

Universidad Internacional de La Rioja

Escuela Superior de Ingeniería y

Tecnología

Máster Universitario en Inteligencia artificial

Optimización de Hiperparámetros OCR con

Ray Tune para Documentos Académicos en

Español

Trabajo fin de estudio presentado por: Sergio Jiménez Jiménez

Tipo de trabajo: Desarrollo Software

Director/a: Javier Rodrigo Villazón Terrazas

Fecha: 06.10.2025

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

II

Resumen

El presente Trabajo Fin de Máster aborda la optimización de sistemas de Reconocimiento

Óptico de Caracteres (OCR) basados en inteligencia artificial para documentos en español. El

objetivo principal es identificar la configuración óptima de hiperparámetros que maximice la

precisión del reconocimiento de texto sin requerir fine-tuning de los modelos base. Se realizó

un estudio comparativo de tres soluciones OCR de código abierto: EasyOCR, PaddleOCR (PP-

OCRv5) y DocTR, evaluando su rendimiento mediante las métricas estándar CER (Character

Error Rate) y WER (Word Error Rate) sobre un corpus de 45 páginas de documentos

académicos en español. Tras identificar PaddleOCR como la solución más prometedora, se

procedió a una optimización sistemática de hiperparámetros utilizando Ray Tune con el

algoritmo de búsqueda Optuna, ejecutando 64 configuraciones diferentes con aceleración

GPU (NVIDIA RTX 3060). Los resultados demuestran que la optimización de hiperparámetros

logró mejoras significativas: el mejor trial individual alcanzó un CER de 0.79% (precisión del

99.21%), cumpliendo el objetivo de CER < 2%. Al validar la configuración optimizada sobre el

dataset completo de 45 páginas, se obtuvo una mejora del 12.8% en CER (de 8.85% a 7.72%).

El hallazgo más relevante fue que el parámetro `textline_orientation` (clasificación de

orientación de línea de texto) tiene un impacto crítico en el rendimiento. Adicionalmente, se

identificó que el umbral de detección (`text_det_thresh`) presenta una correlación negativa

moderada (-0.52) con el error. Este trabajo demuestra que la optimización de

hiperparámetros es una alternativa viable al fine-tuning, especialmente útil cuando se dispone

de modelos preentrenados para el idioma objetivo. La infraestructura dockerizada

desarrollada permite reproducir los experimentos y facilita la evaluación sistemática de

configuraciones OCR.

Palabras clave: OCR, Reconocimiento Óptico de Caracteres, PaddleOCR, Optimización de

Hiperparámetros, Ray Tune, Procesamiento de Documentos, Inteligencia Artificial

Abstract

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

III

This Master's Thesis addresses the optimization of Artificial Intelligence-based Optical

Character Recognition (OCR) systems for Spanish documents. The main objective is to identify

the optimal hyperparameter configuration that maximizes text recognition accuracy without

requiring fine-tuning of the base models. A comparative study of three open-source OCR

solutions was conducted: EasyOCR, PaddleOCR (PP-OCRv5), and DocTR, evaluating their

performance using standard CER (Character Error Rate) and WER (Word Error Rate) metrics

on a corpus of 45 pages of academic documents in Spanish. After identifying PaddleOCR as

the most promising solution, systematic hyperparameter optimization was performed using

Ray Tune with the Optuna search algorithm, executing 64 different configurations with GPU

acceleration (NVIDIA RTX 3060). Results demonstrate that hyperparameter optimization

achieved significant improvements: the best individual trial reached a CER of 0.79% (99.21%

accuracy), meeting the CER < 2% objective. When validating the optimized configuration on

the full 45-page dataset, a 12.8% CER improvement was obtained (from 8.85% to 7.72%). The

most relevant finding was that the `textline_orientation` parameter (text line orientation

classification) has a critical impact on performance. Additionally, the detection threshold

(`text_det_thresh`) was found to have a moderate negative correlation (-0.52) with error. This

work demonstrates that hyperparameter optimization is a viable alternative to fine-tuning,

especially useful when pre-trained models for the target language are available. The

dockerized infrastructure developed enables experiment reproducibility and facilitates

systematic evaluation of OCR configurations.

Keywords: OCR, Optical Character Recognition, PaddleOCR, Hyperparameter Optimization,

Ray Tune, Document Processing, Artificial Intelligence

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

IV

Índice de contenidos

1. Introducción .. 1

1.1. Motivación .. 1

1.1.1. El contexto de la digitalización documental ... 1

1.1.2. Desafíos específicos del español .. 2

1.1.3. La brecha entre investigación y práctica .. 2

1.1.4. La oportunidad: optimización sin fine-tuning .. 3

1.2. Planteamiento del trabajo .. 4

1.2.1. Formulación del problema ... 4

1.2.2. Preguntas de investigación ... 4

1.2.3. Alcance y delimitación .. 5

1.2.4. Relevancia y beneficiarios .. 6

1.3. Estructura del trabajo ... 6

2. Contexto y estado del arte .. 7

2.1. Contexto del problema ... 7

2.1.1. Definición y Evolución Histórica del OCR ... 7

2.1.2. Pipeline Moderno de OCR .. 9

2.1.3. Métricas de Evaluación ... 12

2.1.4. Particularidades del OCR para el Idioma Español .. 14

2.2. Estado del arte .. 15

2.2.1. Soluciones OCR de Código Abierto ... 15

2.2.2. Optimización de Hiperparámetros ... 20

2.2.3. Datasets y Benchmarks para Español ... 24

2.3. Conclusiones del capítulo ... 25

3. Objetivos concretos y metodología de trabajo ... 26

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

V

3.1. Objetivo general ... 26

3.1.1. Justificación SMART del Objetivo General ... 26

3.2. Objetivos específicos .. 27

3.2.1. OE1: Comparar soluciones OCR de código abierto .. 27

3.2.2. OE2: Preparar un dataset de evaluación .. 27

3.2.3. OE3: Identificar hiperparámetros críticos .. 27

3.2.4. OE4: Optimizar hiperparámetros con Ray Tune ... 27

3.2.5. OE5: Validar la configuración optimizada .. 28

3.3. Metodología del trabajo ... 28

3.3.1. Visión General... 28

3.3.2. Fase 1: Preparación del Dataset ... 28

3.3.3. Fase 2: Benchmark Comparativo .. 30

3.3.4. Fase 3: Espacio de Búsqueda .. 30

3.3.5. Fase 4: Ejecución de Optimización ... 31

3.3.6. Fase 5: Validación ... 32

3.3.7. Entorno de Ejecución .. 32

3.3.8. Limitaciones Metodológicas ... 34

3.4. Síntesis del capítulo .. 34

4. Desarrollo específico de la contribución.. 35

4.1. Planteamiento de la comparativa .. 35

4.1.1. Introducción ... 35

4.1.2. Identificación del Problema .. 35

4.1.3. Alternativas Evaluadas.. 36

4.1.4. Criterios de Éxito .. 36

4.1.5. Configuración del Experimento .. 36

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

VI

4.1.6. Resultados del Benchmark ... 38

4.1.7. Justificación de la Selección de PaddleOCR .. 40

4.1.8. Limitaciones del Benchmark ... 41

4.1.9. Síntesis del Benchmark ... 42

4.2. Desarrollo de la comparativa: Optimización de hiperparámetros 42

4.2.1. Introducción ... 42

4.2.2. Configuración del Experimento .. 42

4.2.3. Resultados de la Optimización ... 52

4.2.4. Comparación Baseline vs Optimizado .. 59

4.2.5. Tiempo de Ejecución .. 62

4.2.6. Síntesis de la Optimización ... 62

4.3. Discusión y análisis de resultados .. 63

4.3.1. Introducción ... 63

4.3.2. Resumen Consolidado de Resultados .. 63

4.3.3. Análisis Detallado de Hiperparámetros .. 65

4.3.4. Análisis de Casos de Fallo ... 68

4.3.5. Comparación con Objetivos Específicos ... 69

4.3.6. Limitaciones del Estudio ... 69

4.3.7. Implicaciones Prácticas ... 70

4.3.8. Síntesis del Capítulo .. 72

4.3.9. Comparativa de Rendimiento CPU vs GPU ... 73

5. Conclusiones y trabajo futuro ... 76

5.1. Conclusiones ... 76

5.1.1. Conclusiones Generales .. 76

5.1.2. Cumplimiento de los Objetivos Específicos .. 76

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

VII

5.1.3. Hallazgos Clave ... 78

5.1.4. Contribuciones del Trabajo .. 78

5.1.5. Limitaciones del Trabajo ... 79

5.2. Líneas de trabajo futuro ... 80

5.2.1. Extensiones Inmediatas .. 80

5.2.2. Líneas de Investigación ... 80

5.2.3. Aplicaciones Prácticas... 81

5.2.4. Reflexión Final .. 81

Referencias bibliográficas ... 82

Anexo A. Código fuente y datos analizados ... 84

5.3. A.1 Repositorio del Proyecto .. 85

5.4. A.2 Estructura del Repositorio .. 85

5.5. A.3 Requisitos de Software... 86

5.5.1. Sistema de Desarrollo ... 86

5.5.2. Dependencias ... 86

5.6. A.4 Instrucciones de Ejecución de Servicios OCR ... 87

5.6.1. PaddleOCR (Puerto 8002) ... 87

5.6.2. DocTR (Puerto 8003) .. 87

5.6.3. EasyOCR (Puerto 8002) ... 87

5.6.4. Verificar Estado del Servicio ... 88

5.7. A.5 Uso de la API OCR ... 88

5.7.1. Evaluar Dataset Completo .. 88

5.7.2. Evaluar con Hiperparámetros Optimizados ... 88

5.8. A.6 Ajuste de Hiperparámetros con Ray Tune ... 88

5.8.1. Ejecutar Ajuste .. 88

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

VIII

5.8.2. Servicios y Puertos .. 89

5.9. A.7 Métricas de Rendimiento ... 89

5.9.1. Comparativa General de Servicios.. 89

5.9.2. Resultados de Ajuste de Hiperparámetros .. 90

5.9.3. Configuración Óptima PaddleOCR .. 90

5.9.4. Rendimiento CPU vs GPU ... 90

5.9.5. Análisis de Errores por Servicio .. 91

5.9.6. Archivos de Resultados ... 91

5.10. A.8 Licencia ... 92

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

IX

Índice de figuras

Figura 1. Pipeline de un sistema OCR moderno .. 9

Figura 2. Ciclo de optimización con Ray Tune y Optuna ... 23

Figura 3. Fases de la metodología experimental .. 28

Figura 4. Estructura del dataset de evaluación .. 29

Figura 5. Arquitectura de ejecución con Docker Compose ... 43

Figura 6. Arquitectura de microservicios para optimización OCR .. 45

Figura 7. Estrategia de build multi-stage ... 46

Figura 8. Flujo de ejecución de optimización con Ray Tune ... 49

Figura 9. Distribución de trials por rango de CER ... 54

Figura 10. Correlación de hiperparámetros con CER .. 57

Figura 11. Impacto de textline_orientation en CER .. 58

Figura 12. Reducción de errores: Baseline vs Optimizado (45 páginas) 60

Figura 13. Evolución del CER a través del estudio .. 63

Figura 14. Ranking de importancia de hiperparámetros .. 65

Figura 15. Tiempo de procesamiento: CPU vs GPU (segundos/página) 74

Figura 16. Estructura del repositorio MastersThesis .. 85

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

X

Índice de tablas

Tabla 1. Desafíos lingüísticos específicos del OCR en español. ... 2

Tabla 2. Comparación de estrategias de mejora de modelos OCR. .. 3

Tabla 3. Delimitación del alcance del trabajo... 5

Tabla 4. Comparativa de arquitecturas de detección de texto... 11

Tabla 5. Comparativa de arquitecturas de reconocimiento de texto. 12

Tabla 6. Hiperparámetros de detección de PaddleOCR. ... 16

Tabla 7. Hiperparámetros de reconocimiento de PaddleOCR. ... 17

Tabla 8. Hiperparámetros de preprocesamiento de PaddleOCR. ... 17

Tabla 9. Comparativa técnica de soluciones OCR de código abierto. 19

Tabla 10. Comparativa de facilidad de uso. ... 19

Tabla 11. Datasets públicos con contenido en español. ... 24

Tabla 12. Trabajos previos relevantes en OCR para español. ... 25

Tabla 13. Justificación SMART del objetivo general. .. 26

Tabla 14. Modelos OCR evaluados en el benchmark inicial. .. 30

Tabla 15. Hiperparámetros seleccionados para optimización. .. 30

Tabla 16. Especificaciones de hardware del entorno de desarrollo. .. 32

Tabla 17. Versiones de software utilizadas. ... 32

Tabla 18. Costos de GPU en plataformas cloud. ... 33

Tabla 19. Análisis de costos del proyecto en plataformas cloud. ... 33

Tabla 20. Soluciones OCR evaluadas en el benchmark comparativo. 36

Tabla 21. Características del dataset de evaluación inicial. ... 36

Tabla 22. Variabilidad del CER por tipo de contenido. ... 38

Tabla 23. Comparativa de arquitecturas OCR evaluadas. .. 39

Tabla 24. Evaluación de criterios de selección. ... 40

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

XI

Tabla 25. Entorno de ejecución del experimento.. 42

Tabla 26. Imágenes Docker generadas para el proyecto. .. 45

Tabla 27. Archivos Docker Compose del proyecto. ... 47

Tabla 28. Volúmenes Docker para caché de modelos. ... 48

Tabla 29. Características del dataset de optimización. .. 50

Tabla 30. Descripción detallada del espacio de búsqueda. .. 51

Tabla 31. Parámetros de configuración de Ray Tune. .. 52

Tabla 32. Resumen de la ejecución del experimento. ... 52

Tabla 33. Estadísticas descriptivas de los 64 trials. .. 53

Tabla 34. Distribución de trials por rango de CER. ... 54

Tabla 35. Configuración óptima identificada. .. 55

Tabla 36. Correlación de parámetros con CER. .. 56

Tabla 37. Correlación de parámetros con WER. ... 56

Tabla 38. Impacto del parámetro textline_orientation. ... 57

Tabla 39. Características de trials con fallos catastróficos. .. 59

Tabla 40. Comparación baseline vs optimizado (45 páginas). ... 60

Tabla 41. Análisis cuantitativo de la mejora... 60

Tabla 42. En un documento típico de 10,000 caracteres .. 61

Tabla 43. Métricas de tiempo del experimento (GPU). .. 62

Tabla 44. Evolución del rendimiento a través del estudio. ... 63

Tabla 45. Verificación del objetivo general... 64

Tabla 46. Ranking de importancia de hiperparámetros. .. 65

Tabla 47. Comportamiento observado ... 67

Tabla 48. Tipología de errores observados. .. 68

Tabla 49. Tasa de error por tipo de contenido. .. 68

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

XII

Tabla 50. Cumplimiento de objetivos específicos. .. 69

Tabla 51. Configuración recomendada para PaddleOCR con GPU. .. 70

Tabla 52. Especificaciones del entorno GPU utilizado. ... 73

Tabla 53. Rendimiento comparativo CPU vs GPU. .. 73

Tabla 54. Comparación de modelos Mobile vs Server en RTX 3060. .. 75

Tabla 55. Cumplimiento del objetivo de CER. ... 76

Tabla 56. Descripción de directorios principales. ... 85

Tabla 57. Especificaciones del sistema de desarrollo. .. 86

Tabla 58. Dependencias del proyecto. .. 86

Tabla 59. Servicios Docker y puertos. ... 89

Tabla 60. Comparativa de servicios OCR en dataset de 45 páginas (GPU RTX 3060). 89

Tabla 61. Resultados del ajuste de hiperparámetros por servicio. ... 90

Tabla 62. Comparación de rendimiento CPU vs GPU (PaddleOCR). ... 90

Tabla 63. Tipos de errores identificados por servicio OCR. ... 91

Tabla 64. Ubicación de archivos de resultados. .. 91

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

XIII

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

1

1. Introducción

¿Es posible mejorar significativamente un sistema OCR sin reentrenarlo? Esta pregunta,

aparentemente simple, encierra un desafío práctico que afecta a investigadores, instituciones

educativas y empresas que necesitan digitalizar documentos pero carecen de los recursos para

realizar fine-tuning de modelos neuronales. A lo largo de este capítulo se desarrolla la

motivación del trabajo, se identifica el problema a resolver y se plantean las preguntas de

investigación que guiarán el desarrollo experimental.

1.1. Motivación

El Reconocimiento Óptico de Caracteres (OCR) es una tecnología fundamental en la era de la

digitalización documental. Su capacidad para convertir imágenes de texto en datos editables

y procesables ha transformado sectores como la administración pública, el ámbito legal, la

banca y la educación. Según estimaciones del sector, el mercado global de OCR alcanzó los

13.4 mil millones de dólares en 2023, con proyecciones de crecimiento continuo impulsado

por la transformación digital empresarial (Grand View Research, 2023). Sin embargo, a pesar

de los avances significativos impulsados por el aprendizaje profundo, la implementación

práctica de sistemas OCR de alta precisión sigue presentando desafíos considerables.

1.1.1. El contexto de la digitalización documental

La digitalización de documentos ha pasado de ser una opción a una necesidad estratégica para

organizaciones de todos los tamaños. Los beneficios son múltiples: reducción del espacio físico

de almacenamiento, facilidad de búsqueda y recuperación, preservación del patrimonio

documental, y habilitación de flujos de trabajo automatizados. Sin embargo, la mera

conversión de papel a imagen digital no aprovecha plenamente estas ventajas; es necesario

extraer el texto contenido en los documentos para permitir su indexación, análisis y

procesamiento automatizado.

El OCR actúa como puente entre el mundo físico del documento impreso y el mundo digital

del texto procesable. Su precisión determina directamente la calidad de los procesos

downstream: un error de reconocimiento en un nombre propio puede invalidar una

búsqueda; un dígito mal reconocido en una factura puede causar discrepancias contables; una

palabra mal interpretada en un contrato puede alterar su significado legal.

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

2

1.1.2. Desafíos específicos del español

El procesamiento de documentos en español presenta particularidades que complican el

reconocimiento automático de texto. Los caracteres especiales propios del idioma (la letra ñ,

las vocales acentuadas á, é, í, ó, ú, la diéresis ü, y los signos de puntuación invertidos ¿ y ¡) no

están presentes en muchos conjuntos de entrenamiento internacionales, lo que puede

degradar el rendimiento de modelos preentrenados predominantemente en inglés.

La Tabla 1 resume los principales desafíos lingüísticos del OCR en español:

Tabla 1. Desafíos lingüísticos específicos del OCR en español.

Desafío Descripción Impacto en OCR

Caracteres

especiales
ñ, á, é, í, ó, ú, ü, ¿, ¡

Confusión con caracteres similares

(n/ñ, a/á)

Palabras largas
Español permite compuestos

largos

Mayor probabilidad de error por

carácter

Abreviaturas Dr., Sra., Ud., etc.
Puntos internos confunden

segmentación

Nombres propios
Tildes en apellidos (García,

Martínez)
Bases de datos sin soporte Unicode

Fuente: Elaboración propia.

Además de los aspectos lingüísticos, los documentos académicos y administrativos en español

presentan características tipográficas que complican el reconocimiento: variaciones en

fuentes entre encabezados, cuerpo y notas al pie; presencia de tablas con bordes y celdas;

logotipos institucionales; marcas de agua; y elementos gráficos como firmas o sellos. Estos

elementos generan ruido que puede propagarse en aplicaciones downstream como la

extracción de entidades nombradas o el análisis semántico.

