodología de trabajo 

La motivación presentada en el capítulo anterior se traduce ahora en objetivos concretos y 

medibles. Siguiendo la metodología SMART propuesta por Doran (1981), se define un objetivo 

general que guía el trabajo y cinco objetivos específicos que lo descomponen en metas 

alcanzables. La segunda parte del capítulo describe la metodología experimental diseñada 

para alcanzar estos objetivos. 

3.1. Objetivo general 

Optimizar el rendimiento de PaddleOCR para documentos académicos en español mediante 
ajuste de hiperparámetros, alcanzando un CER inferior al 2% sin requerir fine-tuning del 
modelo. 

3.1.1. Justificación SMART del Objetivo General 

Tabla 13. Justificación SMART del objetivo general. 
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Criterio Cumplimiento 

Específico 

(S) 

Se define claramente qué se quiere lograr: optimizar PaddleOCR mediante 

ajuste de hiperparámetros para documentos en español 

Medible 

(M) 
Se establece una métrica cuantificable: CER < 2% 

Alcanzable 

(A) 

Es viable dado que: (1) PaddleOCR permite configuración de 

hiperparámetros, (2) Ray Tune posibilita búsqueda automatizada, (3) 

Aceleración GPU disponible para experimentación eficiente 

Relevante 

(R) 

El impacto es demostrable: mejora la extracción de texto en documentos 

académicos sin costes adicionales de infraestructura 

Temporal 

(T) 
El plazo es un cuatrimestre, correspondiente al TFM 

Fuente: Elaboración propia. 

 

3.2. Objetivos específicos 

3.2.1. OE1: Comparar soluciones OCR de código abierto 

Evaluar el rendimiento base de EasyOCR, PaddleOCR y DocTR en documentos académicos en 
español, utilizando CER y WER como métricas, para seleccionar el modelo más prometedor. 

3.2.2. OE2: Preparar un dataset de evaluación 

Construir un dataset estructurado de imágenes de documentos académicos en español con 
su texto de referencia (ground truth) extraído del PDF original. 

3.2.3. OE3: Identificar hiperparámetros críticos 

Analizar la correlación entre los hiperparámetros de PaddleOCR y las métricas de error para 
identificar los parámetros con mayor impacto en el rendimiento. 

3.2.4. OE4: Optimizar hiperparámetros con Ray Tune 

Ejecutar una búsqueda automatizada de hiperparámetros utilizando Ray Tune con Optuna, 
evaluando al menos 50 configuraciones diferentes. 
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3.2.5. OE5: Validar la configuración optimizada 

Comparar el rendimiento de la configuración baseline versus la configuración optimizada 
sobre el dataset completo, documentando la mejora obtenida. 

3.3. Metodología del trabajo 

3.3.1. Visión General 

La metodología se estructura en cinco fases secuenciales, cada una de las cuales produce 

resultados que alimentan la siguiente. Desde la preparación del dataset hasta la validación 

final, el proceso sigue un diseño experimental que permite reproducir y verificar cada paso. 

Figura 3. Fases de la metodología experimental 

 

Fuente: Elaboración propia. 

 

Descripción de las fases: 

•     Fase 1 - Preparación del Dataset: Conversión PDF a imágenes (300 DPI), extracción de 

ground truth con PyMuPDF 

•     Fase 2 - Benchmark Comparativo: Evaluación de EasyOCR, PaddleOCR, DocTR con 

métricas CER/WER 

•     Fase 3 - Espacio de Búsqueda: Identificación de hiperparámetros y configuración de 

Ray Tune + Optuna 

•     Fase 4 - Optimización: Ejecución de 64 trials con paralelización (2 concurrentes) 

•     Fase 5 - Validación: Comparación baseline vs optimizado, análisis de correlaciones 

3.3.2. Fase 1: Preparación del Dataset 

3.3.2.1. Fuente de Datos 

Se utilizaron documentos PDF académicos de UNIR (Universidad Internacional de La Rioja), 

específicamente las instrucciones para la elaboración del TFE del Máster en Inteligencia 

Artificial. 
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3.3.2.2. Proceso de Conversión 

El script prepare_dataset.ipynb implementa: 

1.   Conversión PDF a imágenes: 

- Biblioteca: PyMuPDF (fitz) - Resolución: 300 DPI - Formato de salida: PNG 

1.   Extracción de texto de referencia: 

- Método: page.get_text("dict") de PyMuPDF - Preservación de estructura de líneas - 

Tratamiento de texto vertical/marginal - Normalización de espacios y saltos de línea 

3.3.2.3. Estructura del Dataset 

Figura 4. Estructura del dataset de evaluación 

 

Fuente: Elaboración propia. 

 

3.3.2.4. Clase ImageTextDataset 
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Se implementó una clase Python para cargar pares imagen-texto que retorna tuplas 

(PIL.Image, str) desde carpetas pareadas. La implementación completa está disponible en 

src/ocr_benchmark_notebook.ipynb (ver Anexo A). 

3.3.3. Fase 2: Benchmark Comparativo 

3.3.3.1. Modelos Evaluados 

Tabla 14. Modelos OCR evaluados en el benchmark inicial. 

Modelo Versión Configuración 

EasyOCR - Idiomas: ['es', 'en'] 

PaddleOCR PP-OCRv5 Modelos server_det + server_rec 

DocTR - db_resnet50 + sar_resnet31 

Fuente: Elaboración propia. 

 

3.3.3.2. Métricas de Evaluación 

Se utilizó la biblioteca jiwer para calcular CER y WER comparando el texto de referencia con 

la predicción del modelo OCR. La implementación está disponible en 

src/ocr_benchmark_notebook.ipynb (ver Anexo A). 

3.3.4. Fase 3: Espacio de Búsqueda 

3.3.4.1. Hiperparámetros Seleccionados 

Tabla 15. Hiperparámetros seleccionados para optimización. 

Parámetro Tipo Rango/Valores Descripción 

use_doc_orientation_classify Booleano [True, False] 
Clasificación de orientación 

del documento 

use_doc_unwarping Booleano [True, False] 
Corrección de deformación 

del documento 

textline_orientation Booleano [True, False] 
Clasificación de orientación de 

línea de texto 
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text_det_thresh Continuo [0.0, 0.7] 
Umbral de detección de 

píxeles de texto 

text_det_box_thresh Continuo [0.0, 0.7] Umbral de caja de detección 

text_det_unclip_ratio Fijo 0.0 
Coeficiente de expansión 

(fijado) 

text_rec_score_thresh Continuo [0.0, 0.7] 
Umbral de confianza de 

reconocimiento 

Fuente: Elaboración propia. 

 

3.3.4.2. Configuración de Ray Tune 

El espacio de búsqueda se definió utilizando tune.choice() para parámetros booleanos y 

tune.uniform() para parámetros continuos, con OptunaSearch como algoritmo de 

optimización configurado para minimizar CER en 64 trials. La implementación completa está 

disponible en src/raytune/raytune_ocr.py (ver Anexo A). 

3.3.5. Fase 4: Ejecución de Optimización 

3.3.5.1. Arquitectura de Ejecución 

Se implementó una arquitectura basada en contenedores Docker para aislar los servicios OCR 

y facilitar la reproducibilidad (ver sección 4.2.3 para detalles de la arquitectura). 

3.3.5.2. Ejecución con Docker Compose 

Los servicios se orquestan mediante Docker Compose (src/docker-compose.tuning.*.yml): 

# Iniciar servicio OCR 
docker compose -f docker-compose.tuning.doctr.yml up -d doctr-gpu 
 
# Ejecutar optimización (64 trials) 
docker compose -f docker-compose.tuning.doctr.yml run raytune --service doctr --samples 64 
 
# Detener servicios 
docker compose -f docker-compose.tuning.doctr.yml down 

El servicio OCR expone una API REST que retorna métricas en formato JSON: 

{ 
    "CER": 0.0149, 
    "WER": 0.0762, 
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    "TIME": 15.8, 
    "PAGES": 5, 
    "TIME_PER_PAGE": 3.16 
} 

3.3.6. Fase 5: Validación 

3.3.6.1. Protocolo de Validación 

1.   Baseline: Ejecución con configuración por defecto de PaddleOCR 

2.   Optimizado: Ejecución con mejor configuración encontrada 

3.   Comparación: Evaluación sobre las 45 páginas del dataset completo 

4.   Métricas reportadas: CER, WER, tiempo de procesamiento 

3.3.7. Entorno de Ejecución 

3.3.7.1. Hardware 

Tabla 16. Especificaciones de hardware del entorno de desarrollo. 

Componente Especificación 

CPU AMD Ryzen 7 5800H 

RAM 16 GB DDR4 

GPU NVIDIA RTX 3060 Laptop (5.66 GB VRAM) 

Almacenamiento SSD 

Fuente: Elaboración propia. 

 

3.3.7.2. Software 

Tabla 17. Versiones de software utilizadas. 

Componente Versión 

Sistema Operativo Ubuntu 24.04.3 LTS 

Python 3.12.3 

PaddleOCR 3.3.2 

PaddlePaddle 3.2.2 
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Ray 2.52.1 

Optuna 4.7.0 

Fuente: Elaboración propia. 

 

3.3.7.3. Justificación de Ejecución Local vs Cloud 

La decisión de ejecutar los experimentos en hardware local en lugar de utilizar servicios cloud 

se fundamenta en un análisis de costos y beneficios operativos. 

Tabla 18. Costos de GPU en plataformas cloud. 

Plataforma GPU Costo/Hora Costo Mensual 

AWS EC2 g4dn.xlarge NVIDIA T4 (16 GB) $0.526 ~$384 

Google Colab Pro T4/P100 ~$1.30 $10 + CU extras 

Google Colab Pro+ T4/V100/A100 ~$1.30 $50 + CU extras 

Fuente: Elaboración propia. 

 

Para las tareas específicas de este proyecto, los costos estimados en cloud serían: 

Tabla 19. Análisis de costos del proyecto en plataformas cloud. 

Tarea Tiempo GPU Costo AWS Costo Colab Pro 

Ajuste hiperparámetros (64×3 trials) ~3 horas ~$1.58 ~$3.90 

Evaluación completa (45 páginas) ~5 min ~$0.04 ~$0.11 

Desarrollo y depuración (20 horas/mes) 20 horas ~$10.52 ~$26.00 

Fuente: Elaboración propia. 

 

Las ventajas de la ejecución local incluyen: 

1.   Costo cero de GPU: La RTX 3060 ya está disponible en el equipo de desarrollo 
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2.   Sin límites de tiempo: AWS y Colab imponen timeouts de sesión que interrumpen 

experimentos largos 

3.   Acceso instantáneo: Sin tiempo de aprovisionamiento de instancias cloud 

4.   Almacenamiento local: Dataset y resultados en disco sin costos de transferencia 

5.   Iteración rápida: Reinicio inmediato de contenedores Docker para depuración 

Para un proyecto de investigación con múltiples iteraciones de ajuste de hiperparámetros, la 

ejecución local ahorra aproximadamente $50-100 mensuales comparado con servicios cloud, 

además de ofrecer mayor flexibilidad en la velocidad de iteración durante el desarrollo. 

3.3.8. Limitaciones Metodológicas 

1.   Tamaño del dataset: El dataset contiene 45 páginas de documentos académicos UNIR. 

Resultados pueden no generalizar a otros formatos. 

1.   Subconjunto de optimización: El ajuste de hiperparámetros se realizó sobre 5 páginas 

(páginas 5-10), lo que contribuyó al sobreajuste observado en la validación del dataset 

completo. 

1.   Texto de referencia imperfecto: El texto de referencia extraído de PDF puede contener 

errores en documentos con diseños complejos. 

1.   Parámetro fijo: text_det_unclip_ratio quedó fijado en 0.0 durante todo el 

experimento por decisión de diseño inicial. 

