# Dockerfile.build-paddle - Build PaddlePaddle GPU wheel for ARM64 # # This Dockerfile compiles PaddlePaddle from source with CUDA support for ARM64. # The resulting wheel can be used in Dockerfile.gpu for ARM64 GPU acceleration. # # Build time: 2-4 hours depending on hardware # Output: /output/paddlepaddle_gpu-*.whl # # Usage: # docker compose run build-paddle # # or # docker build -f Dockerfile.build-paddle -t paddle-builder . # docker run -v ./wheels:/output paddle-builder FROM nvidia/cuda:12.4.1-cudnn-devel-ubuntu22.04 LABEL maintainer="Sergio Jimenez" LABEL description="PaddlePaddle GPU wheel builder for ARM64" # Build arguments ARG PADDLE_VERSION=v3.0.0 ARG PYTHON_VERSION=3.11 # Environment setup ENV DEBIAN_FRONTEND=noninteractive ENV PYTHONUNBUFFERED=1 # Install build dependencies RUN apt-get update && apt-get install -y --no-install-recommends \ # Python python${PYTHON_VERSION} \ python${PYTHON_VERSION}-dev \ python${PYTHON_VERSION}-venv \ python3-pip \ # Build tools build-essential \ cmake \ ninja-build \ git \ wget \ curl \ pkg-config \ # Libraries libssl-dev \ libffi-dev \ zlib1g-dev \ libbz2-dev \ libreadline-dev \ libsqlite3-dev \ liblzma-dev \ libncurses5-dev \ libncursesw5-dev \ libgflags-dev \ libgoogle-glog-dev \ libprotobuf-dev \ protobuf-compiler \ patchelf \ # Additional dependencies for Paddle libopenblas-dev \ liblapack-dev \ swig \ && rm -rf /var/lib/apt/lists/* \ && ln -sf /usr/bin/python${PYTHON_VERSION} /usr/bin/python \ && ln -sf /usr/bin/python${PYTHON_VERSION} /usr/bin/python3 # Upgrade pip and install Python build dependencies RUN python -m pip install --upgrade pip setuptools wheel \ && python -m pip install \ numpy \ protobuf \ pyyaml \ requests \ packaging \ astor \ decorator \ paddle-bfloat \ opt-einsum WORKDIR /build # Clone PaddlePaddle repository RUN git clone --depth 1 --branch ${PADDLE_VERSION} \ https://github.com/PaddlePaddle/Paddle.git WORKDIR /build/Paddle # Install additional Python requirements for building RUN pip install -r python/requirements.txt || true # Create build directory RUN mkdir -p build WORKDIR /build/Paddle/build # Configure CMake for ARM64 + CUDA build # Note: Adjust CUDA_ARCH_NAME based on your GPU architecture # Common values: Auto, Ampere, Ada, Hopper RUN cmake .. \ -GNinja \ -DCMAKE_BUILD_TYPE=Release \ -DPY_VERSION=${PYTHON_VERSION} \ -DWITH_GPU=ON \ -DWITH_TESTING=OFF \ -DWITH_DISTRIBUTE=OFF \ -DWITH_NCCL=OFF \ -DWITH_MKL=OFF \ -DWITH_MKLDNN=OFF \ -DON_INFER=OFF \ -DWITH_PYTHON=ON \ -DWITH_AVX=OFF \ -DCUDA_ARCH_NAME=Auto \ -DCMAKE_EXPORT_COMPILE_COMMANDS=ON # Build PaddlePaddle (this takes 2-4 hours) RUN ninja -j$(nproc) || ninja -j$(($(nproc)/2)) || ninja -j4 # Build the Python wheel WORKDIR /build/Paddle/build RUN ninja paddle_python # Create output directory and copy wheel RUN mkdir -p /output # The wheel should be in python/dist/ WORKDIR /build/Paddle # Build wheel package RUN cd python && python setup.py bdist_wheel # Copy wheel to output RUN cp python/dist/*.whl /output/ 2>/dev/null || \ cp build/python/dist/*.whl /output/ 2>/dev/null || \ echo "Wheel location may vary, checking build artifacts..." # List what was built RUN ls -la /output/ && \ echo "=== Build complete ===" && \ echo "Wheel files:" && \ find /build -name "*.whl" -type f 2>/dev/null # Default command: copy wheel to mounted volume CMD ["sh", "-c", "cp /output/*.whl /wheels/ 2>/dev/null && echo 'Wheel copied to /wheels/' && ls -la /wheels/ || echo 'No wheel found in /output, checking other locations...' && find /build -name '*.whl' -exec cp {} /wheels/ \\; && ls -la /wheels/"]