1.1.3. La brecha entre investigación y práctica

Los modelos OCR basados en redes neuronales profundas, como los empleados en

PaddleOCR, EasyOCR o DocTR, ofrecen un rendimiento impresionante en benchmarks

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

3

estándar. PaddleOCR, por ejemplo, reporta tasas de precisión superiores al 97% en conjuntos

de datos como ICDAR 2015 (Du et al., 2020). No obstante, estos resultados en condiciones

controladas no siempre se trasladan a documentos del mundo real.

La adaptación de modelos preentrenados a dominios específicos típicamente requiere fine-

tuning con datos etiquetados del dominio objetivo y recursos computacionales significativos.

El fine-tuning de un modelo de reconocimiento de texto puede requerir decenas de miles de

imágenes etiquetadas y días de entrenamiento en GPUs de alta capacidad. Esta barrera

técnica y económica excluye a muchos investigadores y organizaciones de beneficiarse

plenamente de estas tecnologías.

La Tabla 2 ilustra los requisitos típicos para diferentes estrategias de mejora de OCR:

Tabla 2. Comparación de estrategias de mejora de modelos OCR.

Estrategia Datos requeridos Hardware Tiempo Expertise

Fine-tuning completo
>10,000 imágenes

etiquetadas

GPU (≥16GB

VRAM)

Días-

Semanas
Alto

Fine-tuning parcial
>1,000 imágenes

etiquetadas

GPU (≥8GB

VRAM)
Horas-Días

Medio-

Alto

Transfer learning
>500 imágenes

etiquetadas

GPU (≥8GB

VRAM)
Horas Medio

Optimización de

hiperparámetros

<100 imágenes de

validación
CPU suficiente Horas

Bajo-

Medio

Fuente: Elaboración propia.

1.1.4. La oportunidad: optimización sin fine-tuning

La presente investigación surge de una necesidad práctica: optimizar un sistema OCR para

documentos académicos en español sin disponer de recursos GPU para realizar fine-tuning.

Esta restricción, lejos de ser una limitación excepcional, representa la realidad de muchos

entornos académicos y empresariales donde el acceso a infraestructura de cómputo avanzada

es limitado.

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

4

La hipótesis central de este trabajo es que los modelos OCR preentrenados contienen

capacidades latentes que pueden activarse mediante la configuración adecuada de sus

hiperparámetros de inferencia. Parámetros como los umbrales de detección de texto, las

opciones de preprocesamiento de imagen, y los filtros de confianza de reconocimiento

pueden tener un impacto significativo en el rendimiento final, y su optimización sistemática

puede aproximarse a los beneficios del fine-tuning sin sus costes asociados.

Esta oportunidad se ve reforzada por la disponibilidad de frameworks modernos de

optimización de hiperparámetros como Ray Tune (Liaw et al., 2018) y algoritmos de búsqueda

eficientes como Optuna (Akiba et al., 2019), que permiten explorar espacios de configuración

de manera sistemática y eficiente.

1.2. Planteamiento del trabajo

1.2.1. Formulación del problema

Las observaciones anteriores conducen a formular el problema central de este trabajo:

¿Es posible mejorar significativamente el rendimiento de modelos OCR preentrenados para
documentos en español mediante la optimización sistemática de hiperparámetros, sin requerir
fine-tuning ni recursos GPU?

Este planteamiento parte de una observación fundamental: los sistemas OCR modernos

exponen múltiples parámetros configurables que afectan su comportamiento durante la

inferencia. Estos parámetros incluyen umbrales de detección, opciones de preprocesamiento,

y filtros de calidad. En la práctica habitual, estos parámetros se dejan en sus valores por

defecto, asumiendo que fueron optimizados por los desarrolladores del modelo. Sin embargo,

los valores por defecto representan compromisos generales que pueden no ser óptimos para

dominios específicos.

1.2.2. Preguntas de investigación

Este planteamiento se descompone en las siguientes cuestiones específicas:

PI1. Selección de modelo base: ¿Cuál de las soluciones OCR de código abierto disponibles

(EasyOCR, PaddleOCR, DocTR) ofrece el mejor rendimiento base para documentos en

español?

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

5

Esta pregunta es fundamental porque la elección del modelo base determinará el punto de

partida para la optimización. Un modelo con mejor rendimiento inicial puede ofrecer mayor

margen de mejora o, alternativamente, estar ya cerca de su límite de optimización.

PI2. Impacto de hiperparámetros: ¿Qué hiperparámetros del pipeline OCR tienen mayor

influencia en las métricas de error (CER, WER)?

Identificar los parámetros más influyentes permite focalizar el esfuerzo de optimización y

proporciona insights sobre el funcionamiento interno del sistema. Parámetros con alta

correlación con las métricas de error son candidatos prioritarios para ajuste.

PI3. Optimización automatizada: ¿Puede un proceso de búsqueda automatizada de

hiperparámetros (mediante Ray Tune/Optuna) encontrar configuraciones que superen

significativamente los valores por defecto?

Esta pregunta evalúa la viabilidad práctica de la metodología propuesta. "Significativamente"

se define operacionalmente como una reducción del CER de al menos 50% respecto al

baseline, un umbral que representaría una mejora sustancial en la calidad del texto

reconocido.

PI4. Viabilidad práctica: ¿Son los tiempos de inferencia y los recursos requeridos compatibles

con un despliegue en entornos con recursos limitados?

Una solución técnicamente superior pero impracticable tiene valor limitado. Esta pregunta

ancla la investigación en consideraciones del mundo real.

1.2.3. Alcance y delimitación

Este trabajo se centra específicamente en:

Tabla 3. Delimitación del alcance del trabajo.

Aspecto Dentro del alcance Fuera del alcance

Tipo de

documento

Documentos académicos

digitales (PDF)
Documentos escaneados, manuscritos

Idioma Español Otros idiomas

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

6

Modelos EasyOCR, PaddleOCR, DocTR
Soluciones comerciales (Google Cloud

Vision, AWS Textract)

Método de

mejora

Optimización de

hiperparámetros
Fine-tuning, aumento de datos

Hardware Ejecución en CPU Aceleración GPU

Fuente: Elaboración propia.

1.2.4. Relevancia y beneficiarios

La relevancia de este problema radica en su aplicabilidad inmediata. Una metodología

reproducible para optimizar OCR sin fine-tuning beneficiaría a múltiples grupos:

Investigadores académicos: Quienes procesan grandes volúmenes de documentos para

análisis de contenido, revisiones sistemáticas de literatura, o estudios bibliométricos. Un OCR

más preciso reduce el tiempo de corrección manual y mejora la calidad de los análisis

downstream.

Instituciones educativas: Universidades y centros de investigación que digitalizan archivos

históricos, actas administrativas, o materiales docentes. La preservación del patrimonio

documental requiere transcripciones precisas.

Pequeñas y medianas empresas: Organizaciones que automatizan flujos documentales

(facturas, contratos, correspondencia) sin presupuesto para soluciones enterprise o

infraestructura GPU.

Desarrolladores de software: Quienes integran OCR en aplicaciones con restricciones de

recursos, como dispositivos móviles o servidores compartidos, y necesitan maximizar el

rendimiento sin costes adicionales de hardware.

1.3. Estructura del trabajo

El documento sigue una estructura que refleja el proceso investigador. Tras esta introducción,

el Capítulo 2 sitúa el trabajo en su contexto técnico, revisando las tecnologías OCR basadas en

aprendizaje profundo —desde las arquitecturas de detección hasta los modelos de

reconocimiento— y los trabajos previos en optimización de estos sistemas.

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

7

El Capítulo 3 traduce las preguntas de investigación en objetivos concretos siguiendo la

metodología SMART, y describe con detalle el enfoque experimental: preparación del dataset,

métricas de evaluación y configuración del proceso de optimización con Ray Tune y Optuna.

El núcleo del trabajo se desarrolla en el Capítulo 4, que presenta el estudio comparativo y la

optimización de hiperparámetros estructurados en tres fases: planteamiento de la

comparativa con evaluación de EasyOCR, PaddleOCR y DocTR; desarrollo de la optimización

mediante 64 trials con Ray Tune; y análisis crítico de los resultados obtenidos.

Finalmente, el Capítulo 5 sintetiza las contribuciones, evalúa el grado de cumplimiento de los

objetivos y propone líneas de trabajo futuro. Los Anexos proporcionan acceso al repositorio

de código fuente y datos, así como tablas detalladas de resultados experimentales.

2. Contexto y estado del arte

Para comprender el alcance y las decisiones tomadas en este trabajo, es necesario situarlo en

su contexto tecnológico. El Reconocimiento Óptico de Caracteres ha recorrido un largo camino

desde los primeros sistemas de plantillas de los años 50 hasta las sofisticadas arquitecturas de

aprendizaje profundo actuales. A lo largo de este capítulo se revisan los fundamentos técnicos

del OCR moderno, se analizan las principales soluciones de código abierto y se identifican los

vacíos en la literatura que motivan la contribución de este trabajo.

2.1. Contexto del problema

2.1.1. Definición y Evolución Histórica del OCR

El Reconocimiento Óptico de Caracteres (OCR) es el proceso de conversión de imágenes de

texto manuscrito, mecanografiado o impreso en texto codificado digitalmente. Esta

tecnología permite la digitalización masiva de documentos, facilitando su búsqueda, edición y

almacenamiento electrónico. La tecnología OCR ha evolucionado significativamente desde sus

orígenes en la década de 1950, atravesando cuatro generaciones claramente diferenciadas:

2.1.1.1. Primera Generación (1950-1970): Sistemas basados en plantillas

Los primeros sistemas OCR surgieron en la década de 1950 con el objetivo de automatizar la

lectura de documentos bancarios y postales. Estos sistemas utilizaban técnicas de

correspondencia de plantillas (template matching), donde cada carácter de entrada se

comparaba píxel a píxel con un conjunto predefinido de plantillas (Mori et al., 1992).

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

8

Las principales limitaciones de esta generación incluían:

• Dependencia de fuentes tipográficas específicas (OCR-A, OCR-B)

• Incapacidad para manejar variaciones en tamaño, rotación o estilo

• Alto coste computacional para la época

• Sensibilidad extrema al ruido y degradación de la imagen

A pesar de sus limitaciones, estos sistemas sentaron las bases para el desarrollo posterior del

campo y demostraron la viabilidad comercial del reconocimiento automático de texto.

2.1.1.2. Segunda Generación (1970-1990): Extracción de características

La segunda generación introdujo técnicas más sofisticadas basadas en la extracción de

características geométricas y estructurales de los caracteres. En lugar de comparar imágenes

completas, estos sistemas extraían propiedades como:

• Número y posición de trazos

• Proporciones geométricas (altura, anchura, relación de aspecto)

• Momentos estadísticos de la distribución de píxeles

• Características topológicas (bucles, intersecciones, terminaciones)

Los clasificadores estadísticos, como el análisis discriminante lineal y los k-vecinos más

cercanos (k-NN), se utilizaban para asignar cada vector de características a una clase de

carácter (Trier et al., 1996). Esta aproximación permitió mayor robustez frente a variaciones

tipográficas, aunque seguía requiriendo un diseño manual cuidadoso de las características a

extraer.

2.1.1.3. Tercera Generación (1990-2010): Redes neuronales y modelos probabilísticos

La tercera generación marcó la introducción de técnicas de aprendizaje automático más

avanzadas. Los Modelos Ocultos de Markov (HMM) se convirtieron en el estándar para el

reconocimiento de secuencias de caracteres, especialmente en el reconocimiento de escritura

manuscrita (Plamondon & Srihari, 2000).

Las Redes Neuronales Artificiales (ANN) también ganaron popularidad en esta época, con

arquitecturas como el Perceptrón Multicapa (MLP) demostrando capacidades superiores de

generalización. El trabajo seminal de LeCun et al. (1998) con las redes convolucionales (CNN)

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

9

para el reconocimiento de dígitos manuscritos (dataset MNIST) estableció los fundamentos

para la siguiente revolución.

Las características de esta generación incluían:

• Aprendizaje automático de características discriminativas

• Modelado probabilístico de secuencias de caracteres

• Mayor robustez frente a ruido y degradación

• Capacidad de incorporar conocimiento lingüístico mediante modelos de lenguaje

2.1.1.4. Cuarta Generación (2010-presente): Aprendizaje profundo

La cuarta y actual generación está dominada por arquitecturas de aprendizaje profundo que

han superado ampliamente el rendimiento de los métodos tradicionales. Los avances clave

incluyen:

Redes Convolucionales Profundas (Deep CNNs): Arquitecturas como VGGNet, ResNet e

Inception permiten la extracción automática de características jerárquicas a múltiples escalas,

eliminando la necesidad de diseño manual de características (Krizhevsky et al., 2012).

Redes Recurrentes (RNN/LSTM): Las redes Long Short-Term Memory (LSTM) permiten

modelar dependencias a largo plazo en secuencias de caracteres, siendo fundamentales para

el reconocimiento de texto de longitud variable (Graves et al., 2009).

Mecanismos de Atención y Transformers: La arquitectura Transformer (Vaswani et al., 2017)

y sus variantes han revolucionado el procesamiento de secuencias, permitiendo capturar

relaciones globales sin las limitaciones de las RNN. Modelos como TrOCR (Li et al., 2023)

representan el estado del arte actual.

Connectionist Temporal Classification (CTC): La función de pérdida CTC (Graves et al., 2006)

permite entrenar modelos de reconocimiento de secuencias sin necesidad de alineamiento

carácter por carácter, simplificando enormemente el proceso de entrenamiento.

2.1.2. Pipeline Moderno de OCR

Los sistemas OCR modernos siguen típicamente un pipeline de dos etapas principales,

precedidas opcionalmente por una fase de preprocesamiento:

Figura 1. Pipeline de un sistema OCR moderno

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

10

Fuente: Elaboración propia.

2.1.2.1. Etapa de Preprocesamiento

Antes de la detección, muchos sistemas aplican técnicas de preprocesamiento para mejorar

la calidad de la imagen de entrada:

• Binarización: Conversión a imagen binaria (blanco/negro) mediante técnicas como Otsu

o Sauvola

• Corrección de inclinación (deskewing): Alineamiento horizontal del texto

• Eliminación de ruido: Filtros morfológicos y de suavizado

• Normalización de contraste: Mejora de la legibilidad mediante ecualización de

histograma

2.1.2.2. Etapa 1: Detección de Texto (Text Detection)

La detección de texto tiene como objetivo localizar todas las regiones de una imagen que

contienen texto. Esta tarea es particularmente desafiante debido a la variabilidad en:

• Tamaño y orientación del texto

• Fondos complejos y oclusiones parciales

• Texto curvo o deformado

• Múltiples idiomas y scripts en una misma imagen

Las arquitecturas más utilizadas para detección de texto incluyen:

EAST (Efficient and Accurate Scene Text Detector): Propuesto por Zhou et al. (2017), EAST es

un detector de una sola etapa que predice directamente cuadriláteros rotados o polígonos

que encierran el texto. Su arquitectura FCN (Fully Convolutional Network) permite

procesamiento eficiente de imágenes de alta resolución.

CRAFT (Character Region Awareness for Text Detection): Desarrollado por Baek et al. (2019),

CRAFT detecta regiones de caracteres individuales y las agrupa en palabras mediante el

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

11

análisis de mapas de afinidad. Esta aproximación bottom-up es especialmente efectiva para

texto con espaciado irregular.

DB (Differentiable Binarization): Propuesto por Liao et al. (2020), DB introduce una operación

de binarización diferenciable que permite entrenar end-to-end un detector de texto basado

en segmentación. Esta arquitectura es la utilizada por PaddleOCR y destaca por su velocidad

y precisión.

Tabla 4. Comparativa de arquitecturas de detección de texto.

Arquitectura Tipo Salida Fortalezas Limitaciones

EAST Single-shot
Cuadriláteros

rotados
Rápido, simple

Dificultad con texto

curvo

CRAFT Bottom-up
Polígonos de

palabra

Robusto a

espaciado

Mayor coste

computacional

DB Segmentación
Polígonos

arbitrarios
Rápido, preciso Sensible a parámetros

Fuente: Elaboración propia.

2.1.2.3. Etapa 2: Reconocimiento de Texto (Text Recognition)

Una vez detectadas las regiones de texto, la etapa de reconocimiento transcribe el contenido

visual a texto digital. Las arquitecturas predominantes son:

CRNN (Convolutional Recurrent Neural Network): Propuesta por Shi et al. (2016), CRNN

combina una CNN para extracción de características visuales con una RNN bidireccional

(típicamente LSTM) para modelado de secuencias, entrenada con pérdida CTC. Esta

arquitectura estableció el paradigma encoder-decoder que domina el campo.

La arquitectura CRNN consta de tres componentes:

1. Capas convolucionales: Extraen características visuales de la imagen de entrada

2. Capas recurrentes: Modelan las dependencias secuenciales entre características

3. Capa de transcripción: Convierte las predicciones de la RNN en secuencias de

caracteres mediante CTC

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

12

SVTR (Scene-Text Visual Transformer Recognition): Desarrollado por Du et al. (2022), SVTR

aplica la arquitectura Transformer al reconocimiento de texto, utilizando parches de imagen

como tokens de entrada. Esta aproximación elimina la necesidad de RNN y permite capturar

dependencias globales de manera más eficiente.

Arquitecturas con Atención: Los modelos encoder-decoder con mecanismos de atención

(Bahdanau et al., 2015) permiten al decodificador "enfocarse" en diferentes partes de la

imagen mientras genera cada carácter. Esto es especialmente útil para texto largo o con

layouts complejos.

TrOCR (Transformer-based OCR): Propuesto por Li et al. (2023), TrOCR utiliza un Vision

Transformer (ViT) como encoder y un Transformer de lenguaje como decoder, logrando

resultados estado del arte en múltiples benchmarks.

Tabla 5. Comparativa de arquitecturas de reconocimiento de texto.

Arquitectura Encoder Decoder Pérdida Características

CRNN CNN BiLSTM CTC Rápido, robusto

SVTR ViT Linear CTC Sin recurrencia

Attention-based CNN LSTM+Attn Cross-entropy Flexible longitud

TrOCR ViT Transformer Cross-entropy Estado del arte

Fuente: Elaboración propia.

2.1.3. Métricas de Evaluación

La evaluación rigurosa de sistemas OCR requiere métricas estandarizadas que permitan

comparaciones objetivas. Las métricas fundamentales se basan en la distancia de edición de

Levenshtein.

2.1.3.1. Distancia de Levenshtein

La distancia de Levenshtein (Levenshtein, 1966) entre dos cadenas es el número mínimo de

operaciones de edición (inserción, eliminación, sustitución) necesarias para transformar una

cadena en otra. Formalmente, para dos cadenas a y b:

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

13

𝑑(𝑎, 𝑏) = 𝑚𝑖𝑛(inserciones + eliminaciones + sustituciones)

Esta métrica es fundamental para calcular tanto CER como WER.