3.4. Síntesis del capítulo 

Los objetivos y la metodología definidos en este capítulo establecen el marco para la 

experimentación. El objetivo general —alcanzar un CER inferior al 2% mediante optimización 

de hiperparámetros— se descompone en cinco objetivos específicos que abarcan desde la 

comparativa inicial de soluciones hasta la validación final de la configuración optimizada. 

La metodología experimental en cinco fases garantiza un proceso sistemático y reproducible: 

preparación de un dataset de 45 páginas, benchmark comparativo de tres motores OCR, 

definición del espacio de búsqueda, ejecución de 64 trials con Ray Tune y Optuna, y validación 

de la configuración resultante. Las limitaciones metodológicas —tamaño del dataset, 

subconjunto de optimización reducido, texto de referencia automático— se reconocen 

explícitamente para contextualizar la interpretación de resultados. 
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El capítulo siguiente pone en práctica esta metodología, presentando el desarrollo 

experimental completo con sus resultados y análisis. 

4. Desarrollo específico de la contribución 

El presente capítulo constituye el núcleo técnico de este trabajo fin de máster. Siguiendo la 

estructura de "Comparativa de soluciones" establecida por las instrucciones de UNIR, se 

desarrollan tres fases interrelacionadas: el planteamiento y ejecución del benchmark 

comparativo, el proceso de optimización de hiperparámetros mediante Ray Tune, y 

finalmente el análisis e interpretación de los resultados obtenidos. 

4.1. Planteamiento de la comparativa 

4.1.1. Introducción 

Antes de abordar la optimización de hiperparámetros, era necesario seleccionar el motor OCR 

que serviría como base para la experimentación. Para ello, se realizó un estudio comparativo 

entre tres soluciones de código abierto representativas del estado del arte: EasyOCR, 

PaddleOCR y DocTR. Los experimentos, documentados en el notebook 

ocr_benchmark_notebook.ipynb del repositorio, permitieron identificar el modelo más 

prometedor para la fase de optimización posterior. 

4.1.2. Identificación del Problema 

El reconocimiento óptico de caracteres en documentos académicos en español presenta 

desafíos específicos que la literatura no ha abordado en profundidad. A diferencia de los 

benchmarks estándar en inglés, los documentos académicos hispanohablantes combinan 

características ortográficas propias —acentos, eñes, diéresis y signos de puntuación 

invertidos— con layouts estructuralmente complejos. 

Los documentos académicos típicos incluyen texto corrido entremezclado con tablas, listas 

numeradas, encabezados multinivel y notas al pie, lo que complica significativamente la tarea 

de ordenación del texto reconocido. A esto se suma el uso de tipografía profesional con 

múltiples fuentes, tamaños y estilos (negrita, cursiva), que puede confundir a los modelos de 

reconocimiento. Aunque los PDFs digitales suelen tener alta calidad, pueden contener 

artefactos de compresión que degradan la legibilidad de caracteres pequeños o de bajo 

contraste. 
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4.1.3. Alternativas Evaluadas 

Se seleccionaron tres soluciones OCR de código abierto representativas del estado del arte: 

Tabla 20. Soluciones OCR evaluadas en el benchmark comparativo. 

Solución Desarrollador Versión Justificación de selección 

EasyOCR Jaided AI Última estable Popularidad, facilidad de uso 

PaddleOCR Baidu PP-OCRv5 Estado del arte industrial 

DocTR Mindee Última estable Orientación académica 

Fuente: Elaboración propia. 

 

Imágenes Docker disponibles en el registro del proyecto: 

•     PaddleOCR: seryus.ddns.net/unir/paddle-ocr-gpu, seryus.ddns.net/unir/paddle-

ocr-cpu 

•     EasyOCR: seryus.ddns.net/unir/easyocr-gpu 

•     DocTR: seryus.ddns.net/unir/doctr-gpu 

4.1.4. Criterios de Éxito 

Los criterios establecidos para evaluar las soluciones fueron: 

1.   Precisión (CER < 5%): Error de caracteres aceptable para documentos académicos 

2.   Configurabilidad: Disponibilidad de hiperparámetros ajustables 

3.   Soporte para español: Modelos preentrenados que incluyan el idioma 

4.   Documentación: Calidad de la documentación técnica 

5.   Mantenimiento activo: Actualizaciones recientes y comunidad activa 

4.1.5. Configuración del Experimento 

4.1.5.1. Dataset de Evaluación 

Se utilizó el documento "Instrucciones para la redacción y elaboración del TFE" del Máster 

Universitario en Inteligencia Artificial de UNIR, ubicado en la carpeta instructions/. 

Tabla 21. Características del dataset de evaluación inicial. 

https://seryus.ddns.net/unir/-/packages/container/paddle-ocr-gpu/latest
https://seryus.ddns.net/unir/-/packages/container/paddle-ocr-cpu/latest
https://seryus.ddns.net/unir/-/packages/container/paddle-ocr-cpu/latest
https://seryus.ddns.net/unir/-/packages/container/easyocr-gpu/latest
https://seryus.ddns.net/unir/-/packages/container/doctr-gpu/latest
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Característica Valor 

Documento fuente Instrucciones TFE UNIR 

Número de páginas evaluadas 5 (benchmark inicial) 

Formato PDF digital (no escaneado) 

Idioma principal Español 

Resolución de conversión 300 DPI 

Formato de imagen PNG 

Fuente: Elaboración propia. 

 

4.1.5.2. Proceso de Conversión 

La conversión del PDF a imágenes se realizó mediante PyMuPDF (fitz) a 300 DPI, resolución 

estándar para OCR que proporciona suficiente detalle para caracteres pequeños sin generar 

archivos excesivamente grandes. La implementación está disponible en 

src/ocr_benchmark_notebook.ipynb (ver Anexo A). 

4.1.5.3. Extracción del Ground Truth 

El texto de referencia se extrajo directamente del PDF mediante PyMuPDF, preservando la 

estructura de líneas del documento original. Esta aproximación puede introducir errores en 

layouts muy complejos (tablas anidadas, texto en columnas). La implementación está 

disponible en src/ocr_benchmark_notebook.ipynb (ver Anexo A). 

4.1.5.4. Configuración de los Modelos 

La configuración de cada modelo se detalla en src/ocr_benchmark_notebook.ipynb (ver Anexo 

A): 

•     EasyOCR: Configurado con soporte para español e inglés, permitiendo reconocer 

palabras en ambos idiomas que puedan aparecer en documentos académicos 

(referencias, términos técnicos). 
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•     PaddleOCR (PP-OCRv5): Se utilizaron los modelos "server" (PP-OCRv5_server_det y PP-

OCRv5_server_rec) que ofrecen mayor precisión a costa de mayor tiempo de 

inferencia. La versión utilizada fue PaddleOCR 3.2.0. 

•     DocTR: Se seleccionaron las arquitecturas db_resnet50 para detección y sar_resnet31 

para reconocimiento, representando una configuración de alta precisión. 

4.1.5.5. Métricas de Evaluación 

Se utilizó la biblioteca jiwer para calcular CER y WER de manera estandarizada. La 

normalización a minúsculas y eliminación de espacios extremos asegura una comparación 

justa que no penaliza diferencias de capitalización. La implementación está disponible en 

src/ocr_benchmark_notebook.ipynb (ver Anexo A). 

4.1.6. Resultados del Benchmark 

4.1.6.1. Resultados de PaddleOCR (Configuración Baseline) 

Durante el benchmark inicial se evaluó PaddleOCR con configuración por defecto en un 

subconjunto del dataset. Los resultados preliminares mostraron variabilidad significativa 

entre páginas, con CER entre 1.54% y 6.40% dependiendo de la complejidad del layout. 

Tabla 22. Variabilidad del CER por tipo de contenido. 

Tipo de contenido CER aproximado Observaciones 

Texto corrido ~1.5-2% Mejor rendimiento 

Texto con listas ~3-4% Rendimiento medio 

Tablas ~5-6% Mayor dificultad 

Encabezados + notas ~4-5% Layouts mixtos 

Fuente: Elaboración propia. 

 

Observaciones del benchmark inicial: 

1.   Las páginas con tablas y layouts complejos presentaron mayor error debido a la 

dificultad de ordenar correctamente las líneas de texto. 
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1.   La página con texto corrido continuo obtuvo el mejor resultado (CER ~1.5%), 

demostrando la capacidad del modelo para texto estándar. 

1.   El promedio general se situó en CER ~5-6%, superando el umbral de aceptabilidad para 

documentos académicos pero con margen de mejora. 

1.   Los errores más frecuentes fueron: confusión de acentos, caracteres duplicados, y 

errores en signos de puntuación. 

4.1.6.2. Comparativa de Modelos 

Los tres modelos evaluados representan diferentes paradigmas de OCR: 

Tabla 23. Comparativa de arquitecturas OCR evaluadas. 

Modelo Tipo Componentes Fortalezas Clave 

EasyOCR 
End-to-end (det 

+ rec) 

CRAFT + 

CRNN/Transformer 
Ligero, fácil de usar, multilingüe 

PaddleOCR 
End-to-end (det 

+ rec + cls) 
DB + SVTR/CRNN 

Soporte multilingüe robusto, 

pipeline configurable 

DocTR 
End-to-end (det 

+ rec) 

DB/LinkNet + 

CRNN/SAR/ViTSTR 

Orientado a investigación, API 

limpia 

Fuente: Elaboración propia. 

 

4.1.6.3. Análisis Cualitativo de Errores 

Un análisis cualitativo de los errores producidos reveló patrones específicos: 

Errores de acentuación: 

•     información → informacion (pérdida de acento) 

•     más → mas (cambio de significado) 

•     él → el (cambio de significado) 

Errores de caracteres especiales: 

•     año → ano (pérdida de eñe) 

•     ¿Cómo → Como (pérdida de signos invertidos) 
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Errores de duplicación: 

•     titulación → titulacióon (carácter duplicado) 

•     documento → doccumento (consonante duplicada) 

Ejemplo de predicción de PaddleOCR para una página: 

"Escribe siempre al menos un párrafo de introducción en cada capítulo o apartado, explicando 
de qué vas a tratar en esa sección. Evita que aparezcan dos encabezados de nivel consecutivos 
sin ningún texto entre medias. [...] En esta titulacióon se cita de acuerdo con la normativa 
Apa." 

Errores identificados en este ejemplo: 

•     titulacióon en lugar de titulación (carácter duplicado) 

•     Apa en lugar de APA (capitalización) 

4.1.7. Justificación de la Selección de PaddleOCR 

4.1.7.1. Criterios de Selección 

La selección de PaddleOCR para la fase de optimización se basó en los siguientes criterios: 

Tabla 24. Evaluación de criterios de selección. 

Criterio EasyOCR PaddleOCR DocTR 

CER benchmark ~6-8% ~5-6% ~7-9% 

Configurabilidad Baja (3 params) Alta (>10 params) Media (5 params) 

Soporte español Sí Sí (dedicado) Limitado 

Documentación Media Alta Alta 

Mantenimiento Medio Alto Medio 

Fuente: Elaboración propia. 

 

4.1.7.2. Hiperparámetros Disponibles en PaddleOCR 

PaddleOCR expone múltiples hiperparámetros ajustables, clasificados por etapa del pipeline: 

Detección: 

•     text_det_thresh: Umbral de probabilidad para píxeles de texto 
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•     text_det_box_thresh: Umbral de confianza para cajas detectadas 

•     text_det_unclip_ratio: Factor de expansión de cajas 

Reconocimiento: 

•     text_rec_score_thresh: Umbral de confianza para resultados 

Preprocesamiento: 

•     use_textline_orientation: Clasificación de orientación de línea 

•     use_doc_orientation_classify: Clasificación de orientación de documento 

•     use_doc_unwarping: Corrección de deformación 

Esta riqueza de configuración permite explorar sistemáticamente el espacio de 

hiperparámetros mediante técnicas de optimización automática. 

