# PaddleOCR Tuning REST API
REST API service for PaddleOCR hyperparameter evaluation. Keeps the model loaded in memory for fast repeated evaluations during hyperparameter search.
## Quick Start with Docker Compose
Docker Compose manages building and running containers. The `docker-compose.yml` defines two services:
- `ocr-cpu` - CPU-only version (works everywhere)
- `ocr-gpu` - GPU version (requires NVIDIA GPU + Container Toolkit)
### Run CPU Version
```bash
cd src/paddle_ocr
# Build and start (first time takes ~2-3 min to build, ~30s to load model)
docker compose up ocr-cpu
# Or run in background (detached)
docker compose up -d ocr-cpu
# View logs
docker compose logs -f ocr-cpu
# Stop
docker compose down
```
### Run GPU Version
```bash
# Requires: NVIDIA GPU + nvidia-container-toolkit installed
docker compose up ocr-gpu
```
### Test the API
Once running, test with:
```bash
# Check health
curl http://localhost:8000/health
# Or use the test script
pip install requests
python test.py --url http://localhost:8000
```
### What Docker Compose Does
```
docker compose up ocr-cpu
│
├─► Builds image from Dockerfile.cpu (if not exists)
├─► Creates container "paddle-ocr-cpu"
├─► Mounts ../dataset → /app/dataset (your PDF images)
├─► Mounts paddlex-cache volume (persists downloaded models)
├─► Exposes port 8000
└─► Runs: uvicorn paddle_ocr_tuning_rest:app --host 0.0.0.0 --port 8000
```
## Files
| File | Description |
|------|-------------|
| `paddle_ocr_tuning_rest.py` | FastAPI REST service |
| `dataset_manager.py` | Dataset loader |
| `test.py` | API test client |
| `Dockerfile.cpu` | CPU-only image (multi-arch) |
| `Dockerfile.gpu` | GPU/CUDA image (x86_64) |
| `docker-compose.yml` | Service orchestration |
## API Endpoints
### `GET /health`
Check if service is ready.
```json
{"status": "ok", "model_loaded": true, "dataset_loaded": true, "dataset_size": 24}
```
### `POST /evaluate`
Run OCR evaluation with given hyperparameters.
**Request:**
```json
{
"pdf_folder": "/app/dataset",
"textline_orientation": true,
"use_doc_orientation_classify": false,
"use_doc_unwarping": false,
"text_det_thresh": 0.469,
"text_det_box_thresh": 0.5412,
"text_det_unclip_ratio": 0.0,
"text_rec_score_thresh": 0.635,
"start_page": 5,
"end_page": 10
}
```
**Response:**
```json
{"CER": 0.0115, "WER": 0.0989, "TIME": 330.5, "PAGES": 5, "TIME_PER_PAGE": 66.1}
```
### `POST /evaluate_full`
Same as `/evaluate` but runs on ALL pages (ignores start_page/end_page).
## Building Images
### CPU Image (Multi-Architecture)
```bash
# Local build (current architecture)
docker build -f Dockerfile.cpu -t paddle-ocr-api:cpu .
# Multi-arch build with buildx (amd64 + arm64)
docker buildx create --name multiarch --use
docker buildx build -f Dockerfile.cpu \
--platform linux/amd64,linux/arm64 \
-t paddle-ocr-api:cpu \
--push .
```
### GPU Image (x86_64 only)
```bash
docker build -f Dockerfile.gpu -t paddle-ocr-api:gpu .
```
## Running
### CPU (Any machine)
```bash
docker run -d -p 8000:8000 \
-v $(pwd)/../dataset:/app/dataset:ro \
-v paddlex-cache:/root/.paddlex \
paddle-ocr-api:cpu
```
### GPU (NVIDIA)
```bash
docker run -d -p 8000:8000 --gpus all \
-v $(pwd)/../dataset:/app/dataset:ro \
-v paddlex-cache:/root/.paddlex \
paddle-ocr-api:gpu
```
## DGX Spark (ARM64 + CUDA)
DGX Spark uses ARM64 (Grace CPU) with NVIDIA Hopper GPU. You have two options:
### Option 1: Native ARM64 Build (Recommended)
PaddlePaddle has ARM64 support. Build natively:
```bash
# On DGX Spark or ARM64 machine
docker build -f Dockerfile.cpu -t paddle-ocr-api:arm64 .
```
For GPU acceleration on ARM64, you'll need to modify `Dockerfile.gpu` to use ARM-compatible base image:
```dockerfile
# Change this line in Dockerfile.gpu:
FROM nvcr.io/nvidia/cuda:12.4.1-cudnn-runtime-ubuntu22.04
# To ARM64-compatible version:
FROM nvcr.io/nvidia/cuda:12.4.1-cudnn-runtime-ubuntu22.04
# (same image works on ARM64 when pulled on ARM machine)
```
Then build on the DGX Spark:
```bash
docker build -f Dockerfile.gpu -t paddle-ocr-api:gpu-arm64 .