2.1.3.2. Character Error Rate (CER)

El CER mide el error a nivel de carácter y se calcula como:

𝐶𝐸𝑅 =
𝑆 + 𝐷 + 𝐼

𝑁

Donde:

• S = número de sustituciones de caracteres

• D = número de eliminaciones de caracteres

• I = número de inserciones de caracteres

• N = número total de caracteres en el texto de referencia

Un CER del 1% indica que, en promedio, 1 de cada 100 caracteres contiene un error. Para

aplicaciones críticas como:

• Documentos financieros: Se requiere CER < 0.1%

• Documentos médicos: Se requiere CER < 0.5%

• Documentos académicos: CER < 2% es aceptable

• Búsqueda y archivo: CER < 5% puede ser suficiente

2.1.3.3. Word Error Rate (WER)

El WER mide el error a nivel de palabra, utilizando la misma fórmula pero considerando

palabras como unidades:

𝑊𝐸𝑅 =
𝑆𝑤 + 𝐷𝑤 + 𝐼𝑤

𝑁𝑤

El WER es generalmente mayor que el CER, ya que un solo error de carácter puede invalidar

una palabra completa. La relación típica es WER ≈ 2-3 × CER para texto en español.

2.1.3.4. Otras Métricas Complementarias

Precision y Recall a nivel de palabra: Útiles cuando se evalúa la capacidad del sistema para

detectar palabras específicas.

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

14

Bag-of-Words Accuracy: Mide la proporción de palabras correctamente reconocidas

independientemente de su orden.

BLEU Score: Adaptado de traducción automática, mide la similitud entre el texto predicho y la

referencia considerando n-gramas.

2.1.4. Particularidades del OCR para el Idioma Español

El español, como lengua romance, presenta características específicas que impactan el

rendimiento de los sistemas OCR:

2.1.4.1. Características Ortográficas

Caracteres especiales: El español incluye caracteres no presentes en el alfabeto inglés básico:

• La letra eñe (ñ, Ñ)

• Vocales acentuadas (á, é, í, ó, ú, Á, É, Í, Ó, Ú)

• Diéresis sobre u (ü, Ü)

• Signos de puntuación invertidos (¿, ¡)

Estos caracteres requieren que los modelos OCR incluyan dichos símbolos en su vocabulario

de salida y que el entrenamiento incluya suficientes ejemplos de cada uno.

Diacríticos y acentos: Los acentos gráficos del español son elementos pequeños que pueden

confundirse fácilmente con ruido, artefactos de imagen o signos de puntuación. La distinción

entre vocales acentuadas y no acentuadas es crucial para el significado (e.g., "él" vs "el", "más"

vs "mas").

2.1.4.2. Características Lingüísticas

Longitud de palabras: Las palabras en español tienden a ser más largas que en inglés debido

a la morfología flexiva rica (conjugaciones verbales, géneros, plurales). Esto puede aumentar

la probabilidad de error acumulativo.

Vocabulario: El español tiene un vocabulario amplio con muchas variantes morfológicas de

cada raíz. Los modelos de lenguaje utilizados para post-corrección deben contemplar esta

diversidad.

2.1.4.3. Recursos y Datasets

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

15

Los recursos disponibles para OCR en español son significativamente menores que para inglés

o chino:

• Menor cantidad de datasets etiquetados de gran escala

• Menos modelos preentrenados específicos para español

• Documentación y tutoriales predominantemente en inglés

Esta escasez de recursos específicos para español motiva la necesidad de técnicas de

adaptación como la optimización de hiperparámetros explorada en este trabajo.

2.2. Estado del arte

2.2.1. Soluciones OCR de Código Abierto

En los últimos años han surgido varias soluciones OCR de código abierto que democratizan el

acceso a esta tecnología. A continuación se analizan en detalle las tres principales alternativas

evaluadas en este trabajo.

2.2.1.1. EasyOCR

EasyOCR es una biblioteca de OCR desarrollada por Jaided AI (2020) con el objetivo de

proporcionar una solución de fácil uso que soporte múltiples idiomas. Actualmente soporta

más de 80 idiomas, incluyendo español.

Arquitectura técnica:

• Detector: CRAFT (Character Region Awareness for Text Detection)

• Reconocedor: CRNN con backbone ResNet/VGG + BiLSTM + CTC

• Modelos preentrenados: Disponibles para descarga automática

Características principales:

• API simple de una línea para casos de uso básicos

• Soporte para GPU (CUDA) y CPU

• Reconocimiento de múltiples idiomas en una misma imagen

• Bajo consumo de memoria comparado con otras soluciones

Limitaciones identificadas:

• Opciones de configuración limitadas (pocos hiperparámetros ajustables)

• Menor precisión en documentos con layouts complejos

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

16

• Actualizaciones menos frecuentes que otras alternativas

• Documentación menos exhaustiva

Caso de uso ideal: Prototipado rápido, aplicaciones con restricciones de memoria, proyectos

que requieren soporte multilingüe inmediato.

2.2.1.2. PaddleOCR

PaddleOCR es el sistema OCR desarrollado por Baidu como parte del ecosistema PaddlePaddle

(2024). Representa una de las soluciones más completas y activamente mantenidas en el

ecosistema de código abierto. La versión PP-OCRv5, utilizada en este trabajo, incorpora los

últimos avances en el campo.

Arquitectura técnica:

El pipeline de PaddleOCR consta de tres módulos principales:

1. Detector de texto (DB - Differentiable Binarization):

- Backbone: ResNet18/ResNet50 - Neck: FPN (Feature Pyramid Network) - Head:

Segmentación con binarización diferenciable - Salida: Polígonos que encierran regiones de

texto

1. Clasificador de orientación:

- Determina si el texto está rotado 0° o 180° - Permite corrección automática de texto invertido

- Opcional pero recomendado para documentos escaneados

1. Reconocedor de texto (SVTR):

- Encoder: Vision Transformer modificado - Decoder: CTC o Attention-based - Vocabulario:

Configurable por idioma

Hiperparámetros configurables:

PaddleOCR expone numerosos hiperparámetros que permiten ajustar el comportamiento del

sistema. Los más relevantes para este trabajo son:

Tabla 6. Hiperparámetros de detección de PaddleOCR.

Parámetro Descripción Rango Defecto

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

17

text_det_thresh
Umbral de probabilidad para píxeles de

texto
[0.0, 1.0] 0.3

text_det_box_thresh
Umbral de confianza para cajas

detectadas
[0.0, 1.0] 0.6

text_det_unclip_ratio Factor de expansión de cajas detectadas [0.0, 3.0] 1.5

text_det_limit_side_len Tamaño máximo del lado de imagen
[320,

2560]
960

Fuente: Elaboración propia.

Tabla 7. Hiperparámetros de reconocimiento de PaddleOCR.

Parámetro Descripción Rango Defecto

text_rec_score_thresh Umbral de confianza para resultados [0.0, 1.0] 0.5

use_textline_orientation
Activar clasificación de orientación de

línea

{True,

False}
False

rec_batch_size Tamaño de batch para reconocimiento [1, 64] 6

Fuente: Elaboración propia.

Tabla 8. Hiperparámetros de preprocesamiento de PaddleOCR.

Parámetro Descripción Impacto

use_doc_orientation_classify
Clasificación de orientación del

documento

Alto para documentos

escaneados

use_doc_unwarping
Corrección de

deformación/curvatura

Alto para fotos de

documentos

use_angle_cls Clasificador de ángulo 0°/180°
Medio para

documentos rotados

Fuente: Elaboración propia.

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

18

Fortalezas de PaddleOCR:

• Alta precisión en múltiples benchmarks

• Pipeline altamente configurable

• Modelos optimizados para servidor (mayor precisión) y móvil (mayor velocidad)

• Documentación exhaustiva (aunque principalmente en chino)

• Comunidad activa y actualizaciones frecuentes

• Soporte para entrenamiento personalizado (fine-tuning)

Limitaciones:

• Dependencia del framework PaddlePaddle (menos popular que PyTorch/TensorFlow)

• Curva de aprendizaje más pronunciada

• Documentación en inglés menos completa que en chino

2.2.1.3. DocTR

DocTR (Document Text Recognition) es una biblioteca desarrollada por Mindee (2021),

empresa especializada en procesamiento inteligente de documentos. Está orientada a la

comunidad de investigación y ofrece una API limpia basada en TensorFlow/PyTorch.

Arquitectura técnica:

• Detectores disponibles: DB (db_resnet50), LinkNet (linknet_resnet18)

• Reconocedores disponibles: CRNN (crnn_vgg16_bn), SAR (sar_resnet31), ViTSTR

(vitstr_small)

• Framework: TensorFlow 2.x o PyTorch

Características principales:

• API Pythonic bien diseñada

• Salida estructurada con información de confianza y geometría

• Integración nativa con Hugging Face Hub

• Documentación orientada a investigación

Limitaciones identificadas:

• Menor rendimiento en español comparado con PaddleOCR según pruebas preliminares

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

19

• Comunidad más pequeña

• Menos opciones de modelos preentrenados para idiomas no ingleses

2.2.1.4. Comparativa Detallada de Soluciones

Tabla 9. Comparativa técnica de soluciones OCR de código abierto.

Aspecto EasyOCR PaddleOCR DocTR

Framework PyTorch PaddlePaddle TF/PyTorch

Detector CRAFT DB DB/LinkNet

Reconocedor CRNN SVTR/CRNN CRNN/SAR/ViTSTR

Idiomas 80+ 80+ 9

Configurabilidad Baja Alta Media

Documentación Media Alta (CN) Alta (EN)

Actividad Media Alta Media

Licencia Apache 2.0 Apache 2.0 Apache 2.0

Fuente: Elaboración propia.

Tabla 10. Comparativa de facilidad de uso.

Aspecto EasyOCR PaddleOCR DocTR

Instalación pip install pip install pip install

Líneas para OCR básico 3 5 6

GPU requerida Opcional Opcional Opcional

Memoria mínima 2 GB 4 GB 4 GB

Fuente: Elaboración propia.

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

20

2.2.2. Optimización de Hiperparámetros

2.2.2.1. Fundamentos Teóricos

La optimización de hiperparámetros (HPO, Hyperparameter Optimization) es el proceso de

encontrar la configuración óptima de los parámetros que controlan el proceso de aprendizaje

o inferencia de un modelo, pero que no se aprenden directamente de los datos (Feurer &

Hutter, 2019).

A diferencia de los parámetros del modelo (como los pesos de una red neuronal), los

hiperparámetros se establecen antes del entrenamiento e incluyen:

• Tasa de aprendizaje, tamaño de batch, número de épocas

• Arquitectura del modelo (número de capas, unidades por capa)

• Parámetros de regularización (dropout, weight decay)

• Umbrales de decisión en tiempo de inferencia (relevante para este trabajo)

El problema de HPO puede formalizarse como:

𝜆∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜆∈𝛬ℒ(𝑀𝜆, 𝐷𝑣𝑎𝑙)

Donde:

• 𝜆 es un vector de hiperparámetros

• 𝛬 es el espacio de búsqueda

• 𝑀𝜆 es el modelo configurado con 𝜆

• ℒ es la función de pérdida

• 𝐷𝑣𝑎𝑙 es el conjunto de validación

2.2.2.2. Métodos de Optimización

Grid Search (Búsqueda en rejilla):

El método más simple consiste en evaluar todas las combinaciones posibles de valores

discretizados de los hiperparámetros. Para 𝑘hiperparámetros con 𝑛valores cada uno, requiere

𝑛𝑘evaluaciones.

Ventajas:

• Exhaustivo y reproducible

• Fácil de paralelizar

• Garantiza encontrar el óptimo dentro de la rejilla

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

21

Desventajas:

• Coste exponencial con el número de hiperparámetros

• Ineficiente si algunos hiperparámetros son más importantes que otros

• No aprovecha información de evaluaciones previas

Random Search (Búsqueda aleatoria):

Propuesto por Bergstra & Bengio (2012), Random Search muestrea configuraciones

aleatoriamente del espacio de búsqueda. Sorprendentemente, supera a Grid Search en

muchos escenarios prácticos.

La intuición es que, cuando solo algunos hiperparámetros son importantes, Random Search

explora más valores de estos parámetros críticos mientras Grid Search desperdicia

evaluaciones variando parámetros irrelevantes.

Optimización Bayesiana:

La optimización bayesiana modela la función objetivo mediante un modelo probabilístico

sustituto (surrogate model) y utiliza una función de adquisición para decidir qué configuración

evaluar a continuación (Bergstra et al., 2011).

El proceso iterativo es:

1. Ajustar el modelo sustituto a las observaciones actuales

2. Optimizar la función de adquisición para seleccionar el siguiente punto

3. Evaluar la función objetivo en el punto seleccionado

4. Actualizar las observaciones y repetir

Los modelos sustitutos más comunes son:

• Procesos Gaussianos (GP): Proporcionan incertidumbre bien calibrada pero escalan

pobremente

• Random Forests: Manejan bien espacios de alta dimensión y variables categóricas

• Tree-structured Parzen Estimator (TPE): Modela densidades en lugar de la función

objetivo

2.2.2.3. Tree-structured Parzen Estimator (TPE)

TPE, propuesto por Bergstra et al. (2011) e implementado en Optuna, es particularmente

efectivo para HPO. En lugar de modelar 𝑝(𝑦|𝜆)directamente, TPE modela:

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

22

𝑝(𝜆|𝑦) = {
𝑙(𝜆) si 𝑦 < 𝑦∗

𝑔(𝜆) si 𝑦 ≥ 𝑦∗

Donde 𝑦∗es un umbral (típicamente el percentil 15-25 de las observaciones), 𝑙(𝜆)es la

densidad de hiperparámetros con buen rendimiento, y 𝑔(𝜆)es la densidad de hiperparámetros

con mal rendimiento.

La función de adquisición Expected Improvement se aproxima como:

𝐸𝐼(𝜆) ∝
𝑙(𝜆)

𝑔(𝜆)

Configuraciones con alta probabilidad bajo 𝑙y baja probabilidad bajo 𝑔tienen mayor Expected

Improvement.

Ventajas de TPE:

• Maneja naturalmente espacios condicionales (hiperparámetros que dependen de

otros)

• Eficiente para espacios de alta dimensión

• No requiere derivadas de la función objetivo

• Implementación eficiente en Optuna

2.2.2.4. Ray Tune

Ray Tune (Liaw et al., 2018) es un framework de optimización de hiperparámetros escalable

construido sobre Ray, un sistema de computación distribuida. Sus características principales

incluyen:

Escalabilidad:

• Ejecución paralela de múltiples trials

• Distribución automática en clusters

• Soporte para recursos heterogéneos (CPU/GPU)

Flexibilidad:

• Integración con múltiples algoritmos de búsqueda (Optuna, HyperOpt, Ax, etc.)

• Schedulers avanzados (ASHA, PBT, BOHB)

• Checkpointing y recuperación de fallos

Early Stopping:

• ASHA (Asynchronous Successive Halving Algorithm): Termina trials poco prometedores

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

23

• PBT (Population-Based Training): Evoluciona hiperparámetros durante el

entrenamiento

Integración con Optuna:

La combinación de Ray Tune con OptunaSearch permite:

1. Utilizar TPE como algoritmo de búsqueda

2. Paralelizar la evaluación de trials

3. Beneficiarse de la infraestructura de Ray para distribución

4. Acceder a las visualizaciones de Optuna

Figura 2. Ciclo de optimización con Ray Tune y Optuna

Fuente: Elaboración propia.

2.2.2.5. HPO en Sistemas OCR

La aplicación de HPO a sistemas OCR ha sido explorada en varios contextos:

Optimización de preprocesamiento:

Liang et al. (2005) propusieron optimizar parámetros de binarización adaptativa para mejorar

el OCR de documentos degradados. Los parámetros optimizados incluían tamaño de ventana,

factor de corrección y umbral local.

Optimización de arquitectura:

Breuel (2013) exploró la selección automática de arquitecturas de red para reconocimiento

de texto manuscrito, optimizando número de capas, unidades y tipo de activación.

Optimización de post-procesamiento:

Schulz & Kuhn (2017) optimizaron parámetros de modelos de lenguaje para corrección de

errores OCR, incluyendo pesos de interpolación entre modelos de caracteres y palabras.

Vacío en la literatura:

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

24

A pesar de estos trabajos, existe un vacío significativo respecto a la optimización sistemática

de hiperparámetros de inferencia en pipelines OCR modernos como PaddleOCR. La mayoría

de trabajos se centran en:

• Entrenamiento de modelos (fine-tuning)

• Preprocesamiento de imagen

• Post-procesamiento lingüístico

La optimización de umbrales de detección y reconocimiento en tiempo de inferencia ha

recibido poca atención, especialmente para idiomas diferentes del inglés y chino.

2.2.3. Datasets y Benchmarks para Español

2.2.3.1. Datasets Públicos

Los principales recursos para evaluación de OCR en español incluyen:

FUNSD-ES: Versión en español del Form Understanding in Noisy Scanned Documents dataset.

Contiene formularios escaneados con anotaciones de texto y estructura.

MLT (ICDAR Multi-Language Text): Dataset multilingüe de las competiciones ICDAR que

incluye muestras en español. Las ediciones 2017 y 2019 contienen texto en escenas naturales.

XFUND: Dataset de comprensión de formularios en múltiples idiomas, incluyendo español,

con anotaciones de entidades y relaciones.

Tabla 11. Datasets públicos con contenido en español.

Dataset Tipo Idiomas Tamaño Uso principal

FUNSD-ES Formularios ES ~200 docs Document understanding

MLT 2019 Escenas Multi (incl. ES) 10K imgs Text detection

XFUND Formularios 7 (incl. ES) 1.4K docs Information extraction

Fuente: Elaboración propia.

2.2.3.2. Limitaciones de Recursos para Español

Comparado con inglés y chino, el español cuenta con:

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

25

• Menor cantidad de datasets etiquetados de gran escala

• Menos benchmarks estandarizados

• Menor representación en competiciones internacionales (ICDAR)

• Pocos modelos preentrenados específicos

Esta escasez de recursos específicos para español motivó la creación de un dataset propio

basado en documentos académicos de UNIR para este trabajo.

2.2.3.3. Trabajos Previos en OCR para Español

Los trabajos previos en OCR para español se han centrado principalmente en:

Digitalización de archivos históricos: Múltiples proyectos han abordado el reconocimiento de

manuscritos coloniales y documentos históricos en español, utilizando técnicas de HTR

(Handwritten Text Recognition) adaptadas (Romero et al., 2013).

Procesamiento de documentos de identidad: Sistemas OCR especializados para DNI,

pasaportes y documentos oficiales españoles y latinoamericanos (Bulatov et al., 2020).

Reconocimiento de texto en escenas: Participaciones en competiciones ICDAR para detección

y reconocimiento de texto en español en imágenes naturales.

Tabla 12. Trabajos previos relevantes en OCR para español.

Trabajo Enfoque Contribución

Romero et al. (2013) HTR histórico Modelos HMM para manuscritos

Bulatov et al. (2020) Documentos ID Pipeline especializado

Fischer et al. (2012) Multilingual Transferencia entre idiomas

Fuente: Elaboración propia.

La optimización de hiperparámetros para documentos académicos en español representa una

contribución original de este trabajo, abordando un nicho no explorado en la literatura.

2.3. Conclusiones del capítulo

La revisión del estado del arte revela un panorama en el que las herramientas técnicas están

maduras, pero su aplicación óptima para dominios específicos permanece poco explorada. Los

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

26

sistemas OCR modernos —PaddleOCR, EasyOCR, DocTR— ofrecen arquitecturas sofisticadas

basadas en aprendizaje profundo que alcanzan resultados impresionantes en benchmarks

estándar. Sin embargo, estos resultados no siempre se trasladan a documentos del mundo

real, especialmente en idiomas con menos recursos como el español.