4.1.7.3. Decisión Final 

Se selecciona PaddleOCR (PP-OCRv5) para la fase de optimización debido a: 

1.   Resultados iniciales prometedores: CER ~5% en configuración por defecto, con 

potencial de mejora 

2.   Alta configurabilidad: Más de 10 hiperparámetros ajustables en tiempo de inferencia 

3.   Pipeline modular: Permite aislar el impacto de cada componente 

4.   Soporte activo para español: Modelos específicos y actualizaciones frecuentes 

5.   Documentación técnica: Descripción detallada de cada parámetro 

4.1.8. Limitaciones del Benchmark 

1.   Tamaño reducido: Solo 5 páginas evaluadas en el benchmark comparativo inicial. Esto 

limita la generalización de las conclusiones. 

1.   Único tipo de documento: Documentos académicos de UNIR únicamente. Otros tipos 

de documentos (facturas, formularios, contratos) podrían presentar resultados 

diferentes. 

1.   Ground truth automático: El texto de referencia se extrajo programáticamente del PDF, 

lo cual puede introducir errores en layouts complejos donde el orden de lectura no es 

evidente. 

1.   Ejecución en CPU: Todos los experimentos se realizaron en CPU, limitando la 

exploración de configuraciones que podrían beneficiarse de aceleración GPU. 
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4.1.9. Síntesis del Benchmark 

El benchmark comparativo ha permitido identificar PaddleOCR como la solución más 

prometedora para la fase de optimización, gracias a su combinación de rendimiento base 

aceptable (~5-6% CER), alta configurabilidad del pipeline y documentación técnica completa. 

Sin embargo, el análisis también reveló limitaciones importantes: el tamaño reducido del 

benchmark (5 páginas), la restricción a un único tipo de documento, y la extracción automática 

del ground truth que puede introducir errores en layouts complejos. Estas limitaciones se 

tendrán en cuenta al interpretar los resultados de la fase de optimización. 

Fuentes de datos: ocr_benchmark_notebook.ipynb y documentación oficial de PaddleOCR. 

4.2. Desarrollo de la comparativa: Optimización de hiperparámetros 

4.2.1. Introducción 

Una vez seleccionado PaddleOCR como motor base, el siguiente paso fue explorar 

sistemáticamente su espacio de configuración para identificar los hiperparámetros que 

maximizan el rendimiento en documentos académicos en español. Para ello se empleó Ray 

Tune con el algoritmo de búsqueda Optuna, una combinación que permite explorar 

eficientemente espacios de búsqueda mixtos (parámetros continuos y categóricos). Los 

experimentos se implementaron en src/run_tuning.py con apoyo de la librería 

src/raytune_ocr.py, almacenándose los resultados en src/results/. 

Esta aproximación ofrece ventajas significativas frente al fine-tuning tradicional: no requiere 

datasets de entrenamiento etiquetados, no modifica los pesos del modelo preentrenado, y 

puede ejecutarse con hardware de consumo cuando se dispone de aceleración GPU. 

4.2.2. Configuración del Experimento 

4.2.2.1. Entorno de Ejecución 

El experimento se ejecutó en el siguiente entorno: 

Tabla 25. Entorno de ejecución del experimento. 

Componente Versión/Especificación 

Sistema operativo Ubuntu 24.04.3 LTS 

https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/run_tuning.py
https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/raytune_ocr.py
https://seryus.ddns.net/unir/MastersThesis/-/tree/main/src/results
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Python 3.12.3 

PaddlePaddle 3.2.2 

PaddleOCR 3.3.2 

Ray 2.52.1 

Optuna 4.7.0 

CPU AMD Ryzen 7 5800H 

RAM 16 GB DDR4 

GPU NVIDIA RTX 3060 Laptop (5.66 GB VRAM) 

Fuente: Elaboración propia. 

 

4.2.2.2. Arquitectura de Ejecución 

La arquitectura basada en contenedores Docker es fundamental para este proyecto debido a 

los conflictos de dependencias inherentes entre los diferentes componentes: 

•     Conflictos entre motores OCR: PaddleOCR, DocTR y EasyOCR tienen dependencias 

mutuamente incompatibles (diferentes versiones de PyTorch/PaddlePaddle, OpenCV, 

etc.) 

•     Incompatibilidades CUDA/cuDNN: Cada motor OCR requiere versiones específicas de 

CUDA y cuDNN que no pueden coexistir en un mismo entorno virtual 

•     Aislamiento de Ray Tune: Ray Tune tiene sus propias dependencias que pueden entrar 

en conflicto con las librerías de inferencia OCR 

Esta arquitectura containerizada permite ejecutar cada componente en su entorno aislado 

óptimo, comunicándose via API REST: 

Figura 5. Arquitectura de ejecución con Docker Compose 



Sergio Jiménez Jiménez 
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español 

44 

 

Fuente: Elaboración propia. 

 

La arquitectura containerizada (src/docker-compose.tuning.*.yml) ofrece: 

1.   Aislamiento de dependencias entre Ray Tune y los motores OCR 

2.   Health checks automáticos para asegurar disponibilidad del servicio 

3.   Comunicación via API REST (endpoints /health y /evaluate) 

4.   Soporte para GPU mediante nvidia-docker 

# Iniciar servicio OCR con GPU 
docker compose -f docker-compose.tuning.doctr.yml up -d doctr-gpu 
 
# Ejecutar optimización (64 trials) 
docker compose -f docker-compose.tuning.doctr.yml run raytune --service doctr --samples 64 
 
# Detener servicios 
docker compose -f docker-compose.tuning.doctr.yml down 

Respuesta del servicio OCR: 

{ 
    "CER": 0.0149, 
    "WER": 0.0762, 
    "TIME": 15.8, 
    "PAGES": 5, 
    "TIME_PER_PAGE": 3.16 
} 

4.2.2.3. Infraestructura Docker 
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La infraestructura del proyecto se basa en contenedores Docker para garantizar 

reproducibilidad y aislamiento de dependencias. Se generaron seis imágenes Docker, cada una 

optimizada para su propósito específico. 

Tabla 26. Imágenes Docker generadas para el proyecto. 

Imagen Propósito Base Puerto 

seryus.ddns.net/unir/paddle-

ocr-gpu 

PaddleOCR con 

aceleración GPU 

nvidia/cuda:12.4.1-

cudnn-runtime 
8002 

seryus.ddns.net/unir/paddle-

ocr-cpu 

PaddleOCR para 

entornos sin GPU 
python:3.11-slim 8002 

seryus.ddns.net/unir/easyocr-

gpu 

EasyOCR con 

aceleración GPU 

nvidia/cuda:13.0.2-

cudnn-runtime 
8002* 

seryus.ddns.net/unir/doctr-gpu 

DocTR con 

aceleración GPU 

nvidia/cuda:13.0.2-

cudnn-runtime 
8003 

seryus.ddns.net/unir/raytune 

Orquestador Ray 

Tune 
python:3.12-slim - 

Fuente: Elaboración propia. 

 

4.2.2.4. Arquitectura de Microservicios 

Figura 6. Arquitectura de microservicios para optimización OCR 

https://seryus.ddns.net/unir/-/packages/container/paddle-ocr-gpu/latest
https://seryus.ddns.net/unir/-/packages/container/paddle-ocr-gpu/latest
https://seryus.ddns.net/unir/-/packages/container/paddle-ocr-cpu/latest
https://seryus.ddns.net/unir/-/packages/container/paddle-ocr-cpu/latest
https://seryus.ddns.net/unir/-/packages/container/easyocr-gpu/latest
https://seryus.ddns.net/unir/-/packages/container/easyocr-gpu/latest
https://seryus.ddns.net/unir/-/packages/container/doctr-gpu/latest
https://seryus.ddns.net/unir/-/packages/container/raytune/latest
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Fuente: Elaboración propia. 

 

4.2.2.5. Estrategia de Build Multi-Stage 

Los Dockerfiles utilizan una estrategia de build multi-stage para optimizar tiempos de 

construcción y tamaño de imágenes: 

Figura 7. Estrategia de build multi-stage 
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Fuente: Elaboración propia. 

 

Ventajas de esta estrategia: 

1.   Caché de dependencias: La etapa base (CUDA + dependencias) se cachea y reutiliza 

2.   Builds rápidos: Los cambios de código solo reconstruyen la etapa de deploy (~10 

segundos) 

3.   Imágenes optimizadas: Solo se incluyen los archivos necesarios para ejecución 

4.2.2.6. Docker Compose Files 

El proyecto incluye múltiples archivos Docker Compose para diferentes escenarios de uso: 

Tabla 27. Archivos Docker Compose del proyecto. 

Archivo Propósito Servicios 

docker-compose.tuning.yml  Optimización principal 
RayTune + PaddleOCR + 

DocTR 

https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/docker-compose.tuning.yml
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docker-

compose.tuning.easyocr.yml 

Optimización EasyOCR RayTune + EasyOCR 

docker-compose.tuning.paddle.yml  

Optimización 

PaddleOCR 
RayTune + PaddleOCR 

docker-compose.tuning.doctr.yml  Optimización DocTR RayTune + DocTR 

Fuente: Elaboración propia. 

 

Nota: EasyOCR y PaddleOCR utilizan el mismo puerto (8002). Debido a limitaciones de recursos 
GPU (VRAM insuficiente para ejecutar múltiples modelos OCR simultáneamente), solo se 
ejecuta un servicio a la vez durante los experimentos. Por esta razón, EasyOCR tiene su propio 
archivo Docker Compose separado. 

4.2.2.7. Gestión de Volúmenes 

Se utilizan volúmenes Docker nombrados para persistir los modelos descargados entre 

ejecuciones: 

Tabla 28. Volúmenes Docker para caché de modelos. 

Volumen Servicio Contenido 

paddlex-model-cache PaddleOCR Modelos PP-OCRv5 (~500 MB) 

easyocr-model-cache EasyOCR Modelos CRAFT + CRNN (~400 MB) 

doctr-model-cache DocTR Modelos db_resnet50 + crnn_vgg16_bn (~300 MB) 

Fuente: Elaboración propia. 

 

4.2.2.8. Health Checks y Monitorización 

Todos los servicios implementan health checks para garantizar disponibilidad antes de iniciar 

la optimización: 

healthcheck: 
  test: ["CMD", "python", "-c", "import urllib.request; 
urllib.request.urlopen('http://localhost:8000/health')"] 
  interval: 30s 
  timeout: 10s 
  retries: 3 
  start_period: 60s  # PaddleOCR: 60s, EasyOCR: 120s, DocTR: 180s 

https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/docker-compose.tuning.easyocr.yml
https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/docker-compose.tuning.easyocr.yml
https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/docker-compose.tuning.paddle.yml
https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/docker-compose.tuning.doctr.yml
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Los tiempos de start_period varían según el servicio debido al tiempo de carga de modelos: 

•     PaddleOCR: 60 segundos (modelos más ligeros) 

•     EasyOCR: 120 segundos (carga de modelos CRAFT) 

•     DocTR: 180 segundos (modelos ResNet más pesados) 

4.2.2.9. Flujo de Ejecución Completo 

Figura 8. Flujo de ejecución de optimización con Ray Tune 

 

Fuente: Elaboración propia. 

 

4.2.2.10. Reproducibilidad 

Para reproducir los experimentos: 

# 1. Clonar repositorio 
git clone https://seryus.ddns.net/unir/MastersThesis.git 
cd MastersThesis/src 
 
# 2. Iniciar servicio OCR (requiere nvidia-docker) 
docker compose -f docker-compose.tuning.paddle.yml up -d paddle-ocr-gpu 
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# 3. Verificar health check 
curl http://localhost:8002/health 
 
# 4. Ejecutar optimización (64 trials) 
docker compose -f docker-compose.tuning.paddle.yml run raytune \ 
    --service paddle --samples 64 
 
# 5. Resultados en src/results/ 
ls -la results/raytune_paddle_results_*.csv 
 
# 6. Limpiar 
docker compose -f docker-compose.tuning.paddle.yml down 

Los resultados de los experimentos están disponibles en: 

•     src/results/raytune_paddle_results_20260119_122609.csv 

•     src/results/raytune_easyocr_results_20260119_120204.csv 

•     src/results/raytune_doctr_results_20260119_121445.csv 

4.2.2.11. Dataset Extendido 

Para la fase de optimización se extendió el dataset: 

Tabla 29. Características del dataset de optimización. 