```
### Option 2: x86_64 Emulation via QEMU (Slow)
You CAN run x86_64 images on ARM via emulation, but it's ~10-20x slower:
```bash
# On DGX Spark, enable QEMU emulation
docker run --rm --privileged multiarch/qemu-user-static --reset -p yes
# Run x86_64 image with emulation
docker run --platform linux/amd64 -p 8000:8000 \
-v $(pwd)/../dataset:/app/dataset:ro \
paddle-ocr-api:cpu
```
**Not recommended** for production due to severe performance penalty.
### Option 3: Cross-compile from x86_64
Build ARM64 images from your x86_64 machine:
```bash
# Setup buildx for multi-arch
docker buildx create --name mybuilder --use
# Build ARM64 image from x86_64 machine
docker buildx build -f Dockerfile.cpu \
--platform linux/arm64 \
-t paddle-ocr-api:arm64 \
--load .
# Save and transfer to DGX Spark
docker save paddle-ocr-api:arm64 | gzip > paddle-ocr-arm64.tar.gz
scp paddle-ocr-arm64.tar.gz dgx-spark:~/
# On DGX Spark:
docker load < paddle-ocr-arm64.tar.gz
```
## Using with Ray Tune
Update your notebook's `trainable_paddle_ocr` function:
```python
import requests
API_URL = "http://localhost:8000/evaluate"
def trainable_paddle_ocr(config):
"""Call OCR API instead of subprocess."""
payload = {
"pdf_folder": "/app/dataset",
"use_doc_orientation_classify": config.get("use_doc_orientation_classify", False),
"use_doc_unwarping": config.get("use_doc_unwarping", False),
"textline_orientation": config.get("textline_orientation", True),
"text_det_thresh": config.get("text_det_thresh", 0.0),
"text_det_box_thresh": config.get("text_det_box_thresh", 0.0),
"text_det_unclip_ratio": config.get("text_det_unclip_ratio", 1.5),
"text_rec_score_thresh": config.get("text_rec_score_thresh", 0.0),
}
try:
response = requests.post(API_URL, json=payload, timeout=600)
response.raise_for_status()
metrics = response.json()
tune.report(metrics=metrics)
except Exception as e:
tune.report({"CER": 1.0, "WER": 1.0, "ERROR": str(e)[:500]})
```
## Architecture: Model Lifecycle
The model is loaded **once** at container startup and stays in memory for all requests:
```mermaid
flowchart TB
subgraph Container["Docker Container Lifecycle"]
Start([Container Start]) --> Load[Load PaddleOCR Models
~10-30s one-time cost]
Load --> Ready[API Ready
Models in RAM ~500MB]
subgraph Requests["Incoming Requests - Models Stay Loaded"]
Ready --> R1[Request 1] --> Ready
Ready --> R2[Request 2] --> Ready
Ready --> RN[Request N...] --> Ready
end
Ready --> Stop([Container Stop])
Stop --> Free[Models Freed]
end
style Load fill:#f9f,stroke:#333
style Ready fill:#9f9,stroke:#333
style Requests fill:#e8f4ea,stroke:#090
```
**Subprocess vs REST API comparison:**
```mermaid
flowchart LR
subgraph Subprocess["❌ Subprocess Approach"]
direction TB
S1[Trial 1] --> L1[Load Model ~10s]
L1 --> E1[Evaluate ~60s]
E1 --> U1[Unload]
U1 --> S2[Trial 2]
S2 --> L2[Load Model ~10s]
L2 --> E2[Evaluate ~60s]
end
subgraph REST["✅ REST API Approach"]
direction TB
Start2[Start Container] --> Load2[Load Model ~10s]
Load2 --> Ready2[Model in Memory]
Ready2 --> T1[Trial 1 ~60s]
T1 --> Ready2
Ready2 --> T2[Trial 2 ~60s]
T2 --> Ready2
Ready2 --> TN[Trial N ~60s]
end
style L1 fill:#faa
style L2 fill:#faa
style Load2 fill:#afa
style Ready2 fill:#afa
```
## Performance Comparison
| Approach | Model Load | Per-Trial Overhead | 64 Trials |
|----------|------------|-------------------|-----------|
| Subprocess (original) | Every trial (~10s) | ~10s | ~7 hours |
| Docker per trial | Every trial (~10s) | ~12-15s | ~7.5 hours |
| **REST API** | **Once** | **~0.1s** | **~5.8 hours** |
The REST API saves ~1+ hour by loading the model only once.
## Troubleshooting
### Model download slow on first run
The first run downloads ~500MB of models. Use volume `paddlex-cache` to persist them.
### Out of memory
Reduce `max_concurrent_trials` in Ray Tune, or increase container memory:
```bash
docker run --memory=8g ...
```
### GPU not detected
Ensure NVIDIA Container Toolkit is installed:
```bash
nvidia-smi # Should work
docker run --rm --gpus all nvidia/cuda:12.0-base nvidia-smi # Should work
```