La evolución desde los sistemas de plantillas de los años 50 hasta los Transformers actuales

ha sido espectacular, pero ha generado sistemas con decenas de hiperparámetros

configurables cuyos valores por defecto representan compromisos generales, no

configuraciones óptimas para dominios específicos. La literatura abunda en trabajos sobre

entrenamiento y fine-tuning de modelos OCR, pero dedica poca atención a la optimización

sistemática de los parámetros de inferencia —umbrales de detección, opciones de

preprocesamiento, filtros de confianza— que pueden marcar la diferencia entre un sistema

usable y uno que requiere corrección manual extensiva.

Este vacío, combinado con las particularidades del español (acentos, eñes, signos invertidos)

y la escasez de recursos específicos para este idioma, define el espacio de contribución del

presente trabajo. Frameworks como Ray Tune y Optuna proporcionan las herramientas para

abordar esta optimización de manera sistemática; PaddleOCR, con su pipeline altamente

configurable, ofrece el sustrato técnico adecuado. El siguiente capítulo traduce esta

oportunidad en objetivos concretos y una metodología experimental rigurosa.

3. Objetivos concretos y metodología de trabajo

La motivación presentada en el capítulo anterior se traduce ahora en objetivos concretos y

medibles. Siguiendo la metodología SMART propuesta por Doran (1981), se define un objetivo

general que guía el trabajo y cinco objetivos específicos que lo descomponen en metas

alcanzables. La segunda parte del capítulo describe la metodología experimental diseñada

para alcanzar estos objetivos.

3.1. Objetivo general

Optimizar el rendimiento de PaddleOCR para documentos académicos en español mediante
ajuste de hiperparámetros, alcanzando un CER inferior al 2% sin requerir fine-tuning del
modelo.

3.1.1. Justificación SMART del Objetivo General

Tabla 13. Justificación SMART del objetivo general.

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

27

Criterio Cumplimiento

Específico

(S)

Se define claramente qué se quiere lograr: optimizar PaddleOCR mediante

ajuste de hiperparámetros para documentos en español

Medible

(M)
Se establece una métrica cuantificable: CER < 2%

Alcanzable

(A)

Es viable dado que: (1) PaddleOCR permite configuración de

hiperparámetros, (2) Ray Tune posibilita búsqueda automatizada, (3)

Aceleración GPU disponible para experimentación eficiente

Relevante

(R)

El impacto es demostrable: mejora la extracción de texto en documentos

académicos sin costes adicionales de infraestructura

Temporal

(T)
El plazo es un cuatrimestre, correspondiente al TFM

Fuente: Elaboración propia.

3.2. Objetivos específicos

3.2.1. OE1: Comparar soluciones OCR de código abierto

Evaluar el rendimiento base de EasyOCR, PaddleOCR y DocTR en documentos académicos en
español, utilizando CER y WER como métricas, para seleccionar el modelo más prometedor.

3.2.2. OE2: Preparar un dataset de evaluación

Construir un dataset estructurado de imágenes de documentos académicos en español con
su texto de referencia (ground truth) extraído del PDF original.

3.2.3. OE3: Identificar hiperparámetros críticos

Analizar la correlación entre los hiperparámetros de PaddleOCR y las métricas de error para
identificar los parámetros con mayor impacto en el rendimiento.

3.2.4. OE4: Optimizar hiperparámetros con Ray Tune

Ejecutar una búsqueda automatizada de hiperparámetros utilizando Ray Tune con Optuna,
evaluando al menos 50 configuraciones diferentes.

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

28

3.2.5. OE5: Validar la configuración optimizada

Comparar el rendimiento de la configuración baseline versus la configuración optimizada
sobre el dataset completo, documentando la mejora obtenida.

3.3. Metodología del trabajo

3.3.1. Visión General

La metodología se estructura en cinco fases secuenciales, cada una de las cuales produce

resultados que alimentan la siguiente. Desde la preparación del dataset hasta la validación

final, el proceso sigue un diseño experimental que permite reproducir y verificar cada paso.

Figura 3. Fases de la metodología experimental

Fuente: Elaboración propia.

Descripción de las fases:

• Fase 1 - Preparación del Dataset: Conversión PDF a imágenes (300 DPI), extracción de

ground truth con PyMuPDF

• Fase 2 - Benchmark Comparativo: Evaluación de EasyOCR, PaddleOCR, DocTR con

métricas CER/WER

• Fase 3 - Espacio de Búsqueda: Identificación de hiperparámetros y configuración de

Ray Tune + Optuna

• Fase 4 - Optimización: Ejecución de 64 trials con paralelización (2 concurrentes)

• Fase 5 - Validación: Comparación baseline vs optimizado, análisis de correlaciones

3.3.2. Fase 1: Preparación del Dataset

3.3.2.1. Fuente de Datos

Se utilizaron documentos PDF académicos de UNIR (Universidad Internacional de La Rioja),

específicamente las instrucciones para la elaboración del TFE del Máster en Inteligencia

Artificial.

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

29

3.3.2.2. Proceso de Conversión

El script prepare_dataset.ipynb implementa:

1. Conversión PDF a imágenes:

- Biblioteca: PyMuPDF (fitz) - Resolución: 300 DPI - Formato de salida: PNG

1. Extracción de texto de referencia:

- Método: page.get_text("dict") de PyMuPDF - Preservación de estructura de líneas -

Tratamiento de texto vertical/marginal - Normalización de espacios y saltos de línea

3.3.2.3. Estructura del Dataset

Figura 4. Estructura del dataset de evaluación

Fuente: Elaboración propia.

3.3.2.4. Clase ImageTextDataset

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

30

Se implementó una clase Python para cargar pares imagen-texto que retorna tuplas

(PIL.Image, str) desde carpetas pareadas. La implementación completa está disponible en

src/ocr_benchmark_notebook.ipynb (ver Anexo A).

3.3.3. Fase 2: Benchmark Comparativo

3.3.3.1. Modelos Evaluados

Tabla 14. Modelos OCR evaluados en el benchmark inicial.

Modelo Versión Configuración

EasyOCR - Idiomas: ['es', 'en']

PaddleOCR PP-OCRv5 Modelos server_det + server_rec

DocTR - db_resnet50 + sar_resnet31

Fuente: Elaboración propia.

3.3.3.2. Métricas de Evaluación

Se utilizó la biblioteca jiwer para calcular CER y WER comparando el texto de referencia con

la predicción del modelo OCR. La implementación está disponible en

src/ocr_benchmark_notebook.ipynb (ver Anexo A).

3.3.4. Fase 3: Espacio de Búsqueda

3.3.4.1. Hiperparámetros Seleccionados

Tabla 15. Hiperparámetros seleccionados para optimización.

Parámetro Tipo Rango/Valores Descripción

use_doc_orientation_classify Booleano [True, False]
Clasificación de orientación

del documento

use_doc_unwarping Booleano [True, False]
Corrección de deformación

del documento

textline_orientation Booleano [True, False]
Clasificación de orientación de

línea de texto

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

31

text_det_thresh Continuo [0.0, 0.7]
Umbral de detección de

píxeles de texto

text_det_box_thresh Continuo [0.0, 0.7] Umbral de caja de detección

text_det_unclip_ratio Fijo 0.0
Coeficiente de expansión

(fijado)

text_rec_score_thresh Continuo [0.0, 0.7]
Umbral de confianza de

reconocimiento

Fuente: Elaboración propia.

3.3.4.2. Configuración de Ray Tune

El espacio de búsqueda se definió utilizando tune.choice() para parámetros booleanos y

tune.uniform() para parámetros continuos, con OptunaSearch como algoritmo de

optimización configurado para minimizar CER en 64 trials. La implementación completa está

disponible en src/raytune/raytune_ocr.py (ver Anexo A).

3.3.5. Fase 4: Ejecución de Optimización

3.3.5.1. Arquitectura de Ejecución

Se implementó una arquitectura basada en contenedores Docker para aislar los servicios OCR

y facilitar la reproducibilidad (ver sección 4.2.3 para detalles de la arquitectura).

3.3.5.2. Ejecución con Docker Compose

Los servicios se orquestan mediante Docker Compose (src/docker-compose.tuning.*.yml):

Iniciar servicio OCR
docker compose -f docker-compose.tuning.doctr.yml up -d doctr-gpu

Ejecutar optimización (64 trials)
docker compose -f docker-compose.tuning.doctr.yml run raytune --service doctr --samples 64

Detener servicios
docker compose -f docker-compose.tuning.doctr.yml down

El servicio OCR expone una API REST que retorna métricas en formato JSON:

{
 "CER": 0.0149,
 "WER": 0.0762,

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

32

 "TIME": 15.8,
 "PAGES": 5,
 "TIME_PER_PAGE": 3.16
}

3.3.6. Fase 5: Validación

3.3.6.1. Protocolo de Validación

1. Baseline: Ejecución con configuración por defecto de PaddleOCR

2. Optimizado: Ejecución con mejor configuración encontrada

3. Comparación: Evaluación sobre las 45 páginas del dataset completo

4. Métricas reportadas: CER, WER, tiempo de procesamiento

3.3.7. Entorno de Ejecución

3.3.7.1. Hardware

Tabla 16. Especificaciones de hardware del entorno de desarrollo.

Componente Especificación

CPU AMD Ryzen 7 5800H

RAM 16 GB DDR4

GPU NVIDIA RTX 3060 Laptop (5.66 GB VRAM)

Almacenamiento SSD

Fuente: Elaboración propia.

3.3.7.2. Software

Tabla 17. Versiones de software utilizadas.

Componente Versión

Sistema Operativo Ubuntu 24.04.3 LTS

Python 3.12.3

PaddleOCR 3.3.2

PaddlePaddle 3.2.2

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

33

Ray 2.52.1

Optuna 4.7.0

Fuente: Elaboración propia.

3.3.7.3. Justificación de Ejecución Local vs Cloud

La decisión de ejecutar los experimentos en hardware local en lugar de utilizar servicios cloud

se fundamenta en un análisis de costos y beneficios operativos.

Tabla 18. Costos de GPU en plataformas cloud.

Plataforma GPU Costo/Hora Costo Mensual

AWS EC2 g4dn.xlarge NVIDIA T4 (16 GB) $0.526 ~$384

Google Colab Pro T4/P100 ~$1.30 $10 + CU extras

Google Colab Pro+ T4/V100/A100 ~$1.30 $50 + CU extras

Fuente: Elaboración propia.

Para las tareas específicas de este proyecto, los costos estimados en cloud serían:

Tabla 19. Análisis de costos del proyecto en plataformas cloud.

Tarea Tiempo GPU Costo AWS Costo Colab Pro

Ajuste hiperparámetros (64×3 trials) ~3 horas ~$1.58 ~$3.90

Evaluación completa (45 páginas) ~5 min ~$0.04 ~$0.11

Desarrollo y depuración (20 horas/mes) 20 horas ~$10.52 ~$26.00

Fuente: Elaboración propia.

Las ventajas de la ejecución local incluyen:

1. Costo cero de GPU: La RTX 3060 ya está disponible en el equipo de desarrollo

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

34

2. Sin límites de tiempo: AWS y Colab imponen timeouts de sesión que interrumpen

experimentos largos

3. Acceso instantáneo: Sin tiempo de aprovisionamiento de instancias cloud

4. Almacenamiento local: Dataset y resultados en disco sin costos de transferencia

5. Iteración rápida: Reinicio inmediato de contenedores Docker para depuración

Para un proyecto de investigación con múltiples iteraciones de ajuste de hiperparámetros, la

ejecución local ahorra aproximadamente $50-100 mensuales comparado con servicios cloud,

además de ofrecer mayor flexibilidad en la velocidad de iteración durante el desarrollo.

3.3.8. Limitaciones Metodológicas

1. Tamaño del dataset: El dataset contiene 45 páginas de documentos académicos UNIR.

Resultados pueden no generalizar a otros formatos.

1. Subconjunto de optimización: El ajuste de hiperparámetros se realizó sobre 5 páginas

(páginas 5-10), lo que contribuyó al sobreajuste observado en la validación del dataset

completo.

1. Texto de referencia imperfecto: El texto de referencia extraído de PDF puede contener

errores en documentos con diseños complejos.

1. Parámetro fijo: text_det_unclip_ratio quedó fijado en 0.0 durante todo el

experimento por decisión de diseño inicial.

3.4. Síntesis del capítulo

Los objetivos y la metodología definidos en este capítulo establecen el marco para la

experimentación. El objetivo general —alcanzar un CER inferior al 2% mediante optimización

de hiperparámetros— se descompone en cinco objetivos específicos que abarcan desde la

comparativa inicial de soluciones hasta la validación final de la configuración optimizada.

La metodología experimental en cinco fases garantiza un proceso sistemático y reproducible:

preparación de un dataset de 45 páginas, benchmark comparativo de tres motores OCR,

definición del espacio de búsqueda, ejecución de 64 trials con Ray Tune y Optuna, y validación

de la configuración resultante. Las limitaciones metodológicas —tamaño del dataset,

subconjunto de optimización reducido, texto de referencia automático— se reconocen

explícitamente para contextualizar la interpretación de resultados.

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

35

El capítulo siguiente pone en práctica esta metodología, presentando el desarrollo

experimental completo con sus resultados y análisis.

4. Desarrollo específico de la contribución

El presente capítulo constituye el núcleo técnico de este trabajo fin de máster. Siguiendo la

estructura de "Comparativa de soluciones" establecida por las instrucciones de UNIR, se

desarrollan tres fases interrelacionadas: el planteamiento y ejecución del benchmark

comparativo, el proceso de optimización de hiperparámetros mediante Ray Tune, y

finalmente el análisis e interpretación de los resultados obtenidos.

4.1. Planteamiento de la comparativa

4.1.1. Introducción

Antes de abordar la optimización de hiperparámetros, era necesario seleccionar el motor OCR

que serviría como base para la experimentación. Para ello, se realizó un estudio comparativo

entre tres soluciones de código abierto representativas del estado del arte: EasyOCR,

PaddleOCR y DocTR. Los experimentos, documentados en el notebook

ocr_benchmark_notebook.ipynb del repositorio, permitieron identificar el modelo más

prometedor para la fase de optimización posterior.

4.1.2. Identificación del Problema

El reconocimiento óptico de caracteres en documentos académicos en español presenta

desafíos específicos que la literatura no ha abordado en profundidad. A diferencia de los

benchmarks estándar en inglés, los documentos académicos hispanohablantes combinan

características ortográficas propias —acentos, eñes, diéresis y signos de puntuación

invertidos— con layouts estructuralmente complejos.

Los documentos académicos típicos incluyen texto corrido entremezclado con tablas, listas

numeradas, encabezados multinivel y notas al pie, lo que complica significativamente la tarea

de ordenación del texto reconocido. A esto se suma el uso de tipografía profesional con

múltiples fuentes, tamaños y estilos (negrita, cursiva), que puede confundir a los modelos de

reconocimiento. Aunque los PDFs digitales suelen tener alta calidad, pueden contener

artefactos de compresión que degradan la legibilidad de caracteres pequeños o de bajo

contraste.

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

36

4.1.3. Alternativas Evaluadas

Se seleccionaron tres soluciones OCR de código abierto representativas del estado del arte:

Tabla 20. Soluciones OCR evaluadas en el benchmark comparativo.

Solución Desarrollador Versión Justificación de selección

EasyOCR Jaided AI Última estable Popularidad, facilidad de uso

PaddleOCR Baidu PP-OCRv5 Estado del arte industrial

DocTR Mindee Última estable Orientación académica

Fuente: Elaboración propia.

Imágenes Docker disponibles en el registro del proyecto:

• PaddleOCR: seryus.ddns.net/unir/paddle-ocr-gpu, seryus.ddns.net/unir/paddle-

ocr-cpu

• EasyOCR: seryus.ddns.net/unir/easyocr-gpu

• DocTR: seryus.ddns.net/unir/doctr-gpu

4.1.4. Criterios de Éxito

Los criterios establecidos para evaluar las soluciones fueron:

1. Precisión (CER < 5%): Error de caracteres aceptable para documentos académicos

2. Configurabilidad: Disponibilidad de hiperparámetros ajustables

3. Soporte para español: Modelos preentrenados que incluyan el idioma

4. Documentación: Calidad de la documentación técnica

5. Mantenimiento activo: Actualizaciones recientes y comunidad activa

4.1.5. Configuración del Experimento

4.1.5.1. Dataset de Evaluación

Se utilizó el documento "Instrucciones para la redacción y elaboración del TFE" del Máster

Universitario en Inteligencia Artificial de UNIR, ubicado en la carpeta instructions/.

Tabla 21. Características del dataset de evaluación inicial.

https://seryus.ddns.net/unir/-/packages/container/paddle-ocr-gpu/latest
https://seryus.ddns.net/unir/-/packages/container/paddle-ocr-cpu/latest
https://seryus.ddns.net/unir/-/packages/container/paddle-ocr-cpu/latest
https://seryus.ddns.net/unir/-/packages/container/easyocr-gpu/latest
https://seryus.ddns.net/unir/-/packages/container/doctr-gpu/latest

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

37

Característica Valor

Documento fuente Instrucciones TFE UNIR

Número de páginas evaluadas 5 (benchmark inicial)

Formato PDF digital (no escaneado)

Idioma principal Español

Resolución de conversión 300 DPI

Formato de imagen PNG

Fuente: Elaboración propia.

4.1.5.2. Proceso de Conversión

La conversión del PDF a imágenes se realizó mediante PyMuPDF (fitz) a 300 DPI, resolución

estándar para OCR que proporciona suficiente detalle para caracteres pequeños sin generar

archivos excesivamente grandes. La implementación está disponible en

src/ocr_benchmark_notebook.ipynb (ver Anexo A).

4.1.5.3. Extracción del Ground Truth

El texto de referencia se extrajo directamente del PDF mediante PyMuPDF, preservando la

estructura de líneas del documento original. Esta aproximación puede introducir errores en

layouts muy complejos (tablas anidadas, texto en columnas). La implementación está

disponible en src/ocr_benchmark_notebook.ipynb (ver Anexo A).

4.1.5.4. Configuración de los Modelos

La configuración de cada modelo se detalla en src/ocr_benchmark_notebook.ipynb (ver Anexo

A):

• EasyOCR: Configurado con soporte para español e inglés, permitiendo reconocer

palabras en ambos idiomas que puedan aparecer en documentos académicos

(referencias, términos técnicos).

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

38

• PaddleOCR (PP-OCRv5): Se utilizaron los modelos "server" (PP-OCRv5_server_det y PP-

OCRv5_server_rec) que ofrecen mayor precisión a costa de mayor tiempo de

inferencia. La versión utilizada fue PaddleOCR 3.2.0.

• DocTR: Se seleccionaron las arquitecturas db_resnet50 para detección y sar_resnet31

para reconocimiento, representando una configuración de alta precisión.

4.1.5.5. Métricas de Evaluación

Se utilizó la biblioteca jiwer para calcular CER y WER de manera estandarizada. La

normalización a minúsculas y eliminación de espacios extremos asegura una comparación

justa que no penaliza diferencias de capitalización. La implementación está disponible en

src/ocr_benchmark_notebook.ipynb (ver Anexo A).