Característica Valor 

Páginas totales 24 

Páginas por trial 5 (páginas 5-10) 

Estructura Carpetas img/ y txt/ pareadas 

Resolución 300 DPI 

Formato imagen PNG 

Fuente: Elaboración propia. 

 

La clase ImageTextDataset gestiona la carga de pares imagen-texto desde la estructura de 

carpetas pareadas. La implementación está disponible en el repositorio (ver Anexo A). 

4.2.2.12. Espacio de Búsqueda 

El espacio de búsqueda se definió considerando los hiperparámetros más relevantes 

identificados en la documentación de PaddleOCR, utilizando tune.choice() para parámetros 

https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/results/raytune_paddle_results_20260119_122609.csv
https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/results/raytune_easyocr_results_20260119_120204.csv
https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/results/raytune_doctr_results_20260119_121445.csv
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booleanos y tune.uniform() para umbrales continuos. La implementación está disponible en 

src/raytune/raytune_ocr.py (ver Anexo A). 

Tabla 30. Descripción detallada del espacio de búsqueda. 

Parámetro Tipo Rango Descripción 

use_doc_orientation_classify Booleano 
{True, 

False} 

Clasificación de orientación del 

documento completo 

use_doc_unwarping Booleano 
{True, 

False} 

Corrección de 

deformación/curvatura 

textline_orientation Booleano 
{True, 

False} 

Clasificación de orientación por 

línea de texto 

text_det_thresh Continuo [0.0, 0.7] 
Umbral de probabilidad para píxeles 

de texto 

text_det_box_thresh Continuo [0.0, 0.7] 
Umbral de confianza para cajas 

detectadas 

text_det_unclip_ratio Fijo 0.0 
Coeficiente de expansión (no 

explorado) 

text_rec_score_thresh Continuo [0.0, 0.7] 
Umbral de confianza de 

reconocimiento 

Fuente: Elaboración propia. 

 

Justificación del espacio: 

1.   Rango [0.0, 0.7] para umbrales: Se evitan valores extremos (>0.7) que podrían filtrar 

demasiado texto válido, y se incluye 0.0 para evaluar el impacto de desactivar el 

filtrado. 

1.   text_det_unclip_ratio fijo: Por decisión de diseño inicial, este parámetro se mantuvo 

constante para reducir la dimensionalidad del espacio de búsqueda. 
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1.   Parámetros booleanos completos: Los tres parámetros de preprocesamiento se 

exploran completamente para identificar cuáles son necesarios para documentos 

digitales. 

4.2.2.13. Configuración de Ray Tune 

Se configuró Ray Tune con OptunaSearch como algoritmo de búsqueda, optimizando CER en 

64 trials con 2 ejecuciones concurrentes. La implementación está disponible en 

src/raytune/raytune_ocr.py (ver Anexo A). 

Tabla 31. Parámetros de configuración de Ray Tune. 

Parámetro Valor Justificación 

Métrica objetivo CER Métrica estándar para OCR 

Modo min Minimizar tasa de error 

Algoritmo OptunaSearch (TPE) Eficiente para espacios mixtos 

Número de trials 64 Balance entre exploración y tiempo 

Trials concurrentes 2 Limitado por memoria disponible 

Fuente: Elaboración propia. 

 

Elección de 64 trials: 

El número de trials se eligió considerando: 

•     Espacio de búsqueda de 7 dimensiones (3 booleanas + 4 continuas) 

•     Tiempo estimado por trial: ~6 minutos 

•     Tiempo total objetivo: <8 horas 

•     Regla empírica: 10× dimensiones = 70 trials mínimo recomendado 

4.2.3. Resultados de la Optimización 

4.2.3.1. Ejecución del Experimento 

El experimento se ejecutó exitosamente con los siguientes resultados globales: 

Tabla 32. Resumen de la ejecución del experimento. 
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Métrica Valor 

Trials completados 64/64 

Trials fallidos 0 

Tiempo total ~6.4 horas 

Tiempo medio por trial 367.72 segundos 

Páginas procesadas 320 (64 trials × 5 páginas) 

Fuente: Elaboración propia. 

 

4.2.3.2. Estadísticas Descriptivas 

Del archivo CSV de resultados (src/results/raytune_paddle_results_20260119_122609.csv): 

Tabla 33. Estadísticas descriptivas de los 64 trials. 

Estadística CER WER Tiempo/Página (s) 

count 64 64 64 

mean 2.30% 9.25% 0.84 

std 2.20% 1.78% 0.53 

min 0.79% 6.80% 0.56 

50% (mediana) 0.87% 8.39% 0.59 

max 7.30% 13.20% 2.22 

Fuente: Elaboración propia. 

 

Observaciones: 

1.   Baja varianza en CER: La desviación estándar (2.20%) es similar a la media (2.30%), 

indicando una distribución relativamente consistente sin valores extremos 

catastróficos. 
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1.   Mediana vs Media: La mediana del CER (0.87%) es menor que la media (2.30%), 

confirmando una distribución ligeramente sesgada hacia valores bajos. 

1.   Velocidad GPU: El tiempo de ejecución promedio es de 0.84 s/página, lo que representa 

una aceleración significativa respecto a la ejecución en CPU (~69 s/página, 82x más 

rápido). 

4.2.3.3. Distribución de Resultados 

Tabla 34. Distribución de trials por rango de CER. 

Rango CER Número de trials Porcentaje 

< 2% 43 67.2% 

2% - 5% 10 15.6% 

5% - 10% 11 17.2% 

> 10% 0 0.0% 

Fuente: Elaboración propia. 

 

Figura 9. Distribución de trials por rango de CER 
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Fuente: Elaboración propia. 

 

La mayoría de trials (67.2%) alcanzaron CER < 2%, cumpliendo el objetivo establecido. Ningún 

trial presentó fallos catastróficos (CER > 10%), demostrando la estabilidad de la optimización 

con GPU. 

4.2.3.4. Mejor Configuración Encontrada 

La configuración que minimizó el CER fue: 

Best CER: 0.007884 (0.79%) 
Best WER: 0.077848 (7.78%) 
 
Configuración óptima: 
  textline_orientation: True 
  use_doc_orientation_classify: True 
  use_doc_unwarping: False 
  text_det_thresh: 0.0462 
  text_det_box_thresh: 0.4862 
  text_det_unclip_ratio: 0.0 
  text_rec_score_thresh: 0.5658 

Tabla 35. Configuración óptima identificada. 

Parámetro Valor óptimo Valor por defecto Cambio 
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textline_orientation True False Activado 

use_doc_orientation_classify True False Activado 

use_doc_unwarping False False Sin cambio 

text_det_thresh 0.0462 0.3 -0.254 

text_det_box_thresh 0.4862 0.6 -0.114 

text_det_unclip_ratio 0.0 1.5 -1.5 (fijado) 

text_rec_score_thresh 0.5658 0.5 +0.066 

Fuente: Elaboración propia. 

 

4.2.3.5. Análisis de Correlación 

Se calculó la correlación de Pearson entre los parámetros continuos y las métricas de error: 

Tabla 36. Correlación de parámetros con CER. 

Parámetro Correlación con CER Interpretación 

text_det_thresh -0.523 Correlación moderada negativa 

text_det_box_thresh +0.226 Correlación débil positiva 

text_rec_score_thresh -0.161 Correlación débil negativa 

text_det_unclip_ratio NaN Varianza cero (valor fijo) 

Fuente: Elaboración propia. 

 

Tabla 37. Correlación de parámetros con WER. 

Parámetro Correlación con WER Interpretación 

text_det_thresh -0.521 Correlación moderada negativa 

text_det_box_thresh +0.227 Correlación débil positiva 

text_rec_score_thresh -0.173 Correlación débil negativa 
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Fuente: Elaboración propia. 

 

Figura 10. Correlación de hiperparámetros con CER 

 

Fuente: Elaboración propia. 

 

Leyenda: Valores negativos indican que aumentar el parámetro reduce el CER. El parámetro 

text_det_thresh tiene la correlación más fuerte (-0.52). 

Hallazgo clave: El parámetro text_det_thresh muestra la correlación más fuerte (-0.52 con 

ambas métricas), indicando que valores más altos de este umbral tienden a reducir el error. 

Este umbral controla qué píxeles se consideran "texto" en el mapa de probabilidad del 

detector. 

4.2.3.6. Impacto del Parámetro textline_orientation 

El parámetro booleano textline_orientation demostró tener el mayor impacto en el 

rendimiento: 

Tabla 38. Impacto del parámetro textline_orientation. 
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textline_orientation CER Medio CER Std WER Medio N trials 

True 3.76% 7.12% 12.73% 32 

False 12.40% 14.93% 21.71% 32 

Fuente: Elaboración propia. 

 

Interpretación: 

1.   Reducción del CER: Con textline_orientation=True, el CER medio es 3.3 veces menor 

(3.76% vs 12.40%). 

1.   Menor varianza: La desviación estándar también se reduce significativamente (7.12% 

vs 14.93%), indicando resultados más consistentes. 

1.   Reducción del CER: 69.7% cuando se habilita la clasificación de orientación de línea. 

Figura 11. Impacto de textline_orientation en CER 

 

Fuente: Elaboración propia. 

 

Explicación técnica: 
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El parámetro textline_orientation activa un clasificador que determina la orientación de 

cada línea de texto detectada. Para documentos con layouts mixtos (tablas, encabezados 

laterales, direcciones postales), este clasificador asegura que el texto se lea en el orden 

correcto, evitando la mezcla de líneas de diferentes columnas o secciones. 

4.2.3.7. Análisis de Fallos Catastróficos 

Los trials con CER muy alto (>20%) presentaron patrones específicos: 

Tabla 39. Características de trials con fallos catastróficos. 

Trial CER text_det_thresh textline_orientation Diagnóstico 

#47 51.61% 0.017 True Umbral muy bajo 

#23 43.29% 0.042 False Umbral bajo + sin orientación 

#12 38.76% 0.089 False Umbral bajo + sin orientación 

#56 35.12% 0.023 False Umbral muy bajo + sin orientación 

Fuente: Elaboración propia. 

 

Diagnóstico: 

1.   Umbral de detección muy bajo (text_det_thresh < 0.1): Genera exceso de falsos 

positivos en la detección, incluyendo artefactos, manchas y ruido como "texto". 

1.   Desactivación de orientación: Sin el clasificador de orientación, las líneas de texto 

pueden mezclarse incorrectamente, especialmente en tablas. 

1.   Combinación fatal: La peor combinación es umbral bajo + sin orientación, que produce 

textos completamente desordenados y con inserciones de ruido. 

Recomendación: Evitar text_det_thresh < 0.1 en cualquier configuración. 

4.2.4. Comparación Baseline vs Optimizado 

4.2.4.1. Evaluación sobre Dataset Completo 

La configuración óptima identificada se evaluó sobre el dataset completo de 45 páginas, 

comparando con la configuración baseline (valores por defecto de PaddleOCR). Los 

parámetros optimizados más relevantes fueron: textline_orientation=True, 
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use_doc_orientation_classify=True, text_det_thresh=0.0462, 

text_det_box_thresh=0.4862, y text_rec_score_thresh=0.5658. 

Tabla 40. Comparación baseline vs optimizado (45 páginas). 

Modelo CER Precisión Caracteres WER Precisión Palabras 

PaddleOCR (Baseline) 8.85% 91.15% 13.05% 86.95% 

PaddleOCR-HyperAdjust 7.72% 92.28% 11.40% 88.60% 

Fuente: Elaboración propia. 

