# docker-compose.tuning.doctr.yml - Ray Tune with DocTR GPU # Usage: # docker compose -f docker-compose.tuning.doctr.yml up -d doctr-gpu # docker compose -f docker-compose.tuning.doctr.yml run raytune --service doctr --samples 64 # docker compose -f docker-compose.tuning.doctr.yml down services: raytune: image: seryus.ddns.net/unir/raytune:latest command: ["--service", "doctr", "--host", "doctr-gpu", "--port", "8000", "--samples", "64"] volumes: - ./results:/app/results:rw environment: - PYTHONUNBUFFERED=1 depends_on: doctr-gpu: condition: service_healthy doctr-gpu: image: seryus.ddns.net/unir/doctr-gpu:latest container_name: doctr-gpu-tuning ports: - "8003:8000" volumes: - ./dataset:/app/dataset:ro - ./debugset:/app/debugset:rw - doctr-cache:/root/.cache/doctr environment: - PYTHONUNBUFFERED=1 - CUDA_VISIBLE_DEVICES=0 - DOCTR_DET_ARCH=db_resnet50 - DOCTR_RECO_ARCH=crnn_vgg16_bn deploy: resources: reservations: devices: - driver: nvidia count: 1 capabilities: [gpu] restart: unless-stopped healthcheck: test: ["CMD", "python", "-c", "import urllib.request; urllib.request.urlopen('http://localhost:8000/health')"] interval: 30s timeout: 10s retries: 3 start_period: 180s volumes: doctr-cache: name: doctr-model-cache