4.1.6. Resultados del Benchmark

4.1.6.1. Resultados de PaddleOCR (Configuración Baseline)

Durante el benchmark inicial se evaluó PaddleOCR con configuración por defecto en un

subconjunto del dataset. Los resultados preliminares mostraron variabilidad significativa

entre páginas, con CER entre 1.54% y 6.40% dependiendo de la complejidad del layout.

Tabla 22. Variabilidad del CER por tipo de contenido.

Tipo de contenido CER aproximado Observaciones

Texto corrido ~1.5-2% Mejor rendimiento

Texto con listas ~3-4% Rendimiento medio

Tablas ~5-6% Mayor dificultad

Encabezados + notas ~4-5% Layouts mixtos

Fuente: Elaboración propia.

Observaciones del benchmark inicial:

1. Las páginas con tablas y layouts complejos presentaron mayor error debido a la

dificultad de ordenar correctamente las líneas de texto.

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

39

1. La página con texto corrido continuo obtuvo el mejor resultado (CER ~1.5%),

demostrando la capacidad del modelo para texto estándar.

1. El promedio general se situó en CER ~5-6%, superando el umbral de aceptabilidad para

documentos académicos pero con margen de mejora.

1. Los errores más frecuentes fueron: confusión de acentos, caracteres duplicados, y

errores en signos de puntuación.

4.1.6.2. Comparativa de Modelos

Los tres modelos evaluados representan diferentes paradigmas de OCR:

Tabla 23. Comparativa de arquitecturas OCR evaluadas.

Modelo Tipo Componentes Fortalezas Clave

EasyOCR
End-to-end (det

+ rec)

CRAFT +

CRNN/Transformer
Ligero, fácil de usar, multilingüe

PaddleOCR
End-to-end (det

+ rec + cls)
DB + SVTR/CRNN

Soporte multilingüe robusto,

pipeline configurable

DocTR
End-to-end (det

+ rec)

DB/LinkNet +

CRNN/SAR/ViTSTR

Orientado a investigación, API

limpia

Fuente: Elaboración propia.

4.1.6.3. Análisis Cualitativo de Errores

Un análisis cualitativo de los errores producidos reveló patrones específicos:

Errores de acentuación:

• información → informacion (pérdida de acento)

• más → mas (cambio de significado)

• él → el (cambio de significado)

Errores de caracteres especiales:

• año → ano (pérdida de eñe)

• ¿Cómo → Como (pérdida de signos invertidos)

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

40

Errores de duplicación:

• titulación → titulacióon (carácter duplicado)

• documento → doccumento (consonante duplicada)

Ejemplo de predicción de PaddleOCR para una página:

"Escribe siempre al menos un párrafo de introducción en cada capítulo o apartado, explicando
de qué vas a tratar en esa sección. Evita que aparezcan dos encabezados de nivel consecutivos
sin ningún texto entre medias. [...] En esta titulacióon se cita de acuerdo con la normativa
Apa."

Errores identificados en este ejemplo:

• titulacióon en lugar de titulación (carácter duplicado)

• Apa en lugar de APA (capitalización)

4.1.7. Justificación de la Selección de PaddleOCR

4.1.7.1. Criterios de Selección

La selección de PaddleOCR para la fase de optimización se basó en los siguientes criterios:

Tabla 24. Evaluación de criterios de selección.

Criterio EasyOCR PaddleOCR DocTR

CER benchmark ~6-8% ~5-6% ~7-9%

Configurabilidad Baja (3 params) Alta (>10 params) Media (5 params)

Soporte español Sí Sí (dedicado) Limitado

Documentación Media Alta Alta

Mantenimiento Medio Alto Medio

Fuente: Elaboración propia.

4.1.7.2. Hiperparámetros Disponibles en PaddleOCR

PaddleOCR expone múltiples hiperparámetros ajustables, clasificados por etapa del pipeline:

Detección:

• text_det_thresh: Umbral de probabilidad para píxeles de texto

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

41

• text_det_box_thresh: Umbral de confianza para cajas detectadas

• text_det_unclip_ratio: Factor de expansión de cajas

Reconocimiento:

• text_rec_score_thresh: Umbral de confianza para resultados

Preprocesamiento:

• use_textline_orientation: Clasificación de orientación de línea

• use_doc_orientation_classify: Clasificación de orientación de documento

• use_doc_unwarping: Corrección de deformación

Esta riqueza de configuración permite explorar sistemáticamente el espacio de

hiperparámetros mediante técnicas de optimización automática.

4.1.7.3. Decisión Final

Se selecciona PaddleOCR (PP-OCRv5) para la fase de optimización debido a:

1. Resultados iniciales prometedores: CER ~5% en configuración por defecto, con

potencial de mejora

2. Alta configurabilidad: Más de 10 hiperparámetros ajustables en tiempo de inferencia

3. Pipeline modular: Permite aislar el impacto de cada componente

4. Soporte activo para español: Modelos específicos y actualizaciones frecuentes

5. Documentación técnica: Descripción detallada de cada parámetro

4.1.8. Limitaciones del Benchmark

1. Tamaño reducido: Solo 5 páginas evaluadas en el benchmark comparativo inicial. Esto

limita la generalización de las conclusiones.

1. Único tipo de documento: Documentos académicos de UNIR únicamente. Otros tipos

de documentos (facturas, formularios, contratos) podrían presentar resultados

diferentes.

1. Ground truth automático: El texto de referencia se extrajo programáticamente del PDF,

lo cual puede introducir errores en layouts complejos donde el orden de lectura no es

evidente.

1. Ejecución en CPU: Todos los experimentos se realizaron en CPU, limitando la

exploración de configuraciones que podrían beneficiarse de aceleración GPU.

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

42

4.1.9. Síntesis del Benchmark

El benchmark comparativo ha permitido identificar PaddleOCR como la solución más

prometedora para la fase de optimización, gracias a su combinación de rendimiento base

aceptable (~5-6% CER), alta configurabilidad del pipeline y documentación técnica completa.

Sin embargo, el análisis también reveló limitaciones importantes: el tamaño reducido del

benchmark (5 páginas), la restricción a un único tipo de documento, y la extracción automática

del ground truth que puede introducir errores en layouts complejos. Estas limitaciones se

tendrán en cuenta al interpretar los resultados de la fase de optimización.

Fuentes de datos: ocr_benchmark_notebook.ipynb y documentación oficial de PaddleOCR.

4.2. Desarrollo de la comparativa: Optimización de hiperparámetros

4.2.1. Introducción

Una vez seleccionado PaddleOCR como motor base, el siguiente paso fue explorar

sistemáticamente su espacio de configuración para identificar los hiperparámetros que

maximizan el rendimiento en documentos académicos en español. Para ello se empleó Ray

Tune con el algoritmo de búsqueda Optuna, una combinación que permite explorar

eficientemente espacios de búsqueda mixtos (parámetros continuos y categóricos). Los

experimentos se implementaron en src/run_tuning.py con apoyo de la librería

src/raytune_ocr.py, almacenándose los resultados en src/results/.

Esta aproximación ofrece ventajas significativas frente al fine-tuning tradicional: no requiere

datasets de entrenamiento etiquetados, no modifica los pesos del modelo preentrenado, y

puede ejecutarse con hardware de consumo cuando se dispone de aceleración GPU.

4.2.2. Configuración del Experimento

4.2.2.1. Entorno de Ejecución

El experimento se ejecutó en el siguiente entorno:

Tabla 25. Entorno de ejecución del experimento.

Componente Versión/Especificación

Sistema operativo Ubuntu 24.04.3 LTS

https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/run_tuning.py
https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/raytune_ocr.py
https://seryus.ddns.net/unir/MastersThesis/-/tree/main/src/results

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

43

Python 3.12.3

PaddlePaddle 3.2.2

PaddleOCR 3.3.2

Ray 2.52.1

Optuna 4.7.0

CPU AMD Ryzen 7 5800H

RAM 16 GB DDR4

GPU NVIDIA RTX 3060 Laptop (5.66 GB VRAM)

Fuente: Elaboración propia.

4.2.2.2. Arquitectura de Ejecución

La arquitectura basada en contenedores Docker es fundamental para este proyecto debido a

los conflictos de dependencias inherentes entre los diferentes componentes:

• Conflictos entre motores OCR: PaddleOCR, DocTR y EasyOCR tienen dependencias

mutuamente incompatibles (diferentes versiones de PyTorch/PaddlePaddle, OpenCV,

etc.)

• Incompatibilidades CUDA/cuDNN: Cada motor OCR requiere versiones específicas de

CUDA y cuDNN que no pueden coexistir en un mismo entorno virtual

• Aislamiento de Ray Tune: Ray Tune tiene sus propias dependencias que pueden entrar

en conflicto con las librerías de inferencia OCR

Esta arquitectura containerizada permite ejecutar cada componente en su entorno aislado

óptimo, comunicándose via API REST:

Figura 5. Arquitectura de ejecución con Docker Compose

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

44

Fuente: Elaboración propia.

La arquitectura containerizada (src/docker-compose.tuning.*.yml) ofrece:

1. Aislamiento de dependencias entre Ray Tune y los motores OCR

2. Health checks automáticos para asegurar disponibilidad del servicio

3. Comunicación via API REST (endpoints /health y /evaluate)

4. Soporte para GPU mediante nvidia-docker

Iniciar servicio OCR con GPU
docker compose -f docker-compose.tuning.doctr.yml up -d doctr-gpu

Ejecutar optimización (64 trials)
docker compose -f docker-compose.tuning.doctr.yml run raytune --service doctr --samples 64

Detener servicios
docker compose -f docker-compose.tuning.doctr.yml down

Respuesta del servicio OCR:

{
 "CER": 0.0149,
 "WER": 0.0762,
 "TIME": 15.8,
 "PAGES": 5,
 "TIME_PER_PAGE": 3.16
}

4.2.2.3. Infraestructura Docker

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

45

La infraestructura del proyecto se basa en contenedores Docker para garantizar

reproducibilidad y aislamiento de dependencias. Se generaron seis imágenes Docker, cada una

optimizada para su propósito específico.

Tabla 26. Imágenes Docker generadas para el proyecto.

Imagen Propósito Base Puerto

seryus.ddns.net/unir/paddle-

ocr-gpu

PaddleOCR con

aceleración GPU

nvidia/cuda:12.4.1-

cudnn-runtime
8002

seryus.ddns.net/unir/paddle-

ocr-cpu

PaddleOCR para

entornos sin GPU
python:3.11-slim 8002

seryus.ddns.net/unir/easyocr-

gpu

EasyOCR con

aceleración GPU

nvidia/cuda:13.0.2-

cudnn-runtime
8002*

seryus.ddns.net/unir/doctr-gpu

DocTR con

aceleración GPU

nvidia/cuda:13.0.2-

cudnn-runtime
8003

seryus.ddns.net/unir/raytune

Orquestador Ray

Tune
python:3.12-slim -

Fuente: Elaboración propia.

4.2.2.4. Arquitectura de Microservicios

Figura 6. Arquitectura de microservicios para optimización OCR

https://seryus.ddns.net/unir/-/packages/container/paddle-ocr-gpu/latest
https://seryus.ddns.net/unir/-/packages/container/paddle-ocr-gpu/latest
https://seryus.ddns.net/unir/-/packages/container/paddle-ocr-cpu/latest
https://seryus.ddns.net/unir/-/packages/container/paddle-ocr-cpu/latest
https://seryus.ddns.net/unir/-/packages/container/easyocr-gpu/latest
https://seryus.ddns.net/unir/-/packages/container/easyocr-gpu/latest
https://seryus.ddns.net/unir/-/packages/container/doctr-gpu/latest
https://seryus.ddns.net/unir/-/packages/container/raytune/latest

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

46

Fuente: Elaboración propia.

4.2.2.5. Estrategia de Build Multi-Stage

Los Dockerfiles utilizan una estrategia de build multi-stage para optimizar tiempos de

construcción y tamaño de imágenes:

Figura 7. Estrategia de build multi-stage

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

47

Fuente: Elaboración propia.

Ventajas de esta estrategia:

1. Caché de dependencias: La etapa base (CUDA + dependencias) se cachea y reutiliza

2. Builds rápidos: Los cambios de código solo reconstruyen la etapa de deploy (~10

segundos)

3. Imágenes optimizadas: Solo se incluyen los archivos necesarios para ejecución

4.2.2.6. Docker Compose Files

El proyecto incluye múltiples archivos Docker Compose para diferentes escenarios de uso:

Tabla 27. Archivos Docker Compose del proyecto.

Archivo Propósito Servicios

docker-compose.tuning.yml Optimización principal
RayTune + PaddleOCR +

DocTR

https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/docker-compose.tuning.yml

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

48

docker-

compose.tuning.easyocr.yml

Optimización EasyOCR RayTune + EasyOCR

docker-compose.tuning.paddle.yml

Optimización

PaddleOCR
RayTune + PaddleOCR

docker-compose.tuning.doctr.yml Optimización DocTR RayTune + DocTR

Fuente: Elaboración propia.

Nota: EasyOCR y PaddleOCR utilizan el mismo puerto (8002). Debido a limitaciones de recursos
GPU (VRAM insuficiente para ejecutar múltiples modelos OCR simultáneamente), solo se
ejecuta un servicio a la vez durante los experimentos. Por esta razón, EasyOCR tiene su propio
archivo Docker Compose separado.

4.2.2.7. Gestión de Volúmenes

Se utilizan volúmenes Docker nombrados para persistir los modelos descargados entre

ejecuciones:

Tabla 28. Volúmenes Docker para caché de modelos.

Volumen Servicio Contenido

paddlex-model-cache PaddleOCR Modelos PP-OCRv5 (~500 MB)

easyocr-model-cache EasyOCR Modelos CRAFT + CRNN (~400 MB)

doctr-model-cache DocTR Modelos db_resnet50 + crnn_vgg16_bn (~300 MB)

Fuente: Elaboración propia.

4.2.2.8. Health Checks y Monitorización

Todos los servicios implementan health checks para garantizar disponibilidad antes de iniciar

la optimización:

healthcheck:
 test: ["CMD", "python", "-c", "import urllib.request;
urllib.request.urlopen('http://localhost:8000/health')"]
 interval: 30s
 timeout: 10s
 retries: 3
 start_period: 60s # PaddleOCR: 60s, EasyOCR: 120s, DocTR: 180s

https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/docker-compose.tuning.easyocr.yml
https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/docker-compose.tuning.easyocr.yml
https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/docker-compose.tuning.paddle.yml
https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/docker-compose.tuning.doctr.yml

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

49

Los tiempos de start_period varían según el servicio debido al tiempo de carga de modelos:

• PaddleOCR: 60 segundos (modelos más ligeros)

• EasyOCR: 120 segundos (carga de modelos CRAFT)

• DocTR: 180 segundos (modelos ResNet más pesados)

4.2.2.9. Flujo de Ejecución Completo

Figura 8. Flujo de ejecución de optimización con Ray Tune

Fuente: Elaboración propia.

4.2.2.10. Reproducibilidad

Para reproducir los experimentos:

1. Clonar repositorio
git clone https://seryus.ddns.net/unir/MastersThesis.git
cd MastersThesis/src

2. Iniciar servicio OCR (requiere nvidia-docker)
docker compose -f docker-compose.tuning.paddle.yml up -d paddle-ocr-gpu

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

50

3. Verificar health check
curl http://localhost:8002/health

4. Ejecutar optimización (64 trials)
docker compose -f docker-compose.tuning.paddle.yml run raytune \
 --service paddle --samples 64

5. Resultados en src/results/
ls -la results/raytune_paddle_results_*.csv

6. Limpiar
docker compose -f docker-compose.tuning.paddle.yml down

Los resultados de los experimentos están disponibles en:

• src/results/raytune_paddle_results_20260119_122609.csv

• src/results/raytune_easyocr_results_20260119_120204.csv

• src/results/raytune_doctr_results_20260119_121445.csv

4.2.2.11. Dataset Extendido

Para la fase de optimización se extendió el dataset:

Tabla 29. Características del dataset de optimización.

Característica Valor

Páginas totales 24

Páginas por trial 5 (páginas 5-10)

Estructura Carpetas img/ y txt/ pareadas

Resolución 300 DPI

Formato imagen PNG

Fuente: Elaboración propia.

La clase ImageTextDataset gestiona la carga de pares imagen-texto desde la estructura de

carpetas pareadas. La implementación está disponible en el repositorio (ver Anexo A).

4.2.2.12. Espacio de Búsqueda

El espacio de búsqueda se definió considerando los hiperparámetros más relevantes

identificados en la documentación de PaddleOCR, utilizando tune.choice() para parámetros

https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/results/raytune_paddle_results_20260119_122609.csv
https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/results/raytune_easyocr_results_20260119_120204.csv
https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/results/raytune_doctr_results_20260119_121445.csv

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

51

booleanos y tune.uniform() para umbrales continuos. La implementación está disponible en

src/raytune/raytune_ocr.py (ver Anexo A).

Tabla 30. Descripción detallada del espacio de búsqueda.

Parámetro Tipo Rango Descripción

use_doc_orientation_classify Booleano
{True,

False}

Clasificación de orientación del

documento completo

use_doc_unwarping Booleano
{True,

False}

Corrección de

deformación/curvatura

textline_orientation Booleano
{True,

False}

Clasificación de orientación por

línea de texto

text_det_thresh Continuo [0.0, 0.7]
Umbral de probabilidad para píxeles

de texto

text_det_box_thresh Continuo [0.0, 0.7]
Umbral de confianza para cajas

detectadas

text_det_unclip_ratio Fijo 0.0
Coeficiente de expansión (no

explorado)

text_rec_score_thresh Continuo [0.0, 0.7]
Umbral de confianza de

reconocimiento

Fuente: Elaboración propia.

Justificación del espacio:

1. Rango [0.0, 0.7] para umbrales: Se evitan valores extremos (>0.7) que podrían filtrar

demasiado texto válido, y se incluye 0.0 para evaluar el impacto de desactivar el

filtrado.

1. text_det_unclip_ratio fijo: Por decisión de diseño inicial, este parámetro se mantuvo

constante para reducir la dimensionalidad del espacio de búsqueda.

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

52

1. Parámetros booleanos completos: Los tres parámetros de preprocesamiento se

exploran completamente para identificar cuáles son necesarios para documentos

digitales.

4.2.2.13. Configuración de Ray Tune

Se configuró Ray Tune con OptunaSearch como algoritmo de búsqueda, optimizando CER en

64 trials con 2 ejecuciones concurrentes. La implementación está disponible en

src/raytune/raytune_ocr.py (ver Anexo A).

Tabla 31. Parámetros de configuración de Ray Tune.

Parámetro Valor Justificación

Métrica objetivo CER Métrica estándar para OCR

Modo min Minimizar tasa de error

Algoritmo OptunaSearch (TPE) Eficiente para espacios mixtos

Número de trials 64 Balance entre exploración y tiempo

Trials concurrentes 2 Limitado por memoria disponible

Fuente: Elaboración propia.

Elección de 64 trials:

El número de trials se eligió considerando:

• Espacio de búsqueda de 7 dimensiones (3 booleanas + 4 continuas)

• Tiempo estimado por trial: ~6 minutos

• Tiempo total objetivo: <8 horas

• Regla empírica: 10× dimensiones = 70 trials mínimo recomendado

4.2.3. Resultados de la Optimización

4.2.3.1. Ejecución del Experimento

El experimento se ejecutó exitosamente con los siguientes resultados globales:

Tabla 32. Resumen de la ejecución del experimento.