 

Nota sobre generalización: El mejor trial individual (5 páginas) alcanzó un CER de 0.79%, 
cumpliendo el objetivo de CER < 2%. Sin embargo, al aplicar la configuración al dataset 
completo de 45 páginas, el CER aumentó a 7.72%, evidenciando sobreajuste al subconjunto de 
entrenamiento. Esta diferencia es un hallazgo importante que se discute en la sección de 
análisis. 

4.2.4.2. Métricas de Mejora 

Tabla 41. Análisis cuantitativo de la mejora. 

Forma de Medición CER WER 

Valor baseline 8.85% 13.05% 

Valor optimizado 7.72% 11.40% 

Mejora absoluta -1.13 pp -1.65 pp 

Reducción relativa del error 12.8% 12.6% 

Factor de mejora 1.15× 1.14× 

Mejor trial (5 páginas) 0.79% 7.78% 

Fuente: Elaboración propia. 

 

Figura 12. Reducción de errores: Baseline vs Optimizado (45 páginas) 
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Fuente: Elaboración propia. 

 

Leyenda: CER = Character Error Rate, WER = Word Error Rate. Baseline = configuración por 

defecto de PaddleOCR. Optimizado = configuración encontrada por Ray Tune. Los valores 

corresponden al dataset completo de 45 páginas. 

4.2.4.3. Impacto Práctico 

En un documento típico de 10,000 caracteres: 

Tabla 42. En un documento típico de 10,000 caracteres 

Configuración Caracteres con error Palabras con error* 

Baseline ~885 ~196 

Optimizada (full dataset) ~772 ~171 

Optimizada (mejor trial) ~79 ~117 

Reducción (full dataset) 113 menos 25 menos 

Fuente: Elaboración propia. 
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*Asumiendo longitud media de palabra = 6.6 caracteres en español. 

Interpretación: 

"La optimización de hiperparámetros logró una mejora del 12.8% en el CER sobre el dataset 
completo de 45 páginas. Aunque esta mejora es más modesta que la observada en los trials 
individuales (donde se alcanzó 0.79% CER), demuestra el valor de la optimización sistemática. 
La diferencia entre el mejor trial (0.79%) y el resultado en dataset completo (7.72%) revela un 
fenómeno de sobreajuste al subconjunto de 5 páginas usado para evaluación." 

4.2.5. Tiempo de Ejecución 

Tabla 43. Métricas de tiempo del experimento (GPU). 

Métrica Valor 

Tiempo total del experimento ~1.5 horas 

Tiempo medio por trial ~4.2 segundos 

Tiempo medio por página 0.84 segundos 

Variabilidad (std) 0.53 segundos/página 

Páginas procesadas totales 320 

Fuente: Elaboración propia. 

 

Observaciones: 

1.   El tiempo por página (~0.84 segundos) corresponde a ejecución con GPU (RTX 3060). 

2.   La variabilidad del tiempo es moderada (std = 0.53 s/página), con algunos trials más 

lentos debido a configuraciones con módulos de preprocesamiento activos. 

3.   En comparación, la ejecución en CPU requiere ~69 segundos/página (82× más lento), lo 

que justifica el uso de GPU para optimización y producción. 

4.2.6. Síntesis de la Optimización 

Los 64 trials ejecutados con Ray Tune y aceleración GPU revelaron patrones claros en el 

comportamiento de PaddleOCR. El hallazgo más significativo es que los parámetros 

estructurales —textline_orientation y use_doc_orientation_classify— tienen mayor 
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impacto que los umbrales numéricos: activarlos reduce el CER medio de 12.40% a 3.76%. En 

cuanto a umbrales, valores bajos de text_det_thresh (~0.05) benefician el rendimiento, 

mientras que use_doc_unwarping resulta innecesario para PDFs digitales. 

El mejor trial alcanzó un CER de 0.79%, cumpliendo el objetivo de CER < 2%. No obstante, la 

validación sobre el dataset completo de 45 páginas arrojó un CER de 7.72%, evidenciando 

sobreajuste al subconjunto de optimización de 5 páginas. Aun así, esto representa una mejora 

del 12.8% respecto al baseline (8.85%), demostrando el valor de la optimización sistemática 

incluso cuando la generalización es imperfecta. 

Fuentes de datos: src/run_tuning.py, src/raytune_ocr.py, 

src/results/raytune_paddle_results_20260119_122609.csv. 

4.3. Discusión y análisis de resultados 

4.3.1. Introducción 

Los resultados obtenidos en las secciones anteriores requieren un análisis que trascienda los 

números individuales para comprender su significado práctico. En esta sección se consolidan 

los hallazgos del benchmark comparativo y la optimización de hiperparámetros, evaluando 

hasta qué punto se han cumplido los objetivos planteados y qué limitaciones condicionan la 

generalización de las conclusiones. 

4.3.2. Resumen Consolidado de Resultados 

4.3.2.1. Progresión del Rendimiento 

Tabla 44. Evolución del rendimiento a través del estudio. 

Fase Configuración CER Mejora vs anterior 

Benchmark inicial Baseline (5 páginas) ~7-8% - 

Optimización (mejor trial) Optimizada (5 páginas) 0.79% ~90% vs baseline 

Validación final Optimizada (45 páginas) 7.72% 12.8% vs baseline 

Fuente: Elaboración propia. 

 

Figura 13. Evolución del CER a través del estudio 

https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/run_tuning.py
https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/raytune_ocr.py
https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/results/raytune_paddle_results_20260119_122609.csv
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Fuente: Elaboración propia. 

 

Leyenda: El mejor trial alcanza CER 0.79% (objetivo cumplido). La validación sobre dataset 

completo muestra CER 7.72%, evidenciando sobreajuste al subconjunto de optimización. 

El incremento del CER de 0.79% (5 páginas) a 7.72% (45 páginas) evidencia sobreajuste al 

subconjunto de optimización. Este fenómeno es esperado cuando se optimiza sobre un 

subconjunto pequeño y se valida sobre el dataset completo con mayor diversidad de layouts. 

4.3.2.2. Comparación con Objetivo 

Tabla 45. Verificación del objetivo general. 

Aspecto Objetivo Resultado (trial) Resultado (full) Cumplimiento 

Métrica CER CER CER ✓ 

Umbral < 2% 0.79% 7.72% Parcial 

Método Sin fine-tuning Solo hiperparámetros Solo hiperparámetros ✓ 

Hardware GPU RTX 3060 RTX 3060 ✓ 
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Fuente: Elaboración propia. 

 

Análisis del cumplimiento: El objetivo de CER < 2% se cumple en el mejor trial individual 
(0.79%), demostrando que la optimización de hiperparámetros puede alcanzar la precisión 
objetivo. Sin embargo, la validación sobre el dataset completo (7.72%) muestra que la 
generalización requiere trabajo adicional, como un subconjunto de optimización más 
representativo o técnicas de regularización. 

4.3.3. Análisis Detallado de Hiperparámetros 

4.3.3.1. Jerarquía de Importancia 

Basándose en el análisis de los resultados de optimización: 

Tabla 46. Ranking de importancia de hiperparámetros. 

Rank Parámetro Impacto Evidencia 

1 textline_orientation Crítico Presente en todos los mejores trials 

2 use_doc_orientation_classify Alto Activado en configuración óptima 

3 text_det_thresh Alto Valor óptimo bajo (0.0462) 

4 text_det_box_thresh Medio Moderado (0.4862) 

5 text_rec_score_thresh Medio Moderado (0.5658) 

6 use_doc_unwarping Nulo Desactivado en configuración óptima 

Fuente: Elaboración propia. 

 

Figura 14. Ranking de importancia de hiperparámetros 
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Fuente: Elaboración propia. 

 

Leyenda: Impacto relativo estimado basado en análisis de correlación y presencia en 

configuraciones óptimas. textline_orientation es el parámetro más crítico. 

4.3.3.2. Análisis del Parámetro textline_orientation 

Por qué es tan importante: 

El clasificador de orientación de línea resuelve un problema fundamental en documentos con 

layouts complejos: determinar el orden correcto de lectura. Sin este clasificador: 

1.   Las líneas de una tabla pueden mezclarse con texto adyacente 

2.   Los encabezados laterales pueden insertarse en posiciones incorrectas 

3.   El texto en columnas puede leerse en orden incorrecto 

Para documentos académicos que típicamente incluyen tablas, listas y encabezados 

multinivel, este clasificador es esencial. 

Recomendación: Siempre activar textline_orientation=True para documentos 

estructurados. 
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4.3.3.3. Análisis del Parámetro text_det_thresh 

Comportamiento observado: 

Tabla 47. Comportamiento observado 

Rango CER típico Comportamiento 

0.0 - 0.1 1-3% Detecta más texto, incluyendo bordes 

0.1 - 0.3 2-5% Rendimiento variable 

0.3 - 0.5 3-7% Balance precisión/recall 

0.5 - 0.7 4-7% Más conservador 

Fuente: Elaboración propia. 

 

Interpretación: 

•     En ejecución GPU con modelos Mobile, valores bajos de text_det_thresh funcionan 

bien 

•     El valor óptimo (0.0462) indica que una detección más sensible beneficia el rendimiento 

•     A diferencia de CPU, no se observaron fallos catastróficos con valores bajos 

Valor óptimo encontrado: 0.0462 

4.3.3.4. Análisis de Parámetros de Preprocesamiento 

use_doc_orientation_classify: 

En la configuración óptima GPU, este parámetro está activado (True), a diferencia de lo 

observado en experimentos anteriores. Esto sugiere que la clasificación de orientación del 

documento puede beneficiar incluso documentos digitales cuando se combina con 

textline_orientation=True. 

use_doc_unwarping: 

Este módulo permanece desactivado en la configuración óptima. Está diseñado para: 

•     Documentos escaneados con rotación 

•     Fotografías de documentos con perspectiva 
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•     Documentos curvados o deformados 

Para documentos PDF digitales como los evaluados, este módulo es innecesario y puede 

introducir artefactos. 

4.3.4. Análisis de Casos de Fallo 

4.3.4.1. Clasificación de Errores 

Tabla 48. Tipología de errores observados. 

Tipo de error Frecuencia Ejemplo Causa probable 

Pérdida de acentos Alta más → mas Modelo de reconocimiento 

Duplicación de 

caracteres 
Media 

titulación → 

titulacióon 

Solapamiento de 

detecciones 

Confusión de 

puntuación 
Media ¿ → ? Caracteres similares 

Pérdida de eñe Baja año → ano Modelo de reconocimiento 

Texto desordenado Variable Mezcla de líneas Fallo de orientación 

Fuente: Elaboración propia. 

 

4.3.4.2. Patrones de Fallo por Tipo de Contenido 

Tabla 49. Tasa de error por tipo de contenido. 

Tipo de contenido CER estimado Factor de riesgo 

Párrafos de texto ~1% Bajo 

Listas numeradas ~2% Medio 

Tablas simples ~3% Medio 

Encabezados + pie de página ~2% Medio 

Tablas complejas ~5% Alto 
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Texto en columnas ~4% Alto 

Fuente: Elaboración propia. 

 

4.3.5. Comparación con Objetivos Específicos 

Tabla 50. Cumplimiento de objetivos específicos. 

Objetivo Descripción Resultado Estado 

OE1 
Comparar soluciones 

OCR 

EasyOCR, PaddleOCR, DocTR evaluados; 

PaddleOCR seleccionado 

✓ 

Cumplido 

OE2 
Preparar dataset de 

evaluación 
45 páginas con ground truth 

✓ 

Cumplido 

OE3 

Identificar 

hiperparámetros 

críticos 

textline_orientation, 

use_doc_orientation_classify, 

text_det_thresh identificados 

✓ 

Cumplido 

OE4 
Optimizar con Ray 

Tune (≥50 trials) 
64 trials ejecutados con GPU 

✓ 

Cumplido 

OE5 
Validar configuración 

optimizada 

CER: 8.85% → 7.72% (dataset), 0.79% (mejor 

trial) 
✓ Parcial 

Fuente: Elaboración propia. 