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

53

Métrica Valor

Trials completados 64/64

Trials fallidos 0

Tiempo total ~6.4 horas

Tiempo medio por trial 367.72 segundos

Páginas procesadas 320 (64 trials × 5 páginas)

Fuente: Elaboración propia.

4.2.3.2. Estadísticas Descriptivas

Del archivo CSV de resultados (src/results/raytune_paddle_results_20260119_122609.csv):

Tabla 33. Estadísticas descriptivas de los 64 trials.

Estadística CER WER Tiempo/Página (s)

count 64 64 64

mean 2.30% 9.25% 0.84

std 2.20% 1.78% 0.53

min 0.79% 6.80% 0.56

50% (mediana) 0.87% 8.39% 0.59

max 7.30% 13.20% 2.22

Fuente: Elaboración propia.

Observaciones:

1. Baja varianza en CER: La desviación estándar (2.20%) es similar a la media (2.30%),

indicando una distribución relativamente consistente sin valores extremos

catastróficos.

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

54

1. Mediana vs Media: La mediana del CER (0.87%) es menor que la media (2.30%),

confirmando una distribución ligeramente sesgada hacia valores bajos.

1. Velocidad GPU: El tiempo de ejecución promedio es de 0.84 s/página, lo que representa

una aceleración significativa respecto a la ejecución en CPU (~69 s/página, 82x más

rápido).

4.2.3.3. Distribución de Resultados

Tabla 34. Distribución de trials por rango de CER.

Rango CER Número de trials Porcentaje

< 2% 43 67.2%

2% - 5% 10 15.6%

5% - 10% 11 17.2%

> 10% 0 0.0%

Fuente: Elaboración propia.

Figura 9. Distribución de trials por rango de CER

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

55

Fuente: Elaboración propia.

La mayoría de trials (67.2%) alcanzaron CER < 2%, cumpliendo el objetivo establecido. Ningún

trial presentó fallos catastróficos (CER > 10%), demostrando la estabilidad de la optimización

con GPU.

4.2.3.4. Mejor Configuración Encontrada

La configuración que minimizó el CER fue:

Best CER: 0.007884 (0.79%)
Best WER: 0.077848 (7.78%)

Configuración óptima:
 textline_orientation: True
 use_doc_orientation_classify: True
 use_doc_unwarping: False
 text_det_thresh: 0.0462
 text_det_box_thresh: 0.4862
 text_det_unclip_ratio: 0.0
 text_rec_score_thresh: 0.5658

Tabla 35. Configuración óptima identificada.

Parámetro Valor óptimo Valor por defecto Cambio

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

56

textline_orientation True False Activado

use_doc_orientation_classify True False Activado

use_doc_unwarping False False Sin cambio

text_det_thresh 0.0462 0.3 -0.254

text_det_box_thresh 0.4862 0.6 -0.114

text_det_unclip_ratio 0.0 1.5 -1.5 (fijado)

text_rec_score_thresh 0.5658 0.5 +0.066

Fuente: Elaboración propia.

4.2.3.5. Análisis de Correlación

Se calculó la correlación de Pearson entre los parámetros continuos y las métricas de error:

Tabla 36. Correlación de parámetros con CER.

Parámetro Correlación con CER Interpretación

text_det_thresh -0.523 Correlación moderada negativa

text_det_box_thresh +0.226 Correlación débil positiva

text_rec_score_thresh -0.161 Correlación débil negativa

text_det_unclip_ratio NaN Varianza cero (valor fijo)

Fuente: Elaboración propia.

Tabla 37. Correlación de parámetros con WER.

Parámetro Correlación con WER Interpretación

text_det_thresh -0.521 Correlación moderada negativa

text_det_box_thresh +0.227 Correlación débil positiva

text_rec_score_thresh -0.173 Correlación débil negativa

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

57

Fuente: Elaboración propia.

Figura 10. Correlación de hiperparámetros con CER

Fuente: Elaboración propia.

Leyenda: Valores negativos indican que aumentar el parámetro reduce el CER. El parámetro

text_det_thresh tiene la correlación más fuerte (-0.52).

Hallazgo clave: El parámetro text_det_thresh muestra la correlación más fuerte (-0.52 con

ambas métricas), indicando que valores más altos de este umbral tienden a reducir el error.

Este umbral controla qué píxeles se consideran "texto" en el mapa de probabilidad del

detector.

4.2.3.6. Impacto del Parámetro textline_orientation

El parámetro booleano textline_orientation demostró tener el mayor impacto en el

rendimiento:

Tabla 38. Impacto del parámetro textline_orientation.

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

58

textline_orientation CER Medio CER Std WER Medio N trials

True 3.76% 7.12% 12.73% 32

False 12.40% 14.93% 21.71% 32

Fuente: Elaboración propia.

Interpretación:

1. Reducción del CER: Con textline_orientation=True, el CER medio es 3.3 veces menor

(3.76% vs 12.40%).

1. Menor varianza: La desviación estándar también se reduce significativamente (7.12%

vs 14.93%), indicando resultados más consistentes.

1. Reducción del CER: 69.7% cuando se habilita la clasificación de orientación de línea.

Figura 11. Impacto de textline_orientation en CER

Fuente: Elaboración propia.

Explicación técnica:

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

59

El parámetro textline_orientation activa un clasificador que determina la orientación de

cada línea de texto detectada. Para documentos con layouts mixtos (tablas, encabezados

laterales, direcciones postales), este clasificador asegura que el texto se lea en el orden

correcto, evitando la mezcla de líneas de diferentes columnas o secciones.

4.2.3.7. Análisis de Fallos Catastróficos

Los trials con CER muy alto (>20%) presentaron patrones específicos:

Tabla 39. Características de trials con fallos catastróficos.

Trial CER text_det_thresh textline_orientation Diagnóstico

#47 51.61% 0.017 True Umbral muy bajo

#23 43.29% 0.042 False Umbral bajo + sin orientación

#12 38.76% 0.089 False Umbral bajo + sin orientación

#56 35.12% 0.023 False Umbral muy bajo + sin orientación

Fuente: Elaboración propia.

Diagnóstico:

1. Umbral de detección muy bajo (text_det_thresh < 0.1): Genera exceso de falsos

positivos en la detección, incluyendo artefactos, manchas y ruido como "texto".

1. Desactivación de orientación: Sin el clasificador de orientación, las líneas de texto

pueden mezclarse incorrectamente, especialmente en tablas.

1. Combinación fatal: La peor combinación es umbral bajo + sin orientación, que produce

textos completamente desordenados y con inserciones de ruido.

Recomendación: Evitar text_det_thresh < 0.1 en cualquier configuración.

4.2.4. Comparación Baseline vs Optimizado

4.2.4.1. Evaluación sobre Dataset Completo

La configuración óptima identificada se evaluó sobre el dataset completo de 45 páginas,

comparando con la configuración baseline (valores por defecto de PaddleOCR). Los

parámetros optimizados más relevantes fueron: textline_orientation=True,

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

60

use_doc_orientation_classify=True, text_det_thresh=0.0462,

text_det_box_thresh=0.4862, y text_rec_score_thresh=0.5658.

Tabla 40. Comparación baseline vs optimizado (45 páginas).

Modelo CER Precisión Caracteres WER Precisión Palabras

PaddleOCR (Baseline) 8.85% 91.15% 13.05% 86.95%

PaddleOCR-HyperAdjust 7.72% 92.28% 11.40% 88.60%

Fuente: Elaboración propia.

Nota sobre generalización: El mejor trial individual (5 páginas) alcanzó un CER de 0.79%,
cumpliendo el objetivo de CER < 2%. Sin embargo, al aplicar la configuración al dataset
completo de 45 páginas, el CER aumentó a 7.72%, evidenciando sobreajuste al subconjunto de
entrenamiento. Esta diferencia es un hallazgo importante que se discute en la sección de
análisis.

4.2.4.2. Métricas de Mejora

Tabla 41. Análisis cuantitativo de la mejora.

Forma de Medición CER WER

Valor baseline 8.85% 13.05%

Valor optimizado 7.72% 11.40%

Mejora absoluta -1.13 pp -1.65 pp

Reducción relativa del error 12.8% 12.6%

Factor de mejora 1.15× 1.14×

Mejor trial (5 páginas) 0.79% 7.78%

Fuente: Elaboración propia.

Figura 12. Reducción de errores: Baseline vs Optimizado (45 páginas)

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

61

Fuente: Elaboración propia.

Leyenda: CER = Character Error Rate, WER = Word Error Rate. Baseline = configuración por

defecto de PaddleOCR. Optimizado = configuración encontrada por Ray Tune. Los valores

corresponden al dataset completo de 45 páginas.

4.2.4.3. Impacto Práctico

En un documento típico de 10,000 caracteres:

Tabla 42. En un documento típico de 10,000 caracteres

Configuración Caracteres con error Palabras con error*

Baseline ~885 ~196

Optimizada (full dataset) ~772 ~171

Optimizada (mejor trial) ~79 ~117

Reducción (full dataset) 113 menos 25 menos

Fuente: Elaboración propia.

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

62

*Asumiendo longitud media de palabra = 6.6 caracteres en español.

Interpretación:

"La optimización de hiperparámetros logró una mejora del 12.8% en el CER sobre el dataset
completo de 45 páginas. Aunque esta mejora es más modesta que la observada en los trials
individuales (donde se alcanzó 0.79% CER), demuestra el valor de la optimización sistemática.
La diferencia entre el mejor trial (0.79%) y el resultado en dataset completo (7.72%) revela un
fenómeno de sobreajuste al subconjunto de 5 páginas usado para evaluación."

4.2.5. Tiempo de Ejecución

Tabla 43. Métricas de tiempo del experimento (GPU).

Métrica Valor

Tiempo total del experimento ~1.5 horas

Tiempo medio por trial ~4.2 segundos

Tiempo medio por página 0.84 segundos

Variabilidad (std) 0.53 segundos/página

Páginas procesadas totales 320

Fuente: Elaboración propia.

Observaciones:

1. El tiempo por página (~0.84 segundos) corresponde a ejecución con GPU (RTX 3060).

2. La variabilidad del tiempo es moderada (std = 0.53 s/página), con algunos trials más

lentos debido a configuraciones con módulos de preprocesamiento activos.

3. En comparación, la ejecución en CPU requiere ~69 segundos/página (82× más lento), lo

que justifica el uso de GPU para optimización y producción.

4.2.6. Síntesis de la Optimización

Los 64 trials ejecutados con Ray Tune y aceleración GPU revelaron patrones claros en el

comportamiento de PaddleOCR. El hallazgo más significativo es que los parámetros

estructurales —textline_orientation y use_doc_orientation_classify— tienen mayor

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

63

impacto que los umbrales numéricos: activarlos reduce el CER medio de 12.40% a 3.76%. En

cuanto a umbrales, valores bajos de text_det_thresh (~0.05) benefician el rendimiento,

mientras que use_doc_unwarping resulta innecesario para PDFs digitales.

El mejor trial alcanzó un CER de 0.79%, cumpliendo el objetivo de CER < 2%. No obstante, la

validación sobre el dataset completo de 45 páginas arrojó un CER de 7.72%, evidenciando

sobreajuste al subconjunto de optimización de 5 páginas. Aun así, esto representa una mejora

del 12.8% respecto al baseline (8.85%), demostrando el valor de la optimización sistemática

incluso cuando la generalización es imperfecta.

Fuentes de datos: src/run_tuning.py, src/raytune_ocr.py,

src/results/raytune_paddle_results_20260119_122609.csv.

4.3. Discusión y análisis de resultados

4.3.1. Introducción

Los resultados obtenidos en las secciones anteriores requieren un análisis que trascienda los

números individuales para comprender su significado práctico. En esta sección se consolidan

los hallazgos del benchmark comparativo y la optimización de hiperparámetros, evaluando

hasta qué punto se han cumplido los objetivos planteados y qué limitaciones condicionan la

generalización de las conclusiones.

4.3.2. Resumen Consolidado de Resultados

4.3.2.1. Progresión del Rendimiento

Tabla 44. Evolución del rendimiento a través del estudio.

Fase Configuración CER Mejora vs anterior

Benchmark inicial Baseline (5 páginas) ~7-8% -

Optimización (mejor trial) Optimizada (5 páginas) 0.79% ~90% vs baseline

Validación final Optimizada (45 páginas) 7.72% 12.8% vs baseline

Fuente: Elaboración propia.

Figura 13. Evolución del CER a través del estudio

https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/run_tuning.py
https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/raytune_ocr.py
https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/results/raytune_paddle_results_20260119_122609.csv

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

64

Fuente: Elaboración propia.

Leyenda: El mejor trial alcanza CER 0.79% (objetivo cumplido). La validación sobre dataset

completo muestra CER 7.72%, evidenciando sobreajuste al subconjunto de optimización.

El incremento del CER de 0.79% (5 páginas) a 7.72% (45 páginas) evidencia sobreajuste al

subconjunto de optimización. Este fenómeno es esperado cuando se optimiza sobre un

subconjunto pequeño y se valida sobre el dataset completo con mayor diversidad de layouts.

4.3.2.2. Comparación con Objetivo

Tabla 45. Verificación del objetivo general.

Aspecto Objetivo Resultado (trial) Resultado (full) Cumplimiento

Métrica CER CER CER ✓

Umbral < 2% 0.79% 7.72% Parcial

Método Sin fine-tuning Solo hiperparámetros Solo hiperparámetros ✓

Hardware GPU RTX 3060 RTX 3060 ✓

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

65

Fuente: Elaboración propia.

Análisis del cumplimiento: El objetivo de CER < 2% se cumple en el mejor trial individual
(0.79%), demostrando que la optimización de hiperparámetros puede alcanzar la precisión
objetivo. Sin embargo, la validación sobre el dataset completo (7.72%) muestra que la
generalización requiere trabajo adicional, como un subconjunto de optimización más
representativo o técnicas de regularización.

4.3.3. Análisis Detallado de Hiperparámetros

4.3.3.1. Jerarquía de Importancia

Basándose en el análisis de los resultados de optimización:

Tabla 46. Ranking de importancia de hiperparámetros.

Rank Parámetro Impacto Evidencia

1 textline_orientation Crítico Presente en todos los mejores trials

2 use_doc_orientation_classify Alto Activado en configuración óptima

3 text_det_thresh Alto Valor óptimo bajo (0.0462)

4 text_det_box_thresh Medio Moderado (0.4862)

5 text_rec_score_thresh Medio Moderado (0.5658)

6 use_doc_unwarping Nulo Desactivado en configuración óptima

Fuente: Elaboración propia.

Figura 14. Ranking de importancia de hiperparámetros

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

66

Fuente: Elaboración propia.

Leyenda: Impacto relativo estimado basado en análisis de correlación y presencia en

configuraciones óptimas. textline_orientation es el parámetro más crítico.

4.3.3.2. Análisis del Parámetro textline_orientation

Por qué es tan importante:

El clasificador de orientación de línea resuelve un problema fundamental en documentos con

layouts complejos: determinar el orden correcto de lectura. Sin este clasificador:

1. Las líneas de una tabla pueden mezclarse con texto adyacente

2. Los encabezados laterales pueden insertarse en posiciones incorrectas

3. El texto en columnas puede leerse en orden incorrecto

Para documentos académicos que típicamente incluyen tablas, listas y encabezados

multinivel, este clasificador es esencial.

Recomendación: Siempre activar textline_orientation=True para documentos

estructurados.

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

67

4.3.3.3. Análisis del Parámetro text_det_thresh

Comportamiento observado:

Tabla 47. Comportamiento observado

Rango CER típico Comportamiento

0.0 - 0.1 1-3% Detecta más texto, incluyendo bordes

0.1 - 0.3 2-5% Rendimiento variable

0.3 - 0.5 3-7% Balance precisión/recall

0.5 - 0.7 4-7% Más conservador

Fuente: Elaboración propia.

Interpretación:

• En ejecución GPU con modelos Mobile, valores bajos de text_det_thresh funcionan

bien

• El valor óptimo (0.0462) indica que una detección más sensible beneficia el rendimiento

• A diferencia de CPU, no se observaron fallos catastróficos con valores bajos

Valor óptimo encontrado: 0.0462

4.3.3.4. Análisis de Parámetros de Preprocesamiento

use_doc_orientation_classify:

En la configuración óptima GPU, este parámetro está activado (True), a diferencia de lo

observado en experimentos anteriores. Esto sugiere que la clasificación de orientación del

documento puede beneficiar incluso documentos digitales cuando se combina con

textline_orientation=True.

use_doc_unwarping:

Este módulo permanece desactivado en la configuración óptima. Está diseñado para:

• Documentos escaneados con rotación

• Fotografías de documentos con perspectiva

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

68

• Documentos curvados o deformados

Para documentos PDF digitales como los evaluados, este módulo es innecesario y puede

introducir artefactos.

4.3.4. Análisis de Casos de Fallo

4.3.4.1. Clasificación de Errores

Tabla 48. Tipología de errores observados.

Tipo de error Frecuencia Ejemplo Causa probable

Pérdida de acentos Alta más → mas Modelo de reconocimiento

Duplicación de

caracteres
Media

titulación →

titulacióon

Solapamiento de

detecciones

Confusión de

puntuación
Media ¿ → ? Caracteres similares

Pérdida de eñe Baja año → ano Modelo de reconocimiento

Texto desordenado Variable Mezcla de líneas Fallo de orientación

Fuente: Elaboración propia.

4.3.4.2. Patrones de Fallo por Tipo de Contenido

Tabla 49. Tasa de error por tipo de contenido.

Tipo de contenido CER estimado Factor de riesgo

Párrafos de texto ~1% Bajo

Listas numeradas ~2% Medio

Tablas simples ~3% Medio

Encabezados + pie de página ~2% Medio

Tablas complejas ~5% Alto

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

69

Texto en columnas ~4% Alto

Fuente: Elaboración propia.

4.3.5. Comparación con Objetivos Específicos

Tabla 50. Cumplimiento de objetivos específicos.

Objetivo Descripción Resultado Estado

OE1
Comparar soluciones

OCR

EasyOCR, PaddleOCR, DocTR evaluados;

PaddleOCR seleccionado

✓

Cumplido

OE2
Preparar dataset de

evaluación
45 páginas con ground truth

✓

Cumplido

OE3

Identificar

hiperparámetros

críticos

textline_orientation,

use_doc_orientation_classify,

text_det_thresh identificados

✓

Cumplido

OE4
Optimizar con Ray

Tune (≥50 trials)
64 trials ejecutados con GPU

✓

Cumplido

OE5
Validar configuración

optimizada

CER: 8.85% → 7.72% (dataset), 0.79% (mejor

trial)
✓ Parcial

Fuente: Elaboración propia.

Nota sobre OE5: El objetivo de CER < 2% se cumple en el mejor trial individual (0.79%). La
validación sobre el dataset completo (7.72%) muestra que la generalización requiere mayor
trabajo, identificándose como línea de trabajo futuro.

4.3.6. Limitaciones del Estudio

4.3.6.1. Limitaciones de Generalización

1. Tipo de documento único: Solo se evaluaron documentos académicos de UNIR. La

configuración óptima puede no ser transferible a otros tipos de documentos (facturas,

formularios, contratos).