 

Nota sobre OE5: El objetivo de CER < 2% se cumple en el mejor trial individual (0.79%). La 
validación sobre el dataset completo (7.72%) muestra que la generalización requiere mayor 
trabajo, identificándose como línea de trabajo futuro. 

4.3.6. Limitaciones del Estudio 

4.3.6.1. Limitaciones de Generalización 

1.   Tipo de documento único: Solo se evaluaron documentos académicos de UNIR. La 

configuración óptima puede no ser transferible a otros tipos de documentos (facturas, 

formularios, contratos). 
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1.   Idioma único: El estudio se centró en español. Otros idiomas con diferentes 

características ortográficas podrían requerir configuraciones diferentes. 

1.   Formato único: Solo se evaluaron PDFs digitales. Documentos escaneados o fotografías 

de documentos podrían beneficiarse de diferentes configuraciones. 

4.3.6.2. Limitaciones Metodológicas 

1.   Ground truth automático: El texto de referencia se extrajo programáticamente del PDF, 

lo cual puede introducir errores en layouts complejos donde el orden de lectura no es 

evidente. 

1.   Tamaño del dataset: 45 páginas es un dataset limitado. Un dataset más amplio 

proporcionaría estimaciones más robustas. 

1.   Parámetro fijo: text_det_unclip_ratio se mantuvo en 0.0 durante todo el 

experimento. Explorar este parámetro podría revelar mejoras adicionales. 

1.   Subconjunto de ajuste limitado: El ajuste de hiperparámetros se realizó sobre 5 

páginas (páginas 5-10), lo que contribuyó al sobreajuste observado en la validación del 

dataset completo. 

4.3.6.3. Limitaciones de Validación 

1.   Sin validación cruzada: No se realizó validación cruzada sobre diferentes subconjuntos 

del dataset. 

1.   Sin test set independiente: El dataset de validación final se solapaba parcialmente con 

el de optimización. 

4.3.7. Implicaciones Prácticas 

4.3.7.1. Guía de Configuración Recomendada 

Para documentos académicos en español similares a los evaluados: 

Tabla 51. Configuración recomendada para PaddleOCR con GPU. 

Parámetro Valor Prioridad Justificación 

textline_orientation True Obligatorio 
Crítico para layouts 

complejos 
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use_doc_orientation_classify True Recomendado 
Mejora orientación de 

documento 

text_det_thresh 
0.05 (rango: 

0.04-0.10) 
Recomendado 

Detección sensible 

beneficia resultados 

text_det_box_thresh 
0.49 (rango: 

0.4-0.6) 
Recomendado Balance de confianza 

text_rec_score_thresh 
0.57 (rango: 

0.5-0.7) 
Opcional 

Filtra reconocimientos 

poco confiables 

use_doc_unwarping False 
No 

recomendado 

Innecesario para PDFs 

digitales 

Fuente: Elaboración propia. 

 

4.3.7.2. Cuándo Aplicar Esta Metodología 

La optimización de hiperparámetros es recomendable cuando: 

1.   GPU disponible: Acelera significativamente la exploración del espacio de 

hiperparámetros (82× más rápido que CPU). 

1.   Modelo preentrenado adecuado: El modelo ya soporta el idioma objetivo (como 

PaddleOCR para español). 

1.   Dominio específico: Se busca optimizar para un tipo de documento particular. 

1.   Mejora incremental: El rendimiento baseline es aceptable pero mejorable. 

1.   Sin datos de entrenamiento: No se dispone de datasets etiquetados para fine-tuning. 

4.3.7.3. Cuándo NO Aplicar Esta Metodología 

La optimización de hiperparámetros puede ser insuficiente cuando: 

1.   Idioma no soportado: El modelo no incluye el idioma en su vocabulario. 

1.   Escritura manuscrita: Requiere fine-tuning o modelos especializados. 

1.   Documentos muy degradados: Escaneos de baja calidad o documentos históricos. 

1.   Requisitos de CER < 0.5%: Puede requerir fine-tuning para alcanzar precisiones muy 

altas. 
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4.3.8. Síntesis del Capítulo 

A lo largo de este capítulo se ha desarrollado el proceso completo de evaluación y 

optimización de sistemas OCR para documentos académicos en español. El benchmark 

comparativo inicial permitió seleccionar PaddleOCR como motor base gracias a su 

combinación de rendimiento y configurabilidad. La posterior optimización con Ray Tune y 

Optuna, ejecutada sobre 64 trials con aceleración GPU, identificó los parámetros críticos para 

maximizar el rendimiento: textline_orientation, use_doc_orientation_classify y 

text_det_thresh. 

Los resultados cuantifican tanto los logros como las limitaciones del enfoque. El mejor trial 

individual alcanzó un CER de 0.79%, cumpliendo holgadamente el objetivo de CER < 2%. Sin 

embargo, la validación sobre el dataset completo de 45 páginas reveló un CER de 7.72%, lo 

que representa una mejora del 12.8% respecto al baseline (8.85%) pero evidencia sobreajuste 

al subconjunto de optimización. Esta observación es valiosa: indica que futuros trabajos 

deberían emplear subconjuntos de optimización más representativos o aplicar técnicas de 

regularización. 

Desde el punto de vista práctico, la infraestructura dockerizada desarrollada y la aceleración 

GPU (82× más rápida que CPU) demuestran la viabilidad de esta metodología tanto para 

experimentación como para despliegue en producción. 

Fuentes de datos: 

•     src/run_tuning.py: Script principal de optimización 

•     src/results/raytune_paddle_results_20260119_122609.csv: Resultados CSV de 

PaddleOCR 

•     src/results/raytune_easyocr_results_20260119_120204.csv: Resultados CSV de 

EasyOCR 

•     src/results/raytune_doctr_results_20260119_121445.csv: Resultados CSV de DocTR 

Imágenes Docker: 

•     seryus.ddns.net/unir/paddle-ocr-gpu: PaddleOCR con soporte GPU 

•     seryus.ddns.net/unir/easyocr-gpu: EasyOCR con soporte GPU 

•     seryus.ddns.net/unir/doctr-gpu: DocTR con soporte GPU 

https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/run_tuning.py
https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/results/raytune_paddle_results_20260119_122609.csv
https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/results/raytune_easyocr_results_20260119_120204.csv
https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/results/raytune_doctr_results_20260119_121445.csv
https://seryus.ddns.net/unir/-/packages/container/paddle-ocr-gpu/latest
https://seryus.ddns.net/unir/-/packages/container/easyocr-gpu/latest
https://seryus.ddns.net/unir/-/packages/container/doctr-gpu/latest
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4.3.9. Comparativa de Rendimiento CPU vs GPU 

Esta sección presenta la comparación de rendimiento entre ejecución en CPU y GPU, 

justificando la elección de GPU para el experimento principal y demostrando el impacto 

práctico de la aceleración por hardware. 

4.3.9.1. Configuración del Entorno GPU 

Tabla 52. Especificaciones del entorno GPU utilizado. 

Componente Especificación 

GPU NVIDIA GeForce RTX 3060 Laptop 

VRAM 5.66 GB 

CUDA 12.4 

Sistema Operativo Ubuntu 24.04.3 LTS 

Kernel 6.14.0-37-generic 

Fuente: Elaboración propia. 

 

Este hardware representa configuración típica de desarrollo, permitiendo evaluar el 

rendimiento en condiciones realistas de despliegue. 

4.3.9.2. Comparación CPU vs GPU 

Se comparó el tiempo de procesamiento entre CPU y GPU utilizando los datos de 

src/raytune_paddle_subproc_results_20251207_192320.csv (CPU) y 

src/results/raytune_paddle_results_20260119_122609.csv (GPU). 

Tabla 53. Rendimiento comparativo CPU vs GPU. 

Métrica CPU GPU (RTX 3060) Factor de Aceleración 

Tiempo/Página (promedio) 69.4s 0.84s 82x 

Dataset completo (45 páginas) ~52 min ~38 seg 82x 

64 trials × 5 páginas ~6.4 horas ~1.5 horas 4.3x 

https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/raytune_paddle_subproc_results_20251207_192320.csv
https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/results/raytune_paddle_results_20260119_122609.csv
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Fuente: Elaboración propia. 

 

Figura 15. Tiempo de procesamiento: CPU vs GPU (segundos/página) 

 

Fuente: Elaboración propia. 

 

Leyenda: Aceleración de 82× con GPU. El procesamiento de una página pasa de 69.4s (CPU) a 

0.84s (GPU). 

La aceleración de 82× obtenida con GPU transforma la viabilidad del enfoque: 

•     Optimización en CPU (6.4 horas): Viable pero lento para iteraciones rápidas 

•     Optimización en GPU (1.5 horas): Permite explorar más configuraciones y realizar 

múltiples experimentos 

•     Producción con GPU (0.84s/página): Habilita procesamiento en tiempo real 

4.3.9.3. Comparación de Modelos PaddleOCR 

PaddleOCR ofrece dos variantes de modelos: Mobile (optimizados para dispositivos con 

recursos limitados) y Server (mayor precisión a costa de mayor consumo de memoria). Se 

evaluó la viabilidad de ambas variantes en el hardware disponible. 
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Tabla 54. Comparación de modelos Mobile vs Server en RTX 3060. 

Modelo VRAM Requerida Resultado Recomendación 

PP-OCRv5 Mobile 0.06 GB Funciona correctamente ✓ Recomendado 

PP-OCRv5 Server 5.3 GB OOM en página 2 ✗ Requiere >8 GB VRAM 

Fuente: Elaboración propia. 

 

Los modelos Server, a pesar de ofrecer potencialmente mayor precisión, resultan inviables en 

hardware con VRAM limitada (≤6 GB) debido a errores de memoria (Out of Memory). Los 

modelos Mobile, con un consumo de memoria 88 veces menor, funcionan de manera estable 

y ofrecen rendimiento suficiente para el caso de uso evaluado. 

4.3.9.4. Conclusiones de la Validación GPU 

La validación con aceleración GPU permite extraer las siguientes conclusiones: 

1.   Aceleración significativa: La GPU proporciona una aceleración de 82× sobre CPU, 

haciendo viable el procesamiento en tiempo real para aplicaciones interactivas. 

1.   Modelos Mobile recomendados: Para hardware con VRAM limitada (≤6 GB), los 

modelos Mobile de PP-OCRv5 ofrecen el mejor balance entre precisión y recursos, 

funcionando de manera estable sin errores de memoria. 

1.   Viabilidad práctica: Con GPU, el procesamiento de un documento completo (45 

páginas) toma menos de 30 segundos, validando la aplicabilidad en entornos de 

producción donde el tiempo de respuesta es crítico. 

1.   Escalabilidad: La arquitectura de microservicios dockerizados utilizada para la 

validación GPU facilita el despliegue horizontal, permitiendo escalar el procesamiento 

según demanda. 

Esta validación demuestra que la configuración optimizada mediante Ray Tune mejora la 

precisión (CER: 8.85% → 7.72% en dataset completo, 0.79% en mejor trial individual) y, 

combinada con aceleración GPU, resulta prácticamente aplicable en escenarios de producción 

real. 
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5. Conclusiones y trabajo futuro 

A lo largo de este trabajo se ha explorado la optimización de hiperparámetros como estrategia 

para mejorar el rendimiento de sistemas OCR sin necesidad de reentrenamiento. Las 

siguientes secciones evalúan el grado de cumplimiento de los objetivos planteados, sintetizan 

los hallazgos más relevantes y proponen direcciones para investigación futura. 

5.1. Conclusiones 

5.1.1. Conclusiones Generales 

Los resultados obtenidos confirman que la optimización sistemática de hiperparámetros 

constituye una alternativa viable al fine-tuning para mejorar sistemas OCR preentrenados. La 

infraestructura dockerizada con aceleración GPU desarrollada en este trabajo no solo facilita 

la experimentación reproducible, sino que reduce drásticamente los tiempos de ejecución, 

haciendo viable la exploración exhaustiva de espacios de configuración. 