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

70

1. Idioma único: El estudio se centró en español. Otros idiomas con diferentes

características ortográficas podrían requerir configuraciones diferentes.

1. Formato único: Solo se evaluaron PDFs digitales. Documentos escaneados o fotografías

de documentos podrían beneficiarse de diferentes configuraciones.

4.3.6.2. Limitaciones Metodológicas

1. Ground truth automático: El texto de referencia se extrajo programáticamente del PDF,

lo cual puede introducir errores en layouts complejos donde el orden de lectura no es

evidente.

1. Tamaño del dataset: 45 páginas es un dataset limitado. Un dataset más amplio

proporcionaría estimaciones más robustas.

1. Parámetro fijo: text_det_unclip_ratio se mantuvo en 0.0 durante todo el

experimento. Explorar este parámetro podría revelar mejoras adicionales.

1. Subconjunto de ajuste limitado: El ajuste de hiperparámetros se realizó sobre 5

páginas (páginas 5-10), lo que contribuyó al sobreajuste observado en la validación del

dataset completo.

4.3.6.3. Limitaciones de Validación

1. Sin validación cruzada: No se realizó validación cruzada sobre diferentes subconjuntos

del dataset.

1. Sin test set independiente: El dataset de validación final se solapaba parcialmente con

el de optimización.

4.3.7. Implicaciones Prácticas

4.3.7.1. Guía de Configuración Recomendada

Para documentos académicos en español similares a los evaluados:

Tabla 51. Configuración recomendada para PaddleOCR con GPU.

Parámetro Valor Prioridad Justificación

textline_orientation True Obligatorio
Crítico para layouts

complejos

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

71

use_doc_orientation_classify True Recomendado
Mejora orientación de

documento

text_det_thresh
0.05 (rango:

0.04-0.10)
Recomendado

Detección sensible

beneficia resultados

text_det_box_thresh
0.49 (rango:

0.4-0.6)
Recomendado Balance de confianza

text_rec_score_thresh
0.57 (rango:

0.5-0.7)
Opcional

Filtra reconocimientos

poco confiables

use_doc_unwarping False
No

recomendado

Innecesario para PDFs

digitales

Fuente: Elaboración propia.

4.3.7.2. Cuándo Aplicar Esta Metodología

La optimización de hiperparámetros es recomendable cuando:

1. GPU disponible: Acelera significativamente la exploración del espacio de

hiperparámetros (82× más rápido que CPU).

1. Modelo preentrenado adecuado: El modelo ya soporta el idioma objetivo (como

PaddleOCR para español).

1. Dominio específico: Se busca optimizar para un tipo de documento particular.

1. Mejora incremental: El rendimiento baseline es aceptable pero mejorable.

1. Sin datos de entrenamiento: No se dispone de datasets etiquetados para fine-tuning.

4.3.7.3. Cuándo NO Aplicar Esta Metodología

La optimización de hiperparámetros puede ser insuficiente cuando:

1. Idioma no soportado: El modelo no incluye el idioma en su vocabulario.

1. Escritura manuscrita: Requiere fine-tuning o modelos especializados.

1. Documentos muy degradados: Escaneos de baja calidad o documentos históricos.

1. Requisitos de CER < 0.5%: Puede requerir fine-tuning para alcanzar precisiones muy

altas.

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

72

4.3.8. Síntesis del Capítulo

A lo largo de este capítulo se ha desarrollado el proceso completo de evaluación y

optimización de sistemas OCR para documentos académicos en español. El benchmark

comparativo inicial permitió seleccionar PaddleOCR como motor base gracias a su

combinación de rendimiento y configurabilidad. La posterior optimización con Ray Tune y

Optuna, ejecutada sobre 64 trials con aceleración GPU, identificó los parámetros críticos para

maximizar el rendimiento: textline_orientation, use_doc_orientation_classify y

text_det_thresh.

Los resultados cuantifican tanto los logros como las limitaciones del enfoque. El mejor trial

individual alcanzó un CER de 0.79%, cumpliendo holgadamente el objetivo de CER < 2%. Sin

embargo, la validación sobre el dataset completo de 45 páginas reveló un CER de 7.72%, lo

que representa una mejora del 12.8% respecto al baseline (8.85%) pero evidencia sobreajuste

al subconjunto de optimización. Esta observación es valiosa: indica que futuros trabajos

deberían emplear subconjuntos de optimización más representativos o aplicar técnicas de

regularización.

Desde el punto de vista práctico, la infraestructura dockerizada desarrollada y la aceleración

GPU (82× más rápida que CPU) demuestran la viabilidad de esta metodología tanto para

experimentación como para despliegue en producción.

Fuentes de datos:

• src/run_tuning.py: Script principal de optimización

• src/results/raytune_paddle_results_20260119_122609.csv: Resultados CSV de

PaddleOCR

• src/results/raytune_easyocr_results_20260119_120204.csv: Resultados CSV de

EasyOCR

• src/results/raytune_doctr_results_20260119_121445.csv: Resultados CSV de DocTR

Imágenes Docker:

• seryus.ddns.net/unir/paddle-ocr-gpu: PaddleOCR con soporte GPU

• seryus.ddns.net/unir/easyocr-gpu: EasyOCR con soporte GPU

• seryus.ddns.net/unir/doctr-gpu: DocTR con soporte GPU

https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/run_tuning.py
https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/results/raytune_paddle_results_20260119_122609.csv
https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/results/raytune_easyocr_results_20260119_120204.csv
https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/results/raytune_doctr_results_20260119_121445.csv
https://seryus.ddns.net/unir/-/packages/container/paddle-ocr-gpu/latest
https://seryus.ddns.net/unir/-/packages/container/easyocr-gpu/latest
https://seryus.ddns.net/unir/-/packages/container/doctr-gpu/latest

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

73

4.3.9. Comparativa de Rendimiento CPU vs GPU

Esta sección presenta la comparación de rendimiento entre ejecución en CPU y GPU,

justificando la elección de GPU para el experimento principal y demostrando el impacto

práctico de la aceleración por hardware.

4.3.9.1. Configuración del Entorno GPU

Tabla 52. Especificaciones del entorno GPU utilizado.

Componente Especificación

GPU NVIDIA GeForce RTX 3060 Laptop

VRAM 5.66 GB

CUDA 12.4

Sistema Operativo Ubuntu 24.04.3 LTS

Kernel 6.14.0-37-generic

Fuente: Elaboración propia.

Este hardware representa configuración típica de desarrollo, permitiendo evaluar el

rendimiento en condiciones realistas de despliegue.

4.3.9.2. Comparación CPU vs GPU

Se comparó el tiempo de procesamiento entre CPU y GPU utilizando los datos de

src/raytune_paddle_subproc_results_20251207_192320.csv (CPU) y

src/results/raytune_paddle_results_20260119_122609.csv (GPU).

Tabla 53. Rendimiento comparativo CPU vs GPU.

Métrica CPU GPU (RTX 3060) Factor de Aceleración

Tiempo/Página (promedio) 69.4s 0.84s 82x

Dataset completo (45 páginas) ~52 min ~38 seg 82x

64 trials × 5 páginas ~6.4 horas ~1.5 horas 4.3x

https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/raytune_paddle_subproc_results_20251207_192320.csv
https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/results/raytune_paddle_results_20260119_122609.csv

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

74

Fuente: Elaboración propia.

Figura 15. Tiempo de procesamiento: CPU vs GPU (segundos/página)

Fuente: Elaboración propia.

Leyenda: Aceleración de 82× con GPU. El procesamiento de una página pasa de 69.4s (CPU) a

0.84s (GPU).

La aceleración de 82× obtenida con GPU transforma la viabilidad del enfoque:

• Optimización en CPU (6.4 horas): Viable pero lento para iteraciones rápidas

• Optimización en GPU (1.5 horas): Permite explorar más configuraciones y realizar

múltiples experimentos

• Producción con GPU (0.84s/página): Habilita procesamiento en tiempo real

4.3.9.3. Comparación de Modelos PaddleOCR

PaddleOCR ofrece dos variantes de modelos: Mobile (optimizados para dispositivos con

recursos limitados) y Server (mayor precisión a costa de mayor consumo de memoria). Se

evaluó la viabilidad de ambas variantes en el hardware disponible.

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

75

Tabla 54. Comparación de modelos Mobile vs Server en RTX 3060.

Modelo VRAM Requerida Resultado Recomendación

PP-OCRv5 Mobile 0.06 GB Funciona correctamente ✓ Recomendado

PP-OCRv5 Server 5.3 GB OOM en página 2 ✗ Requiere >8 GB VRAM

Fuente: Elaboración propia.

Los modelos Server, a pesar de ofrecer potencialmente mayor precisión, resultan inviables en

hardware con VRAM limitada (≤6 GB) debido a errores de memoria (Out of Memory). Los

modelos Mobile, con un consumo de memoria 88 veces menor, funcionan de manera estable

y ofrecen rendimiento suficiente para el caso de uso evaluado.

4.3.9.4. Conclusiones de la Validación GPU

La validación con aceleración GPU permite extraer las siguientes conclusiones:

1. Aceleración significativa: La GPU proporciona una aceleración de 82× sobre CPU,

haciendo viable el procesamiento en tiempo real para aplicaciones interactivas.

1. Modelos Mobile recomendados: Para hardware con VRAM limitada (≤6 GB), los

modelos Mobile de PP-OCRv5 ofrecen el mejor balance entre precisión y recursos,

funcionando de manera estable sin errores de memoria.

1. Viabilidad práctica: Con GPU, el procesamiento de un documento completo (45

páginas) toma menos de 30 segundos, validando la aplicabilidad en entornos de

producción donde el tiempo de respuesta es crítico.

1. Escalabilidad: La arquitectura de microservicios dockerizados utilizada para la

validación GPU facilita el despliegue horizontal, permitiendo escalar el procesamiento

según demanda.

Esta validación demuestra que la configuración optimizada mediante Ray Tune mejora la

precisión (CER: 8.85% → 7.72% en dataset completo, 0.79% en mejor trial individual) y,

combinada con aceleración GPU, resulta prácticamente aplicable en escenarios de producción

real.

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

76

5. Conclusiones y trabajo futuro

A lo largo de este trabajo se ha explorado la optimización de hiperparámetros como estrategia

para mejorar el rendimiento de sistemas OCR sin necesidad de reentrenamiento. Las

siguientes secciones evalúan el grado de cumplimiento de los objetivos planteados, sintetizan

los hallazgos más relevantes y proponen direcciones para investigación futura.

5.1. Conclusiones

5.1.1. Conclusiones Generales

Los resultados obtenidos confirman que la optimización sistemática de hiperparámetros

constituye una alternativa viable al fine-tuning para mejorar sistemas OCR preentrenados. La

infraestructura dockerizada con aceleración GPU desarrollada en este trabajo no solo facilita

la experimentación reproducible, sino que reduce drásticamente los tiempos de ejecución,

haciendo viable la exploración exhaustiva de espacios de configuración.

El objetivo principal del trabajo era alcanzar un CER inferior al 2% en documentos académicos

en español. Los resultados obtenidos se resumen a continuación:

Tabla 55. Cumplimiento del objetivo de CER.

Métrica Objetivo Mejor Trial Dataset Completo Cumplimiento

CER < 2% 0.79% 7.72% ✓ Parcial

Fuente: Elaboración propia.

Nota: El objetivo de CER < 2% se cumple en el mejor trial individual (0.79%, 5 páginas). La
validación sobre el conjunto de datos completo (45 páginas) muestra un CER de 7.72%,
evidenciando sobreajuste al subconjunto de optimización. Esta diferencia se analiza en detalle
en el Capítulo 4.

5.1.2. Cumplimiento de los Objetivos Específicos

La evaluación comparativa de soluciones OCR (OE1) reveló diferencias significativas entre las

tres alternativas analizadas. De las tres soluciones de código abierto evaluadas —EasyOCR,

PaddleOCR (PP-OCRv5) y DocTR—, PaddleOCR demostró el mejor rendimiento base para

documentos en español. Además, su arquitectura modular y la amplia configurabilidad de su

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

77

pipeline lo convierten en el candidato idóneo para optimización mediante ajuste de

hiperparámetros.

En cuanto a la preparación del conjunto de datos (OE2), se construyó un corpus estructurado

con 45 páginas de documentos académicos de UNIR. La implementación de la clase

ImageTextDataset permite cargar de forma eficiente pares imagen-texto, mientras que el

texto de referencia se extrajo automáticamente del PDF original mediante PyMuPDF,

garantizando así la consistencia entre las imágenes y sus transcripciones esperadas.

El análisis de hiperparámetros (OE3) arrojó resultados particularmente reveladores. El

parámetro textline_orientation emergió como el factor más influyente, resultando crítico

para obtener buenos resultados en documentos con diseños complejos. Asimismo,

use_doc_orientation_classify demostró un impacto positivo en la configuración con GPU.

Por otra parte, el umbral text_det_thresh presenta una correlación negativa moderada (-

0.52) con el CER, lo que indica que valores más bajos tienden a mejorar el rendimiento, aunque

con un límite inferior por debajo del cual el sistema falla catastróficamente. Cabe destacar

que use_doc_unwarping no aporta mejora alguna en documentos digitales, ya que estos no

presentan las deformaciones físicas para las que fue diseñado este módulo.

La experimentación con Ray Tune (OE4) se completó satisfactoriamente mediante 64 trials

ejecutados con el algoritmo OptunaSearch y aceleración GPU. El tiempo total del experimento

—aproximadamente 1.5 horas con una GPU RTX 3060— demuestra la viabilidad práctica de

esta aproximación. La arquitectura basada en contenedores Docker resultó esencial para

superar las incompatibilidades entre Ray y los motores OCR, al tiempo que garantiza la

portabilidad y reproducibilidad de los experimentos.

Finalmente, la validación de la configuración óptima (OE5) se realizó sobre el conjunto de

datos completo de 45 páginas. El mejor trial individual alcanzó un CER de 0.79%, equivalente

a una precisión del 99.21%. Sin embargo, la evaluación sobre el conjunto de datos completo

arrojó un CER de 7.72%, lo que representa una mejora del 12.8% respecto al baseline (8.85%),

pero queda lejos del resultado del mejor trial. Esta diferencia revela un sobreajuste al

subconjunto de optimización de 5 páginas, un fenómeno que se analiza en detalle en la

sección de limitaciones.

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

78

5.1.3. Hallazgos Clave

El hallazgo más significativo de este trabajo es que las decisiones arquitectónicas tienen mayor

impacto que los umbrales numéricos. Un único parámetro booleano —

textline_orientation— influye más en el rendimiento final que todos los umbrales continuos

combinados. Este resultado sugiere que, al optimizar sistemas OCR, conviene priorizar la

exploración de configuraciones estructurales antes de ajustar finamente los valores

numéricos.

No obstante, los umbrales presentan límites operativos que deben respetarse. Valores de

text_det_thresh inferiores a 0.1 provocan fallos catastróficos, con tasas de error que superan

el 40%. Este comportamiento indica la existencia de regiones del espacio de hiperparámetros

que deben evitarse, lo cual tiene implicaciones para el diseño de espacios de búsqueda en

futuros experimentos.

Otro hallazgo relevante es la innecesariedad de ciertos módulos para documentos digitales.

Los PDF generados directamente desde procesadores de texto no presentan las

deformaciones físicas —arrugas, curvaturas, rotaciones— para las que fueron diseñados los

módulos de corrección. En estos casos, desactivar use_doc_unwarping no solo simplifica el

pipeline, sino que puede mejorar el rendimiento al evitar procesamientos innecesarios.

Finalmente, los resultados demuestran que es posible mejorar modelos preentrenados

mediante ajuste exclusivo de hiperparámetros de inferencia, sin necesidad de

reentrenamiento. Sin embargo, esta aproximación requiere validación cuidadosa, ya que las

configuraciones optimizadas sobre subconjuntos pequeños pueden no generalizar a conjuntos

de datos más amplios o diversos.

5.1.4. Contribuciones del Trabajo

La principal contribución de este trabajo es una metodología reproducible para la

optimización de hiperparámetros OCR. El proceso completo —desde la preparación del

conjunto de datos hasta la validación de la configuración óptima— queda documentado y es

replicable mediante las herramientas Ray Tune y Optuna.

En segundo lugar, el análisis sistemático de los hiperparámetros de PaddleOCR constituye una

contribución al conocimiento disponible sobre este motor OCR. Mediante el cálculo de

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

79

correlaciones y análisis comparativo, se cuantifica el impacto de cada parámetro configurable,

información que puede orientar futuros trabajos de optimización.

Como resultado práctico, se aporta una configuración validada específicamente para

documentos académicos en español. Aunque la generalización a otros tipos de documentos

requiere validación adicional, esta configuración representa un punto de partida sólido para

aplicaciones en el ámbito hispanohablante.

Por último, todo el código fuente, las imágenes Docker y los datos experimentales están

disponibles públicamente en el repositorio del proyecto, facilitando así la reproducción,

verificación y extensión de este trabajo por parte de otros investigadores.

5.1.5. Limitaciones del Trabajo

Es necesario reconocer varias limitaciones que condicionan el alcance de las conclusiones

presentadas. En primer lugar, todos los experimentos se realizaron sobre un único tipo de

documento: textos académicos de UNIR. La generalización a otros formatos —facturas,

formularios, documentos manuscritos— requeriría validación adicional con conjuntos de

datos específicos.

El tamaño del corpus constituye otra limitación relevante. Con 45 páginas, el conjunto de

datos es modesto para extraer conclusiones estadísticamente robustas. Además, el

subconjunto de optimización de tan solo 5 páginas resultó insuficiente para evitar el

sobreajuste, como evidencia la brecha entre el CER del mejor trial (0.79%) y el resultado sobre

el conjunto completo (7.72%).

Desde el punto de vista metodológico, la extracción automática del texto de referencia

mediante PyMuPDF puede introducir errores en documentos con diseños complejos, donde

el orden de lectura no es evidente. Asimismo, el parámetro text_det_unclip_ratio

permaneció fijo en 0.0 durante todo el experimento, dejando inexplorada una dimensión

potencialmente relevante del espacio de hiperparámetros.

Por último, aunque la GPU RTX 3060 utilizada proporcionó una aceleración de 82× respecto a

la ejecución en CPU, se trata de hardware de consumo. Equipamiento empresarial con mayor

capacidad de VRAM permitiría ejecutar múltiples servicios OCR simultáneamente y explorar

espacios de búsqueda más amplios en menos tiempo.

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

80

5.2. Líneas de trabajo futuro

5.2.1. Extensiones Inmediatas

Las limitaciones identificadas sugieren varias extensiones que podrían abordarse a corto

plazo. La más urgente es la validación cruzada de la configuración óptima en otros tipos de

documentos en español, como facturas, formularios administrativos o textos manuscritos.

Esta validación revelaría el grado de transferibilidad de los hallazgos actuales.

Para abordar el problema del sobreajuste, futuros experimentos deberían utilizar un

subconjunto de optimización más amplio. Un conjunto de 15-20 páginas representativas

reduciría la varianza y mejoraría la generalización de las configuraciones encontradas.

Complementariamente, sería conveniente construir un corpus más amplio y diverso de

documentos en español, incluyendo diferentes tipografías, diseños y calidades de imagen.