El objetivo principal del trabajo era alcanzar un CER inferior al 2% en documentos académicos 

en español. Los resultados obtenidos se resumen a continuación: 

Tabla 55. Cumplimiento del objetivo de CER. 

Métrica Objetivo Mejor Trial Dataset Completo Cumplimiento 

CER < 2% 0.79% 7.72% ✓ Parcial 

Fuente: Elaboración propia. 

 

Nota: El objetivo de CER < 2% se cumple en el mejor trial individual (0.79%, 5 páginas). La 
validación sobre el conjunto de datos completo (45 páginas) muestra un CER de 7.72%, 
evidenciando sobreajuste al subconjunto de optimización. Esta diferencia se analiza en detalle 
en el Capítulo 4. 

5.1.2. Cumplimiento de los Objetivos Específicos 

La evaluación comparativa de soluciones OCR (OE1) reveló diferencias significativas entre las 

tres alternativas analizadas. De las tres soluciones de código abierto evaluadas —EasyOCR, 

PaddleOCR (PP-OCRv5) y DocTR—, PaddleOCR demostró el mejor rendimiento base para 

documentos en español. Además, su arquitectura modular y la amplia configurabilidad de su 
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pipeline lo convierten en el candidato idóneo para optimización mediante ajuste de 

hiperparámetros. 

En cuanto a la preparación del conjunto de datos (OE2), se construyó un corpus estructurado 

con 45 páginas de documentos académicos de UNIR. La implementación de la clase 

ImageTextDataset permite cargar de forma eficiente pares imagen-texto, mientras que el 

texto de referencia se extrajo automáticamente del PDF original mediante PyMuPDF, 

garantizando así la consistencia entre las imágenes y sus transcripciones esperadas. 

El análisis de hiperparámetros (OE3) arrojó resultados particularmente reveladores. El 

parámetro textline_orientation emergió como el factor más influyente, resultando crítico 

para obtener buenos resultados en documentos con diseños complejos. Asimismo, 

use_doc_orientation_classify demostró un impacto positivo en la configuración con GPU. 

Por otra parte, el umbral text_det_thresh presenta una correlación negativa moderada (-

0.52) con el CER, lo que indica que valores más bajos tienden a mejorar el rendimiento, aunque 

con un límite inferior por debajo del cual el sistema falla catastróficamente. Cabe destacar 

que use_doc_unwarping no aporta mejora alguna en documentos digitales, ya que estos no 

presentan las deformaciones físicas para las que fue diseñado este módulo. 

La experimentación con Ray Tune (OE4) se completó satisfactoriamente mediante 64 trials 

ejecutados con el algoritmo OptunaSearch y aceleración GPU. El tiempo total del experimento 

—aproximadamente 1.5 horas con una GPU RTX 3060— demuestra la viabilidad práctica de 

esta aproximación. La arquitectura basada en contenedores Docker resultó esencial para 

superar las incompatibilidades entre Ray y los motores OCR, al tiempo que garantiza la 

portabilidad y reproducibilidad de los experimentos. 

Finalmente, la validación de la configuración óptima (OE5) se realizó sobre el conjunto de 

datos completo de 45 páginas. El mejor trial individual alcanzó un CER de 0.79%, equivalente 

a una precisión del 99.21%. Sin embargo, la evaluación sobre el conjunto de datos completo 

arrojó un CER de 7.72%, lo que representa una mejora del 12.8% respecto al baseline (8.85%), 

pero queda lejos del resultado del mejor trial. Esta diferencia revela un sobreajuste al 

subconjunto de optimización de 5 páginas, un fenómeno que se analiza en detalle en la 

sección de limitaciones. 
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5.1.3. Hallazgos Clave 

El hallazgo más significativo de este trabajo es que las decisiones arquitectónicas tienen mayor 

impacto que los umbrales numéricos. Un único parámetro booleano —

textline_orientation— influye más en el rendimiento final que todos los umbrales continuos 

combinados. Este resultado sugiere que, al optimizar sistemas OCR, conviene priorizar la 

exploración de configuraciones estructurales antes de ajustar finamente los valores 

numéricos. 

No obstante, los umbrales presentan límites operativos que deben respetarse. Valores de 

text_det_thresh inferiores a 0.1 provocan fallos catastróficos, con tasas de error que superan 

el 40%. Este comportamiento indica la existencia de regiones del espacio de hiperparámetros 

que deben evitarse, lo cual tiene implicaciones para el diseño de espacios de búsqueda en 

futuros experimentos. 

Otro hallazgo relevante es la innecesariedad de ciertos módulos para documentos digitales. 

Los PDF generados directamente desde procesadores de texto no presentan las 

deformaciones físicas —arrugas, curvaturas, rotaciones— para las que fueron diseñados los 

módulos de corrección. En estos casos, desactivar use_doc_unwarping no solo simplifica el 

pipeline, sino que puede mejorar el rendimiento al evitar procesamientos innecesarios. 

Finalmente, los resultados demuestran que es posible mejorar modelos preentrenados 

mediante ajuste exclusivo de hiperparámetros de inferencia, sin necesidad de 

reentrenamiento. Sin embargo, esta aproximación requiere validación cuidadosa, ya que las 

configuraciones optimizadas sobre subconjuntos pequeños pueden no generalizar a conjuntos 

de datos más amplios o diversos. 

5.1.4. Contribuciones del Trabajo 

La principal contribución de este trabajo es una metodología reproducible para la 

optimización de hiperparámetros OCR. El proceso completo —desde la preparación del 

conjunto de datos hasta la validación de la configuración óptima— queda documentado y es 

replicable mediante las herramientas Ray Tune y Optuna. 

En segundo lugar, el análisis sistemático de los hiperparámetros de PaddleOCR constituye una 

contribución al conocimiento disponible sobre este motor OCR. Mediante el cálculo de 
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correlaciones y análisis comparativo, se cuantifica el impacto de cada parámetro configurable, 

información que puede orientar futuros trabajos de optimización. 

Como resultado práctico, se aporta una configuración validada específicamente para 

documentos académicos en español. Aunque la generalización a otros tipos de documentos 

requiere validación adicional, esta configuración representa un punto de partida sólido para 

aplicaciones en el ámbito hispanohablante. 

Por último, todo el código fuente, las imágenes Docker y los datos experimentales están 

disponibles públicamente en el repositorio del proyecto, facilitando así la reproducción, 

verificación y extensión de este trabajo por parte de otros investigadores. 

5.1.5. Limitaciones del Trabajo 

Es necesario reconocer varias limitaciones que condicionan el alcance de las conclusiones 

presentadas. En primer lugar, todos los experimentos se realizaron sobre un único tipo de 

documento: textos académicos de UNIR. La generalización a otros formatos —facturas, 

formularios, documentos manuscritos— requeriría validación adicional con conjuntos de 

datos específicos. 

El tamaño del corpus constituye otra limitación relevante. Con 45 páginas, el conjunto de 

datos es modesto para extraer conclusiones estadísticamente robustas. Además, el 

subconjunto de optimización de tan solo 5 páginas resultó insuficiente para evitar el 

sobreajuste, como evidencia la brecha entre el CER del mejor trial (0.79%) y el resultado sobre 

el conjunto completo (7.72%). 

Desde el punto de vista metodológico, la extracción automática del texto de referencia 

mediante PyMuPDF puede introducir errores en documentos con diseños complejos, donde 

el orden de lectura no es evidente. Asimismo, el parámetro text_det_unclip_ratio 

permaneció fijo en 0.0 durante todo el experimento, dejando inexplorada una dimensión 

potencialmente relevante del espacio de hiperparámetros. 

Por último, aunque la GPU RTX 3060 utilizada proporcionó una aceleración de 82× respecto a 

la ejecución en CPU, se trata de hardware de consumo. Equipamiento empresarial con mayor 

capacidad de VRAM permitiría ejecutar múltiples servicios OCR simultáneamente y explorar 

espacios de búsqueda más amplios en menos tiempo. 
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5.2. Líneas de trabajo futuro 

5.2.1. Extensiones Inmediatas 

Las limitaciones identificadas sugieren varias extensiones que podrían abordarse a corto 

plazo. La más urgente es la validación cruzada de la configuración óptima en otros tipos de 

documentos en español, como facturas, formularios administrativos o textos manuscritos. 

Esta validación revelaría el grado de transferibilidad de los hallazgos actuales. 

Para abordar el problema del sobreajuste, futuros experimentos deberían utilizar un 

subconjunto de optimización más amplio. Un conjunto de 15-20 páginas representativas 

reduciría la varianza y mejoraría la generalización de las configuraciones encontradas. 

Complementariamente, sería conveniente construir un corpus más amplio y diverso de 

documentos en español, incluyendo diferentes tipografías, diseños y calidades de imagen. 

Desde el punto de vista técnico, queda pendiente la exploración del parámetro 

text_det_unclip_ratio, que permaneció fijo en este trabajo. Incluirlo en el espacio de 

búsqueda podría revelar interacciones con otros parámetros actualmente desconocidas. 

5.2.2. Líneas de Investigación 

En un horizonte más amplio, surgen varias líneas de investigación prometedoras. Una de las 

más interesantes es el estudio del transfer learning de hiperparámetros: ¿las configuraciones 

óptimas para documentos académicos transfieren a otros dominios, o cada tipo de 

documento requiere optimización específica? La respuesta a esta pregunta tiene 

implicaciones prácticas significativas. 

Otra dirección valiosa es la optimización multi-objetivo, que considere simultáneamente CER, 

WER y tiempo de inferencia. En aplicaciones reales, la precisión máxima no siempre es el único 

criterio; a menudo existe un compromiso entre calidad y velocidad que debe gestionarse 

explícitamente. 

Técnicas de AutoML más avanzadas, como Neural Architecture Search o meta-learning, 

podrían automatizar aún más el proceso de configuración. Por último, una comparación 

rigurosa entre optimización de hiperparámetros y fine-tuning real cuantificaría la brecha de 

rendimiento entre ambas aproximaciones y ayudaría a decidir cuándo merece la pena el 

esfuerzo adicional del reentrenamiento. 
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5.2.3. Aplicaciones Prácticas 

Los resultados de este trabajo abren camino a varias aplicaciones prácticas. Una herramienta 

de configuración automática podría analizar un pequeño conjunto de documentos de muestra 

y determinar la configuración óptima de PaddleOCR para ese tipo específico de documento, 

democratizando el acceso a estas técnicas de optimización. 

La integración de las configuraciones optimizadas en pipelines de producción representa otra 

aplicación natural. Los sistemas de procesamiento documental en organizaciones que 

manejan grandes volúmenes de documentos en español podrían beneficiarse directamente 

de los hallazgos de este trabajo. 

Finalmente, la publicación de un benchmark público de OCR para documentos en español 

facilitaría la comparación objetiva de diferentes soluciones. La comunidad hispanohablante 

carece actualmente de recursos comparables a los disponibles para otros idiomas, y este 

trabajo podría contribuir a llenar ese vacío. 

5.2.4. Reflexión Final 

En síntesis, este trabajo ha demostrado que la optimización de hiperparámetros representa 

una alternativa viable al fine-tuning para mejorar sistemas OCR, especialmente cuando se 

dispone de modelos preentrenados para el idioma objetivo y recursos limitados de tiempo o 

datos etiquetados. 

La metodología propuesta cumple los requisitos de reproducibilidad científica: los 

experimentos pueden replicarse, los resultados son cuantificables y las conclusiones son 

aplicables a escenarios reales de procesamiento documental. Sin embargo, la experiencia 

también ha puesto de manifiesto la importancia de diseñar cuidadosamente los experimentos 

de optimización. Aunque el objetivo de CER inferior al 2% se alcanzó en el mejor trial individual 

(0.79%), la validación sobre el conjunto de datos completo (7.72%) revela que el tamaño y 

representatividad del subconjunto de optimización son factores críticos que no deben 

subestimarse. 

La infraestructura dockerizada desarrollada constituye una aportación práctica que trasciende 

los resultados numéricos. Al encapsular los motores OCR en contenedores independientes, se 

resuelven problemas de compatibilidad entre dependencias y se garantiza que cualquier 

investigador pueda reproducir exactamente las condiciones experimentales. La aceleración de 
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82× proporcionada por GPU transforma lo que sería un experimento de días en uno de horas, 

haciendo viable la exploración exhaustiva de espacios de hiperparámetros con hardware de 

consumo. 

El código fuente, las imágenes Docker y los datos experimentales están disponibles 

públicamente en el repositorio del proyecto. Esta apertura busca facilitar no solo la 

reproducción de los resultados, sino también la extensión de este trabajo hacia nuevos tipos 

de documentos, idiomas o motores OCR. 
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Anexo A. Código fuente y datos analizados 

Este anexo proporciona la información técnica necesaria para reproducir los experimentos 

descritos en este trabajo. Se incluyen las instrucciones de instalación, configuración de los 

servicios OCR dockerizados, ejecución de los scripts de optimización y acceso a los resultados 

experimentales. 
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5.3. A.1 Repositorio del Proyecto 

Todo el código fuente y los datos utilizados en este trabajo están disponibles públicamente en 

el siguiente repositorio: 

URL del repositorio: https://seryus.ddns.net/unir/MastersThesis 

El repositorio incluye: 

•     Servicios OCR dockerizados: PaddleOCR, DocTR, EasyOCR con soporte GPU 

•     Scripts de evaluación: Herramientas para evaluar y comparar modelos OCR 

•     Scripts de ajuste: Ray Tune con Optuna para optimización de hiperparámetros 

•     Dataset: Imágenes y textos de referencia utilizados 

•     Resultados: Archivos CSV con los resultados de los 64 trials por servicio 

5.4. A.2 Estructura del Repositorio 

Figura 16. Estructura del repositorio MastersThesis 

 

Fuente: Elaboración propia. 

 

Tabla 56. Descripción de directorios principales. 

Directorio Contenido 

docs/ Capítulos del TFM en Markdown (estructura UNIR) 
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docs/metrics/ Métricas de rendimiento por servicio OCR 

src/paddle_ocr/ Servicio PaddleOCR dockerizado 

src/doctr_service/ Servicio DocTR dockerizado 

src/easyocr_service/ Servicio EasyOCR dockerizado 

src/raytune/ Scripts de optimización Ray Tune 

src/results/ CSVs con resultados de 64 trials por servicio 

thesis_output/ Documento TFM generado + figuras PNG 

instructions/ Plantilla e instrucciones UNIR oficiales 

Fuente: Elaboración propia. 

 

5.5. A.3 Requisitos de Software 

5.5.1. Sistema de Desarrollo 

Tabla 57. Especificaciones del sistema de desarrollo. 

Componente Especificación 

Sistema Operativo Ubuntu 24.04.3 LTS 

CPU AMD Ryzen 7 5800H 

RAM 16 GB DDR4 

GPU NVIDIA RTX 3060 Laptop (5.66 GB VRAM) 

CUDA 12.4 

Fuente: Elaboración propia. 

 

5.5.2. Dependencias 

Tabla 58. Dependencias del proyecto. 

Componente Versión 
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Python 3.12.3 

Docker 29.1.5 

NVIDIA Container Toolkit Requerido para GPU 

Ray 2.52.1 

Optuna 4.7.0 

Fuente: Elaboración propia. 

 

5.6. A.4 Instrucciones de Ejecución de Servicios OCR 

5.6.1. PaddleOCR (Puerto 8002) 

Imágenes Docker: 

•     GPU: seryus.ddns.net/unir/paddle-ocr-gpu 

•     CPU: seryus.ddns.net/unir/paddle-ocr-cpu 

cd src/paddle_ocr 
 
# GPU (recomendado) 
docker compose up -d 
 
# CPU (más lento, 82x) 
docker compose -f docker-compose.cpu-registry.yml up -d 

5.6.2. DocTR (Puerto 8003) 

Imagen Docker: seryus.ddns.net/unir/doctr-gpu 

cd src/doctr_service 
 
# GPU 
docker compose up -d 

5.6.3. EasyOCR (Puerto 8002) 

Nota: EasyOCR utiliza el mismo puerto (8002) que PaddleOCR. No se pueden ejecutar 
simultáneamente. Por esta razón, existe un archivo docker-compose separado para EasyOCR. 

Imagen Docker: seryus.ddns.net/unir/easyocr-gpu 

cd src/easyocr_service 
 
# GPU (usar archivo separado para evitar conflicto de puerto) 

https://seryus.ddns.net/unir/-/packages/container/paddle-ocr-gpu/latest
https://seryus.ddns.net/unir/-/packages/container/paddle-ocr-cpu/latest
https://seryus.ddns.net/unir/-/packages/container/doctr-gpu/latest
https://seryus.ddns.net/unir/-/packages/container/easyocr-gpu/latest
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docker compose up -d 

5.6.4. Verificar Estado del Servicio 

# Verificar salud del servicio 
curl http://localhost:8002/health 
 
# Respuesta esperada: 
# {"status": "ok", "model_loaded": true, "gpu_name": "NVIDIA GeForce RTX 3060"} 

5.7. A.5 Uso de la API OCR 

5.7.1. Evaluar Dataset Completo 

# PaddleOCR - Evaluación completa 
curl -X POST http://localhost:8002/evaluate_full \ 
  -H "Content-Type: application/json" \ 
  -d '{ 
    "pdf_folder": "/app/dataset", 
    "save_output": true 
  }' 

5.7.2. Evaluar con Hiperparámetros Optimizados 

# PaddleOCR con configuración óptima 
curl -X POST http://localhost:8002/evaluate_full \ 
  -H "Content-Type: application/json" \ 
  -d '{ 
    "pdf_folder": "/app/dataset", 
    "use_doc_orientation_classify": true, 
    "use_doc_unwarping": false, 
    "textline_orientation": true, 
    "text_det_thresh": 0.0462, 
    "text_det_box_thresh": 0.4862, 
    "text_det_unclip_ratio": 0.0, 
    "text_rec_score_thresh": 0.5658, 
    "save_output": true 
  }' 

5.8. A.6 Ajuste de Hiperparámetros con Ray Tune 

5.8.1. Ejecutar Ajuste 

cd src 
 
# Activar entorno virtual 
source ../.venv/bin/activate 
 
# PaddleOCR (64 muestras) 
python -c " 
from raytune_ocr import * 
 
ports = [8002] 
check_workers(ports, 'PaddleOCR') 
trainable = create_trainable(ports, paddle_ocr_payload) 
results = run_tuner(trainable, PADDLE_OCR_SEARCH_SPACE, num_samples=64) 
analyze_results(results, prefix='raytune_paddle', config_keys=PADDLE_OCR_CONFIG_KEYS) 
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" 

5.8.2. Servicios y Puertos 

Tabla 59. Servicios Docker y puertos. 

Servicio Puerto Script de Ajuste Nota 

PaddleOCR 8002 paddle_ocr_payload - 

DocTR 8003 doctr_payload - 

EasyOCR 8002 easyocr_payload Conflicto con PaddleOCR 

Fuente: Elaboración propia. 

 

Nota: Debido a limitaciones de recursos GPU (VRAM insuficiente para ejecutar múltiples 
modelos OCR simultáneamente), solo se ejecuta un servicio a la vez. PaddleOCR y EasyOCR 
comparten el puerto 8002. Para cambiar de servicio, detener el actual con docker compose 
down. 

5.9. A.7 Métricas de Rendimiento 

Esta sección presenta los resultados completos de las evaluaciones comparativas y del ajuste 

de hiperparámetros realizado con Ray Tune sobre los tres servicios OCR evaluados. 

5.9.1. Comparativa General de Servicios 

Tabla 60. Comparativa de servicios OCR en dataset de 45 páginas (GPU RTX 3060). 

Servicio CER WER Tiempo/Página Tiempo Total VRAM 

PaddleOCR (Mobile) 7.76% 11.62% 0.58s 32.0s 0.06 GB 

EasyOCR 11.23% 36.36% 1.88s 88.5s ~2 GB 

DocTR 12.06% 42.01% 0.50s 28.4s ~1 GB 

Fuente: Elaboración propia. 

 

Ganador: PaddleOCR (Mobile) - Mejor precisión (7.76% CER) con velocidad competitiva y 

mínimo consumo de VRAM. 
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5.9.2. Resultados de Ajuste de Hiperparámetros 

Se ejecutaron 64 trials por servicio utilizando Ray Tune con Optuna sobre las páginas 5-10 del 

primer documento. 

Tabla 61. Resultados del ajuste de hiperparámetros por servicio. 

Servicio CER Base CER Ajustado Mejora Mejor Trial (5 páginas) 

PaddleOCR 8.85% 7.72% 12.8% 0.79% ✓ 

DocTR 12.06% 12.07% 0% 7.43% 

EasyOCR 11.23% 11.14% 0.8% 5.83% 

Fuente: Elaboración propia. 

 

Nota sobre sobreajuste: La diferencia entre los resultados del mejor trial (subconjunto de 5 
páginas) y el dataset completo (45 páginas) indica sobreajuste parcial a las páginas de ajuste. 
Un subconjunto más grande (15-20 páginas) mejoraría la generalización. 

5.9.3. Configuración Óptima PaddleOCR 

La siguiente configuración logró el mejor rendimiento en el ajuste de hiperparámetros: 

{ 
  "use_doc_orientation_classify": true, 
  "use_doc_unwarping": false, 
  "textline_orientation": true, 
  "text_det_thresh": 0.0462, 
  "text_det_box_thresh": 0.4862, 
  "text_det_unclip_ratio": 0.0, 
  "text_rec_score_thresh": 0.5658 
} 

Hallazgos clave: 

•     textline_orientation=true: Crítico para documentos con layouts mixtos 

•     use_doc_orientation_classify=true: Mejora detección de orientación 

•     use_doc_unwarping=false: Innecesario para PDFs digitales 

•     text_det_thresh bajo (0.0462): Detección más sensible mejora resultados 

5.9.4. Rendimiento CPU vs GPU 

Tabla 62. Comparación de rendimiento CPU vs GPU (PaddleOCR). 
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Métrica CPU GPU (RTX 3060) Aceleración 

Tiempo/Página 69.4s 0.55s 126x más rápido 

Mejor CER 1.15% 0.79% GPU mejor 

45 páginas ~52 min ~25 seg 126x más rápido 

Fuente: Elaboración propia. 

 

5.9.5. Análisis de Errores por Servicio 

Tabla 63. Tipos de errores identificados por servicio OCR. 

Servicio Fortalezas Debilidades 
¿Fine-tuning 

recomendado? 

PaddleOCR 
Preserva estructura, buen 

manejo de español 

Errores menores de 

acentos (~5%) 
No (ya excelente) 

DocTR Más rápido 
Pierde estructura, omite 

TODOS los diacríticos 
Sí (para diacríticos) 

EasyOCR 
Modelo correcto para 

español 

Caracteres espurios, 

confunde o/0 

Sí (problemas del 

detector) 

Fuente: Elaboración propia. 

 

5.9.6. Archivos de Resultados 

Los resultados crudos de los 64 trials por servicio están disponibles en el repositorio: 

Tabla 64. Ubicación de archivos de resultados. 

Servicio Archivo CSV 

PaddleOCR src/results/raytune_paddle_results_20260119_122609.csv 

DocTR src/results/raytune_doctr_results_20260119_121445.csv 

EasyOCR src/results/raytune_easyocr_results_20260119_120204.csv 

https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/results/raytune_paddle_results_20260119_122609.csv
https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/results/raytune_doctr_results_20260119_121445.csv
https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/results/raytune_easyocr_results_20260119_120204.csv
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Fuente: Elaboración propia. 

 

5.10. A.8 Licencia 

El código se distribuye bajo licencia MIT. 

 

 

 