Desde el punto de vista técnico, queda pendiente la exploración del parámetro

text_det_unclip_ratio, que permaneció fijo en este trabajo. Incluirlo en el espacio de

búsqueda podría revelar interacciones con otros parámetros actualmente desconocidas.

5.2.2. Líneas de Investigación

En un horizonte más amplio, surgen varias líneas de investigación prometedoras. Una de las

más interesantes es el estudio del transfer learning de hiperparámetros: ¿las configuraciones

óptimas para documentos académicos transfieren a otros dominios, o cada tipo de

documento requiere optimización específica? La respuesta a esta pregunta tiene

implicaciones prácticas significativas.

Otra dirección valiosa es la optimización multi-objetivo, que considere simultáneamente CER,

WER y tiempo de inferencia. En aplicaciones reales, la precisión máxima no siempre es el único

criterio; a menudo existe un compromiso entre calidad y velocidad que debe gestionarse

explícitamente.

Técnicas de AutoML más avanzadas, como Neural Architecture Search o meta-learning,

podrían automatizar aún más el proceso de configuración. Por último, una comparación

rigurosa entre optimización de hiperparámetros y fine-tuning real cuantificaría la brecha de

rendimiento entre ambas aproximaciones y ayudaría a decidir cuándo merece la pena el

esfuerzo adicional del reentrenamiento.

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

81

5.2.3. Aplicaciones Prácticas

Los resultados de este trabajo abren camino a varias aplicaciones prácticas. Una herramienta

de configuración automática podría analizar un pequeño conjunto de documentos de muestra

y determinar la configuración óptima de PaddleOCR para ese tipo específico de documento,

democratizando el acceso a estas técnicas de optimización.

La integración de las configuraciones optimizadas en pipelines de producción representa otra

aplicación natural. Los sistemas de procesamiento documental en organizaciones que

manejan grandes volúmenes de documentos en español podrían beneficiarse directamente

de los hallazgos de este trabajo.

Finalmente, la publicación de un benchmark público de OCR para documentos en español

facilitaría la comparación objetiva de diferentes soluciones. La comunidad hispanohablante

carece actualmente de recursos comparables a los disponibles para otros idiomas, y este

trabajo podría contribuir a llenar ese vacío.

5.2.4. Reflexión Final

En síntesis, este trabajo ha demostrado que la optimización de hiperparámetros representa

una alternativa viable al fine-tuning para mejorar sistemas OCR, especialmente cuando se

dispone de modelos preentrenados para el idioma objetivo y recursos limitados de tiempo o

datos etiquetados.

La metodología propuesta cumple los requisitos de reproducibilidad científica: los

experimentos pueden replicarse, los resultados son cuantificables y las conclusiones son

aplicables a escenarios reales de procesamiento documental. Sin embargo, la experiencia

también ha puesto de manifiesto la importancia de diseñar cuidadosamente los experimentos

de optimización. Aunque el objetivo de CER inferior al 2% se alcanzó en el mejor trial individual

(0.79%), la validación sobre el conjunto de datos completo (7.72%) revela que el tamaño y

representatividad del subconjunto de optimización son factores críticos que no deben

subestimarse.

La infraestructura dockerizada desarrollada constituye una aportación práctica que trasciende

los resultados numéricos. Al encapsular los motores OCR en contenedores independientes, se

resuelven problemas de compatibilidad entre dependencias y se garantiza que cualquier

investigador pueda reproducir exactamente las condiciones experimentales. La aceleración de

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

82

82× proporcionada por GPU transforma lo que sería un experimento de días en uno de horas,

haciendo viable la exploración exhaustiva de espacios de hiperparámetros con hardware de

consumo.

El código fuente, las imágenes Docker y los datos experimentales están disponibles

públicamente en el repositorio del proyecto. Esta apertura busca facilitar no solo la

reproducción de los resultados, sino también la extensión de este trabajo hacia nuevos tipos

de documentos, idiomas o motores OCR.

Referencias bibliográficas

Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A next-generation

hyperparameter optimization framework. Proceedings of the 25th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, 2623-2631.

https://doi.org/10.1145/3292500.3330701

Baek, Y., Lee, B., Han, D., Yun, S., & Lee, H. (2019). Character region awareness for text

detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 9365-9374. https://doi.org/10.1109/CVPR.2019.00959

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of

Machine Learning Research, 13(1), 281-305.

https://jmlr.org/papers/v13/bergstra12a.html

Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for hyper-parameter

optimization. Advances in Neural Information Processing Systems, 24, 2546-2554.

https://papers.nips.cc/paper/2011/hash/86e8f7ab32cfd12577bc2619bc635690-

Abstract.html

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence

Erlbaum Associates.

Doran, G. T. (1981). There's a S.M.A.R.T. way to write management's goals and objectives.

Management Review, 70(11), 35-36.

Du, Y., Li, C., Guo, R., Yin, X., Liu, W., Zhou, J., Bai, Y., Yu, Z., Yang, Y., Dang, Q., & Wang, H.

(2020). PP-OCR: A practical ultra lightweight OCR system. arXiv preprint

arXiv:2009.09941. https://arxiv.org/abs/2009.09941

https://seryus.ddns.net/unir/MastersThesis

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

83

Du, Y., Li, C., Guo, R., Cui, C., Liu, W., Zhou, J., Lu, B., Yang, Y., Liu, Q., Hu, X., Yu, D., & Wang,

H. (2023). PP-OCRv4: Mobile scene text detection and recognition. arXiv preprint

arXiv:2310.05930. https://arxiv.org/abs/2310.05930

Feurer, M., & Hutter, F. (2019). Hyperparameter optimization. In F. Hutter, L. Kotthoff, & J.

Vanschoren (Eds.), Automated machine learning: Methods, systems, challenges (pp. 3-

33). Springer. https://doi.org/10.1007/978-3-030-05318-5_1

He, P., Huang, W., Qiao, Y., Loy, C. C., & Tang, X. (2016). Reading scene text in deep

convolutional sequences. Proceedings of the AAAI Conference on Artificial Intelligence,

30(1), 3501-3508. https://doi.org/10.1609/aaai.v30i1.10291

JaidedAI. (2020). EasyOCR: Ready-to-use OCR with 80+ supported languages. GitHub.

https://github.com/JaidedAI/EasyOCR

Liang, J., Doermann, D., & Li, H. (2005). Camera-based analysis of text and documents: A

survey. International Journal of Document Analysis and Recognition, 7(2), 84-104.

https://doi.org/10.1007/s10032-004-0138-z

Liao, M., Wan, Z., Yao, C., Chen, K., & Bai, X. (2020). Real-time scene text detection with

differentiable binarization. Proceedings of the AAAI Conference on Artificial

Intelligence, 34(07), 11474-11481. https://doi.org/10.1609/aaai.v34i07.6812

Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez, J. E., & Stoica, I. (2018). Tune: A research

platform for distributed model selection and training. arXiv preprint arXiv:1807.05118.

https://arxiv.org/abs/1807.05118

Mindee. (2021). DocTR: Document Text Recognition. GitHub.

https://github.com/mindee/doctr

Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R., Liang, E., Elibol, M., Yang, Z., Paul,

W., Jordan, M. I., & Stoica, I. (2018). Ray: A distributed framework for emerging AI

applications. 13th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 18), 561-577.

https://www.usenix.org/conference/osdi18/presentation/moritz

Morris, A. C., Maier, V., & Green, P. D. (2004). From WER and RIL to MER and WIL: Improved

evaluation measures for connected speech recognition. Eighth International

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

84

Conference on Spoken Language Processing.

https://doi.org/10.21437/Interspeech.2004-668

PaddlePaddle. (2024). PaddleOCR: Awesome multilingual OCR toolkits based on

PaddlePaddle. GitHub. https://github.com/PaddlePaddle/PaddleOCR

Pearson, K. (1895). Notes on regression and inheritance in the case of two parents.

Proceedings of the Royal Society of London, 58, 240-242.

https://doi.org/10.1098/rspl.1895.0041

PyMuPDF. (2024). PyMuPDF documentation. https://pymupdf.readthedocs.io/

Shi, B., Bai, X., & Yao, C. (2016). An end-to-end trainable neural network for image-based

sequence recognition and its application to scene text recognition. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 39(11), 2298-2304.

https://doi.org/10.1109/TPAMI.2016.2646371

Smith, R. (2007). An overview of the Tesseract OCR engine. Ninth International Conference on

Document Analysis and Recognition (ICDAR 2007), 2, 629-633.

https://doi.org/10.1109/ICDAR.2007.4376991

Zhou, X., Yao, C., Wen, H., Wang, Y., Zhou, S., He, W., & Liang, J. (2017). EAST: An efficient and

accurate scene text detector. Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 5551-5560. https://doi.org/10.1109/CVPR.2017.283

Zoph, B., & Le, Q. V. (2017). Neural architecture search with reinforcement learning.

International Conference on Learning Representations (ICLR).

https://arxiv.org/abs/1611.01578

Anexo A. Código fuente y datos analizados

Este anexo proporciona la información técnica necesaria para reproducir los experimentos

descritos en este trabajo. Se incluyen las instrucciones de instalación, configuración de los

servicios OCR dockerizados, ejecución de los scripts de optimización y acceso a los resultados

experimentales.

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

85

5.3. A.1 Repositorio del Proyecto

Todo el código fuente y los datos utilizados en este trabajo están disponibles públicamente en

el siguiente repositorio:

URL del repositorio: https://seryus.ddns.net/unir/MastersThesis

El repositorio incluye:

• Servicios OCR dockerizados: PaddleOCR, DocTR, EasyOCR con soporte GPU

• Scripts de evaluación: Herramientas para evaluar y comparar modelos OCR

• Scripts de ajuste: Ray Tune con Optuna para optimización de hiperparámetros

• Dataset: Imágenes y textos de referencia utilizados

• Resultados: Archivos CSV con los resultados de los 64 trials por servicio

5.4. A.2 Estructura del Repositorio

Figura 16. Estructura del repositorio MastersThesis

Fuente: Elaboración propia.

Tabla 56. Descripción de directorios principales.

Directorio Contenido

docs/ Capítulos del TFM en Markdown (estructura UNIR)

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

86

docs/metrics/ Métricas de rendimiento por servicio OCR

src/paddle_ocr/ Servicio PaddleOCR dockerizado

src/doctr_service/ Servicio DocTR dockerizado

src/easyocr_service/ Servicio EasyOCR dockerizado

src/raytune/ Scripts de optimización Ray Tune

src/results/ CSVs con resultados de 64 trials por servicio

thesis_output/ Documento TFM generado + figuras PNG

instructions/ Plantilla e instrucciones UNIR oficiales

Fuente: Elaboración propia.

5.5. A.3 Requisitos de Software

5.5.1. Sistema de Desarrollo

Tabla 57. Especificaciones del sistema de desarrollo.

Componente Especificación

Sistema Operativo Ubuntu 24.04.3 LTS

CPU AMD Ryzen 7 5800H

RAM 16 GB DDR4

GPU NVIDIA RTX 3060 Laptop (5.66 GB VRAM)

CUDA 12.4

Fuente: Elaboración propia.

5.5.2. Dependencias

Tabla 58. Dependencias del proyecto.

Componente Versión

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

87

Python 3.12.3

Docker 29.1.5

NVIDIA Container Toolkit Requerido para GPU

Ray 2.52.1

Optuna 4.7.0

Fuente: Elaboración propia.

5.6. A.4 Instrucciones de Ejecución de Servicios OCR

5.6.1. PaddleOCR (Puerto 8002)

Imágenes Docker:

• GPU: seryus.ddns.net/unir/paddle-ocr-gpu

• CPU: seryus.ddns.net/unir/paddle-ocr-cpu

cd src/paddle_ocr

GPU (recomendado)
docker compose up -d

CPU (más lento, 82x)
docker compose -f docker-compose.cpu-registry.yml up -d

5.6.2. DocTR (Puerto 8003)

Imagen Docker: seryus.ddns.net/unir/doctr-gpu

cd src/doctr_service

GPU
docker compose up -d

5.6.3. EasyOCR (Puerto 8002)

Nota: EasyOCR utiliza el mismo puerto (8002) que PaddleOCR. No se pueden ejecutar
simultáneamente. Por esta razón, existe un archivo docker-compose separado para EasyOCR.

Imagen Docker: seryus.ddns.net/unir/easyocr-gpu

cd src/easyocr_service

GPU (usar archivo separado para evitar conflicto de puerto)

https://seryus.ddns.net/unir/-/packages/container/paddle-ocr-gpu/latest
https://seryus.ddns.net/unir/-/packages/container/paddle-ocr-cpu/latest
https://seryus.ddns.net/unir/-/packages/container/doctr-gpu/latest
https://seryus.ddns.net/unir/-/packages/container/easyocr-gpu/latest

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

88

docker compose up -d

5.6.4. Verificar Estado del Servicio

Verificar salud del servicio
curl http://localhost:8002/health

Respuesta esperada:
{"status": "ok", "model_loaded": true, "gpu_name": "NVIDIA GeForce RTX 3060"}

5.7. A.5 Uso de la API OCR

5.7.1. Evaluar Dataset Completo

PaddleOCR - Evaluación completa
curl -X POST http://localhost:8002/evaluate_full \
 -H "Content-Type: application/json" \
 -d '{
 "pdf_folder": "/app/dataset",
 "save_output": true
 }'

5.7.2. Evaluar con Hiperparámetros Optimizados

PaddleOCR con configuración óptima
curl -X POST http://localhost:8002/evaluate_full \
 -H "Content-Type: application/json" \
 -d '{
 "pdf_folder": "/app/dataset",
 "use_doc_orientation_classify": true,
 "use_doc_unwarping": false,
 "textline_orientation": true,
 "text_det_thresh": 0.0462,
 "text_det_box_thresh": 0.4862,
 "text_det_unclip_ratio": 0.0,
 "text_rec_score_thresh": 0.5658,
 "save_output": true
 }'

5.8. A.6 Ajuste de Hiperparámetros con Ray Tune

5.8.1. Ejecutar Ajuste

cd src

Activar entorno virtual
source ../.venv/bin/activate

PaddleOCR (64 muestras)
python -c "
from raytune_ocr import *

ports = [8002]
check_workers(ports, 'PaddleOCR')
trainable = create_trainable(ports, paddle_ocr_payload)
results = run_tuner(trainable, PADDLE_OCR_SEARCH_SPACE, num_samples=64)
analyze_results(results, prefix='raytune_paddle', config_keys=PADDLE_OCR_CONFIG_KEYS)

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

89

"

5.8.2. Servicios y Puertos

Tabla 59. Servicios Docker y puertos.

Servicio Puerto Script de Ajuste Nota

PaddleOCR 8002 paddle_ocr_payload -

DocTR 8003 doctr_payload -

EasyOCR 8002 easyocr_payload Conflicto con PaddleOCR

Fuente: Elaboración propia.

Nota: Debido a limitaciones de recursos GPU (VRAM insuficiente para ejecutar múltiples
modelos OCR simultáneamente), solo se ejecuta un servicio a la vez. PaddleOCR y EasyOCR
comparten el puerto 8002. Para cambiar de servicio, detener el actual con docker compose
down.

5.9. A.7 Métricas de Rendimiento

Esta sección presenta los resultados completos de las evaluaciones comparativas y del ajuste

de hiperparámetros realizado con Ray Tune sobre los tres servicios OCR evaluados.

5.9.1. Comparativa General de Servicios

Tabla 60. Comparativa de servicios OCR en dataset de 45 páginas (GPU RTX 3060).

Servicio CER WER Tiempo/Página Tiempo Total VRAM

PaddleOCR (Mobile) 7.76% 11.62% 0.58s 32.0s 0.06 GB

EasyOCR 11.23% 36.36% 1.88s 88.5s ~2 GB

DocTR 12.06% 42.01% 0.50s 28.4s ~1 GB

Fuente: Elaboración propia.

Ganador: PaddleOCR (Mobile) - Mejor precisión (7.76% CER) con velocidad competitiva y

mínimo consumo de VRAM.

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

90

5.9.2. Resultados de Ajuste de Hiperparámetros

Se ejecutaron 64 trials por servicio utilizando Ray Tune con Optuna sobre las páginas 5-10 del

primer documento.

Tabla 61. Resultados del ajuste de hiperparámetros por servicio.

Servicio CER Base CER Ajustado Mejora Mejor Trial (5 páginas)

PaddleOCR 8.85% 7.72% 12.8% 0.79% ✓

DocTR 12.06% 12.07% 0% 7.43%

EasyOCR 11.23% 11.14% 0.8% 5.83%

Fuente: Elaboración propia.

Nota sobre sobreajuste: La diferencia entre los resultados del mejor trial (subconjunto de 5
páginas) y el dataset completo (45 páginas) indica sobreajuste parcial a las páginas de ajuste.
Un subconjunto más grande (15-20 páginas) mejoraría la generalización.

5.9.3. Configuración Óptima PaddleOCR

La siguiente configuración logró el mejor rendimiento en el ajuste de hiperparámetros:

{
 "use_doc_orientation_classify": true,
 "use_doc_unwarping": false,
 "textline_orientation": true,
 "text_det_thresh": 0.0462,
 "text_det_box_thresh": 0.4862,
 "text_det_unclip_ratio": 0.0,
 "text_rec_score_thresh": 0.5658
}

Hallazgos clave:

• textline_orientation=true: Crítico para documentos con layouts mixtos

• use_doc_orientation_classify=true: Mejora detección de orientación

• use_doc_unwarping=false: Innecesario para PDFs digitales

• text_det_thresh bajo (0.0462): Detección más sensible mejora resultados

5.9.4. Rendimiento CPU vs GPU

Tabla 62. Comparación de rendimiento CPU vs GPU (PaddleOCR).

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

91

Métrica CPU GPU (RTX 3060) Aceleración

Tiempo/Página 69.4s 0.55s 126x más rápido

Mejor CER 1.15% 0.79% GPU mejor

45 páginas ~52 min ~25 seg 126x más rápido

Fuente: Elaboración propia.

5.9.5. Análisis de Errores por Servicio

Tabla 63. Tipos de errores identificados por servicio OCR.

Servicio Fortalezas Debilidades
¿Fine-tuning

recomendado?

PaddleOCR
Preserva estructura, buen

manejo de español

Errores menores de

acentos (~5%)
No (ya excelente)

DocTR Más rápido
Pierde estructura, omite

TODOS los diacríticos
Sí (para diacríticos)

EasyOCR
Modelo correcto para

español

Caracteres espurios,

confunde o/0

Sí (problemas del

detector)

Fuente: Elaboración propia.

5.9.6. Archivos de Resultados

Los resultados crudos de los 64 trials por servicio están disponibles en el repositorio:

Tabla 64. Ubicación de archivos de resultados.

Servicio Archivo CSV

PaddleOCR src/results/raytune_paddle_results_20260119_122609.csv

DocTR src/results/raytune_doctr_results_20260119_121445.csv

EasyOCR src/results/raytune_easyocr_results_20260119_120204.csv

https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/results/raytune_paddle_results_20260119_122609.csv
https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/results/raytune_doctr_results_20260119_121445.csv
https://seryus.ddns.net/unir/MastersThesis/-/blob/main/src/results/raytune_easyocr_results_20260119_120204.csv

Sergio Jiménez Jiménez
Optimización de Hiperparámetros OCR con Ray Tune para Documentos Académicos en Español

92

Fuente: Elaboración propia.

5.10. A.8 Licencia

El código se distribuye bajo licencia MIT.

